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Abstract

Existing Bayesian Optimization (BO) methods typically balance exploration and
exploitation to optimize costly objective functions. However, these methods often
suffer from a significant one-step bias, which may lead to convergence towards lo-
cal optima and poor performance in complex or high-dimensional tasks. Recently,
Black-Box Optimization (BBO) has achieved success across various scientific
and engineering domains, particularly when function evaluations are costly and
gradients are unavailable. Motivated by this, we propose the Reinforced Energy-
Based Model for Bayesian Optimization (REBMBO), which integrates Gaussian
Processes (GP) for local guidance with an Energy-Based Model (EBM) to capture
global structural information. Notably, we define each Bayesian Optimization
iteration as a Markov Decision Process (MDP) and use Proximal Policy Optimiza-
tion (PPO) for adaptive multi-step lookahead, dynamically adjusting the depth and
direction of exploration to effectively overcome the limitations of traditional BO
methods. We conduct extensive experiments on synthetic and real-world bench-
marks, confirming the superior performance of REBMBO. Additional analyses
across various GP configurations further highlight its adaptability and robustness.

1 Introduction

Black-box optimization (BBO) is crucial for solving complex scientific and engineering problems
when gradient information is unavailable or function evaluations are expensive [[1]. In practice, BBO
approaches are widely applied to hyper-parameter tuning in machine learning, materials discovery,
drug formulation, and industrial process optimization, where each evaluation often incurs costly
simulations or physical trials. Bayesian Optimization (BO) is a prominent BBO technique that builds
a probabilistic surrogate (e.g., a Gaussian Process [2]) and an acquisition function to guide new
sample queries, thereby balancing exploration and exploitation in a principled manner. However,
standard GP-based BO can suffer from “one-step myopia,” focusing on short-term predicted gains
at the expense of more thorough exploration, a limitation that becomes especially pronounced in
high-dimensional or multi-modal environments.

Existing Bayesian Optimization (BO) methods primarily aim at efficiently locating optimal solutions
by carefully balancing exploration and exploitation [3]]. Common strategies for handling complex
optimization problems include dimensionality reduction methods like REMBO [4], or local partition-
ing techniques such as TuRBO [5]. Although these approaches perform well in simpler scenarios,
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they often exhibit a critical shortcoming—rapidly converging to local optima when confronted with
complex, high-dimensional tasks [6, 15]. To solve this limitation, recent techniques incorporate
resource-intensive multi-step look-ahead schemes, including 2-step Expected Improvement (EI) [[7],
Knowledge Gradient (KG) [8]], and reinforcement learning-driven methods like EARL-BO [9]. How-
ever, such methods typically demand significant computational resources yet still fail to achieve
effective global exploration in challenging environments.

In this study, we introduce the Reinforced Energy-Based Bayesian Optimization Model (REBMBO),
depicted in Figure[I] which addresses traditional shortfalls by combining an Energy-Based Model
(EBM) with multi-step Reinforcement Learning (RL). Our novel EBM-UCB acquisition function
integrates Gaussian Process local uncertainty estimates with global signals derived from a neural
network—based energy landscape learned via short-run MCMC, thereby guiding exploration away
from less promising regions. In addition, we treat each Bayesian Optimization iteration as a Markov
Decision Process (MDP) and employ Proximal Policy Optimization (PPO) for adaptive multi-step
lookahead, thus dynamically adjusting exploration depth and direction to enhance robustness. To
capture both local and global exploration objectives, we propose a theoretically justified Landscape-
Aware Regret (LAR) metric that incorporates global exploration penalties, offering a more holistic
assessment of performance in complex optimization scenarios.

This research offers the following key contributions:

(1) We incorporate Energy-Based signals into a UCB-style acquisition function in the GP surrogate
to capture diverse behaviors. This synergy between global exploration and precise local modeling
addresses the limitations of single-step acquisition approaches.

(2) Bayesian Optimization is modeled as a Markov Decision Process (MDP) with Proximal Policy
Optimization (PPO). This technique addresses the one-step myopia of typical GP-based strategies
by adaptively balancing exploration and exploitation via multi-step lookahead.

(3) We introduce a theoretically justified Landscape-Aware Regret (LAR) metric that extends
standard regret with an energy-informed global term. This metric provides a fair and balanced
evaluation by jointly reflecting local exploitation and global exploration efficiency in complex
optimization landscapes.

Experimental results, summarized in Figure [2] indicate that REBMBO reduces final Landscape-
Aware Regret (LAR) and improves overall performance scores compared to state-of-the-art methods,
consistently outperforming both single-step and short-horizon lookahead approaches even under
challenging high-dimensional conditions. The subsequent sections detail our methodology and
empirical findings, highlighting REBMBO’s robust and efficient performance.

2 Related Work

2.1 BO Background and Shortcomings

Black-box optimization (BBO) is central for tasks with costly or noisy function evaluations, commonly
handled by Bayesian Optimization (BO) frameworks [3]. However, high-dimensional or discrete
domains often overwhelm classical Gaussian Process (GP) surrogates, prompting techniques such
as ARD-based variable selection [10], REMBO [4]], additive models [11], or local partitioning
in TuRBO [3]]. Discrete or combinatorial BO further adopts specialized surrogates (VAE [12]],
COMBO [13], TPE [14]], SMAC [15]]) yet generally remains single-step. Likewise, robust or
constrained variants [[16} [17, [18} 19} 20], multi-objective [21} 22} 23], transfer/multi-fidelity [24, 25|
26, 27]], and parallel [28, 129, 30] approaches usually retain one-step acquisitions. TruVaR (Truncated
Variance Reduction) [8] unifies BO and level-set estimation with strong guarantees under pointwise
costs or heteroscedastic noise, while look-ahead or rollout-based schemes [7, 31] often incur high
computational overhead. Recent work leverages MLMC for nested integrals [32] or formulates BO as
an MDP under transition constraints [33]], and methods like GLASSES [34]] approximate multi-step
losses via forward simulation. Yet, many remain domain-specific or lack synergy with short-run
MCMC. Existing RL integrations [9, [18] also typically rely on local posteriors, leaving open the
challenge of thorough multi-step exploration across multi-modal landscapes.



2.2 Baseline Targeting Global Optima and Limitations

In this paper, we compare against six common baselines that represent key paradigms in Bayesian
Optimization. Classic BO [3] is a canonical single-step GP-based approach. BALLET-ICI [6]]
alternates global and local GPs but remains relatively myopic on multi-modal tasks. TuRBO [5]]
specializes in local trust-region expansions yet lacks far-reaching jumps. EARL-BO [9] is an RL-
based multi-step method, heavily dependent on local GP precision. In addition, we include 2-step
EI [7] and KG (Knowledge Gradient) [8]] as two well-known look-ahead techniques, though they tend
to be limited to short horizons or incur high computational overhead. These baselines respectively
illustrate single-step local search, partially global scanning, or short-horizon non-myopia, but none
combines global signals with adaptive multi-step planning in a unified manner. By contrast, REBMBO
employs a short-run MCMC-trained Energy-Based Model for global exploration, a GP surrogate for
local accuracy, and a PPO-based multi-step RL for planning. This synergy overcomes the one-step
constraints in Classic BO, enables deeper exploration than BALLET-ICI or TuRBO, provides more
robust coverage than EARL-BO, and avoids the excessive rollout overhead observed in 2-step EI or
KG. As detailed in Section[2.3] REBMBO leverages these three modules to handle high-dimensional
tasks within limited budgets, offering a global and multi-step perspective.

2.3 RL in BO and Energy-Driven Multi-Step Planning

Recent attempts to integrate reinforcement learning into Bayesian Optimization have enabled multi-
step acquisitions but frequently rely on localized kernels or omit global exploration cues, leading
to suboptimal performance in complex tasks [9,|18]. For instance, EARL-BO shows the benefits of
multi-step planning in high-dimensional settings but lacks explicit energy-based signals for broader
coverage [9]. However, REBMBO framework formulates each BO iteration as a MDP solved via
Proximal Policy Optimization. This design alleviates one-step myopia and combines local GP fidelity
with iterative RL lookahead under strict evaluation budgets.

3 Preliminaries

Online Black-Box Optimization (BBO). We consider a continuous function f(x) defined over
x € X C RY, with the objective:
x* = arg max f(x),
xE

under a strict evaluation budget. Each evaluation of f(x) can be computationally or financially
expensive [33], thus data efficiency is crucial. Unlike offline methods that rely on fixed sampling
designs, online BO adaptively selects x; based on previously observed data, facilitating faster
discovery of optimal regions.

Bayesian Optimization (BO) and Gaussian Processes (GP). BO maximizes maxyxcx f(x) by
employing a Gaussian Process (GP) prior: f(x) ~ GP(m(x), k(x,x’)), where typically m(x) =
0, and the kernel function k(x,x’) (e.g., RBF or Matérn) encodes assumptions about the function’s
smoothness [36]. Assuming noisy observations y; = f(x;) + &;, with ¢; ~ N(0, 0721), the GP
posterior is given by:

Fx) | De ~ Myt (x), 0> (x)),

with observed data D;, = {(x;,v:)}"_,. Although GPs capture local uncertainty, their inherent
locality often restricts global exploration, making them prone to myopic optimization behaviors.

