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Abstract

Zero-shot translation is a promising direc-
tion for building a comprehensive multilingual
neural machine translation (MNMT) system.
However, its quality is still not satisfactory
due to off-target issues. In this paper, we
aim to understand and alleviate the off-target
issues from the perspective of uncertainty in
zero-shot translation. By carefully examining
the translation output and model confidence,
we identify two uncertainties that are respon-
sible for the off-target issues, namely, extrin-
sic data uncertainty and intrinsic model un-
certainty. Based on the observations, we pro-
pose two lightweight and complementary ap-
proaches to denoise the training data for model
training and explicitly penalize the off-target
translations during model training. Extensive
experiments on both balanced and imbalanced
datasets show that our approaches significantly
improve the performance of zero-shot transla-
tion over strong MNMT baselines. Qualitative
analyses provide insights into where our ap-
proaches reduce off-target translations.

1 Introduction

Multilingual neural machine translation (MNMT)
aims to translate between any two languages with a
unified model (Johnson et al., 2017; Aharoni et al.,
2019; Wang et al., 2022). It is appealing due to the
model efficiency, easy deployment, and knowledge
transfer between languages. Previous studies (John-
son et al., 2017; Gu et al., 2019) suggest that knowl-
edge transfer in MNMT significantly improves the
performance of low-resource translation, and is po-
tential for zero-shot translation between language
pairs unseen in the training process. Since it is
costly and even unrealistic to build parallel data
for all language pairs, improving the quality of
zero-shot translation is a promising direction for
developing a comprehensive and well-performing
MNMT system.

However, zero-shot translation suffers from se-
rious off-target issues (Ha et al., 2016; Gu et al.,
2019; Zhang et al., 2020), where the MNMT model
tends to translate into other languages rather than
the expected target language. As a result, the qual-
ity of zero-shot translation is far from satisfactory
for practical application. A number of recent efforts
have explored ways to improve zero-shot transla-
tion by mitigating the off-target issues. One thread
of work focuses on modifying the model architec-
ture (Zhang et al., 2020; Liu et al., 2021; Wu et al.,
2021) or introducing auxiliary tasks (Al-Shedivat
and Parikh, 2019; Yang et al., 2021; Wang et al.,
2021b) to enhance the flexible translation relations
in MNMT. Another thread of work aims to gener-
ate synthetic data for zero-shot translation pairs in
either off-line (Gu et al., 2019) or on-line (Zhang
et al., 2020) modes. However, these approaches
require additional efforts for model modification
and computational costs.

In this work, we target better understanding and
mitigating the off-target issues in zero-shot transla-
tion. We first empirically connect the widely-cited
off-target issues in zero-shot translation to the un-
certain prediction of MNMT models, which assign
high confidence to the off-target translations for
zero-shot language pairs (§ 3). We then identify
two language uncertainties that are responsible for
the uncertain prediction on target languages:

 extrinsic data uncertainty (§ 4): we show
that for 5.8% of the training examples in the
commonly-used multilingual data OPUS (Zhang
et al., 2020), the target sentences are in the source
language. Previous studies have shown that such
data noises can significantly affect the model
uncertainty for bilingual NMT. Our study em-
pirically reconfirms these findings for zero-shot
translation, which is more sensitive to the data
noises without supervision from parallel data.

* intrinsic model uncertainty (§ 5): we show that



MNMT models tend to spread too much prob-
ability mass over the vocabulary of off-target
languages in zero-shot translation, resulting in
an overall over-estimation of hypotheses in oft-
target languages. In contrast, the trend does not
hold for supervised translations.

Starting from the above observations, we pro-
pose two lightweight and complementary ap-
proaches to mitigate the data and model uncer-
tainties. For data uncertainty, we remove the
off-target sentence pairs from training data to
make sure the MNMT models can learn more
correct mappings between languages during train-
ing. For model uncertainty, we propose unlikeli-
hood training to explicitly penalize the off-target
translations in training, which can perform better
when the counteractive effect of data uncertainty
is removed. Experimental results across different
MNMT scenarios show that our approaches signifi-
cantly improve zero-shot translation performance
over strong MNMT baselines. Extensive analyses
demonstrate that our approaches successfully re-
duce the ratios of off-target translations from more
than 20% to as low as 1.1%.

