
Under review as a conference paper at ICLR 2024

OFASys: A Multi-Modal Multi-Task Learning
System for Building Generalist Models

Anonymous authors
Paper under double-blind review

Abstract

Generalist models, which are capable of performing diverse multi-modal
tasks in a task-agnostic way within a single model, have been explored
recently. Being, hopefully, an alternative to approaching general-purpose AI,
existing generalist models are still at an early stage, where modality and task
coverage is limited. To empower multi-modal task-scaling and speed up this
line of research, we release a generalist model learning system, OFASys, built
on top of a declarative task interface named multi-modal instruction. At the
core of OFASys is the idea of decoupling multi-modal task representations
from the underlying model implementations. In OFASys, a task involving
multiple modalities can be defined declaratively even with just a single line of
code. The system automatically generates task plans from such instructions
for training and inference. It also facilitates multi-task training for diverse
multi-modal workloads. As a starting point, we provide presets of 7 different
modalities and 23 highly-diverse example tasks in OFASys, with which we
also develop a first-in-kind, single model, OFA+, that can handle text,
image, speech, video, and motion data. The single OFA+ model achieves
95% performance in average with only 16% parameters of 15 task-finetuned
models, showcasing the performance reliability of multi-modal task-scaling
provided by OFASys.

1 Introduction

Deep learning researches have achieved great success in designing curated model structures,
data representations, and training objectives to pursue ultimate performance for a single
model on a narrow field of tasks Srivastava et al. (2022). Recently, generalist models, e.g.,
OFA Wang et al. (2022a), Flamingo Alayrac et al. (2022a), GATO Reed et al. (2022a) and
Unified-IO Lu et al. (2022), have been working towards a different vision of performing
diverse multi-modal tasks in a task-agnostic way within a single model.

Inspired by the success of large language models Brown et al. (2020); Raffel et al. (2020);
Chowdhery et al. (2022), a generalist model expresses any task intention via natural language
and provides unified representations for the same modality data across all tasks. Such
general task representation and task-agnostic learning, which is considered the prerequisites
to approaching general-purpose AI Minsky (1988), have inspired the potential of generalizing
to unseen tasks even with different modality compositions. Despite the disadvantage that
no task-specific model structures are introduced in the finetuning stage, these generalist
models have demonstrated unprecedentedly the possibilities of achieving superior finetuning
performance, by task-agnostic multi-modal and multi-task pretraining.

However, being at an early stage, the research on generalist models is much more compli-
cated in engineering compared to that on task-specific models, since it requires systematic
management of the relationships among multiple modalities and tasks, in addition to the
neural architectures and the single task optimization. This engineering complexity becomes
intractable as the modality and task population grow to larger scale. While both open-source
tensor libraries, such as TensorFlow Abadi et al. (2016) and PyTorch Paszke et al. (2019),
and domain-specific libraries, such as Transformers Wolf et al. (2020) and MMDetection Chen
et al. (2019), greatly expedite the development of task-specific models and applications, there

1

Under review as a conference paper at ICLR 2024

Table 1: Approaches to building generalist models. OFASys covers all of the approaches.
CLM stands for causal language modeling, S2S stands for sequence-to-sequence learning, and
DDPM stands for denoising diffusion probabilistic modeling. The numbers in parentheses
are the numbers of supported modalities. The unique modalities supported by OFASys are
AUDIO and MOTION.

Model Paradigm Supervised Multi-Task Multi-Modal

GPT CLM ✗ ✗ ✗
PaLM CLM ✗ ✗ ✗
FLAN CLM ✓ ✓ ✗
Flamingo CLM ✗ ✓ ✓(3)
Gato CLM ✓ ✓ ✓(4)
T0 S2S ✓ ✓ ✗
OFA S2S ✓ ✓ ✓(3)
Unified-IO S2S ✓ ✓ ✓(4)

OFASys CLM, S2S, DDPM ✓ ✓ ✓(7)

is currently no designated system that provides neat abstractions and tools for task-agnostic
generalist model learning.

The inherent diversity and heterogeneity of multi-modal multi-task learning stands out as a
major obstacle in establishing such a system. In conventional practice, different tasks may
require a different model structure and a different training pipeline, all contributing to the
state-of-the-arts performance per task. Although the particular traits of the specific task
can be efficiently addressed, it proves hard to scale, as each new task would demand a new
system design.

Recently, studies have shed light on that issue and provided an alternative, scalable way to
multi-modal multi-task learning, drawing inspirations from (a) the task generalization capa-
bilities demonstrated by pretrained language models Brown et al. (2020); Sanh et al. (2022)
and (b) the success of the Transformer architecture in universal multi-modal learning Wang
et al. (2022a;b); Radford et al. (2021); Chen et al. (2022b). This motivates us to decouple the
task representation from its model implementation, which enables researchers to investigate
multi-modal task scaling and the underlying model compositions independently.

In light of this, we propose OFASys, a system designed for building generalist models via
multi-modal multi-task learning. The goal of OFASys is to facilitate the research of multi-
modal multi-task learning with a concise, flexible user interface and a modularized, reusable
system design.

For users, OFASys enables both fast prototyping and in-depth customization via a declarative
interface called “Multi-Modal Instruction”. The instruction describes a task using natural
language with multi-modal data placeholders called “slots”. Users can declare a new task in
just a single line of code, or customize task-specific processing and new modalities, which is
seamlessly combined with the instruction interface. As a starting point, OFASys comes with
7 modality presets, i.e., TEXT, IMAGE, AUDIO, VIDEO, STRUCT, and MOTION, which compose
23 example tasks that vary widely in modality compositions and task objectives. A brief
demonstration of the available modalities and representative example tasks is shown in
Figure 1.

To realize the goal of OFASys, the system design, which disentangles the complexity of
implementing task-specific pipelines, forms reusable component hierarchies in different
granularity: (a) for different tasks, the model and the training/inference components can
form training/inference pipelines, (b) for a single task, the universal model and the modality-
specific model components can form a multi-modal model computing pipeline, and (c) for a
slot in a task, the pre-/post-processors and the adapters can form modality-specific data
pipelines. In addition, the multi-task engine provides support to efficient multi-task training.

OFASys enables us to train a series of specialist and generalist models, which we name OFA+.
The OFA+ (Specialist) models showcase the capability of the instruction interface, with

2

Under review as a conference paper at ICLR 2024

Instruction (TEXT Only)

what is the summary of article "[
↪→ TEXT:src]"? -> [TEXT:tgt]

Data
poland ’s main opposition party tuesday
endorsed president lech walesa in an
upcoming presidential run-off election
after a reformed communist won the first
round of voting .

Result
polish opposition endorses walesa in presi-
dential run-off

(a) Text Summarization

Instruction (AUDIO & TEXT)

[AUDIO:wav] what is the text
↪→ corresponding to the voice? -> [
↪→ TEXT:text ,preprocess=text_phone]

Data (Illustration)

Result
nor is mister klohs manner less interesting
than his manner

(b) Automatic Speech Recognition

Instruction (IMAGE, TEXT & BOX)

[IMAGE:img] which region does the
↪→ text "[TEXT:cap]" describe? -> [
↪→ BOX:box]

Data & Result
cap: taxi

(c) Image Grounding

Instruction (MOTION & TEXT)

motion capture: [TEXT:text] -> [
↪→ MOTION:bvh_frames]

Data
run and stop
Result (Illustration)

(d) Text-to-Motion Synthesis

Figure 1: OFASys enables extremely diverse compositions of modalities for tasks via the
instruction interface. Results are generated by models trained by OFASys.

which one can expediently compose new tasks. The OFA+ (Generalist) model spans over
7 modalities and is trained on 17 tasks, suggesting that training a single model with more
modalities and tasks is achievable. Moreover, the OFA+ (Generalist MoE) models with
a sparsely-activated universal model demonstrates promising results. By using a simple
multi-task schedule, OFA+ (Generalist MoE) achieves 95% of the performance with just
16% of the parameters of task-finetuned models.

The contribution of OFASys is summarized as follows:

• OFASys is an open-source generalist model learning system that is designed for
multi-modal task-scaling. OFASys offers to the community 7 pre-defined modalities
and 23 example tasks for reuse in multi-modal multi-task learning research.

• OFASys provides an easy-to-use declarative interface that decouples task definitions
from task implementations, thus enabling fast prototyping. The design of OFASys
disentangles the complexity of single task pipelines into a hierarchy of components,
which can be easily reused, customized, and replaced for in-depth research.

• OFASys trains the first-in-kind models named OFA+ that can understand and
generate text, image, speech, video, and motion data. The checkpoints are publicly
available upon request.

3

Under review as a conference paper at ICLR 2024

2 Usage with Declarative Multi-Modal Instruction

In the following, we briefly show the basic high-level usage of OFASys about how to represent,
train, and conduct inference on multi-modal tasks with the multi-modal instruction interface.
For more usage illustrations, please refer to Appendices B.1 to B.3.

A multi-modal instruction is a descriptive line of code that specifies what the task is supposed
to do and what kinds of modality of data are involved. With the help of instructions, we can
create multi-modal tasks as follows, for which OFASys determines the model structure and
training/inference–related components automatically according to the preset choices or the
given customized implementations:

from ofasys import Task, GeneralistModel, Trainer
task1 = Task(instruction1)
task2 = Task(instruction2)
instruction = "[IMAGE:img] what does the image describe? -> [TEXT:cap]"

The preceding tasks can then be bound to some dataset and join the training of a generalist
model as

task1 = task1.add_dataset(dataset1)
task2 = task2.add_dataset(dataset2)
model = GeneralistModel()
Trainer().fit(model=model, tasks=[task1, task2])

The “GeneralistModel” has various kinds of implementations, which are discussed in Sec. 4.

Such an instruction interface also enables zero-shot inference with generalist model check-
points, which allows one to evaluate its generalization ability on unseen tasks:

instruction = '[IMAGE:img] what does the image describe? -> [TEXT:cap]'
data = {'img': 'image_1.jpg'}
output = GeneralistModel.from_pretrained('multitask.pt').inference(instruction, data=data)

The term “declarative” indicates that a task is created by its formulation rather than the
control flow. Researchers can fix the provided model set while only study task-scaling
problems, or fix the task set to study the underlying model structure. Different from task-
specific libraries Wolf et al. (2020); Chen et al. (2019), OFASys emphasizes on using the same
universal model to handle both pretraining and finetuning tasks.

3 User Interface

Now we introduce the details of the instruction user interface, including its formulation and
several instruction examples that illustrate the purpose of each consideration.

3.1 Core Concepts

An instruction contains multiple segments, each of which is either “plain texts” describing
the task goals or a “meta slot” describing the multi-modal data. A “meta slot” can be either
a “slot” or an “expanded pattern” consisting of slots.

A slot, identified by square brackets from plain text segments, is the basic processing unit
of OFASys. A slot consists of a “type”, a “name”, and optional “attributes” of “key=value”
pairs. OFASys uses these metadata to configure the modality-aware data processing. The
type specifies the modality of the data. The name is used to retrieve data from the data
source. The attributes customize data processing.

The expanded pattern allows the system to register more syntax on the instruction. There
are some typical patterns in OFASys. For example, an arrow “->” is for the system to identify
slots on the encoder from decoder, and it can be omitted for decoder-only models.

4

Under review as a conference paper at ICLR 2024

3.2 Instruction Examples

In the following, we demonstrate several representative tasks written by instructions, to help
understand how these concepts work in practice.

Slot Type and Name. A slot is only attached with one unique modality, whose type
is represented as the slot type. The slot name is used mainly for field mapping in dataset.

Illustration 1. Basic Image Captioning
[IMAGE:img] what does the image describe? -> [TEXT:cap]

The two sentences separated by “->” describe the task input and its desired output,
respectively. In this case, “[IMAGE:img]” specifies that there is an image input bound
to a data column named img in the dataset. The plain texts in the instruction indicate
the task is about captioning an image. The output of the task is a text sequence, which
is the cap column in the dataset.

Attributes. Attributes allow fine-grained control over a certain slot. Users can exploit
built-in attributes or implement customized ones.

Illustration 2. MNLI with Prompt Prefix
can text1 [TEXT:s1] imply text2 [TEXT:s2]? -> can text1 [TEXT:s1 ,no_loss] imply
↪→ text2 [TEXT:s2 ,no_loss] ? [TEXT:label ,closed_set]

For text classification tasks, e.g ., MNLI Williams et al. (2018), we find it helpful to
repeat the source as prompt prefix in the output Wang et al. (2022a). However, the
decoder slots default to the cross-entropy loss, which can be disabled using shortcut
no loss. The prefixes are also ensured to be generated by OFASys in inference. MNLI
also has a limited label space, which can be constrained using the attribute closed set.
Enumeration of the closed set is specified in the task configuration.

Overall, the instruction formulation (together with appropriate implementation) allows the
expression of diverse task paradigms. More details are shown in Appedix A In theory, it
can not only describe tasks of CLM, S2S, and DDPM paradigms shown in Tab. 1, but also
support paradigms such as soft prompt tuning in NLP Li & Liang (2021) through custom
slots, CLIP-style contrastive learning Radford et al. (2021) through custom criteria, and
Flamingo-style in-context learning Alayrac et al. (2022a) with custom instruction parsing.