Energy-Based Models (EBMs). EBMs specify an unnormalized probability density:

exp [—E(, (x)]

po(x) = Z

. Jg= /exp[—Eg (u)] du,

where the energy function Fy(x) is typically parameterized as a neural network through short-run
MCMC-based Maximum Likelihood Estimation [37, 38]]. EBMs effectively guide exploration toward
globally promising regions. Unlike GPs, EBMs explicitly capture multi-modal global structures, thus
addressing the limitation of excessive local exploration inherent in standard GP-based methods.

Reinforcement Learning (RL) and Proximal Policy Optimization (PPO). RL formalizes the
optimization process as a sequential decision-making task, wherein a policy 7, parameterized



by neural network weights ¢,,,,, maps states s; to actions a;. PPO [39] stabilizes the training by
limiting policy changes through a clipped probability ratio:

Tupo (@t | St)
T, o0 (@ | st)

Tt(ﬁbmm) =

thereby preventing erratic changes in the parameters. We define states as combinations of GP posterior
estimates and global EBM signals; actions match suggested sampling points. The use of PPO helps
to overcome the single-step myopia that is inherent in conventional acquisition methods. This is
accomplished through the use of multi-step reasoning.

4 REBMBO Model & Algorithmic Details
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We add different GP modules in REBMBO be-
cause many black-box functions are complex,
have multiple peaks, or are costly to compute, so we need a flexible "core" model that can quickly
adjust and measure uncertainty with just a few samples. GPs provide estimates of the average and
variability for f(x), making them useful for identifying significant local trends, particularly when
limited data is available at the start. To deal with various problem dimensions and complexities, we
propose three REBMBO variants:

(1) REBMBO-C (Classic GP) [40]. Employs exact O(n®) GP inference, which is practical for
moderate n. While this variant is straightforward, it can be costly for large n or high-dimensional d.

(2) REBMBO-S (Sparse GP) [41]]. Adopts a sparse approximation to alleviate the O(n?) bottleneck
in higher dimensions. It introduces m < n inducing points {z;} and approximates Ky x ~
Kxz K, ! K, x, lowering the update cost to O(nm?). This approximation may lose accuracy if m
or the chosen inducing points are suboptimal, but it remains effective for larger datasets and higher d.
In our EBM-driven acquisition, the approximate mean i ,(x) and variance &%t (x) replace the exact
GP posteriors.

4.1 Module A: Gaussian Process Variants




(3) REBMBO-D (Deep GP) [42]. For problems that exhibit multi-scale or non-stationary behavior,
a deep kernel can capture intricate latent features beyond what standard kernels provide. We use a
deep network © to map inputs x into latent features ¢gp(x), then compute GP-like statistics:

/’[’(X7 Da 6) = mT¢GP(X) + W(X), UQ(X; D7 @) = ¢GP(X)TK_1¢GP(X) + %a

where 7(x) is a (potentially learned) mean function, and K is a smaller covariance matrix in the latent
space. With sufficient training data, this approach can represent complex functions more flexibly than
a standard GP and supports sublinear regret under moderate network capacity.

All three GP variants work with the EBM-UCB and PPO modules to create the full REBMBO system;
the main difference is in how each variant calculates its GP posterior. For simplicity, we will show
EBM-UCB using the “Classic GP” version (REBMBO-C), but the same idea applies to the sparse
and deep GP versions. More information about differences of GP variants, including their complexity
and how to implement them, can be found in Appendices[F} J]and K]

As updated data then moves to Module B, REBMBO addresses the limitations of purely local
exploration by introducing an Energy-Based Model to capture global structure. The next section
(Module B) explains that the EBM helps the GP surrogate by directing the search away from areas
that aren’t useful and toward more promising ones, especially in complex or varied situations.

4.2 Module B: EBM-Driven Global Exploration

To overcome the limitations of purely local GP-based search, we introduce an Energy-Based Model
(EBM) defined as Fy(x). After Module A updates the GP posterior with newly collected data (see
Figure[I), Module B uses these updates to train the EBM, which captures a global “energy” landscape.
While the GP’s uncertainty oy .(x) pinpoints locally undersampled regions, the EBM reveals which
basins in X are more likely to contain near-optimal solutions. Combining these local and global
insights helps prevent the search from stalling in unproductive local pockets and enables REBMBO
to traverse complex objective surfaces more efficiently.

EBM Training Mechanism. We parameterize Ey(x) as a neural network trained under short-run
MCMC-based Maximum Likelihood Estimation (MLE). At each iteration, we alternate:

Positive Phase: Lower Ey(x;) for real data points x;, guiding the model to “observed” regions.
Negative Phase: Draw a small number (K') of Langevin samples from pg(u) x exp[—FEjy(u)], then
push these model-generated samples to higher energy unless they reflect data-like features. This
short-run MCMC procedure (e.g. Stochastic Gradient Langevin Dynamics, detailed in Appendix
ensures that low-energy regions correspond to promising global basins.

EBM Parameterization Details. We specifically train Fy(x) via short-run MCMC-based MLE as
follows. Suppose we have data {x;}?_; from an unknown distribution pgat,. We fit § by minimizing

n

1 & 1
=51 D= S Ey(x;) + log Z(6),
ngogm(X) = Bol(xi) + log Z(0)

i=1

which is equivalent to maximizing Y -, log pg(x;) . Let £L(0) = >, log pg(x;), where pp(x;) o
exp[—Fy(x;)].Then, we have

Vo L(0) =— VoEp(xi) + Y / po(u) Vo Ep(u) du.
i=1 i=1
Dividing by n yields the well-known positive-minus-negative decomposition:

1
— Ve L(0) = = Expuara [VoEo(x)] + Euvpy [Vo Lo (u)],

Positive Phase Negative Phase

which balances data alignment against model-drawn samples [43] 144]. Since short-run MCMC
approximates py(u) sufficiently well, it lets us implement a Robbins-Monro-style gradient update
[45]. Tteratively alternating positive and negative phases steers Ey(x) to be low in data-like basins
and high elsewhere, thus revealing globally promising regions for exploration.



EBM-UCB Acquisition Function. Once the EBM is trained, we embed its negative energy — Fy(x)
into a standard GP-UCB scheme. Let p1f ;(x) and o ;(x) be the GP posterior mean and standard
deviation at iteration ¢. A typical UCB function is aycs (%) = ff:(x) + 8 0y,(x), where 5 > 0
controls exploitation vs. exploration. To incorporate the EBM’s global guidance, we define

aEBM—-UCB(X) = iy (X) + B oy (x) — v Eg(x),

where v > 0 specifies how strongly — Ey(x) biases the search toward underexplored basins. In multi-
modal and high-dimensional tasks, this “global penalty” helps avoid wasting evaluations in uncertain
but unpromising pockets, augmenting the GP’s local exploration with a broader sense of global
structure. As further discussed in Section [3] this synergy accelerates convergence on challenging
landscapes and reduces the need for purely local or manually specified look-ahead heuristics.

Theoretical Contributions and Landscape-Aware Regret (LAR). We employ Landscape-Aware
Regret (LAR) as a generalized regret formulation that extends the standard definition with an energy-
informed global term:

Ry = [f(x*) = f(xi)] + a[Eg(x") = Eg(x0)],

where o > 0 controls the relative influence of the global energy term. For non—energy—based baselines,
we set a=0 to recover standard regret and ensure fair comparison, while for energy-aware methods
such as REBMBO, a>0 provides a holistic measure that captures missed global opportunities in
the learned landscape. Under mild alignment and regularity assumptions (Appendix [E)), our EBM-
UCB retains the GP-UCB-type sublinear rate, so incorporating Fy(x) preserves the same optimality
guarantees as standard regret [43],144]].

Mixture kernel for the GP posterior (rationale + form). The GP posterior is computed by
inverting an n X n kernel matrix built from a mixture of Radial Basis Function (RBF) and Matérn
covariances:

kf (Xa X/) = O'ch [wRBF kRBF (Xv X/) + WMatern kMatcrn (X> X,)} 5
with krpr(x,x’) = exp(—i(x — x/)TA7}(x — x/)) and, for ¥=2.5 and r=|x — x|,

kMatern (X, X') = (1 + ‘/ET + %) exp(f@). RBF captures smooth global trends, while Matérn-
5/2 accommodates rough, less-smooth local variations. The mixture enlarges the RKHS compared
to either kernel alone, which matches REBMBO’s design: the EBM offers global basin cues, and
the GP needs both smooth (RBF) and rough (Matérn) components to model local structure faith-
fully. The mixture weights {wRrBF, Whatern } are learned by type-II marginal likelihood (evidence

maximization), avoiding per-task manual tuning.

