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Abstract

Zero-shot translation is a promising direc-001
tion for building a comprehensive multilingual002
neural machine translation (MNMT) system.003
However, its quality is still not satisfactory004
due to off-target issues. In this paper, we005
aim to understand and alleviate the off-target006
issues from the perspective of uncertainty in007
zero-shot translation. By carefully examining008
the translation output and model confidence,009
we identify two uncertainties that are respon-010
sible for the off-target issues, namely, extrin-011
sic data uncertainty and intrinsic model un-012
certainty. Based on the observations, we pro-013
pose two lightweight and complementary ap-014
proaches to denoise the training data for model015
training and explicitly penalize the off-target016
translations during model training. Extensive017
experiments on both balanced and imbalanced018
datasets show that our approaches significantly019
improve the performance of zero-shot transla-020
tion over strong MNMT baselines. Qualitative021
analyses provide insights into where our ap-022
proaches reduce off-target translations.023

1 Introduction024

Multilingual neural machine translation (MNMT)025

aims to translate between any two languages with a026

unified model (Johnson et al., 2017; Aharoni et al.,027

2019; Wang et al., 2022). It is appealing due to the028

model efficiency, easy deployment, and knowledge029

transfer between languages. Previous studies (John-030

son et al., 2017; Gu et al., 2019) suggest that knowl-031

edge transfer in MNMT significantly improves the032

performance of low-resource translation, and is po-033

tential for zero-shot translation between language034

pairs unseen in the training process. Since it is035

costly and even unrealistic to build parallel data036

for all language pairs, improving the quality of037

zero-shot translation is a promising direction for038

developing a comprehensive and well-performing039

MNMT system.040

However, zero-shot translation suffers from se- 041

rious off-target issues (Ha et al., 2016; Gu et al., 042

2019; Zhang et al., 2020), where the MNMT model 043

tends to translate into other languages rather than 044

the expected target language. As a result, the qual- 045

ity of zero-shot translation is far from satisfactory 046

for practical application. A number of recent efforts 047

have explored ways to improve zero-shot transla- 048

tion by mitigating the off-target issues. One thread 049

of work focuses on modifying the model architec- 050

ture (Zhang et al., 2020; Liu et al., 2021; Wu et al., 051

2021) or introducing auxiliary tasks (Al-Shedivat 052

and Parikh, 2019; Yang et al., 2021; Wang et al., 053

2021b) to enhance the flexible translation relations 054

in MNMT. Another thread of work aims to gener- 055

ate synthetic data for zero-shot translation pairs in 056

either off-line (Gu et al., 2019) or on-line (Zhang 057

et al., 2020) modes. However, these approaches 058

require additional efforts for model modification 059

and computational costs. 060

In this work, we target better understanding and 061

mitigating the off-target issues in zero-shot transla- 062

tion. We first empirically connect the widely-cited 063

off-target issues in zero-shot translation to the un- 064

certain prediction of MNMT models, which assign 065

high confidence to the off-target translations for 066

zero-shot language pairs (§ 3). We then identify 067

two language uncertainties that are responsible for 068

the uncertain prediction on target languages: 069

• extrinsic data uncertainty (§ 4): we show 070

that for 5.8% of the training examples in the 071

commonly-used multilingual data OPUS (Zhang 072

et al., 2020), the target sentences are in the source 073

language. Previous studies have shown that such 074

data noises can significantly affect the model 075

uncertainty for bilingual NMT. Our study em- 076

pirically reconfirms these findings for zero-shot 077

translation, which is more sensitive to the data 078

noises without supervision from parallel data. 079

• intrinsic model uncertainty (§ 5): we show that 080
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MNMT models tend to spread too much prob-081