Contributions The main contributions of our
work are listed as follows:

* We identify two uncertainties, namely extrinsic
data uncertainty and intrinsic model uncertainty,
which are responsible for the off-target issues in
zero-shot translation.

* We propose two effective approaches to mitigate
the off-target issues, which introduce no or only
marginal additional computational cost.

2 Preliminary

2.1 Definition of Off-Target Issue

Off-Target Issue is a type of translation error that
commonly occurs in zero-shot translation (Ha et al.,
2016; Zhang et al., 2020). It describes the phe-
nomenon that MNMT models ignore the given tar-
get language information and translate the source
sentence into wrong languages. Assume that £ de-
notes the set of languages involved in the MNMT
model, and T' € L is the target language, the off-
target ratio (OTR) is calculated as:

N
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OTR = ———
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where N is the number of test samples, and [(7;)
denotes the detected language of the translation ;.
We adopt OTR as one of the metrics to evaluate the
performance of zero-shot translation in this work.

2.2 Experimental Setup

Training Data We mainly conduct experiments
on two types of datasets:

* OPUS-100 Data is an imbalanced multilingual
dataset, where some language pairs have more
training instances than the others. (Zhang et al.,
2020) propose OPUS-100 that consists of 55M
English-centric sentence pairs covering 100 lan-
guages. We also choose five language pairs from
OPUS-100, including English-German (En-De),
-Chinese (En-Zh), -Japanese (En-Ja), -French
(En-Fr), and -Romanian (En-Ro) to construct bal-
anced OPUS-6 Data. We follow (Zhang et al.,
2020) to apply BPE (Sennrich et al., 2016) to
learn a joint vocabulary size of 64K learned from
the whole OPUS-100 dataset.

WMT-6 Data is a large-scale imbalanced
dataset.  Specifically, we collect the lan-
guage pairs same as OPUS-6 from the WMT
competition tasks, including WMT20 En-De
(45.2M), WMT20 En-Zh (19.0M), WMT20
En-Ja (11.5M), WMT14 En-Fr (35.5M), and
WMTI16 En-Ro (0.6M). We learn a joint
BPE (Sennrich et al., 2016) model with 32K
merge operations.

Multi-Source Test Set To eliminate the content
bias across languages (Wang et al., 2021a), we
evaluate the performance of multilingual transla-
tion models on the multi-source TEDS58 test set (Qi
et al., 2018; Tran et al., 2020), where each sentence
is translated into multiple languages. We select
the above six languages and filter the original test
set to ensure that each sentence has the transla-
tions in all the six languages. Finally, we obtain
3804 sentences in six languages, i.e., 22824 sen-
tences in total. We use the filtered testset to evaluate
the performance on both supervised and zero-shot
translation. We report the results of both BLEU
scores (Papineni et al., 2002) and off-target ratios
(OTR) for both supervised and zero-shot transla-
tion. For example, the supervised translation and
the zero-shot translation performance on OPUS-6
dataset are the average of 10 supervised directions
(i.e., En-X and X-En) and 20 zero-shot directions
(i.e., X;-X), respectively. We employ the langid



Training Supervised Zero-Shot Target BLEU?T OTR|
Data BLEUT OTR| BLEUT OTR|] Lang. Sup. Zero /A Sup. Zero A

S-ENC-T-DEC Models ~Ja 190 157 33 04 21 +1.7

OPUS-6 27.1 1.9 12.3 20.6 Zh 231 114 -11.7 04 32.6 +32.2

WMT-6 28.0 1.8 10.6 378 De 294 6.1 -233 2.8 49.6 +46.8

T-ENC Models Fr 371 64 -30.7 27 61.8 +59.1
OPUS-6 272 1.9 102 321 Ro 268 114 -154 3.7 143 +10.6
WMT-6 28.8 1.7 13.3 22.5

Table 1: BLEU scores and off-target ratios (OTR) of
MNMT models on supervised and zero-shot test sets.

library', the most widely used language identifica-
tion tool with 93.7% accuracy on 7 dataset across
97 languages, to detect the language of sentences
and calculate the off-target ratio for zero-shot trans-
lation directions. We also adopt two widely used
evaluation metrics, COMET (Rei et al., 2020) and
chrF (Popovic, 2015) to validate our method.