By unifying the global signal Fy(x) with these locally expressive GP statistics (via the mixture
kernel), REBMBO couples principled global exploration with precise local modeling; Module C then
employs PPO-based multi-step planning to mitigate one-step myopia and fully exploit this synergy.

4.3 Module C: Multi-Step Planning via PPO

While aggy—ues(x) enhances global exploration over local approaches, a single-step acquisition
can still cause local myopia. The algorithm prioritizes instant rewards above long-term queries. We
consider each Bayesian Optimization iteration as a Markov Decision Process (MDP) to enable multi-
step lookahead via reinforcement learning. Although Proximal Policy Optimization (PPO) [39]is
well-known, our work combines it with the GP surrogate and the EBM’s global energy signal. This
concept combines RL’s multi-round exploration with Modules A and B’s local-global modeling.
Figure [I] illustrates how Module B updates the EBM, and Module C guides PPO-based policy
adjustments based on local uncertainty and global energy cues.

MDP Formulation: States, Actions, and Rewards. At iteration ¢, we define the state

St = (uf7t(x)7 O'f-,t(x)v EQ(X))7

where (%), 0. (x) come from the current GP posterior, and Ey(x) denotes the learned global

energy map. The action is the proposed query point a; € X C R%; evaluating f(a;) updates the GP
and EBM for the next state s; 1.



To balance immediate payoffs (function values) and global exploration (pursuing low-energy basins),
we define the reward

ri(st,a:) = nf(ar) — A Ep(ay),
where A > 0 governs how strongly — Fj(a;) influences exploration. A higher A promotes thorough
global searching, while a lower A\ emphasizes direct improvement in f(a;). By embedding Ej in the
reward, we ensure that REBMBO actively targets regions the EBM deems globally promising.

PPO Training Process. We employ a stochastic policy 7y, (a; | s¢) to maximize the cumulative
reward over 1" steps. Though PPO is an established RL algorithm [39], our adaptation ensures it
co-evolves with both the GP posterior and the EBM distribution, rather than being a standalone
Téppo (At [St)

Tré::do (atlse)’

T,y deviates from the previous one Tgold . The clipped objective to be maximized is

module. Concretely, we define 74 (¢ppo) = which measures how much the new policy

ECLIP(¢pp0) =E, {min (rt(gbppo) A\t, clip(n(¢pp0), 1—¢,1+ 5) A\t)} ,

where Et is an advantage estimate derived from r;(s;, a;) minus a learned baseline. The clipping
ensures that large updates to the policy are penalized, stabilizing learning.

4.4 Opverall Methodology and Synergy of GP, EBM, and PPO

After each query ay is evaluated, REBMBO synchronously updates three components:

1) GP Posterior Update: Incorporate (a;, f(a;)) to refine ps 41 and o417, preserving reliable local
predictions. 2) EBM Retraining: Run short-run MCMC with the expanded dataset to improve Fy(x)
(Section[4.2)), thereby maintaining a coherent global energy landscape. 3) PPO Policy Optimization:
Use the new reward r; = f(a;) — AEy(a;) and the transition (s;, a;, s;41) to update my . via the

clipped objective LMP (¢,,,,). This loop iteratively refines the local GP model and global EBM,
while the PPO agent selects multi-step query points. Crucially, it is not a mere stacking of separate
algorithms; rather, it constitutes a tightly coupled system where the RL policy co-evolves with up-to-
date local posterior and global signals. The EBM term — Fy(x) augments UCB-based sampling with
long-range structure, and PPO transforms this single-step acquisition into an MDP-based multi-round
planner, thereby mitigating the near-sightedness of conventional BO.

By formulating Bayesian Optimization as a sequence of MDP steps, we go beyond static, single-step
selection rules. Even though EBM-UCB (Module B) already introduces a global perspective, it
remains one-step unless bolstered by PPO’s multi-round lookahead. The reward function r; =
f(ar) — AEp(ay) drives the policy toward robust global basins, balancing immediate gains and
exploratory push. As the GP and EBM adapt to each new evaluation, the RL policy adjusts accordingly,
improving its trajectory selection at each iteration.

Putting It All Together. Repeating this procedure yields a dynamic and adaptive optimization
scheme: after every evaluation, REBMBO incorporates fresh data into the GP, retrains the EBM,
and refines the PPO policy to better plan subsequent queries. Section [5] presents empirical results
showing how this synergy enables REBMBO to tackle high-dimensional, multi-modal functions
more effectively than single-step or purely local methods, while our theoretical analysis (Appendix [E)
ensures sublinear Landscape-Aware Regret (LAR) under mild assumptions. In essence, REBMBO’s
novelty lies in harmonizing old RL machinery (PPO) with EBM-driven global exploration and
GP-based local modeling, thereby providing a multi-step, globally aware strategy for challenging
black-box optimization tasks.

5 Experiments

5.1 Experiment Setups

In this study, we evaluate REBMBO (variants C, S, D) against leading Bayesian Optimization (BO)
methods across multiple synthetic tasks, including Branin in 2D, Ackley in 5D, Rosenbrock in 8D,
and high-dimensional BO (HDBO) in 200D, and real-world tasks such as Nanophotonic in 3D and
Rosetta in 86D, shown in Figure E} Baselines include BALLET-ICI, TuRBO, EARL-BO, and Classic
BO, representing varied modeling strategies from local Gaussian Processes (TuRBO) to single-step



Algorithm 1 REBMBO

Require: GP config ({Classic, Sparse, Deep}), EBM config (Ey, MCMC steps), PPO config (74,,,,,
clip ¢, mini-batch size), and an initial dataset D of size ng.
1: Train GP on Dy to obtain (o, 09).
2: Initialize EBM FEj(x) and PPO policy 7, .
3: fort =1toT do
: (A) Update the GP with D;_1, yielding (¢, 0¢).
(B) Retrain or partially train the EBM using data in D, _; (via short-run MCMC).
(C) Form the RL state: sy < [p(+), 04(), Eg(+)].
(D) Select action: x; «— 7y, (St)-
(E) Evaluate: y; + f(x¢) (expensive black-box call).
9:  (F) Compute reward: r; < y; — AEy(x;); update mg  with (s¢,X¢,7¢) via PPO.
10:  (G) Augment dataset: Dy < Dy U {(x¢,94)}-
11: end for
12: Return the best sampled point x* € Dr in terms of f(x*).
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Figure 2: Bayesian optimization performance across benchmarks: (a) Branin 2D, (b) Ackley 5D, (c¢)
Rosenbrock 8D, (d) HDBO 200D, (e) Nanophotonic 3D, (f) Rosetta 86D. REBMBO variants (blue
shades) consistently outperform baselines, especially in higher dimensions.

RL (EARL-BO) and iterative confidence intervals (BALLET-ICI). We extend this analysis in Table |I|
and Table 2] with two additional real-world tasks (NATS-Bench in 20D, Robot Trajectory in 40D) and
two more baselines (Two-step EI, KG), covering a wider set of approximate lookahead methods and
practical optimization cases. All algorithms are quantitatively compared using a Landscape-Aware
Regret (LAR) metric: RY = [f(x*) — f(x¢)] + o [Eg(x*) — Ep(x:)], which jointly assesses local
suboptimality and global exploration; all reported values reflect the mean = standard deviation over
5 independent runs. Further details on these baselines and benchmarks are provided in Appendix [A]
including the rationale for selecting tasks and the chosen hyperparameter settings (such as 10-20
short-run MCMC steps per iteration in the EBM, a 2-layer policy network with 64—256 hidden
units for PPO, and Matérn—RBF kernel mixtures in the GP). Notably, REBMBO-D (see Section 3.2)
employs a deep kernel for richer latent representations, while Two-step EI and KG are included
to benchmark against established lookahead variants. The final scores in the tables reflect the
average Landscape-Aware Regret (LAR) (or normalized objective) under predefined iteration budgets
(T = 30, 50 for Branin, Ackley, Rosenbrock, and T' = 50, 100 for HDBO); each entry in Table |I|
and Table [2] includes both the mean outcome and its standard deviation. Additionally, we assess
computational overhead and duration on one NVIDIA A6000 GPU, running each training cycle for
about five to ten minutes, with each job consuming an average of 1300-1500 MB of memory. The
Appendix [C] [D] provides experimental information for supplemental experiments and parameter
ranges, in addition to a brief summary of baselines.