ability mass over the vocabulary of off-target082

languages in zero-shot translation, resulting in083

an overall over-estimation of hypotheses in off-084

target languages. In contrast, the trend does not085

hold for supervised translations.086

Starting from the above observations, we pro-087

pose two lightweight and complementary ap-088

proaches to mitigate the data and model uncer-089

tainties. For data uncertainty, we remove the090

off-target sentence pairs from training data to091

make sure the MNMT models can learn more092

correct mappings between languages during train-093

ing. For model uncertainty, we propose unlikeli-094

hood training to explicitly penalize the off-target095

translations in training, which can perform better096

when the counteractive effect of data uncertainty097

is removed. Experimental results across different098

MNMT scenarios show that our approaches signifi-099

cantly improve zero-shot translation performance100

over strong MNMT baselines. Extensive analyses101

demonstrate that our approaches successfully re-102

duce the ratios of off-target translations from more103

than 20% to as low as 1.1%.104

Contributions The main contributions of our105

work are listed as follows:106

• We identify two uncertainties, namely extrinsic107

data uncertainty and intrinsic model uncertainty,108

which are responsible for the off-target issues in109

zero-shot translation.110

• We propose two effective approaches to mitigate111

the off-target issues, which introduce no or only112

marginal additional computational cost.113

2 Preliminary114

2.1 Definition of Off-Target Issue115

Off-Target Issue is a type of translation error that116

commonly occurs in zero-shot translation (Ha et al.,117

2016; Zhang et al., 2020). It describes the phe-118

nomenon that MNMT models ignore the given tar-119

get language information and translate the source120

sentence into wrong languages. Assume that L de-121

notes the set of languages involved in the MNMT122

model, and T ∈ L is the target language, the off-123

target ratio (OTR) is calculated as:124

OTR =

∑N
i=1 1l(ỹi)6=T

N
, (1)125

where N is the number of test samples, and l(ỹi) 126

denotes the detected language of the translation ỹi. 127

We adopt OTR as one of the metrics to evaluate the 128

performance of zero-shot translation in this work. 129

2.2 Experimental Setup 130

Training Data We mainly conduct experiments 131

on two types of datasets: 132

• OPUS-100 Data is an imbalanced multilingual 133

dataset, where some language pairs have more 134

training instances than the others. (Zhang et al., 135

2020) propose OPUS-100 that consists of 55M 136

English-centric sentence pairs covering 100 lan- 137

guages. We also choose five language pairs from 138

OPUS-100, including English-German (En-De), 139

-Chinese (En-Zh), -Japanese (En-Ja), -French 140

(En-Fr), and -Romanian (En-Ro) to construct bal- 141

anced OPUS-6 Data. We follow (Zhang et al., 142

2020) to apply BPE (Sennrich et al., 2016) to 143

learn a joint vocabulary size of 64K learned from 144

the whole OPUS-100 dataset. 145

• WMT-6 Data is a large-scale imbalanced 146

dataset. Specifically, we collect the lan- 147

guage pairs same as OPUS-6 from the WMT 148

competition tasks, including WMT20 En-De 149

(45.2M), WMT20 En-Zh (19.0M), WMT20 150

En-Ja (11.5M), WMT14 En-Fr (35.5M), and 151

WMT16 En-Ro (0.6M). We learn a joint 152

BPE (Sennrich et al., 2016) model with 32K 153

merge operations. 154

Multi-Source Test Set To eliminate the content 155

bias across languages (Wang et al., 2021a), we 156

evaluate the performance of multilingual transla- 157

tion models on the multi-source TED58 test set (Qi 158

et al., 2018; Tran et al., 2020), where each sentence 159

is translated into multiple languages. We select 160

the above six languages and filter the original test 161

set to ensure that each sentence has the transla- 162

tions in all the six languages. Finally, we obtain 163

3804 sentences in six languages, i.e., 22824 sen- 164

tences in total. We use the filtered testset to evaluate 165

the performance on both supervised and zero-shot 166

translation. We report the results of both BLEU 167

scores (Papineni et al., 2002) and off-target ratios 168

(OTR) for both supervised and zero-shot transla- 169

tion. For example, the supervised translation and 170

the zero-shot translation performance on OPUS-6 171

dataset are the average of 10 supervised directions 172

(i.e., En-X and X-En) and 20 zero-shot directions 173

(i.e., Xi-Xj), respectively. We employ the langid 174
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Training Supervised Zero-Shot

Data BLEU↑ OTR↓ BLEU↑ OTR↓

S-ENC-T-DEC Models
OPUS-6 27.1 1.9 12.3 20.6
WMT-6 28.0 1.8 10.6 37.8

T-ENC Models
OPUS-6 27.2 1.9 10.2 32.1
WMT-6 28.8 1.7 13.3 22.5

Table 1: BLEU scores and off-target ratios (OTR) of
MNMT models on supervised and zero-shot test sets.