4 System Design and Implementation

In this section, we start from the motivation of the system design with its relation to the
instruction interface, and further introduce the details of the system implementation to
reveal the considerations in realizing the design.

4.1 Scaling Challenges in Training Multi-Modal Multi-Task Models

Frameworks such as fairseq Ott et al. (2019) and transformers Wolf et al. (2020), have de
facto standardized and streamlined the procedures of a specialized group of deep learning
methods, reducing the development cost of handling task-specific training and inference.
However, these frameworks are not sufficient with the surge of multi-modal and multi-task
learning Wei et al. (2021); Sanh et al. (2022); Wang et al. (2022c;a); Reed et al. (2022b);
Alayrac et al. (2022b); Lu et al. (2022), which faces profound challenges in terms of the
heterogeneity of multi-modal data, the diversity of task formulation, and the complexity of
scalable schedule of computation. Researchers have to, on their own, (a) implement specific
data processing procedures for every task, (b) adapt the model structure and computation
to each task with different feature extractors and losses, (c) manually determine the task
precedence during optimization for the model performance, and (d) manage sample batching,

5

Under review as a conference paper at ICLR 2024

Multi-Task Engine

Single Task Plan

Training

Components

Inference

Components

Declarative User Interface

Model

Components

Task 1 = [IMAGE] Which region does the text describe ?[TEXT] [BOX]->

Task 2 = [AUDIO] The audio says [TEXT]->

Task 3 = [TEXT]Let’s move according to the text : [MOTION]->

Criterion

Logical Scheduler Profiler & Monitor

Speech CTC

Criterion

Cross-Entropy

Criterion

Diffusion

Criterion

…

Input Data Preprocessor & Adapter

Image Audio Text Video Motion BOX

Output Data Adapter & Postprocessor

Image Audio Text Video Motion BOX

Universal Model

Encoder-Decoder Decoder-Only Sparsely-Activated

Generator

Auto-Regressive

Token Generator

Auto-Regressive

Feature Generator

Diffusion

Generator

Physical Scheduler

…

Figure 2: Overview of main components and their organization in OFASys. The declarative
user interface is realized with a hierarchy of reusable components. Based on instructions,
OFASys automatically generates plans for single task execution in both training and inference.
Moreover, the multi-task engine provides support to efficient multi-task learning.

op-level replacement of highly diverse task workloads in distributed environment, for training
efficiency.

To facilitate multi-modal multi-task learning, we develop the One-For-All System (OFASys)
to seamlessly integrate multiple modalities and multiple tasks into a single framework with
universal models, as well as automatic task schedulers to manage multi-task execution.

4.2 System Overview

We illustrate the overview of the system with an example of the data flow of a single task to
show how heterogeneous inputs are processed by OFASys, and further illustrate the design
on managing multiple tasks w.r.t. to single task plans. Detailed component introduction is
provided in Appendix C.

Single Task Plan. OFASys accesses the task definition and task data through instructions,
as introduced in Sec. 3. To realize the instruction as viable computation, OFASys parses
the instructions into task plans1. In each plan, there is a model hierarchy, consisting of
modality-specific preprocessors/postprocessors and adapters, as well as a modality-agnostic
computation model. For an example, the system first retrieves data specified by the slots
and dispatches them to corresponding preprocessors to convert them into common ML input
types, e.g ., tokens for texts and fbank features for audio. Then, the preprocessed data are
dispatched to the corresponding adapters for feature extraction, and the output features are
joined to form sequences of representations for the universal model. These steps ensure a
unified data format for the universal model but with reusable and composable data processing
pipelines. The universal model is namely a general module for fusing multimodal inputs and
generating outputs. As the inputs and the outputs are consistently being representation
sequences, the implementation of the universal model is highly versatile, regardless of the

1We borrow the term plan from the logical/physical plan in database literature Elmasri & Navathe
(2000).

6

Under review as a conference paper at ICLR 2024

modality intricacies. The outputs of the universal model is finally postprocessed by the
adapters and postprocessors, in order to generate content consistent with the input formats.
Stage-wise components, including criteria and generators, provide support in training and
inference, which have a variety of out-of-the-box implementations. In this way, different
multi-modal data can go through the system with consistent inner interfaces to improve
development efficiency.

Multi-Task Plan. In multitask learning, there are multiple such plans parsed from the
instructions. There are two problems to be dealt with: (a) how a single model is used with
multiple plans and (b) how multiple tasks are optimized and executed together. For the first
problem, OFASys shares the trainable parameters of the adapters and the universal model by
default, such that each parameter can be optimized on as many examples as possible. To
be specific, the modality-specific components are shared across the same modality and the
universal model is shared across all tasks. For the second problem, the task scheduler is in
charge of the management of task precedence and the optimization of the execution details of
multi-task workloads with two levels of abstraction. OFASys automatically combines all the
plans to form a multi-task plan with a logical scheduler and then the workflow is arranged
on physical devices with a physical scheduler. More details are given in Appendix C.4.

5 Application Example: The OFA+ Models

We train the generalist models, referred to as OFA+ (Generalist) and OFA+ (General-
ist+MoE), which can handle text, image, speech, video and motion data all-in-one for the
first time, using OFASys.

5.1 Settings

Apart from models finetuned on each of the task, OFA+ (Specialist), we train two versions
of generalist models as the validation of the system design and implementation which we
call OFA+ (Generalist) and OFA+ (Generalist MoE).

The first model, OFA+ (Generalist), is of similar structure to OFA-base Wang et al. (2022a)
and is initialized from the pretrained checkpoints of OFA-base. It has 270M parameters in
total, of which 90M are modality-specific parameters. The second model, OFA+ (Generalist
MoE), is also based on OFA-base. Especially, the model structure is augmented with a
sparsely-activated implementation of the universal model. An existing similar implementation
is VLMO Wang et al. (2021), which distributes FFN in transformer layers based on image
and text at the bottom layer and visual language at the top layer. Different from VLMO, we
distribute FFN based on different modalities of the slot, such as text, image, speech, video,
and motion, at each layer in the encoder. There are 455M parameters in total, of which
275M are modality-specific.

Both models are trained with 17 downstream tasks together involving data from 7 modalities.
For a detailed list of the task mixture, please refer to Appendix F. In evaluation, both models
do not go through task-specific finetuning. We report results on the validation sets, except
for VQA v2, where test-dev is commonly used as validation, and 2 tasks that do not come
with validation set, i.e., grounded image captioning and text-to-motion synthesis.

For OFA+ (Generalist) and OFA+ (Generalist MoE), we use the AdamW Ilya & Frank
(2019) optimizer with (β1, β2) = (0.9, 0.999) and ϵ = 1× 10−8 to train the model. We set
the peak learning rate to 3× 10−4, and apply a scheduler with linear decay with a warmup
ratio of 0.01 to stabilize the learning. For more detailed settings, such as batch size for each
task, please refer to Tab. 4 in the appendix. Both models are trained using 32 NVIDIA A100
80GB GPUs.

5.2 Results and Findings

We report results on 15 tasks used in our training setup to evaluate a single jointly-trained
model. In fact, to our knowledge, it is the first time that data from those 7 modalities are
used together to train a single model, thanks to the support from OFASys.

7

Under review as a conference paper at ICLR 2024

2000 4000 6000 8000 10000

step

0.70

0.75

0.80

0.85

0.90

0.95

1.00

sc
o
re

Text Summarization

Image Classification

Image Captioning

Visual Entailment

Visual Grounding

Video Classification

Video Captioning

Instruction Tuning

ASR

Table to Text

Text to SQL

TTS

Video QA

VQA

ImageGen

Figure 3: Learning curves in terms of metrics for OFA+ (Generalist). The y-axis represents
the percentage of the performance w.r.t. the corresponding specialist. The results of TTS
and ASR are linearly transformed so that for all results, higher is better. As we can see,
different tasks have divergent learning speed and reach maximum performance at different
steps.

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

step

0.65

0.70

0.75

0.80

0.85

0.90

sc
o
re

ASR - OFA+ (Generalist)

ASR - OFA+ (Generalist MoE)

(a) ASR

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

step

0.920

0.925

0.930

0.935

0.940

0.945

sc
o
re

TTS - OFA+ (Generalist)

TTS - OFA+ (Generalist MoE)

(b) TTS

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

step

0.75

0.80

0.85

sc
o
re

Video Classification - OFA+ (Generalist)

Video Classification - OFA+ (Generalist MoE)

(c) Video Classification

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

step

0.84

0.86

0.88

0.90

0.92

0.94

0.96

sc
o
re

Video QA - OFA+ (Generalist)

Video QA - OFA+ (Generalist MoE)

(d) Video QA

Figure 4: Learning curves in terms of metrics for OFA+ (Generalist) and OFA+ (Generalist
MoE) on representative tasks. Arranged the same with Figure 3. It can be seen that the
MoE version converges faster and better in modalities such as audio and video.

In Figure 3, we show the learning curves of different tasks in the OFA+ (Generalist) model.
We can see that different tasks have divergent learning speed and may reach maximum
performance at different steps, given a vanilla implementation of the universal model. In
Figure 4, we further compare the learning curves of generalist models on different universal
model structures. As we can see, OFA+ (Generalist MoE), which is slot-wise sparsely-
activated, converges faster and better than the other, regarding to the video and the audio
tasks. OFASys facilities such investigation of model structures by only modifying the universal
model implementation or the model composition, while keeping the entire instruction set,
i.e., tasks, fixed.

We compare the validation results between specialist models and generalist models in Tab. 2.
The OFA+ models trained on single tasks is referred to as OFA+ (Specialist). Note that
due to the differences in model sizes, the experimental results are not precisely comparable.
Comparing OFA+ (Generalist) and OFA+ (Generalist MoE), we can see that the latter
performs much better on vision-related tasks. The overall average score also understandably
favors OFA+ (Generalist MoE). With only 16% parameters of the 15 task-finetuned specialist
models, OFA+ (Generalist MoE) still achieves 95% of the specialists’ performance in average,
showcasing the potential of multi-modal task-scaling with OFASys.

As the OFA+ (Generalist) and OFA+ (Generalist MoE) models have scaled the number
of modalities to a new level, there is currently no precisely-comparable models from other
studies. The most comparable method is Unified-IO Lu et al. (2022) which conducts text and
image tasks in a similar finetuning-free manner to us. Compared to Unified-IO, generalist

8

Under review as a conference paper at ICLR 2024

Table 2: Experimental results on OFA+ (Specialist), OFA+ (Generalist), and OFA+ (Gen-
eralist MoE) according to the validation set (test-dev for VQA v2), with the exception of
grounded image captioning and text-to-motion synthesis, which lack validation sets. ↑ indi-
cates the higher the better; ↓ indicate the lower the better. R-L stands for ROUGE-LCS Lin
(2004), Acc@0.5 stands for accuracy where IoU ≥ 0.5 is considered correct Yu et al. (2016),
and EM stands for accuracy where an exact match is considered correct Zhong et al. (2020a).
Results of Unified-IO are taken directly from Lu et al. (2022).

Tasks Datasets Metrics
OFA+

(Specialist)
OFA+

(Generalist)
OFA+

(Generalist MoE)
UnifiedIO

186M × 15 270M 455M 776M

Text-only tasks
Instruction Tuning NatInst v2 R-L ↑ 30.5 27.0 27.7 -
Summarization Gigaword R-L ↑ 34.2 34.7 34.0 -

Image-related tasks
Classification ILSVRC Acc ↑ 83.3 72.6 79.0 -
Visual Entailment SNLI-VE Acc ↑ 88.9 85.8 86.2 86.1
Captioning COCO CIDEr ↑ 134.8 122.6 125.2 117.5
Visual Grounding RefCOCO Acc@0.5 ↑ 88.1 80.1 83.1 -
VQA VQA v2 Acc ↑ 77.3 68.2 71.7 67.8
Image Generation COCO CLIPSIM ↑ 0.317 0.289 0.294 -

Audio-related tasks
ASR LibriSpeech WER ↓ 7.5 8.5 8.1 -
TTS LJSpeech L ↓ 1.187 1.443 1.429 -

Video-related tasks
Classification Kinetics400 Acc ↑ 74.3 64.6 69.5 -
Captioning MSR-VTT CIDEr ↑ 70.8 59.1 63.0 -
VQA MSR-VTT QA Acc ↑ 42.1 41.7 40.0 -

Structure-related tasks
Table-to-Text DART BLEU ↑ 51.2 50.9 50.9 -
Text-to-SQL Spider EM ↑ 45.7 39.2 40.5 -

Average (Performance) 100% 91% 95% -
Average (Model Size) 100% 10% 16% -

OFA+ models are trained on a different mixture of tasks with more modalities and fewer
vision-language tasks, also with substantially fewer parameters. The results demonstrate the
generalist models trained by OFASys are better in terms of performance on the overlapping
tasks.

In all, in application to OFA+, OFASys demonstrates evidently its functionality, scalability,
and flexibility. The functionality is validated by training and conducting inference using
a number of models on diverse tasks in single-task or multi-task settings. The full-fledged
support allows meaningful exploration of generalist models beyond the language-vision or
language-speech settings. The scalability lies in the composition of 23 diverse tasks over 7
modalities with a consistent declarative interface. They can theoretically be used to train
a single model all together by reusing instructions even without writing new code. The
flexibility is shown by the two versions of OFA+ (Generalist): the computation pipeline is
decoupled reasonably enough for one to focus research on a part of the whole system. For
example, one can focus on model structures w.r.t. modality by modifying only the universal
model, without worrying breaking data processing pipelines.