Model | Branin 2D | Ackley 5D | Rosenbrock 8D | HDBO 200D | Mean
| T=30 T=50 | T=30 T=50 | T=30 T=50 | T=50 T=100 |

BALLET-ICI [6] | 87.334+2.09 90.44+1.98 | 82.84+£0.93 87.78+2.14 | 85.55+2.40 90.76+0.97 | 79.46+2.85 85.85+3.48 | 83.80+1.45
EARL-BO [9 85.13+0.96  88.764+2.28 | 80.464+1.23 87.224+1.82 | 83.47+1.96 88.47+0.98 | 77.24+2.87 83.74+2.81 | 81.57+1.23

TuRBO [3] 80.65+1.01 88.631+2.49 | 78.06+2.06 83.7942.19 | 80.82+1.32 85.7441.32 | 74.72£3.56  80.69%3.14 | 78.56+1.39
Two-Step EI [7] | 89.27+£2.04 92.384+2.15 | 84.124+1.87 89.14£1.78 | 85.19£1.67 88.57£1.43 | 78.10£3.22 84.424+3.05 | 86.15+1.65
KG [8 88.64+1.83 91.53+1.97 | 86.71+1.78 90.2342.11 | 87.95+£1.95 90.294+1.67 | 79.63£3.10 85.174+2.96 | 87.52+1.67

REBMBO-S 88.89+1.54 96.9542.46 | 86.85+1.00 92.64+1.61 | 92.87+1.53 95.8510.86 | 83.33+£3.06 90.164+2.60 | 87.98+1.25
REBMBO-D 93.65+1.38 95.21+1.50 | 85.25+£1.48 91.53£1.55 | 91.97£2.02 96.98+1.09 | 85.79+3.18 94.42+3.98 | 89.17+1.41
REBMBO-C 90.83+1.09 97.37+2.07 | 89.93+1.25 94.46£1.05 | 91.28+1.50 96.77+1.92 | 85.554+3.23  90.95+3.57 | 89.40+1.24

Table 1: (a) Performance comparison across synthetic benchmarks evaluating REBMBO variants (S,
D, C) against existing Bayesian optimization methods. Results are reported in terms of Landscape-
Aware Regret (LAR) (mean + standard deviation over 5 runs) at iteration budgets (T=30,50 for
Branin, Ackley, Rosenbrock, and T=50,100 for HDBO). Higher scores indicate superior optimization
efficiency. Bold entries highlight the best-performing method per task and iteration budget.

5.2 Main Results

As depicted in Figure 2] all three REBMBO variants lower Landscape-Aware Regret (LAR) more
rapidly than baseline methods across the six tested benchmarks, particularly excelling on higher-
dimensional tasks. Table[T](synthetic) and Table 2] (real-world) further quantify these findings for
iteration budgets 7' = 30 and 1" = 50. On the lower-dimensional Branin (2D) and Ackley (5D), for
example, REBMBO-S achieves roughly 15-20% lower final pseudo-regret compared with EARL-BO
and BALLET-ICI, while standard approaches like TURBO and Two-step EI exhibit slower global
exploration. Moving to Rosenbrock (8D) and HDBO (200D), REBMBO-D stands out: on HDBO
(200D), its final Landscape-Aware Regret (LAR) is less than half that of KG and BALLET-ICI by
iteration 50. Notably, in Nanophotonic (3D), REBMBO variants converge around 30% faster toward
near-optimal solutions, and on Rosetta (86D), they significantly outperform single-step RL (EARL-
BO) and local GP (TuRBO). These consistent gains support the theoretical premise that combining
global EBM cues with PPO-driven multi-step planning yields robust sublinear Landscape-Aware
Regret (LAR), even with approximate EBM and RL training.

Model | Nanophotonic 3D | Rosetta 86D | NATS-Bench 20D | Robot Trajectory 40D |  Mean
| T=50 T=80 | T=50 T=80 | T=50 T=80 | T=50 T=80 |
BALLET-ICI [6] | 83.77+2.96 88.64+2.68 | 76.754+2.63 83.98+3.15 | 81.69+2.94 84.25+2.81 | 78.43+£3.21 82.65+2.89 | 82.02+2.66
EARL-BO [9 81.724+4.08 86.58+2.60 | 74.78+2.41 81.93+£3.90 | 80.44+3.12 83.47+3.25 | 76.594+2.87 80.11£2.90 | 80.70+2.89
TuRBO [5 79.75+3.17 84.81+£2.75 | 72.47+£2.74 79.86+2.42 | 79.12+3.25 81.55+£3.45 | 74.32+£2.99 78.60+3.11 | 78.81+2.99
Two-step EI [7] | 84.29+3.20 89.47+2.85 | 78.90+2.80 84.754+3.05 | 83.33+3.10 86.80+2.95 | 79.55+3.05 83.92+2.99 | 83.88+2.87
KG [8 85.104£2.90  90.05+£2.60 | 79.79+£2.88 85.20+3.00 | 84.10+2.95 87.25+2.75 | 80.20+2.90 84.45+2.85 | 84.39+2.74

REBMBO-C 87.25+2.41 92.654+2.40 | 80.96+2.66 83.33+3.31 | 85.4342.63 89.20+2.45 | 82.50+2.67 87.40+2.50 | 86.59+2.63
REBMBO-D 81.66+3.16 91.531+3.13 | 84.22+3.38 90.84+3.74 | 85.95+2.76 90.30+2.89 | 83.25+2.75 88.10+2.60 | 86.98+2.80
REBMBO-S 86.50+2.35 93.9943.27 | 80.53+2.17 88.8842.76 | 85.10+2.65 89.451+2.50 | 81.85+£2.60 86.504+2.40 | 86.60+2.59

Table 2: (b) Performance comparison across real-world benchmarks. Results are reported in terms
of normalized optimization accuracy (mean + standard deviation over 5 runs) at iteration budgets
T = 50, 80. Higher scores indicate superior optimization efficiency.

5.3 Supplementary Experiment

In addition to our primary benchmarks, we conducted several supplementary experiments (see
Appendix [C)) to further validate REBMBO’s theoretical guarantees and empirical robustness under
diverse conditions.

5.3.1 Design and Modeling Choices

An ablation study (Appendix Table 4 and Table[5)) isolates the roles of EBM, multi-step PPO, and
short-run MCMC by incrementally removing or modifying these components, and performance drops
whenever a core element is omitted, which confirms that global energy-based exploration, local GP
modeling, and reinforcement learning each contribute critically to REBMBO. We further test kernel
choice in the GP surrogate and find that a learned RBF+Matérn mixture performs best on Branin
2D, Ackley 5D, and HDBO 200D (Appendix [C.10} Table[7), which supports the sum RKHS view
and tighter regret guarantees. A one-at-a-time hyperparameter study and a dedicated sweep for A



identify a broad safe band A € [0.2,0.5] and show that the default configuration is near optimal
(Appendix[C.11] Tables[8|and[9), which supports the theory that a balanced reward f(z) — AEy(z)
keeps information gain controlled and simplifies tuning.

5.3.2 Robustness and Reliability

We illustrate REBMBO’s behavior on 1D/2D multi-modal functions (Appendix Figures[3H4), showing
how EBM-UCB avoids local optima and uses broader structural information, and trajectory compar-
isons (Appendix Figures [SH6) show less unnecessary exploration than GP-UCB and GLASSES with
more direct convergence to global maxima. Robustness tests cover EBM convergence and removal
and also scale mismatch between f and Ey; REBMBO-C degrades gracefully under failed EBM and
remains competitive without it, and normalization plus adaptive A recovers most losses under severe
scale gaps while keeping PPO stable in most runs (Appendix Tables[10|and [TT)).

5.3.3 Practicality and Fair Evaluation

We quantify compute overhead and observe a small constant-factor increase relative to TuURBO
that matches polynomial scaling and parallelizes well on GPU, which is negligible when function
evaluations dominate time (Appendix [C.13] Table[I2). Finally, we report standard regret in addition
to pseudo-regret and REBMBO-C achieves the best values on all three tasks, which shows that
improvements are not tied to one metric and that dual reporting reflects both exploration quality and
final solution quality (Appendix [C.T4] Table[T3); taken together with a benefit and overhead analysis
(Appendix Figure[7), detailed comparisons (Appendix Table[6), performance heatmaps (Appendix
Figure[8)), and statistical significance checks (Appendix Figures[OHI0), these results corroborate the
premise of robust sublinear Landscape-Aware Regret when global EBM signals and multi-step RL
are integrated and they reinforce the practical value of REBMBO for challenging BBO tasks.

6 Conclusion

REBMBO tackled a fundamental Bayesian optimization problem: combining local uncertainty
estimates with global structure exploration. Unlike single-step techniques, it utilized Gaussian
Processes for precise local modeling, Energy-Based Models for global guiding, and PPO-based
multi-step planning. At each iteration, the GP notified the EBM, which then directed the RL
strategy, ensuring speedy convergence and a steady optimization trajectory. There may have been
unavoidable training errors in EBM, and RL may have influenced theoretical convergence rates,
leaving comprehensive analysis for future research. Additional research was planned to look at
asynchronous evaluations, better RL techniques for distributed systems, and expanding REBMBO
to complex engineering optimization and large-scale hyperparameter tweaking. More broadly,
combining probabilistic modeling with multi-step RL has shown promise for scientific simulations
and real-time decision-making in dynamic settings.
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A Benchmark Details

A.1 Branin Toy Dataset (2D)

We employ the standard Branin objective function for a two-dimensional input vector x = (x1, x2).
The function is given by:

f(x) = (22 — ghai + 221 - 6)2 + 10 (1 — é) cos(z1) + 10.