library1, the most widely used language identifica-175

tion tool with 93.7% accuracy on 7 dataset across176

97 languages, to detect the language of sentences177

and calculate the off-target ratio for zero-shot trans-178

lation directions. We also adopt two widely used179

evaluation metrics, COMET (Rei et al., 2020) and180

chrF (Popovic, 2015) to validate our method.181

Model All NMT models in this paper follow the182

Transformer-big settings, with 6 layers, 1024 hid-183

den size and 16 heads. To distinguish languages,184

we add language tokens to the training samples by185

two strategies implemented in Fairseq, i.e., S-ENC-186

T-DEC and T-ENC. The S-ENC-T-DEC strategy187

adds source language tokens at encoder and tar-188

get language tokens at decoder, while T-Enc only189

adds target language tokens at encoder. We regard190

T-ENC as a strong baseline which has been demon-191

strated better for zero-shot translation (Wu et al.,192

2021). For multilingual translation models, we193

train a Transformer-big model with 1840K tokens194

per batch for 50K updates. We conduct the experi-195

ments on 16 NVIDIA V100 GPUs and select the196

final model by the lowest loss on the validation set.197

Our MNMT models consistently outperform198

their bilingual counterparts, demonstrating that our199

models are well trained so that the findings and200

improvement in this work are convincing. More201

details can be found in Appendix A.1.202

3 Analyzing Uncertainty203

In this section, we present poor zero-shot perfor-204

mance of our well-trained MNMT models due to205

off-target issues. Then we link the off-target issues206

to the uncertain prediction on target languages.207

1https://github.com/saffsd/langid.py

Target BLEU↑ OTR↓

Lang. Sup. Zero 4 Sup. Zero 4

Ja 19.0 15.7 -3.3 0.4 2.1 +1.7
Zh 23.1 11.4 -11.7 0.4 32.6 +32.2
De 29.4 6.1 -23.3 2.8 49.6 +46.8
Fr 37.1 6.4 -30.7 2.7 61.8 +59.1
Ro 26.8 11.4 -15.4 3.7 14.3 +10.6

Table 2: Results on supervised (“Sup.”) and zero-shot
(“Zero”) test sets for T-ENC model trained on OPUS-6.
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Figure 1: Per-token probabilities of (a) supervised Fr-
En and (b) zero-shot Fr-De translations. Higher proba-
bilities are expected for the on-target references (“Ref-
erence”), and lower probabilities are expected for the
off-target distractor translations (“Off-Target”).

Poor Zero-Shot Performance and Off-Target Is- 208

sues. Table 1 lists the translation results. Compar 209

ed with the supervised translation, the MNMT mod- 210

els produce lower-quality zero-shot translations 211

(e.g., 15+ BLEU scores lower) due to much higher 212

ratios of off-target translations (e.g., 32.1 vs. 1.9 213

on OPUS-6 with T-ENC). To further validate our 214

claim, we list the detailed results in Table 2. As 215

seen, the gap in BLEU score between supervised 216

and zero-shot translations is highly correlated to 217

that of OTR, showing the high correlation between 218

translation performance and off-target issues. 219

Uncertain Prediction Causes Off-Target Issues. 220

To investigate how MNMT models generate off- 221

target translations, we follow (Ott et al., 2018) to 222

analyze the model confidence on the target lan- 223

guage. Specifically, we compute the average prob- 224

ability at each time step across a set of sentence 225

pairs. In addition to the ground-truth reference sen- 226

tence, we also consider a “distractor” translation 227

in the off-target language for each source sentence. 228
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Training Language Paris (En-)

Data Zh Ja De Fr Ro Ave.

OPUS-6 1.3 1.1 8.5 9.0 9.2 5.8
WMT-6 0.1 0.6 2.5 2.3 2.1 1.5

Table 3: Ratios(%) of off-target noises in the datasets.