6 Conclusion and Future Work

As generalist models attract increasing interests, the lack of designated system and library
for multi-modal multi-task stands out as an obstacle in the path for rapid growth. OFASys is
developed to match the need in multi-modal multi-task learning of extreme modality and
task scaling. With OFASys, it is easy to (a) rapidly introduce new multi-modal tasks by
defining a declarative instruction in a single line of code, and (b) easily introduce, reuse, and
customize modality-specific components. The functionality is realized by a carefully-designed
library structure that decouples the complexity of multi-modal multi-task learning into a
hierarchy of components. We train a series of models named OFA+, using OFASys, and show

9

Under review as a conference paper at ICLR 2024

that it is achievable for a generalist model to understand data from more modalities and
perform promisingly. In all, we hope OFASys would push forward the research in multi-modal
multi-task learning and facilitate the construction of generalist models that are even more
general.

In this work, we focus on the importance of building a system that can support the
development of generalist models, while we leave much room in improving the model
performance and examining multi-task learning algorithms. For example, as related research
on diffusion-based vision models progresses rapidly, it is interesting to see how to unify
them appropriately with the system. The emergence of new learning paradigms, e.g ., multi-
modal in-context learning through interleaved image-text data, also reveals opportunities
in scaling the system. Our future work includes not only refining the system itself but also
experimenting new algorithms on the system.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P. A., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.
Tensorflow: A system for large-scale machine learning. In OSDI, pp. 265–283, 2016.

Ahuja, C. and Morency, L.-P. Language2pose: Natural language grounded pose forecasting.
In 3DV, 2019.

Alayrac, J., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch,
A., Millican, K., Reynolds, M., Ring, R., Rutherford, E., Cabi, S., Han, T., Gong, Z.,
Samangooei, S., Monteiro, M., Menick, J., Borgeaud, S., Brock, A., Nematzadeh, A.,
Sharifzadeh, S., Binkowski, M., Barreira, R., Vinyals, O., Zisserman, A., and Simonyan, K.
Flamingo: a visual language model for few-shot learning. CoRR, abs/2204.14198, 2022a.

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A.,
Millican, K., Reynolds, M., et al. Flamingo: a visual language model for few-shot learning.
arXiv preprint arXiv:2204.14198, 2022b.

Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., and Zhang, L. Bottom-
up and top-down attention for image captioning and visual question answering. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6077–6086,
2018.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., and Parikh, D. Vqa:
Visual question answering. In ICCV, pp. 2425–2433, 2015.

Ao, J., Wang, R., Zhou, L., Wang, C., Ren, S., Wu, Y., Liu, S., Ko, T., Li, Q., Zhang,
Y., Wei, Z., Qian, Y., Li, J., and Wei, F. Speecht5: Unified-modal encoder-decoder
pre-training for spoken language processing. In ACL (1), pp. 5723–5738, 2022.

Bao, H., Dong, L., Piao, S., and Wei, F. BEiT: BERT pre-training of image transformers.
In ICLR, 2022.

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., and Szpektor,
I. The second pascal recognising textual entailment challenge, 2006.

Barham, P., Chowdhery, A., Dean, J., Ghemawat, S., Hand, S., Hurt, D., Isard, M., Lim, H.,
Pang, R., Roy, S., Saeta, B., Schuh, P., Sepassi, R., Shafey, L. E., Thekkath, C. A., and
Wu, Y. Pathways: Asynchronous distributed dataflow for ML. In MLSys, 2022.

Bentivogli, L., Magnini, B., Dagan, I., Dang, H. T., and Giampiccolo, D. The fifth PASCAL
recognizing textual entailment challenge. In TAC, 2009.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. A large annotated corpus for
learning natural language inference. In EMNLP, pp. 632–642, 2015.

10

Under review as a conference paper at ICLR 2024

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. Language models are few-shot learners. In NeurIPS, 2020.

Bu, H., Du, J., Na, X., Wu, B., and Zheng, H. AISHELL-1: An open-source mandarin
speech corpus and a speech recognition baseline. In O-COCOSDA, pp. 1–5, 2017.

Cawsey, A., Webber, B. L., and Jones, R. B. Brief review: Natural language generation in
health care. J. Am. Medical Informatics Assoc., 4(6):473–482, 1997. doi: 10.1136/jamia.
1997.0040473. URL https://doi.org/10.1136/jamia.1997.0040473.

Cer, D. M., Diab, M. T., Agirre, E., Lopez-Gazpio, I., and Specia, L. Semeval-2017
task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In
SemEval@ACL, pp. 1–14, 2017.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J.,
Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai,
J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D. MMDetection: Open MMLab
detection toolbox and benchmark. CoRR, abs/1906.07155, 2019.

Chen, T., Saxena, S., Li, L., Fleet, D. J., and Hinton, G. E. Pix2seq: A language modeling
framework for object detection. In ICLR, 2022a.

Chen, T., Saxena, S., Li, L., Lin, T., Fleet, D. J., and Hinton, G. E. A unified sequence
interface for vision tasks. CoRR, abs/2206.07669, 2022b.

Chen, X., Fang, H., Lin, T., Vedantam, R., Gupta, S., Dollár, P., and Zitnick, C. L. Microsoft
COCO captions: Data collection and evaluation server. CoRR, abs/1504.00325, 2015.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,
Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez,
J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson,
B., Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya,
A., Ghemawat, S., Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L.,
Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M., Lewkowycz, A., Moreira,
E., Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., and Fiedel, N.
Palm: Scaling language modeling with pathways. CoRR, abs/2204.02311, 2022.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. Randaugment: Practical automated data
augmentation with a reduced search space. In NeurIPS, 2020.

Dagan, I., Glickman, O., and Magnini, B. The PASCAL recognising textual entailment
challenge. In MLCW, volume 3944 of Lecture Notes in Computer Science, pp. 177–190,
2005.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G.,
and Tuytelaars, T. A continual learning survey: Defying forgetting in classification tasks.
IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Demszky, D., Guu, K., and Liang, P. Transforming question answering datasets into natural
language inference datasets. CoRR, abs/1809.02922, 2018.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL-HLT (1), pp. 4171–4186, 2019.

Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin, D., Lin, J., Zou, X., Shao, Z.,
Yang, H., and Tang, J. Cogview: Mastering text-to-image generation via transformers. In
NeurIPS, pp. 19822–19835, 2021.

11

https://doi.org/10.1136/jamia.1997.0040473

Under review as a conference paper at ICLR 2024

Dolan, W. B. and Brockett, C. Automatically constructing a corpus of sentential paraphrases.
In IWP@IJCNLP, 2005.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An
image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Elmasri, R. and Navathe, S. B. Fundamentals of Database Systems, 3rd Edition. Addison-
Wesley-Longman, 2000.

Esser, P., Rombach, R., and Ommer, B. Taming transformers for high-resolution image
synthesis. In CVPR, pp. 12873–12883, 2021.

Fan, H., Li, Y., Xiong, B., Lo, W.-Y., and Feichtenhofer, C. Pyslowfast, 2020.

Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., and Feichtenhofer, C. Multiscale
vision transformers. In ICCV, pp. 6804–6815, 2021.

Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. The third PASCAL recognizing
textual entailment challenge. In ACL-PASCAL@ACL, pp. 1–9, 2007.

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and Parikh, D. Making the V in VQA
matter: Elevating the role of image understanding in visual question answering. In CVPR,
pp. 6325–6334, 2017.

Graves, A., Fernández, S., Gomez, F. J., and Schmidhuber, J. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In
ICML, volume 148 of ACM International Conference Proceeding Series, pp. 369–376, 2006.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In
CVPR, pp. 770–778, 2016.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. B. Masked autoencoders are
scalable vision learners. In CVPR, pp. 15979–15988, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. In NeurIPS, 2020.

Huang, Y., Xue, H., Liu, B., and Lu, Y. Unifying multimodal transformer for bi-directional
image and text generation. In ACM Multimedia, pp. 1138–1147, 2021.

Ilya, L. and Frank, H. Decoupled weight decay regularization. In ICLR, 2019.

Ito, K. and Johnson, L. The LJ speech dataset, 2017. Dataset available at keithito.com/LJ-
Speech-Dataset/.

Iyer, S., Dandekar, N., and Csernai, K. First quora dataset release: Question pairs, 2017. URL
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs.

Jin, N., Siebert, J., Li, D., and Chen, Q. A survey on table question answering: Recent
advances. CoRR, abs/2207.05270, 2022. doi: 10.48550/arXiv.2207.05270. URL https:
//doi.org/10.48550/arXiv.2207.05270.

Karpathy, A. and Fei-Fei, L. Deep visual-semantic alignments for generating image descrip-
tions. In CVPR, pp. 3128–3137, 2015.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F.,
Green, T., Back, T., Natsev, P., Suleyman, M., and Zisserman, A. The kinetics human
action video dataset. CoRR, abs/1705.06950, 2017.

Kazemzadeh, S., Ordonez, V., Matten, M., and Berg, T. L. ReferItGame: Referring to
objects in photographs of natural scenes. In EMNLP, pp. 787–798, 2014.

Ko, T., Peddinti, V., Povey, D., Seltzer, M. L., and Khudanpur, S. A study on data
augmentation of reverberant speech for robust speech recognition. In ICASSP, pp. 5220–
5224, 2017.

12

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://doi.org/10.48550/arXiv.2207.05270
https://doi.org/10.48550/arXiv.2207.05270

Under review as a conference paper at ICLR 2024

Kong, J., Kim, J., and Bae, J. HiFi-GAN: Generative adversarial networks for efficient and
high fidelity speech synthesis. In NeurIPS, 2020.

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis,
Y., Li, L., Shamma, D. A., Bernstein, M. S., and Fei-Fei, L. Visual genome: Connecting
language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis.,
123(1):32–73, 2017.

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J. R. R., Krasin, I., Pont-Tuset, J., Kamali,
S., Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., and Ferrari, V. The open images
dataset V4. Int. J. Comput. Vis., 128(7):1956–1981, 2020.

Lebret, R., Grangier, D., and Auli, M. Neural text generation from structured data with
application to the biography domain. In EMNLP, pp. 1203–1213, 2016.

Levesque, H. J. The winograd schema challenge. In AAAI Spring Symposium: Logical
Formalizations of Commonsense Reasoning, 2011.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and
Zettlemoyer, L. BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In ACL, pp. 7871–7880, 2020.

Li, R., Yang, S., Ross, D. A., and Kanazawa, A. AI choreographer: Music conditioned 3d
dance generation with aist++. In ICCV, 2021.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous prompts for generation. In
ACL/IJCNLP (1), pp. 4582–4597, 2021.

Lin, A. S., Wu, L., Corona, R., Tai, K., Huang, Q., and Mooney, R. J. Generating animated
videos of human activities from natural language descriptions. In ViGIL@NeurIPS, 2018.

Lin, C.-Y. Rouge: A package for automatic evaluation of summaries. In ACL 2004, pp.
74–81, 2004.

Lin, K., Li, L., Lin, C., Ahmed, F., Gan, Z., Liu, Z., Lu, Y., and Wang, L. SwinBERT: End-
to-end transformers with sparse attention for video captioning. In CVPR, pp. 17928–17937,
2022.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
and Stoyanov, V. RoBERTa: A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019.

Lu, J., Clark, C., Zellers, R., Mottaghi, R., and Kembhavi, A. Unified-io: A unified model
for vision, language, and multi-modal tasks. CoRR, abs/2206.08916, 2022.

Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., and Black, M. J. AMASS: Archive
of motion capture as surface shapes. In ICCV, 2019.

Matthews, B. W. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–451, 1975.
ISSN 0005-2795. doi: https://doi.org/10.1016/0005-2795(75)90109-9.

Minsky, M. Society of mind. Simon and Schuster, 1988.

Nan, L., Radev, D. R., Zhang, R., Rau, A., Sivaprasad, A., Hsieh, C., Tang, X., Vyas, A.,
Verma, N., Krishna, P., Liu, Y., Irwanto, N., Pan, J., Rahman, F., Zaidi, A., Mutuma, M.,
Tarabar, Y., Gupta, A., Yu, T., Tan, Y. C., Lin, X. V., Xiong, C., Socher, R., and Rajani,
N. F. DART: Open-domain structured data record to text generation. In NAACL-HLT,
pp. 432–447, 2021.

Nan, L., Hsieh, C., Mao, Z., Lin, X. V., Verma, N., Zhang, R., Kryscinski, W., Schoelkopf,
H., Kong, R., Tang, X., Mutuma, M., Rosand, B., Trindade, I., Bandaru, R., Cunningham,
J., Xiong, C., and Radev, D. R. FeTaQA: Free-form table question answering. Trans.
Assoc. Comput. Linguistics, 10:35–49, 2022.

13

Under review as a conference paper at ICLR 2024

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M.
fairseq: A fast, extensible toolkit for sequence modeling. In NAACL-HLT (Demonstrations),
pp. 48–53. Association for Computational Linguistics, 2019.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. Librispeech: An ASR corpus based
on public domain audio books. In ICASSP, pp. 5206–5210, 2015.

