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Abstract

Recent methods have demonstrated that Large001
Language Models (LLMs) can solve reasoning002
tasks better when they are encouraged to solve003
subtasks of the main task first. In this paper004
we devise a similar strategy that breaks down005
reasoning tasks into a problem decomposition006
phase and a problem solving phase and show007
that the strategy is able to outperform a single008
stage solution. Further, we hypothesize that the009
decomposition should be easier to distill into a010
smaller model compared to the problem solv-011
ing because the latter requires large amounts012
of domain knowledge while the former only re-013
quires learning general problem solving strate-014
gies. We propose methods to distill these two015
capabilities and evaluate their impact on rea-016
soning outcomes and inference cost. We find017
that we can distill the problem decomposition018
phase and at the same time achieve good gen-019
eralization across tasks, datasets, and models.020
However, it is harder to distill the problem solv-021
ing capability without losing performance and022
the resulting distilled model struggles with gen-023
eralization. These results indicate that by using024
smaller, distilled problem decomposition mod-025
els in combination with problem solving LLMs026
we can achieve reasoning with cost-efficient027
inference and local adaptation.028

1 Introduction029

Large Language Models (LLMs), such as GPT-4030

(OpenAI, 2023), demonstrate exceptional abilities031

in solving knowledge-intensive tasks like Open032

Domain QA (ODQA) (Zhu et al., 2021), math033

(Yue et al., 2023), science (Taylor et al., 2022) and034

autonomous agents (Yao et al., 2022; Significant035

Gravitas, 2023; Wang et al., 2024). However, the036

use of gigantic LLMs with hundreds of billions037

of parameters can be costly during inference, par-038

ticularly when the reasoning chain generated is039

lengthy. Additionally, due to the opaque nature of040

these black box LLMs, they offer limited adaption041

options. There is a need to use cheaper and more 042

flexible models to leverage the power of these black 043

box LLMs for local adaptation and cost-efficient 044

inference. Distilling the large LLMs would seem 045

like a reasonable strategy, but it often results in 046

a significant drop in performance for downstream 047

tasks (Chiang et al., 2023b). 048

Previous studies (Weng, 2023; Wang et al., 2023) 049

have indicated that effectively addressing such 050

tasks requires the model to proficiently perform 051

two essential capabilities simultaneously: 1) plan- 052

ning and decomposition, which involves break- 053

ing down complex objectives into smaller, more 054

manageable subgoals to facilitate efficient handling 055

of intricate tasks; and 2) execution and solving, 056

which involves memorizing vast amounts of knowl- 057

edge from extensive web training data and effec- 058

tively recalling this information when needed to ex- 059

ecute the problem-solving process. The first capa- 060

bility, decomposition, typically requires the model 061

to engage in self-reflection on the input query and 062

generate a Chain-of-Thoughts (CoT)-style reason- 063

ing chain (Wei et al., 2022) to tackle the problem. 064

Usually, these two abilities are intertwined in a 065

single monolithic model throughout the problem- 066

solving process (Zhou et al., 2022). 067

In this paper, we first investigate whether it is 068

possible to decouple the decomposition and solv- 069

ing capabilities, and how to distill these capabilities 070

into smaller models for faster inference. We then 071

test several hypotheses: 1) distilling decomposition 072

is easier than distilling solving. Decomposition pri- 073

marily relies on semantic understanding and query 074

parsing, while solving requires more domain ex- 075

pertise and knowledge. For example, decomposing 076

the query “who is older, Messi or Ronaldo?” into 077

“how old is Messi?”, “how old is Ronaldo?”, and 078

“who is older?” only requires text comprehension, 079

whereas solving the task necessitates memorization, 080

retrieval, and utilization of information. We specu- 081

late that compressing the less knowledge-intensive 082
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Q: Please decompose this complex
question into several related questions
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is older, Messi or Ronaldo?

Decomposed subquestion 1:
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What is the age of Ronaldo?
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Answer:
First, let’s first establish the 
birthday of Lionel Messi. Messi 
was born in 1987… Ronaldo was 
born in 1985. So Messi is older.

Answer:
Messi is 36, Ronaldo is 39,
Ronaldo is older.