Figure 1 plots the model confidence for both refer-229

ences (“Reference”) and distractors ( “Off-Target”)230

on supervised Fr-En and zero-shot Fr-De tasks. We231

find that 94.7% of the off-target translations in the232

zero-shot Fr-De task are in English. Therefore, we233

only present the English off-target translation for234

simplicity. Different from the supervised transla-235

tion, the zero-shot translation shows a surprisingly236

higher confidence on the off-target distractors. Ac-237

cordingly, the model tends to generate more off-238

target translations (i.e., 74.9% vs. 1.6%).239

In the following sections, we will connect the240

uncertain prediction problem to the language uncer-241

tainty in both data (§ 4) and model (§ 5). Based on242

these findings, we provide simple and effective so-243

lutions to mitigate the data and model uncertainty.244

4 Extrinsic Data Uncertainty245

Problem: Off-Target Noises in Multilingual246

Training Data The uncertainty in multilingual247

training data is an important reason for the uncer-248

tain prediction in zero-shot translation. As a data-249

driven approach, MNMT models learn the map-250

pings between languages from the parallel data,251

which we assume that both the source and target252

sentences are in correct languages. However, we253

find that a quite portion of training data contains254

off-target translations, which are mainly in the255

source language. Table 3 lists the statistics, where256

we observe a high off-target ratio in both OPUS-257

6 (i.e., 5.8%) and WMT-6 (i.e., 1.5%). Previous258

study on bilingual MT (Ott et al., 2018) suggests259

that 1% to 2% of such data noises can make the260

NMT model highly uncertain and tend to produce261

translations in source language. We believe that262

similar uncertainty issues will also occur in MNMT263

models, especially for zero-shot translation where264

no supervision signal (from parallel data) exists.265

Solution: Data Denoising We propose data de-266

noising to make sure that MNMT learns a more267

correct language mapping from the training data.268

Specifically, we adopt the langid tool (Lui and269

Training Supervised Zero-Shot

Data BLEU↑ OTR↓ BLEU↑ OTR↓

OPUS-6 Data
Raw Data 27.2 1.9 10.2 32.1
+ Denoise 27.1 1.5 14.0 10.0

WMT-6 Data
Raw Data 28.8 1.7 13.3 22.5
+ Denoise 28.8 1.6 15.3 10.4

Table 4: Results of data denoising for T-ENC model.

Baldwin, 2012) to identify the off-target sentence 270

pairs in the parallel training data of each language 271

pair and remove them to build a clean dataset. The 272

clean dataset is then used for training the MNMT 273

models. Without the distraction from the off-target 274

sentence pairs, the MNMT model is expected to be 275

more confident on the target languages. As a result, 276

we can reduce the off-target ratio and improve the 277

performance of zero-shot translation. 278

Results Table 4 lists the results of removing off- 279

target noises for both OPUS-6 and WMT-6 datasets. 280

The data denoising method significantly improves 281

the zero-shot translation performance by greatly re- 282

ducing the off-target issues. However, there are still 283

around 10% off-target translations unsolved, which 284

we attribute to the intrinsic model uncertainty due 285

to the nature of multilingual learning (§ 5). 286

5 Intrinsic Model Uncertainty 287

5.1 Problem: Over-Estimation on Off-Target 288

Vocabulary 289

The uncertainty inside the MNMT model is an- 290

other reason for the uncertain prediction in zero- 291

shot translation. To enhance the knowledge trans- 292

fer between languages, researchers seek to train a 293

single model with parameters shared by different 294

languages, including the vocabulary and the corre- 295

sponding embedding matrix. However, the shared 296

vocabulary also introduces uncertainty to the de- 297

coder output. Theoretically, the MNMT model is 298

allowed to predict any token in the vocabulary, pre- 299

serving the possibility of decoding into a wrong lan- 300

guage. Such a language uncertainty can be avoided 301

with the supervision of parallel data, which is un- 302

available for zero-shot translation. 303

Empirically, we compute the prediction distribu- 304

tion over the whole vocabulary for each token in 305

the reference sentences. Then, we calculate how 306
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Figure 2: Probability over vocabulary of super-
vised (En-De, Fr-En) and zero-shot Fr-De translations.
MNMT model over-estimates the off-target vocabulary
(red column) for zero-shot translation.