Papineni, K., Roukos, S., Ward, T., and Zhu, W. Bleu: a method for automatic evaluation
of machine translation. In ACL, pp. 311–318, 2002.

Park, D. S., Chan, W., Zhang, Y., Chiu, C., Zoph, B., Cubuk, E. D., and Le, Q. V.
Specaugment: A simple data augmentation method for automatic speech recognition. In
INTERSPEECH, pp. 2613–2617, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. PyTorch:
An imperative style, high-performance deep learning library. In NeurIPS, pp. 8024–8035,
2019.

Plappert, M., Mandery, C., and Asfour, T. The KIT motion-language dataset. Big Data, 4
(4):236–252, dec 2016. doi: 10.1089/big.2016.0028. URL http://dx.doi.org/10.1089/
big.2016.0028.

Post, M. A call for clarity in reporting BLEU scores. In WMT, pp. 186–191, 2018.

Prasad, N. V. and Umesh, S. Improved cepstral mean and variance normalization using
bayesian framework. In ASRU, pp. 156–161, 2013.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Lan-
guage models are unsupervised multitask learners. Technical report, OpenAI,
2019. URL https://cdn.openai.com/better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. Learning transferable visual
models from natural language supervision. In ICML, volume 139 of Proceedings of Machine
Learning Research, pp. 8748–8763, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and
Liu, P. J. Exploring the limits of transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad: 100, 000+ questions for machine
comprehension of text. In EMNLP, pp. 2383–2392, 2016.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever,
I. Zero-shot text-to-image generation. In ICML, volume 139 of Proceedings of Machine
Learning Research, pp. 8821–8831, 2021.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-maron, G.,
Giménez, M., Sulsky, Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi, A.,
Edwards, A., Heess, N., Chen, Y., Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas,
N. A generalist agent. Trans. Mach. Learn. Res., 2022a. URL https://openreview.net/
forum?id=1ikK0kHjvj. Featured Certification.

Reed, S. E., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G.,
Gimenez, M., Sulsky, Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi, A.,
Edwards, A., Heess, N., Chen, Y., Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas,
N. A generalist agent. CoRR, abs/2205.06175, 2022b. doi: 10.48550/arXiv.2205.06175.
URL https://doi.org/10.48550/arXiv.2205.06175.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image
synthesis with latent diffusion models, 2021.

14

http://dx.doi.org/10.1089/big.2016.0028
http://dx.doi.org/10.1089/big.2016.0028
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj
https://doi.org/10.48550/arXiv.2205.06175

Under review as a conference paper at ICLR 2024

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for biomedical
image segmentation. In Navab, N., Hornegger, J., III, W. M. W., and Frangi, A. F. (eds.),
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th
International Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III,
volume 9351 of Lecture Notes in Computer Science, pp. 234–241. Springer, 2015. doi: 10.
1007/978-3-319-24574-4\ 28. URL https://doi.org/10.1007/978-3-319-24574-4_28.

Rush, A. M., Chopra, S., and Weston, J. A neural attention model for abstractive sentence
summarization. In EMNLP, pp. 379–389, 2015.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M. S., Berg, A. C., and Fei-Fei, L. Imagenet large scale visual
recognition challenge. Int. J. Comput. Vis., 115(3):211–252, 2015.

Sanh, V., Webson, A., Raffel, C., Bach, S., Sutawika, L., Alyafeai, Z., Chaffin, A., Stiegler,
A., Raja, A., Dey, M., Bari, M. S., Xu, C., Thakker, U., Sharma, S. S., Szczechla, E.,
Kim, T., Chhablani, G., Nayak, N. V., Datta, D., Chang, J., Jiang, M. T., Wang, H.,
Manica, M., Shen, S., Yong, Z. X., Pandey, H., Bawden, R., Wang, T., Neeraj, T., Rozen,
J., Sharma, A., Santilli, A., Févry, T., Fries, J. A., Teehan, R., Scao, T. L., Biderman, S.,
Gao, L., Wolf, T., and Rush, A. M. Multitask prompted training enables zero-shot task
generalization. In ICLR, 2022.

Shao, S., Li, Z., Zhang, T., Peng, C., Yu, G., Zhang, X., Li, J., and Sun, J. Objects365: A
large-scale, high-quality dataset for object detection. In ICCV, pp. 8429–8438, 2019.

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y.,
Wang, Y., Ryan, R., Saurous, R. A., Agiomyrgiannakis, Y., and Wu, Y. Natural TTS
synthesis by conditioning wavenet on MEL spectrogram predictions. In ICASSP, pp.
4779–4783, 2018.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and Potts,
C. Recursive deep models for semantic compositionality over a sentiment treebank. In
EMNLP, pp. 1631–1642, 2013.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A., Brown, A. R.,
Santoro, A., Gupta, A., Garriga-Alonso, A., Kluska, A., Lewkowycz, A., Agarwal, A.,
Power, A., Ray, A., Warstadt, A., Kocurek, A. W., Safaya, A., Tazarv, A., Xiang,
A., Parrish, A., Nie, A., Hussain, A., Askell, A., Dsouza, A., Rahane, A., Iyer, A. S.,
Andreassen, A., Santilli, A., Stuhlmüller, A., Dai, A. M., La, A., Lampinen, A. K., Zou,
A., Jiang, A., Chen, A., Vuong, A., Gupta, A., Gottardi, A., Norelli, A., Venkatesh,
A., Gholamidavoodi, A., Tabassum, A., Menezes, A., Kirubarajan, A., Mullokandov, A.,
Sabharwal, A., Herrick, A., Efrat, A., Erdem, A., Karakas, A., and et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. CoRR,
abs/2206.04615, 2022.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neural discrete representation learning.
In NIPS, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Vedantam, R., Zitnick, C. L., and Parikh, D. CIDEr: Consensus-based image description
evaluation. In CVPR, pp. 4566–4575, 2015.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In ICLR (Poster),
2019.

Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J., Zhou, C., Zhou, J., and Yang, H.
OFA: Unifying architectures, tasks, and modalities through a simple sequence-to-sequence
learning framework. In ICML, volume 162 of Proceedings of Machine Learning Research,
pp. 23318–23340, 2022a.

15

https://doi.org/10.1007/978-3-319-24574-4_28

Under review as a conference paper at ICLR 2024

Wang, W., Bao, H., Dong, L., and Wei, F. Vlmo: Unified vision-language pre-training with
mixture-of-modality-experts. CoRR, abs/2111.02358, 2021.

Wang, W., Bao, H., Dong, L., Bjorck, J., Peng, Z., Liu, Q., Aggarwal, K., Mohammed, O. K.,
Singhal, S., Som, S., and Wei, F. Image as a foreign language: Beit pretraining for all
vision and vision-language tasks. CoRR, abs/2208.10442, 2022b.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Arunkumar, A., Ashok,
A., Dhanasekaran, A. S., Naik, A., Stap, D., Pathak, E., Karamanolakis, G., Lai, H. G.,
Purohit, I., Mondal, I., Anderson, J., Kuznia, K., Doshi, K., Patel, M., Pal, K. K.,
Moradshahi, M., Parmar, M., Purohit, M., Varshney, N., Kaza, P. R., Verma, P., Puri,
R. S., Karia, R., Sampat, S. K., Doshi, S., Mishra, S., Reddy, S., Patro, S., Dixit, T., Shen,
X., Baral, C., Choi, Y., Hajishirzi, H., Smith, N. A., and Khashabi, D. Benchmarking
generalization via in-context instructions on 1,600+ language tasks. CoRR, abs/2204.07705,
2022c.

Warstadt, A., Singh, A., and Bowman, S. R. Neural network acceptability judgments. Trans.
Assoc. Comput. Linguistics, 7:625–641, 2019.

Watanabe, S., Hori, T., Kim, S., Hershey, J. R., and Hayashi, T. Hybrid ctc/attention
architecture for end-to-end speech recognition. IEEE J. Sel. Top. Signal Process., 11(8):
1240–1253, 2017.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., and Le,
Q. V. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

White, A. S., Rastogi, P., Duh, K., and Durme, B. V. Inference is everything: Recasting
semantic resources into a unified evaluation framework. In IJCNLP(1), pp. 996–1005,
2017.

Williams, A., Nangia, N., and Bowman, S. R. A broad-coverage challenge corpus for sentence
understanding through inference. In NAACL-HLT, pp. 1112–1122, 2018.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu,
J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. Transformers:
State-of-the-art natural language processing. In EMNLP (Demos), pp. 38–45, 2020.

Wu, C., Liang, J., Ji, L., Yang, F., Fang, Y., Jiang, D., and Duan, N. NÜWA: Visual
synthesis pre-training for neural visual world creation. In ECCV (16), volume 13676 of
Lecture Notes in Computer Science, pp. 720–736, 2022.

Xie, N., Lai, F., Doran, D., and Kadav, A. Visual entailment: A novel task for fine-grained
image understanding. CoRR, abs/1901.06706, 2019.

Xie, T., Wu, C. H., Shi, P., Zhong, R., Scholak, T., Yasunaga, M., Wu, C., Zhong, M., Yin,
P., Wang, S. I., Zhong, V., Wang, B., Li, C., Boyle, C., Ni, A., Yao, Z., Radev, D. R.,
Xiong, C., Kong, L., Zhang, R., Smith, N. A., Zettlemoyer, L., and Yu, T. UnifiedSKG:
Unifying and multi-tasking structured knowledge grounding with text-to-text language
models. CoRR, abs/2201.05966, 2022.

Xu, D., Zhao, Z., Xiao, J., Wu, F., Zhang, H., He, X., and Zhuang, Y. Video question
answering via gradually refined attention over appearance and motion. In ACM Multimedia,
pp. 1645–1653, 2017.

Xu, J., Mei, T., Yao, T., and Rui, Y. MSR-VTT: A large video description dataset for
bridging video and language. In CVPR, pp. 5288–5296, 2016.

Yu, L., Poirson, P., Yang, S., Berg, A. C., and Berg, T. L. Modeling context in referring
expressions. In ECCV (2), volume 9906 of Lecture Notes in Computer Science, pp. 69–85,
2016.

16

Under review as a conference paper at ICLR 2024

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, I., Yao, Q., Roman,
S., Zhang, Z., and Radev, D. R. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. In EMNLP, pp. 3911–3921, 2018.

Zhang, Y. and Yang, Q. A survey on multi-task learning. IEEE Transactions on Knowledge
and Data Engineering, 2021.

Zhong, R., Yu, T., and Klein, D. Semantic evaluation for text-to-sql with distilled test suites.
In EMNLP (1), pp. 396–411, 2020a.

Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. Random erasing data augmentation.
In AAAI, pp. 13001–13008, 2020b.

Zhou, Y., Barnes, C., Jingwan, L., Jimei, Y., and Hao, L. On the continuity of rotation
representations in neural networks. In CVPR, 2019.

17

Under review as a conference paper at ICLR 2024

A Instruction Examples

In the following, we demonstrate several representative tasks written by instructions, to help
understand how these concepts work in practice.

Slot Type and Name. A slot is only attached with one unique modality, whose type
is represented as the slot type. The slot name is used mainly for field mapping in dataset.

Illustration 3. Basic Image Captioning
[IMAGE:img] what does the image describe? -> [TEXT:cap]

The two sentences separated by “->” describe the task input and its desired output,
respectively. In this case, “[IMAGE:img]” specifies that there is an image input bound
to a data column named img in the dataset. The plain texts in the instruction indicate
the task is about captioning an image. The output of the task is a text sequence, which
is the cap column in the dataset.

Attributes. Attributes allow fine-grained control over a certain slot. Users can exploit
built-in attributes or implement customized ones.

Illustration 4. MNLI with Prompt Prefix
can text1 [TEXT:s1] imply text2 [TEXT:s2]? -> can text1 [TEXT:s1 ,no_loss] imply
↪→ text2 [TEXT:s2 ,no_loss] ? [TEXT:label ,closed_set]

For text classification tasks, e.g ., MNLI Williams et al. (2018), we find it helpful to
repeat the source as prompt prefix in the output Wang et al. (2022a). However, the
decoder slots default to the cross-entropy loss, which can be disabled using shortcut
no loss. The prefixes are also ensured to be generated by OFASys in inference. MNLI
also has a limited label space, which can be constrained using the attribute closed set.
Enumeration of the closed set is specified in the task configuration.

Variable-Length Slots. It is not uncommon for a task to generate several outputs of the
same type, e.g ., object detection in computer vision. OFASys can support such type of tasks
with variable-length slots using the interleaved pattern.

Illustration 5. Object Detection with variable-length slots.
[IMAGE:img] detect the objects in the image. -> [[BOX][TEXT]]*

The output in object detection is normally a bounding box with its label. However, an
image may contain several objects, whose number is not known in advance.

Custom Slot. One can define their own type of slots to do interesting stuff. The example
in Illus. 6 showcases the versatility of the slot concept. For guidance on how to support a
new type of slot, please refer to Appendix B.3.