Model All NMT models in this paper follow the
Transformer-big settings, with 6 layers, 1024 hid-
den size and 16 heads. To distinguish languages,
we add language tokens to the training samples by
two strategies implemented in Fairseq, i.e., S-ENC-
T-DEC and T-ENC. The S-ENC-T-DEC strategy
adds source language tokens at encoder and tar-
get language tokens at decoder, while T-Enc only
adds target language tokens at encoder. We regard
T-ENC as a strong baseline which has been demon-
strated better for zero-shot translation (Wu et al.,
2021). For multilingual translation models, we
train a Transformer-big model with 1840K tokens
per batch for SOK updates. We conduct the experi-
ments on 16 NVIDIA V100 GPUs and select the
final model by the lowest loss on the validation set.

Our MNMT models consistently outperform
their bilingual counterparts, demonstrating that our
models are well trained so that the findings and
improvement in this work are convincing. More
details can be found in Appendix A.1.

3 Analyzing Uncertainty

In this section, we present poor zero-shot perfor-
mance of our well-trained MNMT models due to
off-target issues. Then we link the off-target issues
to the uncertain prediction on target languages.

1h'ctps ://github.com/saffsd/langid.py

Table 2: Results on supervised (“Sup.”) and zero-shot
(“Zero”) test sets for T-ENC model trained on OPUS-6.
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Figure 1: Per-token probabilities of (a) supervised Fr-
En and (b) zero-shot Fr-De translations. Higher proba-
bilities are expected for the on-target references (“Ref-
erence”), and lower probabilities are expected for the
off-target distractor translations (“Off-Target”).

Poor Zero-Shot Performance and Off-Target Is-
sues. Table 1 lists the translation results. Compar
ed with the supervised translation, the MNMT mod-
els produce lower-quality zero-shot translations
(e.g., 15+ BLEU scores lower) due to much higher
ratios of off-target translations (e.g., 32.1 vs. 1.9
on OPUS-6 with T-ENC). To further validate our
claim, we list the detailed results in Table 2. As
seen, the gap in BLEU score between supervised
and zero-shot translations is highly correlated to
that of OTR, showing the high correlation between
translation performance and off-target issues.

Uncertain Prediction Causes Off-Target Issues.
To investigate how MNMT models generate off-
target translations, we follow (Ott et al., 2018) to
analyze the model confidence on the target lan-
guage. Specifically, we compute the average prob-
ability at each time step across a set of sentence
pairs. In addition to the ground-truth reference sen-
tence, we also consider a “distractor” translation
in the off-target language for each source sentence.


https://github.com/saffsd/langid.py

Training Language Paris (En-) Training Supervised Zero-Shot
Data Zh Ja De Fr Ro Ave. Data BLEUt OTR| BLEUT OTR]
OPUS-6 13 1.1 85 9.0 92 58 OPUS-6 Data
WMT-6 0.1 06 25 23 21 1.5 Raw Data 27.2 1.9 10.2 321
+ Denoise 27.1 1.5 140 10.0
Table 3: Ratios(%) of off-target noises in the datasets.
WMT-6 Data
Raw Data 28.8 1.7 13.3 225
Figure 1 plots the model confidence for both refer- + Denoise 28.8 1.6 153 104

ences (“Reference”) and distractors ( “Off-Target”)
on supervised Fr-En and zero-shot Fr-De tasks. We
find that 94.7% of the off-target translations in the
zero-shot Fr-De task are in English. Therefore, we
only present the English off-target translation for
simplicity. Different from the supervised transla-
tion, the zero-shot translation shows a surprisingly
higher confidence on the off-target distractors. Ac-
cordingly, the model tends to generate more off-
target translations (i.e., 74.9% vs. 1.6%).

In the following sections, we will connect the
uncertain prediction problem to the language uncer-
tainty in both data (§ 4) and model (§ 5). Based on
these findings, we provide simple and effective so-
Iutions to mitigate the data and model uncertainty.