much of the probability mass is assigned to the307

target language (“On-Target”) based on its indi-308

vidual vocabulary, and how much to the others309

(“Off-Target”). Figure 2 plots the results on the310

zero-shot Fr-De translation. For reference, we also311

plot the related supervised En-De and Fr-En trans-312

lations. Obviously, for supervised translation, the313

vast majority of the probability mass is assigned to314

the target language. However, for zero-shot trans-315

lation, more probability mass (i.e., around 39%)316

is assigned to off-target languages, thus leading to317

serious off-target issues.318

5.2 Solutions319

Based on the above findings, we propose two meth-320

ods to reduce the over-estimation on off-target vo-321

cabulary, which differ in whether to use the off-322

target vocabulary in training.323

Vocabulary Masking One straightforward solution324

to model uncertainty is to constrain the probability325

distributions only on the vocabulary of target lan-326

guage by masking the output logits on off-target327

vocabulary. Specifically, we extract a language-328

specific vocabulary Vl for each language l ∈ L329

from the full vocabulary V (Vl ⊂ V ). We first330

build a BPE vocabulary shared by all languages,331

which is the same one used for the vanilla MNMT332

model. We then construct the language-specific333

vocabulary by counting the BPE tokens in the334

segmented training data of the corresponding lan-335

guage. Note that different language-specific vo-336

cabularies can have shared tokens. For example,337

the English-specific vocabulary shares 33% tokens338

with German-specific vocabulary on the OPUS-6339

data (see Table 11 in Appendix for more details).340

This method can be applied in both training and341

inference. When predicting target tokens, we mask 342

out the tokens that do not appear in the vocabu- 343

lary VT of target language T . Formally, the output 344

probability of the token y is calculated as: 345

Pθ(y|ht) =


exp(h>

t wy)∑
y′∈VT exp(h>

t wy′)
, y ∈ VT

0, otherwise

346

where ht is the hidden state at time step t, and wy 347

is the word embedding of the token y. 348

Unlikelihood Training While the vocabulary 349

masking method can successfully reduce the prob- 350

abilities of translations over the wrong languages, 351

the performance may be limited by two factors: (1) 352

The language-specific vocabularies need to be care- 353

fully partitioned for different languages, especially 354

those similar ones (e.g., English and German). (2) 355

The isolation of vocabularies may hinder knowl- 356

edge transfer across languages. To avoid these 357

limitations, we incorporate the unlikelihood train- 358

ing objective (Welleck et al., 2019) for MNMT, 359

which forces the model to assign lower probability 360

to unlikely generations. 361

Formally, the original likelihood training loss on 362

a translation sentence pair is expressed as: 363

LLikelihood = −
T∑
t=1

logPθ(y|x,ylc<t), 364

where lc denotes the correct language tag for the 365

target sentence y. This training loss encourages the 366

model to generate on-target translation. 367

We design an additional unlikelihood loss to pe- 368

nalize the off-target translation. To simulate the 369

off-target translation, for each sentence pair we 370

change the target language tag to another wrong 371

language lw and form the negative candidate. Then 372

the unlikelihood training loss is defined as: 373

LUnlikelihood = −
T∑
t=1

log(1− Pθ(y|x,ylw<t)). 374

The final loss is the combination of the above two: 375

L = LLikelihood + αLUnlikelihood. 376

In this way, we provide supervision for zero-shot 377

directions by penalizing the off-target translations 378

(i.e., mismatch between target language tag and 379

target sentence). We follow Welleck et al. (2019) 380

to fine-tune pretrained MNMT model with the com- 381

bined loss for K steps. 382
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Mask in Supervised Zero-Shot

Train Infer. BLEU↑ OTR↓ BLEU↑ OTR↓

× × 27.2 1.8 10.2 32.1
× X 27.2 1.8 13.1 12.7
X X 27.2 1.8 12.5 18.6

Table 5: Impact of vocabulary masking used in infer-
ence or both training and inference on OPUS-6 data for
T-ENC model.
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Figure 3: Impact of interpolation weight α and fine-
tune step K on zero-shot translations.

5.3 Ablation Study383

Ablation Study on Vocabulary Masking The384

proposed vocabulary masking method can be used385

in both training and inference. Table 5 lists the386

results of different masking strategies. Applying387

vocabulary masking to the vanilla MNMT model388

during inference significantly improves zero-shot389

translation performance by remedying off-target390

issues, which demonstrates the effectiveness of vo-391

cabulary masking. However, further including vo-392

cabulary masking into the training process makes393

the improvement of zero-shot translation less signif-394

icant. One possible reason is that isolating the vo-395

cabularies between languages during training may396

hinder cross-lingual knowledge transfer.397

Ablation Study on Unlikelihood Training Fig-398

ure 3 shows the impact of the interpolation weight399

α and fine-tune steps K on unlikelihood training.400

The zero-shot performance goes up with the in-401

crease of fine-tune steps K until K = 100 for402

all interpolation weights, and declines when fine-403

tuning for more steps. One possible reason is that404

the negative examples are semantically equivalent405

sentence pairs, while the target language tag is406

replaced with a wrong tag beyond the target lan-407

guage. The mismatch between target language tag408

Model Supervised Zero-Shot

BLEU↑ OTR↓ BLEU↑ OTR↓

OPUS-6 Data
Vanilla 27.2 1.9 10.2 32.1
+ Vocab Mask 27.2 1.8 13.1 12.7
+ Unlike Train 27.2 1.5 15.2 2.2