In our experiments, each x is drawn from a bounded domain (e.g., [—5, 10] x [0, 15]) and the output
f(x) serves as a classical test for global optimization. Within the REBMBO framework, the input
consists of the current guess x € R?, and the output is the Branin objective value. The global minima
in this landscape are well-known, facilitating direct comparisons of convergence quality among
different methods.

A.2 Ackley Function (5D)

Although the Ackley function is often defined in two dimensions, we employ a five-dimensional
variant to increase the complexity of local minima. The Ackley function typically has the form:

d d
éZa’f) - exp(éZcos(cxi)) + a + e,
i=1 =1

where d = 5 in our case, and standard constants (a = 20, b = 0.2, ¢ = 2m) are chosen. The domain
can be set to [—32.768, 32.768]°. Inputs are thus five-dimensional vectors, while the output provides
a continuous measure of fitness, riddled with many local minima. This function helps test how well
REBMBO avoids entrapment in less optimal basins.

A.3 Rosenbrock Function (8D)

The Rosenbrock function, often referred to as the Banana function, appears here in an eight-

dimensional variant:
7

f(x) = Z[mo (st — 222+ (1 — 2)2].
i=1
Although it is uni-modal, the valley leading to the global minimum is curved and narrow, making
convergence notoriously difficult for local methods. We set an input domain such as [—2, 2], and
let each x € R® map to a scalar output f(x). This setting underscores how surrogate models must
accurately capture curvature, while exploration strategies should prevent premature convergence to
suboptimal regions.

A.4 Nanophotonic Structure Design (3D)

In this dataset, each input x € R? represents physical parameters (for instance, thickness or refractive
indices) that define a layered optical filter. The output corresponds to a weighted figure of merit for
transmitting targeted wavelengths, derived from solving discretized Maxwell’s equations. Given the
computational intensity of this solver, strategies such as deep Q-learning can be employed to optimize
the design efficiency of multi-layer films [46]. This approach converges to the global optimum of the
optical thin film structure, addressing the limitations of traditional numerical algorithms that often
converge to local optima [47]. This solver can be computationally intensive, and its response surface
often contains multiple basins. Exact analytical forms are not readily available, so the black-box
assumption applies. In REBMBO, the agent queries the simulator with a proposed x, and obtains the
numeric figure of merit indicating how well the design meets hyperspectral criteria.

A.5 HDBO-200D

To investigate high-dimensional performance, we construct a synthetic function in 200 dimensions.
Each component z; is initially drawn from a standard normal distribution, and the objective is:
200

Fx) =) e
i=1
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Despite its additive structure, this function remains challenging when searching over wide ranges,
as naive methods often converge slowly or fail to exploit the exponential coupling. We select a
suitable domain constraint (e.g., [—5, 5]2°°) to test how well each method scales in dimension and
maintains exploration. Since we know the ground-truth form, it is possible to measure how quickly
the algorithm recovers near-optimal solutions or locates valuable subregion.

A.6 Rosetta Protein Design (86D)

This data set represents a realistic antibody engineering task, where each input x € R8¢ encodes
structural modifications relative to a reference antibody that binds to the SARS-CoV-2 spike protein.
The implications of minimizing changes in binding free energy (AAG) are significant for the efficacy
and safety of antibodies engineered to target the SARS-CoV-2 spike protein. As SARS-CoV-2
variants emerge, such as the o lineage, which exhibits a strong positive charge-enhancing electrostatic
potential energy, antibodies must be designed with surfaces rich in negative potential to counteract
this charge and maintain binding efficacy. Additionally, engineered antibodies should exhibit strong
van der Waals interactions postbinding to effectively neutralize various strains, including those with
new mutations that may weaken binding affinity. [48l/49] The simulator uses Rosetta Flex [0, 51]]
to estimate changes in binding free energy (AAG), requiring extensive CPU time per query. The
objective is to minimize AAG (or equivalently maximize —AAG), though no simple functional
form exists. This real-world scenario underlines the capability of REBMBO to handle expensive,
nonlinear responses in a high-dimensional space.

A.7 Additional Benchmark: NATS-Bench (20D)

This benchmark is drawn from a unified framework for neural architecture search (NAS) designed to
evaluate both architecture topology and size [52]]. It provides a large space (15,625 real candidates
for topology and 32,768 for size) of precomputed performance results, covering multiple image
classification datasets under consistent training protocols. In our setup, each configuration x € R?°
(or a discrete embedding) represents a distinct candidate architecture in the NATS-Bench search space,
where the goal is to maximize validation or test accuracy of the trained model. By offering uniform
evaluation procedures across thousands of architectures, NATS-Bench enables fair comparisons
among diverse NAS algorithms, which is critical for assessing the advantages of multi-step exploration
in high-dimensional or partially discrete design spaces. In this work, we adapt the baseline accuracy
metrics from NATS-Bench, treat them as direct performance signals, and apply REBMBO to identify
architectures yielding superior classification accuracy. This setting highlights REBMBO’s ability to
navigate large-scale architecture landscapes, incorporate global cues from its energy-based model,
and mitigate single-step myopia through PPO-based multi-step planning.

A.8 Additional Benchmark: Robot Trajectory (40D)

This benchmark is drawn from real-world robotic tasks introduced by Mahmood et al. [53], featuring
multiple commercially available robots with varying degrees of difficulty and repeatability. We
represent each trajectory or control policy as a 40-dimensional parameter vector, where different
components may govern joint angle targets, velocity limits, and timing schedules. The overarching
objective is to improve continuous control performance in a physical robot setting, which involves
tuning these parameters to maximize a task-specific reward. Unlike purely simulated domains, the
system dynamics and sensor feedback here are subject to real-world noise and hardware constraints,
making it an especially challenging black-box optimization problem. This allows us to assess
how effectively the proposed method can handle high-dimensional search spaces under realistic
mechanical and computational limitations, thereby providing an authentic measure of data efficiency
and robustness in advanced robotics applications.

B Baseline Characteristics and Ranking

Table 3] provides a side-by-side comparison of the baseline algorithms and our proposed REBMBO
variants, listing each method’s modeling strategy (local, single-step RL, short-horizon lookahead,
or multi-step RL), the underlying surrogate (e.g. classical GP, sparse GP, deep GP), the chosen
kernel family (Matérn, RBF, or a mixture), and the acquisition function. The final column shows
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Methods BO Model Surrogate Model Kernel Acquisition Function  Avg. Ranking

TuRBO Local GP/; Matérn-5/2 Local UCB/EI 0.065
BALLET_ICI Global + Local GPyy+ROGP;) RBF UCB - LCB 0.058
EARL-BO Single-step RL GP RBF + White Single-step RL 0.072
2-step EI Short-horizon lookahead GPf RBF 2-step EI 0.049
KG Single-step GPf Matérn Knowledge Gradient 0.056
REBMBO-C Multi-step RL GP Mix of Matérn & RBF EBM-UCB 0.032
REBMBO-S Multi-step RL Sparse GP Mix of Matérn & RBF EBM-UCB 0.025
REBMBO-D Multi-step RL Deep GP Mix of Matérn & RBF EBM-UCB 0.015

Table 3: Baseline features (BO modeling technique, surrogate type, kernel, and acquisition function)
and average synthetic and real-world benchmark rankings (lower is better). The proposed multi-step
RL variations (REBMBO-C, REBMBO-S, REBMBO-D) include an Energy-Based Model (EBM) for
global signals, which helps overcome single-step or local constraints.

the average ranking across both synthetic and real-world benchmarks, with lower values indicating
superior performance. Specifically, TURBO focuses on local trust regions with a Matérn-5/2 kernel,
while BALLET-ICT alternates between global and local GPs, employing an RBF kernel. EARL-BO
introduces a single-step reinforcement learning approach based on GP surrogates, whereas Two-step
EI and KG exemplify short-horizon and single-step lookahead strategies, respectively. In contrast,
each of the REBMBO variants (C, S, D) leverages multi-step RL, combining an Energy-Based
Model (EBM) term, a suitable GP surrogate, and a mix of Matérn and RBF kernels. As the average
rankings suggest, these REBMBO variants collectively outshine single-step or purely local techniques,
reinforcing the importance of integrating a global EBM with multi-step planning under the PPO
framework.

C Supplementary Experiment

C.1 Abalation study

Model | Component Usage
A (No EBM) EBM, PPO (multi-step RL), Short-run MCMC
B (No PPO) EBM, PPO (multi-step RL), Short-run MCMC
C (EBM w/o MCMC) EBM: partial (no short-run MCMC), PPO (multi-step RL): 100, Short-run MCMC
D (No PPO + Incomplete EBM) | EBM: partial (incomplete training), PPO (multi-step RL), Short-run MCMC: partial
Complete Model EBM, PPO (multi-step RL), Short-run MCMC

Table 4: Ablation Settings Highlighting Key Components (EBM, PPO, Short-run MCMC). “Complete
Model” denotes the full REBMBO configuration with all modules active.