Illustration 6. Image Captioning with Prompt-Tuning.
[IMAGE:img] [PROMPT:pt ,len=100 ,prefix -tuning] -> [TEXT:cap]

The instruction specifies a job with the customly-defined “PROMPT” slot type. OFASys
registers “len=100” learnable embeddings to each layer using the name “pt”, appends
them to the source sequence for each example, and trains them using “prefix-tuning” Li
& Liang (2021)

The preceding examples demonstrate the generality and versatility of the proposed user
interface, which enables expedient task prototyping. Overall, the instruction formulation
(together with appropriate implementation) allows the expression of diverse task paradigms.

18

Under review as a conference paper at ICLR 2024

In theory, it can not only describe tasks of CLM, S2S, and DDPM paradigms shown in
Tab. 1, but also support paradigms such as soft prompt tuning in NLP Li & Liang (2021)
through custom slots, CLIP-style contrastive learning Radford et al. (2021) through custom
criteria, and Flamingo-style in-context learning Alayrac et al. (2022a) with custom instruction
parsing.

B Advanced Usage

In Sec. 2, we illustrate the high-level basic usage of OFASys. As we can see, a multi-modal
task can be defined in a single line of code, which facilities task scaling via comprehensive
default implementations. However, it is often one’s desire to control the system with finer-
granularity. OFASys provides two ways to achieve this goal, the YAML configuration that
introduces structured parameters to instructions and a conventional imperative interface to
programmatically define common procedures in computation pipelines. The first option is
discussed in Appendices B.1 and B.2; and the second option is summarized in Appendix B.3.

B.1 Multi-Task Training with Instructions

Although it is straight-forward to use instructions directly in code, to achieve better reusability
in training, OFASys can be also configured via configuration files. In experimentation, the
configurations of different tasks, models, and trainers can be easily combined to build a
new multi-modal multi-task learning system. OFASys organizes the training configuration
files consistent with the routine in Sec. 2. The configuration files adopt the YAML format2,
which is human friendly and suitable for structured data.

B.1.1 Tasks

For tasks, the configuration file should at least contain the instruction section and the dataset
section. An example file for the captioning task is given in the following:

caption.yaml
instruction:

- '[IMAGE:img] please use a short line to describe the image. -> [TEXT:cap]'
- '[IMAGE:img] what does the image describe? -> [TEXT:cap]'

dataset:
train_data: coco_2014/train
valid_data: coco_2014/valid
update_freq: 2
micro_batch_size: 8

preprocess:
image:

patch_image_size: 480
text:

max_src_length: 128
max_tgt_length: 20

criterion:
label_smoothed_cross_entropy:

label_smoothing: 0.1

evaluation:
metrics:

cider:
target_field: cap

generator_args: '{"beam":5,"max_len_b":16,"no_repeat_ngram_size":3}'

This configuration file presents a more structured view of the task pipeline components and
showcases several advanced usage of OFASys, compared to Sec. 2, where all default values
are used.

First, it can be seen that multiple instructions can be specified for a dataset. For each
example in the dataset, OFASys currently randomly samples an instruction according to a

2https://github.com/yaml/yaml-spec

19

https://github.com/yaml/yaml-spec

Under review as a conference paper at ICLR 2024

uniform distribution. However, it is also required that the instructions should be “collation-
compatible”, which means they should have the same number of slots and the sequence of
slot types should be exactly the same.

Second, the dataset section specifies the paths of data used in training. As there are
complications in declaratively describing how to construct the dataset, the data paths in
configuration files should be either a HuggingFace Dataset spec, or a URI to a Tab-separated
Values (tsv) file. The URI can be a local file path (optionally starting with file://) or a remote
file path (where the protocol is a must). The tsv file should have a header and is parsed
and processed as a torch.utils.data.IterableDataset. The dataset section also includes
hyper-parameters in training the task, such as micro batch size and update freq. The
former is the per GPU batch size, and the latter is for gradient accumulation. Although they
are related to optimization, they are included to streamline task composition in multi-task
training. For more details, please refer to the documentation of OFASys.

Finally, there are optional configurations for task-specific pipelines. Slots of the same type
share common preprocessor, postprocessor, and adapter configurations by default. These can
be adjusted in the preprocess and the adapter sections. For example, the max src length
sets the maximum length of every encoder TEXT slot to 128. The criterion used to obtain
the loss can be automatically deducted from the instructions, which is the criterion based on
cross entropy most of the time. A common usage is to add label smoothing normalization
to the cross entropy, which is shown in the preceding example. The evaluation section tells
how the performance of the task on this dataset can be evaluated. The generator args is
for the generator in inference to obtain the prediction and the metric section can include
multiple metrics to evaluate the prediction against the ground truth in target field.

For your information, the name in each section, e.g ., image and text in preprocess,
label smoothed cross entropy in criterion, and cider in metrics, is associated with the
implementation via a hierarchical configuration registry. For a complete list of supported
variants, please refer to the OFASys documentation.

The configuration file can be used to initialize a task with a dataset in one step:

from ofasys import Task
task = Task.from_yaml("caption.yaml")

There are 23 readily-available task configuration files at the time of writing this manuscript.
Please see Appendix E for reference.

B.1.2 Universal Models

For universal models, the default configuration covers all aspects and no user input is required.
The following file customizes the model implementation for all tasks:

model.yaml
model:

arch: large
use_fused: true
freeze_encoder_embedding: true
freeze_decoder_embedding: true
encoder_drop_path_rate: 0.2
decoder_drop_path_rate: 0.2
layernorm_position: true

The arch specifies a set of configuration for model architecture, e.g ., embedding dimension
and number of layers. The rest parameters further finetune the structure. For example,
use fused makes OFASys use fused CUDA kernel implementation for certain modules to
improve computation performance on GPU devides. Encoder and decoder computation in
training is adjusted via freeze * embedding and * drop path rate, which indicates the
adapters in the models are not optimized and a drop path normalization is used for both the
encoder and the decoder. For complete configurable options, please also refer to the OFASys
documentation.

The model can be initialized from files similarly to tasks:

20

Under review as a conference paper at ICLR 2024

from ofasys import GeneralistModel
model = GeneralistModel.from_yaml("model.yaml")

It should be well known that every tasks would share the same universal model structure.

B.1.3 Trainer

The trainer implements logistics in multi-task training. An example configuration file is
given in the following:

trainer_conf.yaml
common:

fp16: true
fp16_scale_window: 512
log_interval: 10

distributed_training:
find_unused_parameters: true

optimization:
max_update: 10000
clip_norm: 1.0
lr: [1e-5]
sentence_avg: false

optimizer:
adam_betas: [0.9, 0.999]
adam_eps: 1e-08
weight_decay: 0.01

lr_scheduler:
warmup_ratio: 0.06

The common section includes configuration for overall computation, profiler and monitor.
The rest sections configure parameter optimization and others.

Considering memory efficiency, all tasks share a common optimizer and thus the same learning
rate schedule, as most optimizers for multi-modal training estimate gradient momentums
which diverge with different learning rates. Currently, the default optimizer is AdamW Ilya &
Frank (2019) and the default learning rate scheduler is based on linear decay with warmup Liu
et al. (2019). The options are being actively extended.

The trainer can be initialized as

from ofasys import Trainer
trainer = Trainer.from_yaml("trainer_conf.yaml")

OFASys also includes a launch script to conveniently combine the YAML configuration files
in training. The launch script also wraps distributed training, which is highly environment-
dependent. For related usage, please refer to the OFASys documentation.

B.2 Inference with Instruction

As tasks are expressed as instructions, OFASys supports task-agnostic inference using the
trained models, which includes conducting novel multi-modal tasks.

As prerequisite, inference needs a pretrained model checkpoint. Especially the modality-
related structures need training, if the modality is desired in inference.

from ofasys import OFASys
model = OFASys.from_pretrained('my-awesome-checkpoint.pt')
Inference for image captioning
instruction = '[IMAGE:img] what does the image describe? -> [TEXT:cap]'
data = {'img': 'image_1.jpg'}
output = model.inference(instruction, data=data)
print(output.text) # the caption

21

Under review as a conference paper at ICLR 2024

As we can see, one only need to pass the instruction and the data for inference. The model
checkpoints saved by OFASys keep all the training configurations so there is no need to include
them again. Although the instruction is preferably similar to the ones used in training, there
is no strict enforcement from the library side. The results can be retrieved with the slot type
being the key.

OFASys also provides convenience methods to save BOX and MOTION output data. More
inference examples are shown below:

Image Grounding (Auto-Regressive Token Generator):

instruction = '[IMAGE:img] which region does the text " [TEXT:cap] " describe? -> [BOX:region_coord]'
data = {'img': 'image_1.jpg', 'cap': 'hand'}
output = model.inference(template, data=data)
output.save_box('output_with_bbox.jpg')

Automatic Speech Recognition (Auto-Regressive Token Generator):

instruction = '[AUDIO:wav] what is the text corresponding to the voice? -> [TEXT:txt]'
data = {'wav': 'audio.flac'}
output = model.inference(template, data=data)
print(output.text)
nor is mister quilters manner less interesting
than his matter

Text-to-Motion Synthesis (Diffusion Generator):

instruction = 'motion capture: [TEXT:text] -> [MOTION:bvh_frames]'
data = {'text': 'run then jump'}
output = model.inference(template, data=data)
output.save_as_gif('run_jump.gif')

B.3 Extensibility and Interoperability

Apart from the declarative user interface, OFASys provides an imperative user interface
aiming for extensibility. Users can easily build experiments with their new ideas by extending
“base classes”. To integrate the custom components into the system, one needs to use the
decorator @register config. For detailed how-to tutorials, please refer to the OFASys
documentation.

Adding Task-Specific Data Processing Methods Although the modality presets can
cover many of the data processing needs, one can further customize the data processing
operations by extending the base class BaseTask with their own preprocessing/postprocessing
logic. Those functions are called before/after the system preprocessor/postprocessor.

Adding New Modality/Slot Type For adding new modality, one needs to imple-
ment a preprocessor and an adapter at the minimum. Preprocessors should extend the
SafeBasePreprocess class, which contains a sanity check for the inputs. Adapters should
extend the BaseAdapter class, which extends torch.nn.Module. The main difference be-
tween preprocessors/postprocessors and adapters from the library side is that adapters
can be trained together with the model and their parameters must be saved in the model
checkpoints.

C Detailed System Implementation

C.1 Slot-wise Multi-Modal Data Processing for Composable Task Definition

As mentioned in Sec. 4.1, with existing frameworks, one has to organize the data for
preprocessing differently w.r.t. each task, which is laborious and time-consuming. To
address this issue, especially for multi-modal data, OFASys introduces slot-wise multi-modal
processing realized by modality-specific preprocessors, postprocessors, and adapters. They

22

Under review as a conference paper at ICLR 2024

Table 3: Modality support in terms of slot types in OFASys.

Slot Type Adapter Encoder Decoder Preprocessor Postprocessor

TEXT
Embedding Lookup (Text) ✓ ✓ text→token text←token
Embedding Lookup (Phone) ✓ ✗ text→phone N/A

IMAGE
Vision CNN/ViT ✓ ✗ image→image3d N/A
Embedding Lookup (Image Code) ✓ ✓ image→code image←code

VIDEO Vision CNN ✓ ✗ image→video4d N/A
AUDIO Acoustic CNN ✓ ✓ wave→fbank wave←fbank
MOTION Linear Projection ✓ ✓ BVH→motion6d BVH←motion6d, GIF←motion6d
BOX Embedding Lookup (Box Code) ✓ ✓ bounding box→code bounding box←code
STRUCT Embedding Lookup (Text) ✓ ✓ schema→token, sudoku→token sudoku←token

conduct data transformation and feature extraction on a modality basis, which can be easily
composed to define new multi-modal tasks. To be specific, OFASys includes a dispatcher that
automatically sends the data in each slot to the corresponding preprocessor/postprocessor
and adapter, according to the slot type, i.e., its modality. The relation between slot types
and slot-wise components is shown in Tab. 3.

Take Task 1 in Figure 2 as an example. The instruction is parsed as 5 slots: “[IMAGE]”,
“Which region does the text”, “[TEXT]”, “describes ?”, and “[BOX]”. The first slot is
processed by the image-specific preprocessors and adapters. The three ones after essentially
represent texts, and they are processed by the text-specific ones. The last one is processed
by the ones for bounding boxes. By default, OFASys dispatches data to the processors
of the corresponding modalities. This liberates users from the manual work on task-level
modality-specific data processing.

Preprocessor and Postprocessor provide the ability to convert data from raw format to
common machine learning data types and vice versa. Preprocessors take raw data as input,
convert them into the proper form, and then collate multiple data example in a mini-batch
into batched data, preparing for subsequent batch processing. Postprocessors convert model
outputs to the original input format. In most cases, a postprocessor perform an inverse
process of the corresponding preprocessor. For multiple slots of different modality in an
instruction, OFASys includes a “dispatcher” to better manage the process. The dispatcher
first applies the assigned preprocessor to the input data in each slot, and then the slots
are processed in groups to improve efficiency. The slots from different examples are finally
collated for batch processing in terms of their order in the instruction, e.g ., the data in the
first image slot in the instruction from given examples are collated.