Planning + Solving

Figure 1: Reasoning with a long thought chain using the black box LLM can be expensive and inflexible. We
propose to dissect the decomposition and solving of the task, and distill only the decomposition capability to a less
costly and more flexible student model, while still maintaining the original performance.

decomposition is easier. 2) decomposition is more083

generalizable than solving. We hypothesize that084

decomposition can sometimes be abstracted into085

symbolic principles, making it more universally086

applicable across tasks, datasets, and models. This087

enables tasks and models to share a common de-088

composition engine and benefit from each other’s089

power, reducing the effort and costs involved in090

distilling a model for each individual task.091

A natural question arises: is it possible to distill092

only the long reasoning chain, which accounts for093

most of the inference cost, but is relatively easier094

to distill? To this end, we propose and evaluate095

the distillation of only the decomposition capabil-096

ity from the LLM. We conduct experiments using097

a teacher model of GPT-3.5-turbo and a student098

model of vicuna-13B (Chiang et al., 2023a) on QA099

and mathematics datasets (Dua et al., 2019; Cobbe100

et al., 2021). Our contributions include: 101

1. We demonstrate that the decomposition capa- 102

bility is crucial for the complex reasoning of 103

LLM. This capability can be dissected from 104

the problem solving or task solving capability. 105

2. We demonstrate the possibility and effective- 106

ness of distilling only the query decomposi- 107

tion from the teacher model. The resulting 108

distilled model can maintain most of the per- 109

formance while significantly reducing infer- 110

ence costs. However, distilling the solving 111

part of the LLM leads to a considerable de- 112

cline in performance. 113

3. We show that the distilled query decomposi- 114

tion model exhibits good generalization across 115

tasks, datasets, and models. However, the dis- 116

tilled solving for each task does not generalize 117
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well.118

2 Decoupling Decomposition and Solving119

As shown in Figure 1, a common approach to solv-120

ing a reasoning task using an LLM involves directly121

generating a response to the instruction and ques-122

tion. This is referred to as the Single-Stage model.123

The conventional method for LLM, known as the124

Chain of Thought (CoT), instructs the model to125

“think step by step,” allowing the model to take126

more computational steps for difficult tasks.127

However, CoT-style reasoning has limitations128

as it often struggles to generalize to problems be-129

yond the scope of the in-context examples. To130

address this drawback, the most notable work is131

the Least-to-Most approach (Zhou et al., 2022),132

where the model breaks down the original question133

into subquestions and answers them sequentially.134

These approaches have shown improved perfor-135

mance compared to CoT.136

For QA tasks, typically, the next subquestion137

is less dependent on the answer to the previous138

subquestions. Conveniently, we propose a static139

strategy similar to HuggingGPT (Shen et al., 2023),140

where in the first Decomposition stage several de-141

composed subquestions are first generated to de-142

compose the primary question. In the second Solv-143

ing stage, these subquestions are then answered144

one by one to obtain the final answer. We refer to145

this line of models as the Two-Stage models.146

3 Distill the Decomposition Capability147

Generating decomposed questions can be compu-148

tationally expensive when the reasoning chain is149

long while using a black box LLM. Moreover, it is150

challenging to optimize or customize the decompo-151

sition process as it is performed by the black box152

model. Our proposal aims to address these issues153

by utilizing a smaller trainable student model, as a154

drop-in replacement for the large black box LLM155

for decomposition. To achieve this, we distill the156

decomposition capability from the teacher LLM,157

referred to as T .158

Generating Sub-questions from Teacher As159

shown in Figure 1, we begin by gathering demon-160

strations from T . Instead of requesting T to solve161

the problem, we ask it to break down a given ques-162

tion Q without providing the solution. Specifically,163

we provide T with an instruction for decomposi-164

tion, denoted as Idecomp, along with Q.165

166
Instruction for decomposition: Idecomp

Your task is to break down a given complex
question into the most relevant and helpful
subquestions, ensuring that no more than
three subquestions are formulated for each
question. Both the context and the main ques-
tion will be provided to you. If the question
does not need breaking down to be answered,
return “No decomposition”; otherwise, list
the necessary subquestions. Only return sub-
questions that directly aid in answering the
original question, avoiding any that could be
harmful or unhelpful.
Question: Q

167

T then generates a set of sub-questions 168

{Si}i=1,2,3.... 169

Decomposer Distillation Given the sub- 170

questions {Si} generated from the teacher, we can 171

finetune a student decomposer S by optimizing the 172

cross-entropy loss for T (Idecomp, Q) → {Si}. We 173

denote the resulting student model as SD-T . 174

Subquestions Screening via Ground-truth An- 175

swer As an additional step, if the dataset comes 176

with a corresponding ground-truth answer, denoted 177

as A, we can optionally use this information to 178

screen high-quality generated subquestions. To do 179

this, we feed the same teacher model T with an- 180

other instruction Ians that asks the model to solve 181

the primary question Q by first solving the sub- 182

questions {Si}. We collect the generated answer 183

T (Ians, P, {Si}, Q) → Â, where P represents the 184

premise. Ians is provided as the following: 185
186

Instruction for solving: Ians

Solve a complex question by answering sev-
eral related subquestions that would help me
to answer it first. Answer the subquestions
one by one and finally solve the original
question. The final answer is supposed to
attached in the end in the format of “The an-
swer is: ”. Now comes our primary question
and its subquestions:
Premise: P
Question: Q
SubQuestion: {Si}