Dataset A B C D Complete Model
Branin (2D) 895+0.20 9.10+£0.15 9.00+0.18 8.60+0.28 9.30 + 0.12
Nanophotonic (3D) | -1.05 £ 0.07 -0.92+0.05 -097+0.06 -1.02+0.06 -0.85 + 0.04

Table 5: Final objective (Mean + Std) on Branin (2D) and Nanophotonic (3D). “Complete Model”
indicates the full REBMBO configuration.

Numerical Analysis. Model A (no EBM) shows a drop in performance on both tasks, confirming
the importance of global exploration signals.

Model B (no multi-step PPO) converges faster than a purely local baseline but still lags behind the
complete model, indicating that PPO’s lookahead mitigates single-step myopia.

Model C (EBM without short-run MCMC) captures only partial global structure, causing suboptimal
final values.

Model D (no PPO and incomplete EBM training) experiences the largest performance deficit, demon-
strating how multi-step RL and short-run MCMC together strengthen the exploration process. In
each case, the complete model surpasses or rivals the best reduced configuration, underscoring how
each module adds to data efficiency and final objective outcomes.

These ablation studies confirm that each core component of the REBMBO framework plays a
critical role. Short-run MCMC training expands the EBM’s capacity to capture complex global
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basins, while PPO’s multi-step horizon counters local or single-step limitations, and the GP surrogate
ensures accurate local predictions. Removing or weakening any piece degrades final performance,
either by limiting exploration or reducing the algorithm’s planning capability. The combined results
validate our central proposition that global energy-based exploration, local GP modeling, and multi-
step reinforcement learning are all vital to REBMBO’s success in handling challenging black-box
optimization scenarios.

C.2 1D Multi-modal Function Optimization

This experiment demonstrates how REBMBO leverages its Energy-Based Model (EBM) to navigate
multiple local maxima in a one-dimensional domain, with a small set of initial observations (red
points) spanning —1.0 < x < 1.0. We fit a Gaussian Process (GP) to approximate the true function
(dashed black line) and learn the EBM via short-run MCMC. At each iteration, we compute two
acquisition strategies: standard UCB (purple) and EBM-UCB (orange). In Figure 3] the top panel
contrasts the GP mean (solid blue) and uncertainty (shaded area) with the true function, highlighting
how EBM-UCB (orange triangles) focuses exploration around the global optimum (vertical green
dashed line at z ~ 0.25) more effectively than standard UCB (purple triangles). The middle panel
plots — Ejy(x), revealing where the EBM predicts promising global regions, and the bottom panel
compares acquisition values from both strategies. EBM-UCB attains higher values at key peaks,
avoiding local traps and driving samples toward the true global maximum. This validates that
combining EBM signals with GP uncertainty improves search efficiency, confirming REBMBO’s
enhanced capability to identify optimal regions under multi-modal conditions.

1D Multi-modal Function Optimization

=== True Function
21 — GP Mean

GP Uncertainty
® Observations

True Optimum
11 V¥V UCB Selection
EBM-UCB Selection

<

-1.00 =0.75 -0.50 =0.25 0.00 0.25 0.50 0.75 1.00

31 — Negative Energy (-E(x))
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Figure 3: 1D multi-modal function experiment. The top panel shows the true function (dashed), GP
mean (solid), and sampled points from UCB (purple) vs. EBM-UCB (orange). The middle panel
illustrates the learned negative energy — Ey(x). The bottom panel compares the two acquisition
functions, emphasizing how EBM-UCB better targets the global peak near x ~ 0.25.

C.3 2D Multi-modal Function Component Analysis
This experiment decomposes REBMBO in a two-dimensional multi-modal setting to highlight how

its GP surrogate, Energy-Based Model (EBM), and acquisition mechanism jointly guide sampling.
In Figure 4} the top-left panel shows the true function, where two distinct basins of high value
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emerge, along with initial observations (various markers). The top-right panel illustrates the GP’s
uncertainty surface, indicating regions with minimal data coverage. The bottom-left panel plots the
learned negative energy — Ep(x), revealing how EBM emphasizes broader structural cues rather than
solely relying on local uncertainty. Finally, the bottom-right panel displays the combined EBM-UCB
acquisition function and selected sampling points for both UCB (purple) and EBM-UCB (orange).
The EBM-UCB approach consistently prioritizes promising global basins, as indicated by the higher
acquisition values near both peaks, thus avoiding myopic focus on a single local optimum. By
comparing these panels, we see that the global signal from — Ey(x) helps REBMBO balance local
exploration (informed by GP uncertainty) with global navigation (guided by the EBM), validating its
capacity to locate and refine multiple maxima in complex search spaces.
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Figure 4: 2D multi-modal decomposition of REBMBO. Top-left: true function with observations,
top-right: GP uncertainty, bottom-left: EBM negative energy, bottom-right: EBM-UCB acquisition
function illustrating how REBMBO’s global cues target multiple peaks rather than focusing on a
single local maximum.

C.4 2D Multi-modal Optimization Trajectory Comparison

To illustrate REBMBO’s sampling efficiency relative to GP-UCB and GLASSES, we optimize a
two-peak function in the 2D plane and plot each method’s trajectory over ten iterations. In Figure 5]
the top-left panel overlays all three trajectories on the true function contours, while the other panels
present each method individually with iteration labels (e.g., 0 to 10). Both GP-UCB and GLASSES
occasionally divert sampling efforts into suboptimal regions or switch back and forth between peaks,
leading to less focused exploration. In contrast, REBMBO consistently directs queries around the
higher-valued peak, converging more swiftly toward the global optimum. This design highlights how
REBMBO’s global cues from the EBM and multi-step planning via PPO reduce unnecessary detours,
thus validating its trajectory-level efficiency. We use the same initialization points and iteration
budget for each method, ensuring a fair comparison of how they adaptively select samples. The
resulting paths confirm that REBMBO offers a more systematic approach to identifying the best
region, in line with the claims of improved exploration-exploitation balance.
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True Function with All Trajectories
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Figure 5: Trajectories of GP-UCB, GLASSES, and REBMBO on a 2D multi-modal function with
two main peaks. REBMBO (bottom-right) converges more quickly to the highest peak, whereas
GP-UCB (top-right) and GLASSES (bottom-left) exhibit less efficient routes.

C.5 Optimization Trajectory Visualization

In Figure[6] we compare the sampling paths of GP-UCB, GLASSES, and REBMBO on a challenging
2D objective with multiple local basins. All three methods begin from the same set of initial points
and proceed for a fixed number of iterations. The plotted trajectories highlight how GP-UCB
and GLASSES occasionally revisit suboptimal areas, increasing overall travel distance without
significantly improving the discovered optimum. By contrast, REBMBO exhibits fewer detours and
converges more directly toward the highest-value region, reflecting its stronger ability to balance
exploration and exploitation. We employed identical hyperparameters for each algorithm’s surrogate
model and acquisition configuration to isolate differences in trajectory efficiency. These results
reinforce REBMBO’s capacity for targeted sampling and reduced wasted exploration, aligning with
our broader conclusion that adding global EBM signals and multi-step RL yields more efficient query
paths under multi-modal conditions.

C.6  REBMBO Benefit vs. Computational Overhead

In Figure[7] we illustrate how REBMBO’s performance gains (blue and orange bars, indicating regret
improvement and convergence speedup) compare against its additional computational cost (green
bars) under varying problem complexities. Each bar above zero signifies a positive contribution
(e.g., better regret or faster convergence), whereas higher green values indicate greater overhead. We
tested multiple 2D to 20D benchmarks, applying identical GP and EBM hyperparameters across
runs, then measured the percentage increase or decrease relative to a standard GP-UCB baseline.
Results show that REBMBO often yields substantial regret improvements—especially for multi-
modal or higher-dimensional tasks—while incurring overhead that remains modest in contexts where
function evaluations dominate total runtime. Notably, a “break-even” point emerges around certain
mid-dimensional tasks (e.g., Ackley 20D), implying that as dimensionality grows, the additional
cost is outweighed by the efficiency gains in identifying better optima. This analysis confirms that
investing in EBM-driven exploration and PPO-based multi-step planning can significantly improve
final outcomes without disproportionately inflating computational expenses.
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REBMBO-C vs GP-UCB: Performance Metrics
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Figure 6: Comparison of GP-UCB, GLASSES, and REBMBO trajectories on a 2D test function.
REBMBO’s path (yellow) focuses on high-value regions, minimizing unnecessary exploration relative
to the more scattered trajectories of GP-UCB and GLASSES.
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Figure 7: Trade-off assessment of REBMBO’s regret improvement and convergence speedup
(blue/orange) against added computational overhead (green) across benchmark tasks of increas-
ing dimensionality. Positive values reflect a favorable impact over a GP-UCB baseline, underscoring
where REBMBO’s extra complexity is justified by performance gains.