Adapter plays as the role of modality-specific feature extraction or representation learning.
Adapters build a consistent input/output interface that unifies the difference among modalities
for the universal model . Each “input adapter” takes the preprocessed data in the slot as
input and outputs embedding/representation sequences. Input adapters can also produce
auxiliary data needed by the model, e.g ., positional embeddings in terms of self-attention
biases Raffel et al. (2020). If necessary, “output adapters” are implemented as an inverse
process of the input adapters. Similar to preprocessors, OFASys includes a dispatcher to
manage the process. The dispatcher applies the adapter to the batched preprocessed input
and finally concatenates the representation sequences from slots to form the input of the
universal model. As adapters contain trainable parameters, to avoid unnecessary memory
costs in training, the adapters not used in the instructions are not initialized.

In existing application frameworks, the adapters in OFASys are often considered as part of
the static overall model. However, adapters are by nature modality-specific and such practice
limits the flexibility of multi-task learning on new modalities and new tasks. Therefore,
OFASys disentangles modality-specific model computation from the universal backbone model
computation. Yet a new problem arises that preprocessors/postprocessors and adapters are
both modality-specific and one may implement data processing in either component. The
difference in design is that adapters work on batched data and contain trainable parameters,
which are saved in checkpoints.

23

Under review as a conference paper at ICLR 2024

C.2 Modality-Agnostic Computation with Unified Representations

As the modality-specific data processing resolves the difference among modalities, the core
model computation, namely the universal modal, can focus on the architecture design. OFASys
can accommodate various universal model structures, including transformer-based sequence-
to-sequence models Vaswani et al. (2017) like T5 Raffel et al. (2020), U-Net Ronneberger
et al. (2015) for diffusion Ho et al. (2020), decoder-only models like GPT Brown et al. (2020);
Chowdhery et al. (2022), etc. The only requirement for the universal model is that it shall
take an embedding sequence as input and outputs another embedding sequence.

We currently provide a transformer-based encoder-decoder model as the default implementa-
tion of the universal model. Recent progress in different fields have witnessed the potential
of the Transformer architecture becoming the universal framework, and sequence-to-sequence
learning might be a paradigm towards generalist models Wang et al. (2022a); Reed et al.
(2022b); Chowdhery et al. (2022); Wei et al. (2021); Alayrac et al. (2022b). Both the encoder
and the decoder consist of Transformer blocks, each including self-attention, cross-attention,
and point-wise feed-forward network (FFN). Additionally, inspired by Wang et al. (2022b;
2021), we implement a sparsely-activated Mixture-of-Experts (MoE) model as an alternative.

C.3 Stage-wise Components

To build a complete computation task in training or inference, OFASys provides several stage-
wise components, including criteria and generators. For each task, commonly-used criterions
and generators provided by the system can be specified accordingly in the instruction. In the
stage of training, the criterion computes the loss using the output of the above components
and can be automatically deducted from the instruction. In the stage of inference, the
generator is interpreted from the decoder slot in the instruction, which generates the final
output with the help of output adapters and postprocessors.

Criterion forwards data through the model and uses the output of pre-/post-processors
and adapters to calculate the loss for training. Several commonly used criteria are provided
in OFASys. For example, CTC loss Graves et al. (2006) that is commonly considered in the
ASR task for speech models Ao et al. (2022) can be declared on encoder slots. For outputs
that are in the form of discrete tokens, e.g ., language tokens and image tokens van den Oord
et al. (2017); Esser et al. (2021), by default, decoder slots perform softmax cross entropy
within each associated vocabulary, similar to a language model. Besides token-level teacher
forcing with the cross entropy criterion, the system provides other flexible learning paradigms,
such as sequence-level loss, which supports reinforcement learning for action-reward tasks,
and denoising diffusion probabilistic modeling (DDPM) Ho et al. (2020), one of the most
commonly-used diffusion methods.

Generator is used to produce the final output using the model and provided data in inference.
Generators in OFASys are separated into two categories according to the generation paradigm,
i.e., the “auto-regressive generator” and the “diffusion generator” Ho et al. (2020). The
auto-regressive generator takes an auto-regressive approach to generation, which can be
further divided into the discrete token generator and the continuous feature generator. The
diffusion generator performs generation in a non-auto-regressive manner, where the model
iteratively denoises the input to derive the output. The provided implementation covers all
the supported modalities in generation.

C.4 Flexible and Efficient Multi-Task Training with Schedulers

A critical challenge in multi-task learning is the scheduling of the tasks. In conventional
practice, users need to first implement the aforementioned procedures of data and model
processing task specifically, and then manually organize the training of multiple tasks with
heuristic rules. For example, in implementation, Wang et al. (2022a) mixes the logic of all
tasks in the code. If users want to add more tasks, they must be careful with the logic
coupled with the previous tasks. The requirement in this scenario is the decoupling of task
definitions and an efficient scheduler to train them together.

24

Under review as a conference paper at ICLR 2024

In OFASys, a task scheduler is responsible for training a model with multiple tasks. The
execution of multi-task training is conceptually divided into two levels of abstractions in
OFASys: the logical scheduler manages the strategy to compute the overall loss among tasks
for each optimization step, while the physical scheduler determines how to partition and
place the whole computation graph to physical devices with limited distributed capacity.

For the logical scheduler, users can implement their own strategies, such as those in multi-task
learning Zhang & Yang (2021) or continual learning De Lange et al. (2021) literature, to
decide either the task optimization order or the task importance. The default implementation
provided by OFASys is a weighted average of all task losses, where users can adjust the task
weight manually.

For the physical scheduler, efficient multi-modal multi-task training in distributed environ-
ments is highly challenging Barham et al. (2022). To illustrate, each task may activate
a sub-part of the whole model, especially for the I/O adapters; the batch size and the
sequence length of each task can also be different, resulting in uneven workloads between
tasks. OFASys starts with a gradient accumulation-based scheduler. In one optimization step,
each task performs forward and backward processes separately and accumulates gradients
in the local device. Then, all devices reduce the gradients and update them for a step of
optimization. Its advantage is that with the same configuration of each task, such as batch
size and sequence length, the peak memory occupation of GPU devices can be the same as
in single-task training. This implementation also supports each task using a different batch
size.

D Modality Support

OFASys provides 7 presets for TEXT, IMAGE, VIDEO, AUDIO, BOX, STRUCT, and MOTION modality
slots. Please note that the slots are categorized by its raw input data modality, not the
transformed inner data modality.

D.1 TEXT

TEXT is the most common slot type, as many other forms of structural data can be transformed
into/from text, e.g ., category labels and table schemas. The default preprocessor conducts
(sub-)tokenization using GPT2BPE Radford et al. (2019) and can apply masking for masked
language modeling. There is another preprocessor that can transform text to phone used
in audio tasks. The default postprocessor decodes tokens into text losslessly, as GPT2BPE
is whitespace-aware. The adapter encodes and decodes the token or phone sequence using
text embeddings or phone embeddings. As adapters of the same type share parameters, for
sequence-to-sequence learning, it means source input embedding, target input embedding,
and target output embedding are all shared. The available training objectives include
MLE, SCST, and InfoNCE. As tokens are discrete, the currently supported generator is the
auto-regressive token generator.

D.2 IMAGE

IMAGE is another common slot type containing visual spatial data in different formats.
The default preprocessor provides a simple series of transformations, such as resizing and
normalization, to convert raw image data into the tensor format. We also provide a more
complex preprocessor, which contains several data augmentation steps. IMAGE slot uses
postprocessor only in image generation tasks and we use VQ-GAN Esser et al. (2021) to
convert discrete code sequence back to images. We provide ResNet He et al. (2016) and
ViT Dosovitskiy et al. (2021) as image adapters for encoder slots. For the decoder slot in
image generation task, we use VQ-GAN to encode images into discrete code sequences. The
available training objective is MLE using cross-entropy loss for image codes. Similar to TEXT,
we use auto-regressive token generator to generate the discrete image code sequence.

25

Under review as a conference paper at ICLR 2024

D.3 VIDEO

VIDEO is a slot type for consecutive image frames extracted from a video, i.e., tempo-spatial
data. The default preprocessor can decode the video and extract frames using a specified
downsampling rate. It also supports data augmentations, following MViT Fan et al. (2021)
and PySlowFast Fan et al. (2020). Currently, VIDEO can be only used as encoder slots. The
adapter builds upon and reuses pretrained weights of the IMAGE adapter (ViT or ResNet)
to encode each frame, and concatenate them to a sequence of representation vectors. The
available training objectives include MLE and SCST. The VIDEO slot currently does not has
a postprocessor or a generator. However, it is possible to cast the video generation task as
image generation task: reuse the auto-regressive discrete generator to generate a single video
frame and append the frame to the source; by repeating this step, we can generate a video.

D.4 AUDIO

AUDIO is a slot type for sound features in the time and frequency domains. The default
preprocessor can extract the log Mel-filterbank features from raw audio waveform. For
robust speech preprocessing, techniques including (a) volume normalization and (b) cepstral
mean and variance normalization (CMVN) Prasad & Umesh (2013) can be applied. Besides,
specAugment Park et al. (2019) and speed perturbation Ko et al. (2017) are employed for
data augmentation. AUDIO uses a postprocessor only in generation tasks, where we transform
the predicted mel spectrograms to waveform via a vocoder, i.e., HiFi-GAN Kong et al. (2020).
Currently, the adapter can operate on log Mel-filterbank features. In the encoder slots, the
AUDIO input adapter consists of a CNN for downsampling and a transformer network for
contextutal representation learning. In the decoder slots, it employs a fully-connected network
as the input adapter and a CNN as the output adapter following Tacotron2 Shen et al. (2018).
The available training objectives include MSE of mel spectrograms and cross-entropy loss on
the stop probability for speech synthesis. We utilize an auto-regressive feature generator for
speech generation since fbank features are continuous.

D.5 BOX

BOX is a slot type for processing bounding boxes in region-like tasks (e.g ., object detection,
grounded captioning, and visual grounding). The default preprocessor can quantize the
continuous corner coordinates (top-left and bottom-right) of the bounding box to discrete
box tokens ⟨x1, y1, x2, y2⟩ Chen et al. (2022a). The preprocessor allows the user to set the
range of discrete values to control the granularity. BOX implements a postprocessor to recover
the continuous corner coordinates from box tokens, so users can visualize the bounding boxes
on the image. Since the coordinates have been converted to discrete box tokens, the TEXT
adapter can be also used to encode the tokens into a sequence of embeddings. The available
training objective is MLE. As box tokens are discrete, the currently-supported generator is
the auto-regressive token generator.

D.6 STRUCT

Structural data, such as databases, tables, grids, graphs, and trees, is widely used in many
areas, e.g ., knowledge graph and protein structure. STRUCT is the slot for structural data,
and currently, it supports table and database data. Inspired by UnifiedSKG Xie et al.
(2022), the default preprocessor transforms the structural data into sequential text data.
For tables of small sizes, the preprocessor flattens the whole table into a sequence, using “:”
to distinct each column and “|” to distinct each row. For tables of large sizes or database
schemas, the preprocessor only extracts the schemas information with a few mentioned row
names from the instructions. Since STRUCT is only used as generation target in sudoku, we
implement a text-to-sudoku postprocessor. Since the structural data are converted to text,
the TEXT adapter can be used to encode the text tokens into a sequence of embeddings.
The available training objective is MLE. As the transformed text tokens are discrete, the
currently supported generator is the auto-regressive token generator.

26

Under review as a conference paper at ICLR 2024

D.7 MOTION

Human motion, the MOTION modality, is common in 3D character animation, robotics, and
human behavior understanding. We implement the “motion 6d” preprocessor for motion
data. It reads a BVH file, which is a motion capture data format commonly used by the
industry to describe a clip of motion, and converts the BVH file into a floating-point number
(float) array of shape [n, 6 + 6m], where n is the number of frames and m is the number of
joints. Each frame describes the pose at that moment, which includes 3 floats describing the
root joint’s 3D position, another 3 floats for the body’s velocity, and 6m floats corresponding
to all the joints’ rotations. Note that we convert each 3× 3 rotation matrix into its 6D vector
representation Zhou et al. (2019) to ease learning. The “motion 6d” adapter employs linear
projection to align the dimension of the data and the universal model. By default, we use a
criterion and a generator suitable for measuring the generation error of a continuous signal
to handle motion data, i.e., the denoising diffusion probabilistic modeling (DDPM) Ho et al.
(2020) loss and its corresponding generator. DDPM requires the adapter to handle the step
information of DDPM, where the step information can also be understood as the strength of
the noise for data corruption. The adapter incorporates this step information by adding a
step embedding to the token embeddings, similar to how position embeddings are usually
implemented.

E Task Examples

OFASys currently includes 23 example tasks with default configurations. In the following, we
summarize the default settings for those tasks.