187

We assume that, statistically speaking, good 188
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{Si} will eventually lead to resolving the tasks.189

Thus, we can optionally filter out training instances190

where Â ̸= A. However, this will result in data191

loss. As this screening process is similar to the Re-192

jection Sampling (Touvron et al., 2023), we denote193

the resulting model as SD-R.194

In Section 5.2, we compare the performance of195

the distilled decomposer trained using the entire196

set of demonstrations SD-T against decomposer197

trained using a screened dataset SD-R.198

4 Experiments199

Datasets We assess the effectiveness of our200

pipeline on two distinct datasets. GSM8K (Cobbe201

et al., 2021) focuses on mathematical reasoning202

and is composed of 7.5K training instances along-203

side 1K test problems. DROP (Dua et al., 2019)204

caters to Question Answering, containing 77.4K205

training samples and a 9.5K validation set. We206

use GSM8K test set and DROP development set207

for the evaluation as the DROP test set does not208

have oracle answer A, which limited the evaluation209

scenarios.210

Teacher/Student Models We use GPT-3.5-211

Turbo-0615 model (Ouyang et al., 2022) as the212

teacher model throughout our experiments. Af-213

ter training we employ different levels of teacher214

models to ensure a comprehensive evaluation: one215

open sourced model (vanilla Vicuna (Chiang et al.,216

2023b)) and three black box models (text-davinci-217

003 (Brown et al., 2020), GPT-3.5-Turbo and GPT-218

4). All the student model is initialized from Vicuna-219

13b-v1.3 (Chiang et al., 2023a).220

Student solver Models To compare the perfor-221

mance of distilling decomposer with distilling222

solver, we conducted further training on several223

Vicuna models to mimic the behavior of the teacher224

as student solvers. Similar to the student decom-225

poser, SE-T represents the model trained using the226

teacher’s demonstrations of T (Ians, {Si}, Q) →227

({Âs
i}, Â), where {Âs

i} represents the answers to228

the subquestions {Si} generated by T .229

Furthermore, in scenarios where the oracle an-230

swer A is available, we fine-tuned the same vanilla231

Vicuna-13B model to obtain SE-A. This model232

was trained using (Ians, {Si}, Q) → ({Âs
i}, A),233

where the targets include answers to the subques-234

tions {Si} from the T and the ground truth answer235

A.236

Training Details We use a batch size of 128, 237

train for 3 epochs on DROP and train for 5 epochs 238

on GSM8K dataset (until convergence), and set the 239

learning rate to 2 · 10−5 for the distillation training. 240

All the distillation fine-tuning can be finished in 241

less than 12 hours on 8 × 80G A100 GPUs. 242

Inference Cost Estimation We calculate the cost 243

based on GPT-3.5-turbo-1106 (175B), with a rate 244

of $0.001 for 1000 input tokens and $0.002 for 245

1000 output tokens. OpenAI has made significant 246

optimizations for inference time when serving GPT 247

models. To ensure a fair comparison, we conserva- 248

tively estimate the cost of the Vicuna-13B model by 249

dividing the cost by the ratio of the model size. As 250

a result, the cost for Vicuna-13B is approximately 251

$7.42∗10−5 for 1000 input tokens and $1.48∗10−4 252

for 1000 output tokens. 253

5 Results 254

5.1 Decomposition is Essential for Reasoning 255

First, we explore the possibility of separating the 256

Decomposition from Solving and assess the effec- 257

tiveness of using an improved decomposition for 258

complex reasoning tasks. 259

Previous studies (Press et al., 2022; Zhou et al., 260

2022) have demonstrated the utility of leveraging 261

decomposed subquestions to enhance the question- 262

answering capabilities of black-box models. They 263

adopt interactive planning strategies, where the 264

generation of each subquestion is conditioned on 265

the answer of the previous subquestions. 266

As discussed in Section 2, we instead use a static 267

strategy by breaking down the reasoning process 268

into two separate stages of Decomposition and 269

Solving. Table 1 (Single-stage GPT/Vicuna vs Two- 270

stage GPT/Vicuna), shows that in general such a 271

static strategy leads to performance gains over a 272

Single-stage approach. This aligns with previous 273

findings. 274

We demonstrate in Table 1 (Two-stage models) 275

that replacing a stronger decomposer (GPT) with 276

a weaker decomposer (Vicuna) mostly results in 277

a noticeable decrease in performance, with an ex- 278

ception of using Vicuna as solver on GSM8K. We 279

hypothesize that the reason is the Vicuna solver 280

is too erroneous to harness the improvement from 281

the decomposition. We observe that the decrease 282

is more significant when the solver is more power- 283

ful. This suggests that in order to achieve optimal 284

performance, a stronger decomposer is essential. 285
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Decomposer Solver Performance↑ Inference Expense ↓
Model Model GSM8K (EM) DROP (F1) GSM8K($) DROP($)