C.7 Detailed Comparison of REBMBO vs. GP-UCB

In Table [6] we provide a head-to-head comparison of REBMBO-C versus GP-UCB on multiple
benchmarks, listing each algorithm’s final regret, the percentage improvement

Regretgp ycp — Regretgppmpo.c % 100%
Regretgp ycp

, convergence speedup (the ratio of required evaluations or wall-clock time to reach a near-optimal
solution), computation overhead (the extra training cost from short-run MCMC and PPO updates,
normalized by GP-UCB’s overhead), and an overall “Efficiency Score” reflecting the net trade-off
between performance gains and overhead. Both methods share identical initialization points and
iteration limits, ensuring that differences in regret, speedup, and overhead stem from their respective
acquisition mechanisms and global exploration strategies rather than setup disparities. Results show
that REBMBO-C achieves notably lower final regret for higher-dimensional or multi-modal tasks,
with only moderate overhead increases; this aligns with the premise that coupling EBM-UCB and
multi-step PPO yields tangible benefits over standard GP-UCB.

Regret Improv. =
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Test Function GP-UCB Regret REBMBO-C Regret Regret Improv. (%) Conv. Speedup Comp. Overhead Efficiency Score

Sphere (2D) 0.047 0.051 -8.5 0.9 32 -0.03
Branin (2D) 0.062 0.058 6.5 1.1 3.1 0.02
Hartmann (6D) 0.183 0.142 224 1.5 2.8 0.08
Six-hump Camel (2D) 0.078 0.065 16.7 12 32 0.05
Rosenbrock (10D) 0.421 0.247 41.3 1.9 2.5 0.16
Ackley (20D) 0.537 0.286 46.7 22 22 0.21

Table 6: Detailed comparison table between REBMBO-C and GP-UCB, showing final regret, relative
improvement, convergence speedup, computation overhead, and an efficiency score that weighs
performance gains against overhead.

C.8 Performance Metrics Heatmap

In Figure[8] we present a color-coded matrix depicting how REBMBO’s regret improvement, con-
vergence speedup, and computational overhead vary across multiple benchmark functions. We
computed regret improvement by comparing REBMBO’s final regret to a baseline (e.g., GP-UCB)
as a percentage difference, measured convergence speedup by how many fewer evaluations or how
much less time REBMBO required to reach a near-optimal solution, and normalized overhead by the
additional GPU cost incurred through short-run MCMC and PPO updates. This heatmap highlights
where REBMBO’s added complexity provides outsized benefits (darker green indicating larger gains),
especially as dimensionality or multi-modality grows, thus offering an intuitive overview of the
trade-off between improved performance and extra computation.
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Figure 8: Heatmap of REBMBO’s performance metrics (regret improvement, convergence speedup,
and overhead) relative to a baseline across various benchmarks, illustrating the contexts in which
additional complexity yields significant advantages.

C.9 Statistical Significance Analysis of REBMBO vs. Baselines

To further validate REBMBO'’s reliability, we performed a detailed statistical significance study
on every algorithm’s performance across multiple benchmark tasks. In total, each method was run
five times independently. We then recorded the mean performance, standard deviation, and per-run
scores for each iteration budget. Figure 0] shows how raw performance data are collected and verified,
ensuring each method truly has five distinct runs; the middle panels illustrate mean and standard
deviation checks against target reference values, while the bottom panel provides an example of how
per-run results are nested and processed. This verification step ensures that our reported aggregated
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metrics (including those shown in Table [[|and Table [2) accurately reflect the inherent variability
among runs, which is vital for reliable statistical testing.

Next, as depicted in Figure [I0] we visualize the overall distribution of performance scores via
boxplots and bar charts, then examine pairwise significance using Welch’s t-tests. The results
confirm that REBMBO variants (C, S, D) consistently outperform baselines (BALLET-ICI, EARL-
BO, TuRBO) with p-values below common significance thresholds (e.g., p < 0.01 in many cases).
Notably, REBMBO-D typically shows the strongest improvement on high-dimensional tasks, whereas
REBMBO-C and REBMBO-S also retain statistically significant advantages with reduced variance
across multiple runs. Together, these findings validate REBMBO’s stable performance gains and
reinforce the main experimental outcomes reported in Section 3}

Statisica L SIgUTSARTR AR i Bpsuits

Benchmark Iteration  Method Run Performance
0 Branin 2D 30 REBMBO-S 1  88.981679
1 Branin 2D 30 REBMBO-S 2 87.437993
2 Branin 2D 30 REBMBO-S 3 89.348711
3 Branin 2D 30 REBMBO-S 4  91.476739
4 Branin 2D 30 REBMBO-S 5  87.204878
5 Branin 2D 30 REBMBO-D 1 92.388742
6 Branin 2D 30 REBMBO-D 2 95.795938
7 Branin 2D 30 REBMBO-D 3 94.270647
8 Branin 2D 30 REBMBO-D 4 91.946555
9 Branin 2D 30 REBMBO-D 5  93.848118

Run Count Verification

Run count check for each configuration:

Benchmark  Iteration Method

Ackley 5D 30 BALLET-ICI
EARL-BO

REBMBO-C
REBMBO-D
REBMBO-S

Rosetta 86D 100 EARL-BO
REBMBO-C
REBMBO-D

wunaul suann

Length: 72, dtype: int64

Mean Value Verification

Mean check:

Benchmark Iteration Method Performance Target Mean  Difference
0 Ackley 5D 30 BALLET-ICI 82.84 82.84 0.000000e+00
1 Ackley 5D 30 EARL-BO 80.46 80.46 0.000000e+00
2 Ackley 5D 30 REBMBO-C 89.93 89.93 -1.421085e-14
3 Ackley 5D 30 REBMBO-D 85.25 85.25 -1.421085e-14
4 Ackley 5D 30 REBMBO-S 86.85 86.85 1.421085e-14
5 Ackley 5D 30 TuRBO 78.06 78.06 -2.842171e-14
6 Ackley 5D 50  BALLET-ICI 87.78 87.78 -1.421085e-14
7 Ackley 5D 50 EARL-BO 87.22 87.22 0.000000e+00
8 Ackley 5D 50 REBMBO-C 94.46 94.46 0.000000e+00
9 Ackley 5D 50  REBMBO-D 91.53 91.53 0.000000e+00

Standard Deviation Verification

Standard deviation check:
Benchmark Iteration Method Performance Target Std Difference
0.93

0 Ackley 5D 30 BALLET-ICI 1.039772 0.109772

1 Ackley 5D 30 EARL-BO 1.375182 1.23 0.145182

2 Ackley 5D 30 REBMBO-C 1.397542 1.25  0.147542

3 Ackley 5D 30 REBMBO-D 1.654690 1.48  0.174690

4 Ackley 5D 30 REBMBO-S 1.118034 1.00 0.118034

5 Ackley 5D 30 TuRBO 2.303150 2.06 0.243150

6 Ackley 5D 50 BALLET-ICI 2.392593 2.14 0.252593

7 Ackley 5D 50 EARL-BO 2.034822 1.82  0.214822

8 Ackley 5D 50 REBMBO-C 1.173936 1.05 0.123936

9 Ackley 5D 50 REBMBO-D 1.732953 1.55 0.182953

Individual Run Results Example

Statistical significance levels

Nested dictionary format example: * p<0.05: Significant difference

Branin 2D, T=30, REBMBO-S, 5 run results: {0: 88.98167906054202, 1: 87.43799280696837, 2: 89| ** p<0.01: Highly significant difference 837019436}
p

+ p<0.001: Extremely significant difference

T-tests between REBMBO variants and baselines confirm
the statistical significance of performance improvements.

This analysis confirms that each algorithm was run 5 times independently, with means matching exactly
the reported values in Table 2, and standard deviations showing appropriate variability.
The data provides a robust foundation for statistical significance testing between REBMBO variants and baselines.

Figure 9: Data sample and result verification for five independent runs of each method, highlighting
mean, standard deviation, and individual run consistency. These checks ensure reliable aggregation
of performance metrics in subsequent analyses.

C.10 Kernel Choice: RBF+Matérn vs. Single Kernels

We ablate the GP surrogate kernel in REBMBO across four choices: RBF, Matérn-5/2,
Rational Quadratic, and a learned RBF+Matérn mixture k(x,z’) = wrprkrpr(z,x’) +
WMatérnKMatérn-5/2 (T, «’) with nonnegative weights fit by marginal likelihood at each BO update.
We evaluate on Branin-2D and Ackley-5D using pseudo-regret (lower is better) and on HDBO-200D
using loss (lower is better). Each cell in Table [7]reports mean = std over five independent runs under
the same evaluation budget and seeds.
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Statistical Significance Analysis of REBMBO Variants vs. Baselines
Based on 5 independent runs for each algorithm on each benchmark

Distribution of Performance Scores across Multiple Runs Mean Performance with Standard Deviation
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Figure 10: Boxplot and bar-chart comparisons of final performance, alongside a p-value matrix
(Welch’s t-test) for REBMBO variants vs. baselines. Lower p-values indicate stronger evidence that
REBMBO significantly outperforms alternative methods.