E.1 Text-Only Tasks

E.1.1 Text Understanding (GLUE)

Task Introduction: GLUE Wang et al. (2019) is a benchmark for text understanding,
which casts multiple datasets into a unified sentence classification form. The tasks/datasets
include the Corpus of Linguistic Acceptability (CoLA) Warstadt et al. (2019), the Stanford
Sentiment Treebank (SST-2) Socher et al. (2013), Microsoft Research Paraphrase Corpus
(MRPC) Dolan & Brockett (2005), Semantic Textual Similarity Benchmark (STS-B) Cer et al.
(2017), Quora Question Pairs (QQP) Iyer et al. (2017), MultiNLI (MNLI) Williams et al.
(2018); Bowman et al. (2015), Question NLI (QNLI) Rajpurkar et al. (2016); White et al.
(2017); Demszky et al. (2018), Recognizing Textual Entailment (RTE) Dagan et al. (2005);
Bar-Haim et al. (2006); Giampiccolo et al. (2007); Bentivogli et al. (2009), and Winograd
NLI (WNLI) Levesque (2011). A majority of the original datasets are cast as natural
lanugage inference (NLI) tasks (identifying entailment, neutral, contrast relationships)
or binary classification tasks (yes/no). The evaluation metric is Matthew’s Correlation
Coefficient Matthews (1975) for CoLA, Pearson’s and Spearman’s Correlation Coefficient for
STS-B, and accuracy for the rest. The overall score for this task in evaluation is commonly
the arithmetic average over the 8 tasks without WNLI Devlin et al. (2019). Please note that
currently OFASys is not able to support regression tasks in GLUE, i.e., STS-B, which will
be addressed soon, as there are no technical obstacles.

Default Instruction: The default instructions for this task are as follows:

CoLA:

is the text "[TEXT:s]" grammatically correct? -> is the text "[TEXT:s ,no_loss]"
↪→ grammatically correct? [TEXT:label ,closed_set]

SST-2:

is the sentiment of text "[TEXT:s]" positive or negative? -> is the sentiment of text "[
↪→ TEXT:s ,no_loss]" positive or negative? [TEXT:label ,closed_set]

QQP:

27

Under review as a conference paper at ICLR 2024

is question "[TEXT:q1]" and question "[TEXT:q2]" equivalent? -> is question "[TEXT:q1 ,
↪→ no_loss]" and question "[TEXT:q2 ,no_loss]" equivalent? [TEXT:label ,closed_set]

MRPC:

does text1 "[TEXT:s1]" and text2 "[TEXT:s2]" have the same semantics? -> does text1 "[
↪→ TEXT:s1 ,no_loss]" and text2 "[TEXT:s2 ,no_loss]" have the same semantics? [TEXT:label ,
↪→ closed_set]

MNLI:

can text1 [TEXT:s1] imply text2 [TEXT:s2]? -> can text1 [TEXT:s1 ,no_loss] imply text2 [
↪→ TEXT:s2 ,no_loss]? [TEXT:label ,closed_set]

QNLI:

does "[TEXT:s]" contain the answer to question "[TEXT:q]"? -> does "[TEXT:s ,no_loss]"
↪→ contain the answer to question "[TEXT:q ,no_loss]"? [TEXT:label ,closed_set]

RTE:

can text1 "[TEXT:s1]" imply text2 "[TEXT:s2]"? -> can text1 "[TEXT:s1 ,no_loss]" imply
↪→ text2 "[TEXT:s2 ,no_loss]"? [TEXT:label ,closed_set]

The input sentence(s) are repeated for better performance, as observed in Wang et al. (2022a).
no loss indicates the repeated input sentences do not have targets in computing the loss.
The generator in inference is the sequence generator with the token space constrained to a
dataset-specific space via closed set.

E.1.2 Text Summarization (Gigaword)

Task Introduction: Text summarization is a natural language generation task, where the
model should produce a piece of concise text that covers the main points of the given text.
OFASys currently evaluates text summarization on Gigaword, following related work Rush
et al. (2015). Gigaword for summarization is a naturally-annotated dataset consisting of
news articles, where the first sentence of the article is regarded as the summary for the rest
of the first paragraph. The evaluation metric is ROUGE Lin (2004). Especially, we report
ROUGE-L (R-L) in this paper.

Default Instruction: The default instruction for this task is as follows:

what is the summary of article " [TEXT:src] "? -> [TEXT:tgt ,noise_ratio=0 .2]

The noise ratio is passed to the preprocessor, which randomly replaces tokens with the
specified rate in the target output.

E.1.3 Natural-Instructions v2

Task Introduction: Natural-Instructions v2 Wang et al. (2022c) is a benchmark of over
1600 diverse language tasks which evaluates generalization across language tasks by leveraging
their language instructions. It covers over 70 distinct task types, such as tagging, in-filling
and rewriting. These tasks are collected with contributions of NLP practitioners in the
community and through an iterative peer review process to ensure their quality. Natural-
Instructions v2 consists of a variety of language tasks and instructions that describe them in
plain language. Each sample contains four fields. Instruction defines a given task in plain
language. This involves a complete definition of how an input text (e.g ., a sentence or a
document) is expected to be mapped to an output text. Examples are samples of inputs and
correct or wrong outputs to them, along with a short explanation for each. On average, each
sample contains 2.8 positive and 2.4 negative examples. Src and tgt are a large collection of
input-output pairs for each task. Since this benchmark contains a large collection of tasks,
we split the tasks into two subsets: one subset for evaluation and the remaining ones which

28

Under review as a conference paper at ICLR 2024

can be used for supervision. For evaluation tasks, specifically, we fix a manually-selected
collection of 12 categories that represent 154 tasks. We report ROUGE-L Lin (2004) for
aggregated performance results across a variety of tasks which is a soft string overlap metric
that can be applied to a wide range of text generation tasks.

Default Instruction: The default instruction for this task is as follows:

[TEXT:instruction] [TEXT:examples] [TEXT:src] -> [TEXT:tgt ,max_length=128]

The maximum input length is set to 1024 and the output max length is set to 128.

E.1.4 Text Infilling

Task introduction: Self-supervised learning in natural language processing can belong
to various forms. In OFASys, we give an example for the most basic form of self-supervised
learning for sequence-to-sequence models, that is, text-infilling, in a similar manner to
BART Lewis et al. (2020). For this task, the tokens in the input text is randomly replaced
with a special mask token, and the model should recover the input text as the output. In
our experiments, the data is obtained from English Wikipedia. This task is designed for
pretraining only.

Default instruction: The default instruction for this task is as follows:

what is the complete text of "[TEXT:text ,mask_ratio=0 .3]"? -> [TEXT:text]

The mask ratio is passed to the preprocessor, which randomly replaces input tokens with a
special mask token.

E.2 Image-Related Tasks

E.2.1 Image Classification (ILSVRC-2012)

Task Introduction: Image classification task requires the model to predict the correct
category for the input image. We evaluate our model on the ILSVRC-2012 ImageNet
dataset Russakovsky et al. (2015). The dataset contains 1 k image categories and around
1.3M images. Each image is manually annotated with one category label among the 1 k
candidates. We report the top-1 accuracy on the test set of 50 k images.

Default Instruction: The default instruction for this task is as follows:

[IMAGE:image ,preprocess=imagenet] what does the image describe? -> [TEXT:label_name ,
↪→ closed_set]

The input image resolution is set to 480. For the input image, we specify a special ImageNet
preprocessor to activate the dataset-specific image augmentation on training samples. Specif-
ically, following Bao et al. (2022), we employ the same random resize cropping, random
flipping, RandAug Cubuk et al. (2020) and random erasing Zhong et al. (2020b) as data
augmentation strategies on the training images. For the decoder slot, we add the specification
closed set to constrain the text output into the 1K candidate category names.

E.2.2 Image Captioning (COCO Captions)

Task Introduction: Image captioning requires the model to generate a descriptive text
for an image. We evaluate the multi-modal generation capability of OFASys on the most
widely used COCO Caption dataset Chen et al. (2015). Following previous works Anderson
et al. (2018); Wang et al. (2022a), We report CIDEr Vedantam et al. (2015) scores on the
Karparthy test split Karpathy & Fei-Fei (2015).

Default Instruction: The default instruction for this task is as follows:

[IMAGE:img] what does the image describe? -> [TEXT:cap]

29

Under review as a conference paper at ICLR 2024

E.2.3 Visual Entailment (SNLI-VE)

Task Introduction: Visual entailment (VE) Xie et al. (2019) is similar to textual entail-
ment. It changes the premise from the text to the image, and judges whether the images
matches the sentence. SNLI-VE is a data set of VE tasks which gives images, image captions
and premises, and requires the model to judge the relationship between images and premises,
and gives one of three outcomes: entailment, neutral, and contradiction.

Default Instruction: The default instruction for this task is as follows:

[IMAGE:img] can image and text1 "[TEXT:cap]" imply text2 "[TEXT:hyp]"? -> can image and
↪→ text1 "[TEXT:cap ,no_loss]" imply text2 "[TEXT:hyp ,no_loss]"? [TEXT:label ,closed_set]

The pattern is similar to MNLI task, where the encoder text is repeated in the decoder. The
input image resolution is resized to 480× 480 by default.

E.2.4 Visual Question Answering (VQA v2)

Task Introduction: Visual question answering (VQA) requires the model to answer
questions based on the information of the given image Antol et al. (2015); Goyal et al. (2017).
We finetune our pretrained model on the dataset VQA v2 Goyal et al. (2017). We evaluate
the performance by calculating accuracy.

Default Instruction: The default instruction for this task is as follows:

[IMAGE:image] [TEXT:question] -> [TEXT:answer ,closed_set]

The resolution of the input images is 480× 480. The generated string is constrained to a
closed set, similar to the formulation of classification tasks.

E.2.5 Visual Grounding (RefCOCO)

Task Introduction: Visual grounding requires the model to locate an image region based
on a textual description. OFASys formulates this task as a sequence-to-sequence generation
task. The model takes a text and an image as input and generates a sequence of box
tokens in an autoregressive manner. We perform experiments on RefCOCO Yu et al. (2016);
Kazemzadeh et al. (2014). The standard metric Acc@0.5 is reported on the corresponding
validation set, that is, a bounding box is considered correct if IoU ≥ 0.5 with the ground
truth.

Default Instruction: The default instruction for this task is as follows:

[IMAGE:img] which region does the text "[TEXT:cap]" describe? -> [BOX:region_coord]

E.2.6 Grounded Image Captioning

Task Introduction: Grounded image captioning is the inverse task of visual grounding.
Given an image and a region, the model is required to generate a description about the
region. We use RefCOCO, RefCOCO+, RefCOCOg, and Visual Genome Krishna et al.
(2017) as the pretraining datasets for this task. This task is supposed to used in multi-task
learning only and no inference support is currently included.

Default Instruction: The default instruction for this task is as follows:

[IMAGE:img] what does the region describe? region [BOX:region_coord] -> [TEXT:cap]

30

Under review as a conference paper at ICLR 2024

E.2.7 Object Detection

Task Introduction: Object detection is a common vision task that requires a model to
recognize all objects in the image and localize their regions. We use OpenImages Kuznetsova
et al. (2020), Object365 Shao et al. (2019), Visual Genome Krishna et al. (2017), and
COCO Chen et al. (2015) as the pretraining datasets for this task. This task is supposed to
used in multi-task learning only and no inference support is currently included.

Default Instruction: The default instruction for this task is as follows:

[IMAGE:img] what are the objects in the image? -> [[BOX] [TEXT]]*

As the output is of variable lengths, a specific instruction parsing method is implemented
via the build instruction method. The “[]*” notation is parsed to the actual number of
the bounding boxes for a training example.

E.2.8 Image Infilling

Task Introduction: Image infilling task has been proved an effective task for both image
and multi-modal pretraining He et al. (2022); Bao et al. (2022); Wang et al. (2022a). We
mask the middle part of the raw images as input, and expect the model to restore the masked
part from the corrupted input by generating the discrete codes produced by VQ-GAN models.
This self-supervised task is designed for multi-task pretraining only.

Default Instruction: The default instruction for this task is as follows:

what is the complete image of "[IMAGE:img ,mask_ratio=0 .5]"? -> [IMAGE ,
↪→ preprocessor=image_vqgan ,adapter=image_vqgan]

The input is the representation from the image pixels. The input image resolution is set to
256× 256 and we mask the central 128× 128 part. The attribute mask ratio is added to set
the mask ratio of the image. Following Wang et al. (2022a), the target output is a seqeunce
of discrete image codes generated by VQ-GAN Esser et al. (2021). The output length in
inference is fixed to 256 (16× 16), according to the image resolution and the compression
ratio of VQGAN.

E.2.9 Image Generation (COCO Captions)

Task Introduction: Text-to-Image generation has become a task that has attracted
more and more attention of researchers as it demonstrates the excellent creation of neural
network models Ramesh et al. (2021); Ding et al. (2021); Rombach et al. (2021). Similar
to Image Infilling task, we use a VQ-GAN model to convert images into discrete codes, so
that the sequence generator can generate a complete image by generating the code sequence
autoregressively. We train our model on the train split of the MS COCO dataset and evaluate
our model on the test split by randomly sampling 30 000 images. As for evaluation, following
previous works Wang et al. (2022a); Wu et al. (2022); Huang et al. (2021), we use CLIP
Similarity Score (CLIPSIM) to evaluate the semantic similarity between the query text and
the generated images.

Default Instruction: The default instruction for this task is as follows:

what is the complete image? caption: "[TEXT:cap]"? -> [IMAGE ,preprocessor=image_vqgan ,
↪→ adapter=image_vqgan]

We use the similar instruction and configuration like image infilling task to define the image
generation task. The main difference is that we use text instead of masked images as the
input. In inference, the output image resolution is set to 256× 256, so the output length is
1024 (32× 32) with respect to the compression ratio of VQ-GAN.