Single-stage - GPT 20.32 46.51 -/0.01 -/0.05
- Vicuna-13B 9.40 26.68 -/0.03 -/0.03

Two-stage

GPT GPT 65.13 55.73 0.13/0.63 0.73/0.96
Vicuna-13B GPT 62.93 47.13 0.02/0.67 0.07/0.96

GPT Vicuna-13B 28.13 21.29 0.13/0.07 0.73/0.08
Vicuna-13B Vicuna-13B 28.51 20.90 0.02/0.08 0.07/0.08

w/o oracle answer A SD-T GPT 67.02 55.19 0.01/0.62 0.06/0.96
GPT SE-T 48.98 13.37 0.13/0.09 0.73/0.06

w/ oracle answer A SD-R GPT 67.78 57.97 0.01/0.60 0.06/1.11
GPT SE-A 51.55 20.34 0.13/0.09 0.73/0.04

Table 1: Comparison results on GSM8K and DROP datasets. Performance on GSM8K is assessed via the exact
match score (EM), while DROP is evaluated using the F1 score. The inference expense is estimated based on
average per sample cost for each dataset. X/X indicates decomposition/solving cost.

5.2 Is Distilling Decomposition Easier than286

Distilling Solving?287

Next, we investigate distilling knowledge from T288

to S when the ground truth answer A is not avail-289

able. This is the most common use case as ground290

truth annotations are typically expensive and rare.291

The results are shown in Table 1 (w/o oracle an-292

swer A). It can be seen that swapping in SD-T for293

the decomposer is at least comparable to the per-294

formance using T . Moreover, the SD-T exhibits295

a noticeable improvement compared to using Vi-296

cuna as the decomposer. However, swapping in297

a student solver model SE-T significantly harms298

the performance. We also evaluated a single-stage299

student model distilled from single-stage GPT. The300

result, omitted, was even worse than the model301

where GPT was the decomposer and SE-T was302

the solver. In terms of inference cost, our SD-T303

approach results in significantly lower cost for the304

decomposition compared to using the teacher GPT305

model. The cost of the solver remains relatively306

unchanged.307

We compare some decompositions from T , from308

Vicuna and from SD-T on the evaluation set in309

Table 2. It can be observed that the distilled SD-310

T model, which is obtained by using in-domain311

demonstration from T , exhibits a high degree of312

similarity to the teacher demonstration in the gener-313

ated subquestions on the unseen test set. In contrast,314

the original Vicuna model often generates unhelp-315

ful questions that have the potential to distract the316

solver.317

One might naturally wonder, if a smaller student318

model can quickly imitate the decomposition abili-319

ties of the teacher model, why is it challenging to320

acquire this skill directly through student model’s 321

initial pretraining. Our hypothesis is that the de- 322

composition ability of a stronger teacher model is 323

easy to distill but difficult to acquire. This skill 324

is likely based on the thorough digestion and in- 325

ternalization of vast amounts of data during the 326

intensive pretraining of the larger models. How- 327

ever, as it is more logical and abstract rather than 328

being knowledge-intensive, a few demonstrations 329

may already provide ample guidance to the student. 330

To draw an imperfect analogy, finding a physics 331

theorem from massive observation is much more 332

challenging than learning the theorem. 333

With available oracle answers Sometimes, we 334

have access to the oracle answers A, which can be 335

used to further enhance the model’s performance 336

on specific domains through local adaptation and 337

additional finetuning. As a result, the performance 338

on these target domain can be beyond the perfor- 339

mance of the black-box teacher model. We explore 340

the options to enhance the models via distillation 341

or target domain finetuning. 342

In these scenarios, we can possibly use A to 343

screen the training instance for distill the decom- 344

poser, similar to Rejection Sampling. The resulting 345

student model SD-R achieved higher performance 346

than using SD-T , as shown in Table 1 (w/ oracle 347

answer A). Notably, on the DROP dataset, SD- 348

R outperforms the Teacher model in terms of F1 349

score. 350

We also finetune another Vicuna model for the 351

solver using the ground-truth answers, referred to 352

as SE-A. Our main findings remain consistent to 353

the scenario where no oracle answers are avail- 354

able. Distilling the decomposer still yields better 355
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performance comparing with finetuning the solver.356