WMT-6 Data
Vanilla 28.8 1.7 13.3 22.5
+ Vocab Mask 28.8 1.6 14.9 10.7
+ Unlike Train 28.8 1.6 16.3 5.6

Table 6: Results of mitigating model uncertainty for T-
ENC model on raw data without denoising.

and target sentence is a simple pattern, which can 409

be easily learned by the model with as few as 100 410

steps. Fine-tuning with unlikelihood loss of higher 411

interpolation weights or for more steps potentially 412

harms the cross-lingual transfer ability among se- 413

mantically equivalent sentences. In the following 414

experiments, we use α = 0.1 and K = 100 as 415

default for its robust performance. 416

Comparison Results Table 6 lists the results 417

of vocabulary masking and unlikelihood training. 418

Clearly, unlikelihood training consistently outper- 419

forms vocabulary masking on zero-shot translation 420

in all cases. We attribute to the superiority of un- 421

likelihood training on directly penalizing simulated 422

off-target translation during model training. In the 423

following experiments, we use unlikelihood train- 424

ing to mitigate model uncertainty as default. 425

6 Main Results 426

6.1 Translation Performance 427

Table 7 lists the results of zero-shot translations 428

on different benchmarks for different MNMT ar- 429

chitectures. Clearly, using data denoising alone 430

significantly improves the zero-shot translation per- 431

formance in all cases, and unlikelihood training can 432

even performs better by reducing more off-target 433

issues. Combing them together achieves the best 434

performance, demonstrating the complementarity 435

between data uncertainty and model uncertainty. 436

We also demonstrate the effectiveness of our pro- 437

posed method using different metrics like COMET 438

and ChrF, as shown in Table 8. 439

Larger-Scale Imbalanced Datasets In addition 440

to the small-scale balanced OPUS-6 data, we also 441

validate our approaches on the larger-scale imbal- 442
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Model
OPUS-6 Data WMT-6 Data OPUS-100 Data

BLEU↑ OTR↓ BLEU↑ OTR↓ BLEU↑ OTR↓

S-ENC-T-DEC MNMT Models
Vanilla 12.3 20.6 10.6 37.8 1.2 92.7

+ Data Denoising 14.1 7.0 11.1 23.9 4.8 45.0
+ Unlikelihood Training 15.3 1.7 16.4 4.0 12.5 2.3

+ Data Denoising 15.6 1.1 17.2 2.4 12.6 1.6

T-ENC MNMT Models
Vanilla 10.2 32.1 13.3 22.5 7.5 38.4

+ Data Denoising 14.0 10.0 15.3 10.4 8.8 21.4
+ Unlikelihood Training 15.0 2.6 16.3 5.9 12.6 5.7

+ Data Denoising 15.2 2.2 16.8 4.2 13.1 3.5

Table 7: BLEU scores and off-target ratios (OTR) on the TED58 zero-shot (i.e., 20 non-English-centric pairs
among Zh, Ja, De, Fr, and Ro) test sets. Our approaches consistently improve zero-shot translation performance
without sacrificing the quality of supervised translation (shown in Table 12 in Appendix).

Model Supervised Zero-Shot

COMET↑ ChrF↑ COMET↑ ChrF↑

S-ENC-T-DEC MNMT Models
Vanilla 0.168 51.0 -0.297 26.0
+ Data Denoise 0.169 51.4 -0.193 29.1

+ Vocab Mask 0.169 51.4 -0.125 30.0
+ Unlike Train 0.169 51.4 -0.098 30.8

T-ENC MNMT Models
Vanilla 0.316 46.4 -0.336 22.9
+ Data Denoise 0.319 46.4 -0.187 28.8

+ Vocab Mask 0.319 46.4 -0.142 29.3
+ Unlike Train 0.320 46.4 -0.104 30.8

Table 8: Results of MNMT models trained on the
OPUS-6 dataset measured by other evaluation metrics.

anced datasets (i.e. 111.8M WMT-6 data of 6 lan-443

guages and 55.0M OPUS-100 of 100 languages).444

Generally, the off-target issues are more severe in445

imbalanced scenarios. For example, the zero-shot446

translation almost crashes on imbalanced OPUS-447

100 data with 92.7% of off-target translation. Our448

approaches performs surprisingly well by reduc-449

ing the off-target issues to as low as 1.6% to 2.4%,450

which are close to that on the small-scale balanced451

data (i.e. 1.1% on OPUS-6). These results demon-452

strate the scalability of our approaches to massively453

multilingual translation tasks.454

Different Tagging Strategies There are consid-455

erable differences between T-ENC and S-ENC-T-456

DEC models, which differ in how to attach the457

language tags. T-ENC performs significantly bet-458

ter on imbalanced datasets (especially on OPUS-459
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Figure 4: Per-token probabilities of off-target test
sentences for zero-shot Fr-De translations for T-ENC
model with our methods on OPUS-6 data.