4 Extrinsic Data Uncertainty

Problem: Off-Target Noises in Multilingual
Training Data The uncertainty in multilingual
training data is an important reason for the uncer-
tain prediction in zero-shot translation. As a data-
driven approach, MNMT models learn the map-
pings between languages from the parallel data,
which we assume that both the source and target
sentences are in correct languages. However, we
find that a quite portion of training data contains
off-target translations, which are mainly in the
source language. Table 3 lists the statistics, where
we observe a high off-target ratio in both OPUS-
6 (i.e., 5.8%) and WMT-6 (i.e., 1.5%). Previous
study on bilingual MT (Ott et al., 2018) suggests
that 1% to 2% of such data noises can make the
NMT model highly uncertain and tend to produce
translations in source language. We believe that
similar uncertainty issues will also occur in MNMT
models, especially for zero-shot translation where
no supervision signal (from parallel data) exists.

Solution: Data Denoising We propose data de-
noising to make sure that MNMT learns a more
correct language mapping from the training data.
Specifically, we adopt the langid tool (Lui and

Table 4: Results of data denoising for T-ENC model.

Baldwin, 2012) to identify the off-target sentence
pairs in the parallel training data of each language
pair and remove them to build a clean dataset. The
clean dataset is then used for training the MNMT
models. Without the distraction from the off-target
sentence pairs, the MNMT model is expected to be
more confident on the target languages. As a result,
we can reduce the off-target ratio and improve the
performance of zero-shot translation.

Results Table 4 lists the results of removing off-
target noises for both OPUS-6 and WMT-6 datasets.
The data denoising method significantly improves
the zero-shot translation performance by greatly re-
ducing the off-target issues. However, there are still
around 10% off-target translations unsolved, which
we attribute to the intrinsic model uncertainty due
to the nature of multilingual learning (§ 5).

5 Intrinsic Model Uncertainty

5.1 Problem: Over-Estimation on Off-Target
Vocabulary

The uncertainty inside the MNMT model is an-
other reason for the uncertain prediction in zero-
shot translation. To enhance the knowledge trans-
fer between languages, researchers seek to train a
single model with parameters shared by different
languages, including the vocabulary and the corre-
sponding embedding matrix. However, the shared
vocabulary also introduces uncertainty to the de-
coder output. Theoretically, the MNMT model is
allowed to predict any token in the vocabulary, pre-
serving the possibility of decoding into a wrong lan-
guage. Such a language uncertainty can be avoided
with the supervision of parallel data, which is un-
available for zero-shot translation.

Empirically, we compute the prediction distribu-
tion over the whole vocabulary for each token in
the reference sentences. Then, we calculate how
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Figure 2: Probability over vocabulary of super-
vised (En-De, Fr-En) and zero-shot Fr-De translations.
MNMT model over-estimates the off-target vocabulary
(red column) for zero-shot translation.

much of the probability mass is assigned to the
target language (“On-Target”) based on its indi-
vidual vocabulary, and how much to the others
(“Off-Target”). Figure 2 plots the results on the
zero-shot Fr-De translation. For reference, we also
plot the related supervised En-De and Fr-En trans-
lations. Obviously, for supervised translation, the
vast majority of the probability mass is assigned to
the target language. However, for zero-shot trans-
lation, more probability mass (i.e., around 39%)
is assigned to off-target languages, thus leading to
serious off-target issues.

5.2 Solutions

Based on the above findings, we propose two meth-
ods to reduce the over-estimation on off-target vo-
cabulary, which differ in whether to use the off-
target vocabulary in training.