We omitted the single-stage Vicuna model fine-357

tuned using A, which yielded worse results than358

GPT(decomposer) + SE-A(solver).359

Failure modes for SE models According to our360

observations, we hypothesize that there are two pri-361

mary failure modes of the SE-T and SE-A models.362

First, answering either subquestions or primary363

questions would require extensive world knowl-364

edge and commonsense, which can be difficult to365

compress into a student model that is hundreds366

of times smaller, using only a few demonstra-367

tions. In other words, a strong solving capability368

is knowledge-intensive. On the other hand, decom-369

position capability might be more compressible as370

it is typically more abstract, has lower information371

density, and is more universal than solving capabil-372

ity.373

Second, since we used the teacher’s answers to374

the subquestions {Âs
i} as part of the target, the SE375

models could get confused and generate the final376

answers to one of the subquestions {Si}, rather377

than the primary question Q. (Examples are pro-378

vided in Appendix C.)379

Based on above findings, we experimented with380

excluding the {Âs
i} in the target when training the381

SE models. Specifically, we train the models to382

directly generate the answer by skipping answer-383

ing subquestions, SE(I
′
ans, {Si}, Q) → Â/A. The384

resulting models are denoted as SE-T (direct) and385

SE-A(direct). We found that {Âs
i} from the tar-386

get yields improved results over the DROP dataset,387

but leads to a decrease in performance over the388

GSM8K dataset. Overall, the decrease observed389

in GSM8K is more prominent than the gain seen390

in the DROP dataset. Therefore, we still use the391

SE models with the {Âs
i} in the target. We provide392

additional analysis, I ′ans, and show the comparison393

results in Appendix A.394

5.3 Is Distilling Decomposition More395

Generalizable than Distilling Solving?396

Generalization to other domains We then in-397

vestigate whether the distilled decomposer, which398

is trained on a specific domain dataset, can be ap-399

plied to out-of-domain datasets with distinct ob-400

jectives. To test this, we perform a cross-domain401

evaluation on DROP and GSM8K, which require402

different expertise from the solver. The results,403

when the oracle answer is available, are presented404

in Table 3. Surprisingly, the distilled decomposer405

SD-R demonstrates good generalization and ver- 406

satility to the other domain, as evidenced by only 407

a slight decrease in performance compared to us- 408

ing the teacher GPT model as the decomposer. In 409

contrast, when substituting the solver with SE-A, 410

which is fine-tuned on the original domain, the gen- 411

eralization to the other domain is poor regardless 412

of the decomposer used. Some examples of cross- 413

domain subquestion decomposition are shown in 414

Table 2. The results on the scenario with no oracle 415

answer are consistent with Table 3. 416

Generalization to other solvers Next, we exam- 417

ine whether the distilled decomposer is compatible 418

and universally suitable for different solvers. The 419

results can be seen in Table 4. The performance of 420

SD-R is comparable to that of the teacher decom- 421

poser (GPT), and it shows overall improvements 422

over a weaker decomposer (Vicuna) when con- 423

nected to different solvers. We found that weaker 424

solvers receive more performance gain compared 425

to strong solvers, through upgrading to a distilled 426

decomposer. We hypothesize that the reason lies in 427

the fact that the weaker solver may be incapable of 428

fully utilizing the benefits of the decomposition. 429

6 Ablations 430

We provide an extensive evaluation of various in- 431

structions, and an exploration into the influence of 432

the number of demonstrations in Appendix B. 433

7 Related Work 434

LLM Distillation Tremendous progress (Jiao 435

et al., 2020; Sun et al., 2019; Li et al., 2021) has 436

been made in terms of compressing large-scale pre- 437

trained language models such as BERT (Devlin 438

et al., 2019) or RoBERTa (Liu et al., 2019). For 439

generative models, compression is predominantly 440

achieved by minimizing the K-L divergence be- 441

tween teacher and student distributions (Sanh et al., 442

2019; Gu et al., 2023). A pivotal assumption un- 443

derlying these methods is the full accessibility of 444

the teacher model’s components. However, most 445

powerful LLMs are black boxes, revealing only 446

limited outputs. Given these constraints, several 447

methodologies have emerged that train directly on 448

data generated by teacher models (Chiang et al., 449

2023b; Taori et al., 2023). We follow a similar 450

distillation strategy but focus on the decomposition 451

capability distillation. 452
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Dataset: DROP Models Decomposed Sub-questions

Premise P : The Raiders stayed at
home for a Week 16 duel with the
Houston Texans. ... The Texans tried
to rally in the fourth quarter as
Brown nailed a 40-yard field goal,
yet the Raiders’ defense would shut
down any possible attempt.
Question Q:
How many field goals did both
teams kick in the first half?