31

Under review as a conference paper at ICLR 2024

E.3 Video-Related Tasks

E.3.1 Video Classification (Kinetics-400)

Task Introduction: The video classification task is a fundamental task in the field of
video understanding where the model needs to predict the label for a given video clip. We
evaluate our model on the Kinetics-400 dataset Kay et al. (2017), which contains 300 k video
clips from 400 classes. We report the accuracy on the val split of the Kinetics-400 dataset.

Default Instruction: The default instruction for this task is as follows:

[VIDEO:video] what does the video describe? -> [TEXT:label_name ,closed_set]

We follow MViT Fan et al. (2021) for video data augmentation, which is incorporated into
the VIDEO preprocessor.

E.3.2 Video Captioning (MSR-VTT)

Task Introduction: The video captioning task requires the model to generate a textual
description for a given video clip. We evaluate the proposed method on MSR-VTT caption
dataset Xu et al. (2016), which contains 10 k video clips 200 k descriptions of the videos.
Following Lin et al. (2022), we report CIDEr Vedantam et al. (2015) scores on the val split
of the MSR-VTT dataset.

Default Instruction: The default instruction for this task is as follows:

[VIDEO:video] what does the video describe? -> [TEXT:cap]

All data augmentation for videos are disabled except for the random flip.

E.3.3 Video Question Answering (MSR-VTT QA)

Task Introduction: The video captioning task requires the model to generate a answer
for a given video clip and a question related to that video clip. We evaluate the proposed
method on MSR-VTT QA dataset Xu et al. (2017), which contains question-answer pairs
extracted from the original MSR-VTT dataset Xu et al. (2016). We report the accuracy on
the val split of MSR-VTT QA dataset.

Default Instruction: The default instruction for this task is as follows:

[VIDEO:video] [TEXT:question] -> [TEXT:answer ,is_label]

We follow MViT Fan et al. (2021) for video data augmentation.

E.4 Audio-Related Tasks

E.4.1 Automatic Speech Recognition

Task Introduction: Automatic Speech Recognition (ASR) is the task of converting speech
into sequences of discrete semantic tokens. We evaluate our model on the Librispeech Panay-
otov et al. (2015) and AISHELL-1 Bu et al. (2017) dataset. The Librispeech dataset contains
1000 hours of speech in English sampled at 16 kHz. The AISHELL-1 dataset contains 178
hours of Mandarin speech sampled at 16 kHz.

Default Instruction: The default instruction for this task is as follows:

[AUDIO:wav] what is the text corresponding to the voice? -> [TEXT:text]

To achieve better performance, the criterion for this tasks include an additional Connectionist
Temporal Classification (CTC) Watanabe et al. (2017) loss alongside the sequence-to-sequence

32

Under review as a conference paper at ICLR 2024

loss. Specifically, we input the encoder output matrix X and the target sequence Y for CTC
loss, which computes P (Y |X) by summing over the probability of all possible alignments
between the two and maximizes the probability of P (Y |X).

E.4.2 Text-to-Speech

Task Introduction: Text-to-speech (TTS) is the task of generating speech from input
text. We evaluate our model on the LJSpeech Ito & Johnson (2017) and BZNSYP3 datasets.
The LJSpeech dataset contains 24 hours of English audio of a single speaker reading passages
with a sample rate of 22 050 Hz. The BZNSYP dataset includes 12 hours of Mandarin audio
sampled at 48 kHz from a single speaker.

Default Instruction: The default instruction for this task is as follows:

[TEXT:text ,preprocessor=text_to_phone] what is the voice corresponding to the text? -> [
↪→ AUDIO:fbank ,adapter=audio_tgt_fbank]

OFASys converts original text into phonemes, then take phonemes as model input and output
mel spectrograms. In inference, we use a well-trained vocoder HiFi-GAN Kong et al. (2020)
to transform the predicted mel spectrograms to the waveform.

E.5 Structural Data–Related Tasks

E.5.1 Text-to-SQL (Spider)

Task Introduction: Text-to-SQL could be considered as a semantic parsing task, which
aims to generate executable SQL codes according to the question text and the information
of corresponding database. In this task, model is supposed to not only truly understand
the question text and database but also generate a SQL format code to solve the question.
We conduct our experiments on Spider dataset Yu et al. (2018), which contain different
complex SQL queries and different complex database in different domains. It consists of
10 181 questions and 5693 unique complex SQL queries on 200 databases with multiple tables,
covering 138 different domains. Some questions in the dataset is supposed to answer by
cross-domain and cross-database semantic parsing problems. We use Exact Matching metric,
measuring whether the generated SQL code as a whole is equivalent to the label SQL query.
Following previous Text-to-SQL studies Zhong et al. (2020a), we first decompose the SQL
of both prediction and ground truth as bags of several components (SELECT, WHERE,
GROUP BY, ORDER BY, KEYWORDS) and sub-components. The generated SQL code
is correct only if all the components are correct compared with ground truth. The Exact
Matching metric is the ratio of correct prediction among all the predictions.

Default Instruction: The default instruction for this task is as follows:

[TEXT:src]; structured knowledge: "[STRUCT:database ,preprocessor=database_to_text]".
↪→ generating sql code. -> [TEXT:tgt]

Similar with Xie et al. (2022), we consider the task as a sequence to sequence language task.
src slot is the question text, and the database slot is the corresponding text format database
information of the samples. The database information is transformed by table to text into

| [database name] | [table_1 name] : [column_1 name] ([mentioned row names]), [column_2
name], [column_3 name], ... [table_2 name] : ...

The mentioned row names are the rows which are mentioned in the question. Adding the
mentioned row names improves the performance in most cases Xie et al. (2022).

E.5.2 Table-to-Text (DART)

Task Introduction: Table-to-Text Cawsey et al. (1997); Lebret et al. (2016) aims to
describe a table by natural language. We conduct experiments on DART Nan et al. (2021),

3https://www.data-baker.com/open_source.html

33

https://www.data-baker.com/open_source.html

Under review as a conference paper at ICLR 2024

which is a triplet component table dataset. We consider the triplets as a three-column,
multi-row table without column names. DART has 62 659, 5980, and 12 552 examples for
training, validation, and testing, respectively. The evaluation metric of Table-to-Text is
BLEU Papineni et al. (2002) from SacreBLEU Post (2018).

Default Instruction: The default instruction for this task is as follows:

structured knowledge: "[SRTUCT:database ,preprocessor=table_to_text]". how to describe the
↪→ tripleset? -> [TEXT:tgt]

We consider the task as a sequence-to-sequence language task, where database is the table
information following the format as

[row1 col1] : [row1 col2] : [row1 col3] | [row2 col1] : [row2 col2] : [row2 col3] | ...

E.5.3 TableQA (FeTaQA)

Task Introduction: TableQA Jin et al. (2022) is a question answering task according to
a given table. We use FeTaQA dataset Nan et al. (2022) to evaluate our methods. FeTaQA
is dataset based on 10 k Wikipedia entries of (table, question, free-form answer, supporting
table cells). We only use the table, question and free-form answers. The evaluation of
TableQA is BLEU Papineni et al. (2002).

Default Instruction: The default instruction for this task is as follows:

structured knowledge: "[STRUCT:database ,preprocessor=table_to_text]". what is the answer
↪→ of the question "[TEXT:src]"? -> [TEXT:tgt]

The src is the question, the database is the table, and the tgt is the predict answer. The
table format is the same as Table-to-Text.

E.5.4 Sudoku

Task Introduction: Sudoku is a common math puzzle game, which fills the blank of a
9× 9 tables with digits 1-9, such that each digit appears exactly once in each row, column,
and 3× 3 box. Normally, a Sudoku has a single unique solution. We use the Sudoku dataset
in Kaggle4, which contains 10M puzzles, with difficulty from easy to hard. The dataset is
randomly split into 1000 samples for validation and 1000 for testing with the rest used for
training. We use Solved Acc as the evaluation metrics, which means the prediction that
meets all the requirements is considered correct.

Default Instruction: The default instruction for this task is as follows:

"[STRUCT:src ,preprocessor=sudoku_to_text]". solve the sudoku. -> [STRUCT:tgt ,
↪→ preprocessor=sudoku_to_text]

The src is the sudoku puzzles. sudoku to text uses “:” to split columns and “|” to split
rows into the form like

0 : 8 : 5 : 2 : 3 : 0 : 0 : 7 : 0 |
1 : 4 : 0 : 8 : 0 : 9 : 0 : 0 : 0 |
0 : 7 : 0 : 0 : 1 : 0 : 0 : 0 : 8 |
7 : 0 : 9 : 0 : 0 : 5 : 0 : 0 : 3 |
0 : 0 : 0 : 1 : 6 : 0 : 0 : 0 : 0 |
5 : 0 : 2 : 3 : 0 : 0 : 0 : 1 : 0 |
0 : 0 : 1 : 7 : 4 : 8 : 0 : 5 : 9 |
6 : 5 : 0 : 9 : 0 : 3 : 0 : 0 : 0 |
8 : 9 : 0 : 6 : 0 : 0 : 7 : 0 : 2 |

In the sequence, 0 means blank. The tgt is the same format as src, replacing the 0 with
answers.

4https://www.kaggle.com/datasets/rohanrao/sudoku

34

https://www.kaggle.com/datasets/rohanrao/sudoku

Under review as a conference paper at ICLR 2024

Table 4: Tasks, datasets, and main optimization hyper-parameters used in the experiments.
We list the configurations of single-task and multi-task settings.

Task Dataset
Specialist Generalist & Generalist MoE

Batch Size LR Batch Size

Text only tasks
Instruction Tuning NaturalInstruction v2 512 1× 10−5 512
Summarization Gigaword 512 1× 10−4 512

Image tasks
Classification ILSVRC 256 5× 10−5 2048
Visual Entailment SNLI-VE 256 2× 10−5 256
Captioning COCO 128 1× 10−5 2048
Visual Grounding RefCOCO 128 3× 10−5 2048
Grounded Caption RefCOCO 256 1× 10−5 256
VQA VQA v2 512 5× 10−5 1536
Image Generation COCO 512 1× 10−3 512

Audio tasks
ASR LibriSpeech 256 1× 10−3 2048
TTS LJSpeech 256 1× 10−3 1024

Video tasks
Classification Kinetics400 512 5× 10−5 512
Captioning MSR-VTT 256 5× 10−5 128
VQA MSR-VTT QA 512 5× 10−5 256

Motion tasks
Text-to-Motion AMASS/KIT/AIST++ 512 1× 10−3 2048

Other tasks
Table-to-Text DART 192 5× 10−5 128
Text-to-SQL Spider 64 5× 10−5 256

E.6 Motion-Related Task

E.6.1 Text-to-Motion Synthesis

Task Introduction: The text-to-motion synthesis task requires the model to generate
a clip of human motion meeting the description of the given text. We use the text-motion
pairs provided by KIT Plappert et al. (2016). The AMASS Mahmood et al. (2019) dataset is
also used to enrich the training data. The text is set to an empty string when using AMASS,
since AMASS does not provide text labels. Unlike previous works Lin et al. (2018); Ahuja
& Morency (2019), we learn the rotation parameters rather than the positions of all the
joints, in order to produce visually better results, which unfortunately means that we cannot
directly compare our approach to the previous methods on the same benchmark.

Default Instruction: The default instruction for the text-to-motion task is as follows:

motion capture: [TEXT:title] -> [MOTION:bvh_frames]

The training criterion and the inference generator follow the DDPM method. The accompa-
nied preprocessor, adapter, and postprocessor are also available. Please refer to Appendix D.7
for more details.

F More Experimental Settings

The task mixture used in multi-task training include:

1. Text summarization on Gigaword Rush et al. (2015)
2. Instruction tuning on Natural-Instructions v2 Wang et al. (2022c)

35

Under review as a conference paper at ICLR 2024

3. Image classification on ImageNet-1K Russakovsky et al. (2015)
4. Image captioning on COCO Caption Chen et al. (2015)
5. Visual entailment on SNLI-VE Xie et al. (2019)
6. Visual grounding on RefCOCO Yu et al. (2016)
7. Grounded image captioning on RefCOCO Yu et al. (2016)
8. Image generation on COCO Caption Chen et al. (2015)
9. Visual question answering on VQA v2 Goyal et al. (2017)
10. Video classification on Kinetics400 Russakovsky et al. (2015)
11. Video captioning on MSR-VTT Xu et al. (2016)
12. Video question answering on MSR-VTT QA Xu et al. (2017)
13. Automatic speech recognition on LibriSpeech Panayotov et al. (2015)
14. Text-to-speech on LJSpeech Ito & Johnson (2017)
15. Table-to-text on DART Nan et al. (2021)
16. Text-to-SQL on Spider Yu et al. (2018)
17. Text-to-motion synthesis on AMASS Mahmood et al. (2019), KIT Plappert et al.

(2016) and AIST++ Li et al. (2021)

2 of these tasks, i.e., grounded image captioning and text-to-motion synthesis, does not come
with validation sets and as a result, no scores are reported.

The optimization settings for those tasks are listed in Tab. 4. For multi-task learning, as
shown in Sec. 5, a learning rate of 3× 10−4 is used. The batch size is altered to better suit
the multi-task learning settings. For single-task learning, each specialist is trained with a
more appropriate set of hyper-parameters.

36