Vocabulary Masking One straightforward solution
to model uncertainty is to constrain the probability
distributions only on the vocabulary of target lan-
guage by masking the output logits on off-target
vocabulary. Specifically, we extract a language-
specific vocabulary V; for each language [ € L
from the full vocabulary V' (V; C V). We first
build a BPE vocabulary shared by all languages,
which is the same one used for the vanilla MNMT
model. We then construct the language-specific
vocabulary by counting the BPE tokens in the
segmented training data of the corresponding lan-
guage. Note that different language-specific vo-
cabularies can have shared tokens. For example,
the English-specific vocabulary shares 33% tokens
with German-specific vocabulary on the OPUS-6
data (see Table 11 in Appendix for more details).
This method can be applied in both training and

inference. When predicting target tokens, we mask
out the tokens that do not appear in the vocabu-
lary Vi of target language 7'. Formally, the output
probability of the token y is calculated as:

eXP(htTWy)
> evy exp(h/ wy)

0, otherwise

, Y€ VT
Py(yhy) =

where h; is the hidden state at time step ¢, and w,
is the word embedding of the token y.

Unlikelihood Training While the vocabulary
masking method can successfully reduce the prob-
abilities of translations over the wrong languages,
the performance may be limited by two factors: (1)
The language-specific vocabularies need to be care-
fully partitioned for different languages, especially
those similar ones (e.g., English and German). (2)
The isolation of vocabularies may hinder knowl-
edge transfer across languages. To avoid these
limitations, we incorporate the unlikelihood train-
ing objective (Welleck et al., 2019) for MNMT,
which forces the model to assign lower probability
to unlikely generations.

Formally, the original likelihood training loss on
a translation sentence pair is expressed as:

T

Liiielinood = — Y _log Py(y[x,y%,),
=1

where [. denotes the correct language tag for the
target sentence y. This training loss encourages the
model to generate on-target translation.

We design an additional unlikelihood loss to pe-
nalize the off-target translation. To simulate the
off-target translation, for each sentence pair we
change the target language tag to another wrong
language [, and form the negative candidate. Then
the unlikelihood training loss is defined as:

T

Lunlikelihood = — Y log(1 — Py(y|x,y)).
=1

The final loss is the combination of the above two:

L = Ll ikelihood + aLUnlikelihood -

In this way, we provide supervision for zero-shot
directions by penalizing the off-target translations
(i.e., mismatch between target language tag and
target sentence). We follow Welleck et al. (2019)
to fine-tune pretrained MNMT model with the com-
bined loss for K steps.



Mask in Supervised Zero-Shot
Train Infer. BLEUT OTR| BLEUT OTR]
SoX o} 272 18 102 321
X v 27.2 1.8 131 12.7
v v 27.2 1.8 12.5 18.6

Table 5: Impact of vocabulary masking used in infer-
ence or both training and inference on OPUS-6 data for
T-ENC model.
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Figure 3: Impact of interpolation weight o and fine-
tune step K on zero-shot translations.

5.3 Ablation Study

Ablation Study on Vocabulary Masking The
proposed vocabulary masking method can be used
in both training and inference. Table 5 lists the
results of different masking strategies. Applying
vocabulary masking to the vanilla MNMT model
during inference significantly improves zero-shot
translation performance by remedying off-target
issues, which demonstrates the effectiveness of vo-
cabulary masking. However, further including vo-
cabulary masking into the training process makes
the improvement of zero-shot translation less signif-
icant. One possible reason is that isolating the vo-
cabularies between languages during training may
hinder cross-lingual knowledge transfer.

Ablation Study on Unlikelihood Training Fig-
ure 3 shows the impact of the interpolation weight
a and fine-tune steps K on unlikelihood training.
The zero-shot performance goes up with the in-
crease of fine-tune steps K until X = 100 for
all interpolation weights, and declines when fine-
tuning for more steps. One possible reason is that
the negative examples are semantically equivalent
sentence pairs, while the target language tag is
replaced with a wrong tag beyond the target lan-
guage. The mismatch between target language tag

Model Supervised Zero-Shot
BLEUT OTR| BLEUt OTR|
OPUS-6 Data
Vanilla 27.2 1.9 10.2  32.1
+ Vocab Mask 27.2 1.8 13.1  12.7
+ Unlike Train 27.2 1.5 15.2 2.2
WMT-6 Data
Vanilla 28.8 1.7 13.3 225
+ Vocab Mask 28.8 1.6 149 10.7
+ Unlike Train 28.8 1.6 16.3 5.6

Table 6: Results of mitigating model uncertainty for T-
ENC model on raw data without denoising.

and target sentence is a simple pattern, which can
be easily learned by the model with as few as 100
steps. Fine-tuning with unlikelihood loss of higher
interpolation weights or for more steps potentially
harms the cross-lingual transfer ability among se-
mantically equivalent sentences. In the following
experiments, we use & = 0.1 and K = 100 as
default for its robust performance.