Vicuna-13B
1. Which teams played against each other? X
2. What were the scores for each team during the game? X
3. Which team had the lead at the end of the game? X

GPT-3.5

1. How many field goals did the Raiders kick in the first half?
2. How many field goals did the Texans kick in the first half?
3. What is the sum of the field goals kicked by both teams in
the first half?

SD-T (DROP)
In-Domain

1. How many field goals did the Raiders kick in the first half?
2. How many field goals did the Texans kick in the first half?

SD-T (GSM)
Cross-Domain

1. How many field goals did the Raiders kick in the first half?
2. How many field goals did the Texans kick in the first half?

Dataset: GSM8K Models Decomposed Sub-questions

Premise P : Mark is a copy-editor.
He edits an equal number of
sentences each week for two
different publishers, who each pay
him a different rate per sentence.
Publisher B pays Mark twice what
Publisher A pays. Mark edits a total
number of 1000 sentences each
week, and Publisher A pays him 5
cents per sentence.
Question Q:
How much does Mark make in a
week, in cents?

Vicuna-13B

1. What is the rate per sentence that Publisher B pays Mark? X
2. What is the total amount Publisher A pays Mark for editing
1000 sentences?
3. What is the total amount Publisher B pays Mark for editing
1000 sentences?

GPT-3.5
1. How many sentences does Mark edit each week for Publisher A?
2. How many sentences does Mark edit each week for Publisher B?
3. How much does Mark make per sentence from Publisher B?

SD-T (GSM)
In-Domain

1. How many sentences does Mark edit for Publisher A in a week?
2. How many sentences does Mark edit for Publisher B in a week?
3. What is the rate per sentence paid by Publisher B?

SD-T (DROP)
Cross-Domain

1: How much does Publisher A pay Mark per sentence?
2: How much does Publisher B pay Mark per sentence?
3: How many sentences does Mark edit in a week?

Table 2: Examples for decomposed subquestions from each method on GSM8K and DROP. SD-T (GSM) and SD-
T (DROP) denote student models that distilled from T ’s demontration on GSM8K and DROP datasets, respectively.
X indicates not helpful subquestions.

Decomposer GPT SD-R GPT -
Solver GPT GPT SE-A SE-A

Trained on Evaluation on DROP

GSM8K 55.73 51.05 7.98 17.22

Trained on Evaluation on GSM8K

DROP 65.13 63.15 11.30 3.41

Table 3: Distilled student decomposers demonstrate
strong generalization over out-domain datasets.

Planning and Task Decomposition of LLM-453

powered Agent Recent advances in LLM-454

powered systems have made it possible to create455

an end-to-end pipeline, opening up new possibil-456

ities for developing autonomous agents that can457

complete complex tasks using enhanced planning458

and memory capabilities. Promising works, such459

as ReAct (Yao et al., 2022), HuggingGPT (Shen460

et al., 2023), AutoGPT (Significant Gravitas, 2023),461

LangChain (Langchain-AI, 2023), GPT-Engineer462

(Anton Osika, 2023) and BabyAGI (Nakajima,463

2023), have demonstrated significant potential in464

this field. These agents rely on the LLM to decom-465

pose larger tasks into more manageable compo-466

nents. Among them, some approaches (e.g., Hug-467

gingGPT) use a static planning strategy by first 468

generating the complete plan via LLM and subse- 469

quently tackling each subtask. Other approaches 470

(e.g., AutoGPT) adopt a dynamic and interactive 471

planning strategy, where the generation of each ac- 472

tion is conditioned on the outcome of the previous 473

planning steps. 474

LLM Reasoning Chain LLMs can benefit from 475

explicit reasoning chains, as demonstrated by re- 476

cent studies (Wei et al., 2022; Zheng et al., 2023). 477

The Chain of Thought (CoT) (Wei et al., 2022) tech- 478

nique has become standard for enhancing model 479

performance on complex tasks. Tree of Thoughts 480

(Yao et al., 2023) decomposes the problem into mul- 481

tiple thought steps and generates multiple thoughts 482

per step, creating a tree structure. The LLM+P 483

approach (Liu et al., 2023) incorporates an exter- 484

nal classical planner for long-horizon planning and 485

translates the plan back into natural language. The- 486

oretical work (Feng et al., 2023) has analyzed why 487

CoT works by using circuit complexity theory. It 488

shows that without CoT, the model size would need 489

to be prohibitively large to achieve the same perfor- 490

mance through direct reasoning. 491

However, CoT-style reasoning is limited by the 492
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Decomposor Solver GSM8K DROP