100), while performs worse on balanced OPUS-6 460

data than its S-ENC-T-DEC counterpart. Our ap- 461

proaches can consistently improve zero-shot perfor- 462

mance on top of T-ENC in all cases, demonstrating 463

the universality of the proposed approaches. 464

With the help of our approaches, S-ENC-T-DEC 465

produces better overall performance than T-ENC. 466

One possible reason is that S-ENC-T-DEC is bet- 467

ter at modeling language mapping by explicitly 468

identifying the source and target languages. Mean- 469

while, the side-effect of over-fitting on supervised 470

mapping can be almost solved by our approaches. 471

6.2 Prediction Uncertainty 472

Figure 4 shows the prediction probabilities on 473

the off-target translation that are produced by 474

the vanilla T-ENC model on zero-shot translation. 475

Clearly, data denoising and unlikelihood training 476

consistently reduce the model confidence on the 477
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Model Supervised Zero-Shot

BLEU↑ OTR↓ BLEU↑ OTR↓

Raw Data
Vanilla 27.2 1.8 10.2 32.1
+ RemoveRes. 26.7 1.8 12.8 21.7
+ AE Loss 26.7 2.0 12.2 21.0
+ Ours 27.1 1.5 15.0 2.6

Clean Data (with data denoising)
Vanilla 27.1 1.5 14.0 10.0
+ RemoveRes. 27.1 1.5 14.2 5.6
+ AE Loss 26.3 1.5 14.5 5.1
+ Ours 27.2 1.5 15.2 2.2

Table 9: Comparison with previous work on improv-
ing zero-shot translation. “Clean Data” denotes filter-
ing off-target noises using our data denoising method.