Comparison Results Table 6 lists the results
of vocabulary masking and unlikelihood training.
Clearly, unlikelihood training consistently outper-
forms vocabulary masking on zero-shot translation
in all cases. We attribute to the superiority of un-
likelihood training on directly penalizing simulated
off-target translation during model training. In the
following experiments, we use unlikelihood train-
ing to mitigate model uncertainty as default.

6 Main Results

6.1 Translation Performance

Table 7 lists the results of zero-shot translations
on different benchmarks for different MNMT ar-
chitectures. Clearly, using data denoising alone
significantly improves the zero-shot translation per-
formance in all cases, and unlikelihood training can
even performs better by reducing more off-target
issues. Combing them together achieves the best
performance, demonstrating the complementarity
between data uncertainty and model uncertainty.
We also demonstrate the effectiveness of our pro-
posed method using different metrics like COMET
and ChrF, as shown in Table 8.

Larger-Scale Imbalanced Datasets In addition
to the small-scale balanced OPUS-6 data, we also
validate our approaches on the larger-scale imbal-



OPUS-6 Data WMT-6 Data OPUS-100 Data

Model BLEUt OTR| BLEU{ OTR| BLEUt OTR]
S-ENC-T-DEC MNMT Models

Vanilla 12.3 20.6 10.6 37.8 1.2 92.7
+ Data Denoising 14.1 7.0 11.1 239 4.8 45.0

+ Unlikelihood Training 15.3 1.7 16.4 4.0 12.5 2.3

+ Data Denoising 15.6 1.1 17.2 24 12.6 1.6

T-ENC MNMT Models

Vanilla 10.2 32.1 13.3 22.5 7.5 384
+ Data Denoising 14.0 10.0 15.3 10.4 8.8 214

+ Unlikelihood Training 15.0 2.6 16.3 5.9 12.6 5.7

+ Data Denoising 15.2 2.2 16.8 4.2 13.1 3.5

Table 7: BLEU scores and off-target ratios (OTR) on the TED58 zero-shot (i.e., 20 non-English-centric pairs
among Zh, Ja, De, Fr, and Ro) test sets. Our approaches consistently improve zero-shot translation performance

without sacrificing the quality of supervised translation (shown in Table 12 in Appendix).

Model Supervised Zero-Shot 08
COMET{ ChrF{ COMET! ChrF?t 2 06
S-ENC-T-DEC MNMT Models £
Vanilla 0.168 51.0 -0.297 26.0 n’-; 0.4
tDataDenoise 0169 514 0193 29.1 %
+ Vocab Mask 0.169 51.4 -0.125 30.0 E 0.2 / & Vanilla
+ Unlike Train 0.169 51.4 -0.098 30.8 = # +Data Denoise
l\ w* +Unlikelihood
T-ENC MNMT Models 0.0 e =Bt
Vanilla 0316 464 -0.336 229 0 10 20 30
+ Data Denoise 0319 464 -0.187 28.8 Time Step
"~ +VocabMask 0319 464  -0.142 293
+ Unlike Train 0320 464 20.104 308 Figure 4: Per-token probabilities of off-target test

Table 8: Results of MNMT models trained on the
OPUS-6 dataset measured by other evaluation metrics.

anced datasets (i.e. 111.8M WMT-6 data of 6 lan-
guages and 55.0M OPUS-100 of 100 languages).
Generally, the off-target issues are more severe in
imbalanced scenarios. For example, the zero-shot
translation almost crashes on imbalanced OPUS-
100 data with 92.7% of off-target translation. Our
approaches performs surprisingly well by reduc-
ing the off-target issues to as low as 1.6% to 2.4%,
which are close to that on the small-scale balanced
data (i.e. 1.1% on OPUS-6). These results demon-
strate the scalability of our approaches to massively
multilingual translation tasks.