GPT-3.5-Turbo
Vicuna-13B 28.0 33.78

GPT-3.5-Turbo 66.0 59.38
GPT-4 90.5 77.60

Vicuna-13B
Vicuna-13B 29.5 26.56

GPT-3.5-Turbo 57.0 47.31
GPT-4 88.5 79.40

SD-R
Vicuna-13B 31.5 33.38

GPT-3.5-Turbo 66.5 61.94
GPT-4 91.5 81.02

Table 4: Distilled student decomposers demonstrate consistent improvements over different solvers. Weaker solvers
receive more gain.

fact that it often generalizes poorly to problems493

beyond the scope of the provided in-context ex-494

amples (Zhou et al., 2022). To address this, some495

studies have asked LLMs to decompose complex496

questions into subquestions following the Least-to-497

Most prompt (Zhou et al., 2022). Others have used498

the self-ask method to elicit follow-up questions499

that aid in addressing the original inquiry (Press500

et al., 2022). Our work contributes to this line of501

research by extending the horizon to cost-efficient502

inference and generalization across tasks.503

Question Decompostion Datasets and Ap-504

proaches A widely recognized dataset for505

question decomposition in the literature is506

QDMR (Wolfson et al., 2020). It comprises an507

ordered list of sub-questions essential for address-508

ing a primary question. Several previous works509

have been training question decomposers on the510

QDMR dataset (Guo et al., 2022; Zhu et al., 2023).511

In contrast, some research does not rely on QDMR512

but employs their uniquely labeled data. For in-513

stance, (Min et al., 2019) recast question decom-514

position as a span prediction problem and trained515

their model on a set of 400 labeled questions. Rec-516

ognizing the challenges associated with obtaining517

reliable decomposition data, (Perez et al., 2020) in-518

troduced an unsupervised decomposition approach,519

capitalizing on the similarity between the primary520

question and 10M potential sub-questions mined521

for decomposition purposes. Our approach differs522

from the aforementioned methodologies because523

we extract the decomposition power solely from the524

teacher model, without relying on any annotated525

subquestion.526

Complement LLMs with Small models There527

have been studies that have emphasized the poten-528

tial of smaller, task-specific models to complement529

the predictions of LLM. Xu et al. (2023) explored a530

framework in which candidates produced by these 531

task-specific models are fed to an LM, with a pri- 532

mary focus on classification tasks. Welleck et al. 533

(2022) train a smaller model to iteratively improve 534

sequences generated by LMs. Vernikos et al. (2023) 535

have demonstrated that collecting multiple erro- 536

neous outputs from LMs and using a small correc- 537

tor model to unify the generation can significantly 538

reduce errors. Our work can also be seen as devel- 539

oping a smaller decomposer model to activate the 540

best performance of a large-scale LM. 541

8 Conclusion 542

Our investigation provides a fine-grained examina- 543

tion of the LLM’s capability on reasoning tasks, 544

by disentangling the decomposition and solving 545

aspects. Although both capacities are vital for rea- 546

soning, we demonstrate that decomposition is less 547

dependent on specific knowledge and thus easier 548

to distill compared to distilling solving capabilities, 549

regardless of the availability of ground truth la- 550

bels. Additionally, the distilled decomposer shows 551

strong generalization abilities across different tasks, 552

datasets and executor/solvers. For future work, it 553

would be interesting to train universal decomposer 554

models using data from various tasks, and explore 555

the use of reinforcement learning to further en- 556

hance the decomposer, leveraging the signal from 557

the solver outcome. Another possible direction 558

for future work is to assess the effectiveness of 559

our method in other long-horizon planning tasks, 560

including LLM-powered agent, tool use, and multi- 561

turn decision making. 562
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9 Limitation563

Our work is built upon several assumptions. First,564

we assume that the teacher model is capable of565

breaking down queries effectively. Second, we566

assume that the student model has the capacity to567

learn the distilled planning from the teacher model.568

Lastly, we assume that the tasks involved in our569

work require long horizon planning capability. If570

any of these assumptions do not hold true, it would571

impact the effectiveness of our proposed method.572

It is important to note that we have only assessed573

the effectiveness of our model in the context of574

math and QA aspects. In order to fully complete575

our work, it would be necessary to evaluate our576

model on a broader range of planning tasks. This577

would include benchmarks related to tool use, LLM578

agents, and multiturn scenarios. Such evaluations579

would help verify the versatility and applicability580

of our proposed method.581
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Appendix793

A Exclusion of Answers to Subquestions794

Decomposer Solver Performance↑
Model Model GSM8K (EM) DROP (F1)

w/o oracle answer A GPT SE-T (Direct) 5.46 53.17
GPT SE-T 48.98 13.37

w/ oracle answer A GPT SE-A(Direct) 6.44 72.55
GPT SE-A 51.55 20.34

Table 5: Excluding answers to subquestions {Âs
i} from the target yields improved results over the DROP dataset,

but leads to a decrease in performance over the GSM8K dataset.