off-target translation, which reconfirms our claim478

that extrinsic data uncertainty and intrinsic model479

uncertainty are responsible for the uncertain pre-480

diction on target languages. Specifically, we find481

that data denoising reduces the confidence on the482

first few tokens of off-target translations noticeably,483

while unlikelihood training consistently reduces all484

the tokens. Combining them together (“+Both”)485

can surprisingly reduce the per-token probability486

of off-target translation to zero. The reason is that487

likelihood training on these off-target noises could488

encourage the model to generate off-target transla-489

tion, which partially counteracts the effect of un-490

likelihood training that prevents the model from491

generating off-target translation. Therefore, denois-492

ing such off-target noises can further improve the493

performance of unlikelihood training.494

6.3 Comparison with Previous Work495

We compare our methods with two recent works496

on improving zero-shot translation: (1) Re-497

moveRes. (Liu et al., 2021) that removes residual498

connections in an encoder layer to disentangle the499

positional information; (2) AE Loss (Wang et al.,500

2021b) that introduces a denoising autoencoding501

loss to implicitly maximize the probability distribu-502

tions for zero-shot directions. We reimplemented503

these methods on top of the T-ENC model as done504

in the original papers. Table 9 lists the results on505

OPUS-6 data, which shows that our methods can506

consistently outperform their methods. The im-507

provement is much larger on the noisy raw data,508

which we attribute to the advantage of our approach509

in directly penalizing off-target translations.510

7 Related Work 511

Improving Zero-Shot Translation A number 512

of recent efforts have explored ways to improve 513

zero-shot translation by mitigating the off-target is- 514

sues. One thread of work focuses on modifying the 515

model architecture (Zhang et al., 2020; Liu et al., 516

2021; Wu et al., 2021). Another thread of work 517

aims to generate synthetic data for zero-shot trans- 518

lation pairs in either off-line (Gu et al., 2019) or 519

on-line (Zhang et al., 2020) modes. Our work is 520

complementary to them: we remove the off-target 521

noises in the original data rather than leveraging 522

additional data. Besides, researchers also try to 523

introduce auxiliary tasks with additional training 524

losses (Al-Shedivat and Parikh, 2019; Yang et al., 525

2021; Wang et al., 2021b) to help the model train- 526

ing. We propose a novel and light-weight method 527

to directly reduce the off-target translation via un- 528

likelihood training. 529

Uncertainty in NMT Closely related to our 530

work, (Ott et al., 2018) analyzed the uncertainty in 531

bilingual machine translation, and attributed it to 532

one specific type of data noise – copies of source 533

sentences. In contrast, we analyze the uncertainty 534

in multilingual machine translation, which is a 535

more complicated scenario. Besides data uncer- 536

tainty, we also reveal the intrinsic model uncer- 537

tainty on the output distributions due to the shared 538

vocabulary across multiple languages. In addition, 539

the proposed methods for reducing model uncer- 540

tainty by either masking out off-target vocabularies 541

or penalizing off-target training examples are care- 542

fully designed for the multilingual scenario. 543

8 Conclusion 544

We present a comprehensive study of the off-target 545

issues in zero-shot translation. We empirically 546

show that the off-target noises in training examples 547

and the shared vocabulary across languages bias 548

MNMT models to over-estimate the translation hy- 549

potheses in off-target languages. In response to this 550

problem, we propose several lightweight and com- 551

plementary approaches to mitigate the uncertainty 552

issues, which can significantly improve zero-shot 553

translation performance with no or only marginal 554

additional computational costs. 555

Future work will include investigating the un- 556

certainty of large MNMT models trained on more 557

complicated datasets (Fan et al., 2021; Schwenk 558

et al., 2021) and also validating our approach. 559
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A Appendix651

A.1 MNMT Models Are Well Trained652

Model English⇒X X⇒English

OPUS TED OPUS TED

Bilingual Model 32.0 21.6 31.0 22.9

Multilingual NMT Models
S-ENC-T-DEC 34.8 26.9 33.5 27.2

T-ENC 34.8 27.1 33.5 27.4

Table 10: BLEU scores of bilingual and multilingual
TRANSFORMER-BIG models trained on OPUS-6 data
for supervised translation. We report results on both the
test sets provided by the OPUS data (“OPUS”) and the
multi-source TED test set used in this work (“TED”).

Table 10 lists the supervised translation perfor-653

mance of our multilingual NMT models on both654

the OPUS test sets and the multi-source TED test655

set. For comparison, we also include the bilin-656

gual model for each language pair as baselines.657

For bilingual models, we train a Transformer-big658

model with 460K tokens per batch for 30K updates.659

Clearly, our MNMT models consistently and sig-660

nificantly outperform their bilingual counterparts,661

demonstrating that our models are well trained so662

that the findings and improvement in this work are663

convincing.664

A.2 Statistics of Language-Specific665

Vocabulary666

En De Fr Ja Ro Zh

En 17.2K
De 5.7K 16.2K
Fr 6.0K 5.5K 14.9K
Ja 0.9K 0.8K 0.7K 9.0K
Ro 3.8K 4.2K 5.0K 0.3K 12.1K
Zh 2.0K 1.2K 1.2K 2.4K 1.2K 15.4K

Table 11: Statistics of language-specific vocabulary
used in vocabulary masking on OPUS-6 data.

For the vocabulary masking approaches, we ex-667

tract a language-specific vocabulary from the full668

vocabulary, and different language-specific vocab-669

ularies can have shared tokens. Table 11 lists the670

vocabulary statistics on OPUS-6 data. For exam-671

ple, the size of English vocabulary is 17.2K, which672

shares 5.7K tokens with the German vocabulary.673

A.3 Supervised Translation Performance of 674

Main Results (Table 7) 675

Model
OPUS-6 Data WMT-6 Data OPUS-100 Data

BLEU↑OTR↓BLEU↑OTR↓BLEU↑ OTR↓

S-ENC-T-DEC MNMT Models
Vanilla 27.1 1.9 28.0 1.8 26.9 1.8
+ Data Denoise 27.2 1.5 28.0 1.7 27.0 1.5
+ Unlike Train 27.1 1.8 28.0 1.7 27.0 1.5

+ Data Denoise 27.2 1.5 28.0 1.6 27.0 1.5

T-ENC MNMT Models
Vanilla 27.2 1.8 28.8 1.7 26.9 1.8
+ Data Denoise 27.1 1.5 28.8 1.6 26.9 1.6
+ Unlike Train 27.1 1.5 28.8 1.6 26.9 1.7

+ Data Denoise 27.2 1.5 28.8 1.6 26.9 1.7

Table 12: BLEU scores and off-target ratios (OTR) of
multilingual translation models on the TED58 super-
vised (i.e., 10 English-centric language pairs) test sets
that cover 6 languages.
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