Different Tagging Strategies There are consid-
erable differences between T-ENC and S-ENC-T-
DEC models, which differ in how to attach the
language tags. T-ENC performs significantly bet-
ter on imbalanced datasets (especially on OPUS-

sentences for zero-shot Fr-De translations for T-ENC
model with our methods on OPUS-6 data.

100), while performs worse on balanced OPUS-6
data than its S-ENC-T-DEC counterpart. Our ap-
proaches can consistently improve zero-shot perfor-
mance on top of T-ENC in all cases, demonstrating
the universality of the proposed approaches.

With the help of our approaches, S-ENC-T-DEC
produces better overall performance than T-ENC.
One possible reason is that S-ENC-T-DEC is bet-
ter at modeling language mapping by explicitly
identifying the source and target languages. Mean-
while, the side-effect of over-fitting on supervised
mapping can be almost solved by our approaches.

6.2 Prediction Uncertainty

Figure 4 shows the prediction probabilities on
the off-target translation that are produced by
the vanilla T-ENC model on zero-shot translation.
Clearly, data denoising and unlikelihood training
consistently reduce the model confidence on the



Model Supervised Zero-Shot
BLEUT OTR| BLEUt1 OTR|
Raw Data
Vanilla 27.2 1.8 102 32.1
+ RemoveRes. 26.7 1.8 12.8  21.7
+ AE Loss 26.7 2.0 122 21.0
+ Ours 27.1 1.5 15.0 2.6

Clean Data (with data denoising)

Vanilla 27.1 1.5 140 10.0
+ RemoveRes. 27.1 1.5 14.2 5.6
+ AE Loss 26.3 1.5 14.5 5.1
+ Ours 27.2 1.5 15.2 2.2

Table 9: Comparison with previous work on improv-
ing zero-shot translation. “Clean Data” denotes filter-
ing off-target noises using our data denoising method.

off-target translation, which reconfirms our claim
that extrinsic data uncertainty and intrinsic model
uncertainty are responsible for the uncertain pre-
diction on target languages. Specifically, we find
that data denoising reduces the confidence on the
first few tokens of off-target translations noticeably,
while unlikelihood training consistently reduces all
the tokens. Combining them together (“+Both”)
can surprisingly reduce the per-token probability
of off-target translation to zero. The reason is that
likelihood training on these off-target noises could
encourage the model to generate off-target transla-
tion, which partially counteracts the effect of un-
likelihood training that prevents the model from
generating off-target translation. Therefore, denois-
ing such off-target noises can further improve the
performance of unlikelihood training.

6.3 Comparison with Previous Work

We compare our methods with two recent works
on improving zero-shot translation: (1) Re-
moveRes. (Liu et al., 2021) that removes residual
connections in an encoder layer to disentangle the
positional information; (2) AE Loss (Wang et al.,
2021b) that introduces a denoising autoencoding
loss to implicitly maximize the probability distribu-
tions for zero-shot directions. We reimplemented
these methods on top of the T-ENC model as done
in the original papers. Table 9 lists the results on
OPUS-6 data, which shows that our methods can
consistently outperform their methods. The im-
provement is much larger on the noisy raw data,
which we attribute to the advantage of our approach
in directly penalizing off-target translations.

7 Related Work

Improving Zero-Shot Translation A number
of recent efforts have explored ways to improve
zero-shot translation by mitigating the off-target is-
sues. One thread of work focuses on modifying the
model architecture (Zhang et al., 2020; Liu et al.,
2021; Wu et al., 2021). Another thread of work
aims to generate synthetic data for zero-shot trans-
lation pairs in either off-line (Gu et al., 2019) or
on-line (Zhang et al., 2020) modes. Our work is
complementary to them: we remove the off-target
noises in the original data rather than leveraging
additional data. Besides, researchers also try to
introduce auxiliary tasks with additional training
losses (Al-Shedivat and Parikh, 2019; Yang et al.,
2021; Wang et al., 2021b) to help the model train-
ing. We propose a novel and light-weight method
to directly reduce the off-target translation via un-
likelihood training.