We hypothesize that for tasks involving mathematical reasoning, the answers typically necessitate795

some form of computation, making a step-by-step solution essential. Without this, setting a numerical796

value as the fine-tuning target almost invariably results in failure. Conversely, DROP, being a reading797

comprehension dataset, derives a significant portion of its answers directly from the provided text. In such798

scenarios, including answers to subquestions poses a risk of disrupting the answer distributions.799

The instruction for solving, denoted as I ′ans, remain identical to those specified in Ians. The only800

difference comes from the fine-tuning target.801

B Ablation Study over Instruction for Decomposition802

Decomposor Solver 0-shot 1-shot

GPT-3.5-Turbo GPT-3.5-Turbo 66.0 70.0
GPT-4 90.5 91.5

Vicuna-13B GPT-3.5-Turbo 57.0 61.5
GPT-4 88.5 91.5

SD-R GPT-3.5-Turbo 66.5 67.5
GPT-4 91.5 91.5

Table 6: Impact of including demonstration in decomposition instruction, examined on a subset of GSM8K dataset.

Prior research has demonstrated that incorporating demonstrations within prompts can significantly803

enhance the ability of Large Language Models to adhere to given instructions. Our findings in Table 6804

further substantiate this, revealing that including a single-shot demonstration notably improves the805

quality of decomposed questions. This enhancement has been consistently observed across a variety of806

decomposers.807

Instruction EM f1

no restriction 45.69 56.63
no more than four 46.40 57.19
no more than three 50.00 59.88
no more than two 46.89 58.47

Table 7: Effect of limiting the maximum number of subquestions in decomposition instructions on a subset of the
DROP dataset.

We have conducted an ablation study focusing on the instructions used for question decomposition. Our808

goal is for the resulting subquestions to act as useful cues for the executor, all the while ensuring they do809

not introduce unnecessary information. Central to our design rationale is determining the optimal number810

of subquestions the decomposer should produce. More specifically, we analyzed outcomes where no811

restrictions were applied (removing the highlighted part in Idecomp) and compared these against scenarios812

12



with varying maximum numbers of subquestions allowed. The results of these investigations are detailed 813

in Table 7. Our findings succinctly reveal that a cap of "no more than three subquestions" yields the most 814

effective results. 815

Instruction for decomposition: Idecomp

Your task is to break down a given complex
question into the most relevant and helpful
subquestions, ensuring that no more than
three subquestions are formulated for each
question. Both the context and the main ques-
tion will be provided to you. If the question
does not need breaking down to be answered,
return “No decomposition”; otherwise, list
the necessary subquestions. Only return sub-
questions that directly aid in answering the
original question, avoiding any that could be
harmful or unhelpful.
Question: Q

816

C Examples Where Solver Models Become Confounded by Subquestions 817

As illustrated in Figure 2, up to the second subquestion, the solver model accurately responds that "The 818

robe requires 2 bolts of blue fiber" and "it would need 1 bolt of white fiber." Nevertheless, the introduction 819

of the third subquestion, closely resembling the second, leads to confusion. Consequently, the model 820

deviates from its initial accuracy, culminating in an incorrect answer following this subquestion.

Prompt: …
Premise: A robe takes 2 bolts of 
blue fiber and half that much 
white fiber.  
Question: How many bolts in total 
does it take?
SubQuestion: 1. How many bolts 
of blue fiber does the robe take?
2. How much white fiber is 
needed for the robe?
3. How many bolts of white fiber 
is half the amount of blue fiber 
used for the robe?

Solving on GSM8k

1. The robe takes 2 bolts of blue fiber.
2. The robe needs half the amount of white fiber as blue fiber. 
Since it takes 2 bolts of blue fiber, it would need 2/2 = 1 bolt of 
white fiber.
3. To find out how many bolts of white fiber is half the amount 
of blue fiber used for the robe, we can divide the number of 
bolts of blue fiber by 2. In this case, it would be 2/2 = 1 bolt.
Now, let's calculate the total number of bolts needed for the 
robe.
To make 1 bolt of blue fiber, it takes 2 bolts of blue fiber. So, for 
the robe, it takes 2/1 = 2 bolts of blue fiber.
To make 1 bolt of white fiber, it takes half the amount of blue 
fiber, which is 2/2 = 1 bolt of blue fiber. Therefore, for the robe, 
it takes 2/1 = 2 bolts of white fiber.
To find the total number of bolts needed, we add the number 
of bolts of blue fiber and white fiber together: 2 + 2 = 4 bolts.
The answer is: 12

𝑺𝑬-𝑨

trained on GSM8k

Figure 2: Solver models get lost sometimes.
821
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