Uncertainty in NMT Closely related to our
work, (Ott et al., 2018) analyzed the uncertainty in
bilingual machine translation, and attributed it to
one specific type of data noise — copies of source
sentences. In contrast, we analyze the uncertainty
in multilingual machine translation, which is a
more complicated scenario. Besides data uncer-
tainty, we also reveal the intrinsic model uncer-
tainty on the output distributions due to the shared
vocabulary across multiple languages. In addition,
the proposed methods for reducing model uncer-
tainty by either masking out off-target vocabularies
or penalizing off-target training examples are care-
fully designed for the multilingual scenario.

8 Conclusion

We present a comprehensive study of the off-target
issues in zero-shot translation. We empirically
show that the off-target noises in training examples
and the shared vocabulary across languages bias
MNMT models to over-estimate the translation hy-
potheses in off-target languages. In response to this
problem, we propose several lightweight and com-
plementary approaches to mitigate the uncertainty
issues, which can significantly improve zero-shot
translation performance with no or only marginal
additional computational costs.

Future work will include investigating the un-
certainty of large MNMT models trained on more
complicated datasets (Fan et al., 2021; Schwenk
et al., 2021) and also validating our approach.
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A Appendix
A.1 MNMT Models Are Well Trained

English=X X=-English

Model
OPUS TED OPUS TED
Bilingual Model 32.0 21.6 31.0 229
Multilingual NMT Models
S-ENc-T-DEC  34.8 269 335 272
T-ENC 348 271 335 274

Table 10: BLEU scores of bilingual and multilingual
TRANSFORMER-BIG models trained on OPUS-6 data
for supervised translation. We report results on both the
test sets provided by the OPUS data (“OPUS”) and the
multi-source TED test set used in this work (“TED”).

Table 10 lists the supervised translation perfor-
mance of our multilingual NMT models on both
the OPUS test sets and the multi-source TED test
set. For comparison, we also include the bilin-
gual model for each language pair as baselines.
For bilingual models, we train a Transformer-big
model with 460K tokens per batch for 30K updates.
Clearly, our MNMT models consistently and sig-
nificantly outperform their bilingual counterparts,
demonstrating that our models are well trained so
that the findings and improvement in this work are
convincing.

A.2 Statistics of Language-Specific

Vocabulary
En De Fr Ja Ro Zh

En 17.2K
De 5.7K 16.2K
Fr 60K 5.5K 149K
Ja 09K 0.8K 0.7K 9.0K
Ro 38K 42K 5.0K 0.3K 12.1K
Zh 20K 12K 12K 24K 12K 154K

Table 11: Statistics of language-specific vocabulary
used in vocabulary masking on OPUS-6 data.

For the vocabulary masking approaches, we ex-
tract a language-specific vocabulary from the full
vocabulary, and different language-specific vocab-
ularies can have shared tokens. Table 11 lists the
vocabulary statistics on OPUS-6 data. For exam-
ple, the size of English vocabulary is 17.2K, which
shares 5.7K tokens with the German vocabulary.
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A.3 Supervised Translation Performance of
Main Results (Table 7)

OPUS-6 Data WMT-6 Data OPUS-100 Data

Model BLEU? OTR| BLEUT OTR| BLEUT OTR/
S-ENC-T-DEC MNMT Models

Vanilla 27.1 1.9 28.0 1.8 26.9 1.8
+ Data Denoise 272 15 28.0 1.7  27.0 1.5

" +Unlike Train ~~ 27.1 1.8 280 1.7 270 15
+ Data Denoise ~ 27.2 1.5 280 1.6 27.0 1.5

T-ENC MNMT Models

Vanilla 27.2 1.8 28.8 1.7 26.9 1.8
+ Data Denoise 27.1 1.5 28.8 1.6 269 1.6

"+ Unlike Train ~~ 27.1 1.5 288 16 269 1.7
+ Data Denoise ~ 27.2 1.5 28.8 1.6 269 1.7

Table 12: BLEU scores and off-target ratios (OTR) of
multilingual translation models on the TED58 super-
vised (i.e., 10 English-centric language pairs) test sets
that cover 6 languages.