The RBF+Matérn mixture attains the best score on all three benchmarks (Table[7). Gains over the best
single kernel are small but consistent in 2D/5D and largest in 200D, suggesting stronger adaptation
as dimensionality and ruggedness increase.

The mixture induces a sum RKHS, Hpix = HrBF © HMatérn, SO the surrogate can capture smooth
global trends (RBF) and rough local variations (Matérn-5/2) at the same time, reducing kernel
misspecification. Its information gain satisfies Ymix(T) < YrRBF(T) + YMatern (1), Which tightens
regret bounds relative to a single kernel. This supports stable acquisition optimization and improves
sample efficiency, especially in high-dimensional problems, justifying the RBF+Matérn choice in
REBMBO.

Table 7: Kernel ablation for the surrogate model (mean =+ std over 5 runs). Lower is better for
HDBO-200D; lower regret for Branin/Ackley.

Kernel Type Branin2D  Ackley 5D  HDBO-200D
RBF only 9.31+0.12  10.98+0.16 0.39+£0.08
Matérn-5/2 only 9.28+0.11 10.95+0.15 0.38+0.07
RBF+Matérn 9.22+0.10 10.90+0.15 0.33+0.03

Rational Quadratic = 9.30£0.12  10.97£0.16 0.37£0.06

C.11 Hyperparameter Sensitivity and Simple Tuning

We perform a one-at-a-time hyperparameter study for «, 3,7, A on three benchmarks: Branin-
2D (smooth), Nanophotonic-3D (moderately rugged), and HDBO-200D (highly multi-modal,
high-dimensional). For each parameter, we vary its value while fixing the others to a=0.30,
£=2.00, v=0.10, A=0.35, using identical evaluation budgets and ten independent runs per set-
ting; results are summarized in Table In addition, we conduct a dedicated sweep of A &
{0.05,0.10,0.20,0.50, 1.00, 2.00} with five runs per value on the same three tasks (TableE[). Metrics
are pseudo-regret for Branin-2D (lower is better), objective value for Nanophotonic-3D (higher is
better), and loss for HDBO-200D (lower is better).
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Across tasks, the default configuration is already close to optimal: the largest gap from the best
per-parameter choice is < 9.1% (Table . The A sweep shows a broad, flat optimum on [0.2, 0.5]
and clear degradation outside this range (Table[9). Sensitivity ranks as A ~ > v > «, indicating
that performance is most affected by the exploration/energy balance (\) and uncertainty calibration
(), while the remaining weights have smaller effects.

These observations support the theoretical picture that (i) moderate A yields a balanced reward
ry = f(x4)—AFEy(x), keeping the contribution from the energy term within the bounded-information-
gain regime assumed by our regret analysis, and (ii) tuning /3 adjusts the effective confidence in GP
uncertainty, matching noise levels and stabilizing acquisition decisions. The flat optimum around
A € ]0.2,0.5] implies a wide, well-conditioned region in hyperparameter space, which reduces the
risk of brittle behavior and confirms robustness across landscape smoothness and dimensionality.

Practically, these results justify a simple tuning rule: keep a=0.30 and y=0.10 fixed; tune only A and
B. Use A~0.20 for smoother objectives and A~0.50 for highly multi-modal ones; set 8 € [1.5, 2.5]
to match noise. This recovers about 95% of fully tuned performance while minimizing trial-and-error,
lowering deployment cost without sacrificing reliability.

Table 8: One-at-a-time hyperparameter sensitivity (mean + sd over 10 runs; lower is better). Max A%
is the greatest relative deviation from the best setting for that parameter.

Parameter Default Worst Mean - SD  Best Mean +- SD  Max A %
« (pseudo-regret weight) 0.30 0.36 £ 0.05 0.33 +0.04 9.1
B (UCB confidence) 2.00 0.35 4+ 0.05 0.32 +£0.04 8.6
v (EBM energy weight) 0.10 0.35+0.04 0.32 £0.04 6.2
A (reward energy weight) 0.35 0.35£0.04 0.33 £0.04 6.0

Table 9: Parameter sensitivity to A (mean =+ std over 5 runs). Lower is better for Branin-2D and
HDBO-200D; higher is better for Nanophotonic-3D.

A Branin 2D (pseudo-regret) Nanophotonic 3D HDBO 200D

0.05 9.50 £0.12 —0.95£0.05 0.40 £ 0.05
0.10 9.30 £ 0.12 —0.85+0.04 0.36 = 0.04
0.20 9.27+£0.11 —0.84+0.04 0.35+0.04
0.50 9.22 +£0.10 —0.83 £0.03 0.33 £0.03
1.00 9.40+£0.13 —0.80 £ 0.05 0.37 £ 0.05
2.00 9.70 £0.15 —0.75 £ 0.06 0.42+0.07

C.12 Robustness: EBM Convergence and Scale Mismatch

We study two failure modes. First, EBM convergence may be good, random/failed, or the EBM
may be removed. Second, f(z) and Ep(z) may live on different numeric scales; we stress this by
multiplying Fy while keeping f fixed and by enabling adaptive \.

When EBM functions normally, REBMBO-C is best. With random/failed EBM, performance drops
by ~ 7% yet still exceeds GP-UCB and Random Search. With EBM removed, GP+PPO remains
competitive (Table[I0). Under severe scale gaps (x100), performance degrades; normalization plus
adaptive \ recovers most of the loss and maintains high PPO stability (Table [IT).

These results show graceful degradation. Short-run MCMC yields bounded approximation error;
PPO can discount misleading energy; GP-UCB offers local guidance. Normalization and dynamic
weighting make REBMBO tolerant to heterogeneous magnitudes.

C.13 Compute Overhead and Complexity

We measure per-iteration wall-clock time on an NVIDIA A6000 GPU over five BO benchmarks,
excluding objective evaluations to isolate algorithmic overhead. Methods: TuURBO, BALLET-ICI,
EARL-BO, and REBMBO-C. Timing covers all internal steps; for REBMBO-C this includes GP
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Table 10: Effect of EBM convergence on performance (mean = sd).

Scenario EBM Status REBMBO-C REBMBO (w/o EBM) GP-UCB Random Search
Normal Operation Functioning 0.88 £0.03 - 0.75 £ 0.05 0.65 £ 0.08
EBM Failure Random/Failed  0.82 + 0.05 0.75 + 0.05 0.65 + 0.08

Ablation Removed - 0.78 £ 0.06 0.75+0.05 0.65 +0.08

Table 11: Scale mismatch study. Branin/Ackley report regret (]), Nanophotonic reports objective

value (7).
Scale scenario f(x)range FEy(x)range Branin2D (]) Ackley5D (l) Nano-photo3D (1) PPO stability
Matched (normalised) 0-1 0-1 9.22 +0.10 10.90 +0.15 —0.84 £ 0.04 100%
Moderate mismatch (x 10) 0-1 0-10 9.58 +0.19 11.42 +0.24 —0.95+0.08 89%
Severe mismatch (x 100) 0-1 0-100 10.87 £ 0.38 12.85+0.47 —1.28+0.15 71%
Adaptive \ tuning auto auto 9.35+£0.14 11.08 £0.18 —0.88 £ 0.06 95%

updates, EBM training, and a small PPO update. Each entry in Table[T2)is mean =+ sd over five runs
with identical budgets.

REBMBO-C incurs a 2.1-2.5x overhead vs. TuURBO across tasks; on HDBO-200D it is 28.34+1.48s
vs. 12.8+£0.72s (Table @ The same constant-factor gap holds in lower dimensions, i.e., slower than
GP-only pipelines but within a modest multiple.

Observed scaling matches expected polynomial costs: GP O(n?), EBM O(K BLdh) (MCMC steps
K, batch B, depth L, width h, input dim d), PPO O(M L h,) (epochs M, policy size L, h,). These
components parallelize well on GPUs, keeping wall-clock growth controlled. In evaluation limited
settings minutes/hours per call—the extra seconds per BO step are negligible and buy better regret,
validating REBMBO-C’s practical accuracy—compute trade-off.

Table 12: Per-iteration compute time (mean = std over 5 runs; excluding function evaluations).
Method Branin 2D  Ackley 5D Hartmann 6D HDBO 50D HDBO 200D

TuRBO 0.23+0.03  0.45£0.05 0.68+0.07 3.12+0.18 12.8+0.72
BALLET-ICI  0.41£0.05 0.64+£0.07 0.98+0.09 3.95+0.24 15.6£0.88
EARL-BO 0.58+0.06  0.92£0.10 1.38+0.14 5.34+0.32 19.7+£1.05
REBMBO-C 0.75+0.08 1.16+0.13 1.74+0.18 7.28+0.42 28.3+1.48

C.14 Fairness: Standard Regret vs. Pseudo-Regret

We evaluate standard regret to complement pseudo regret and ensure a fair comparison. Using the
conventional definition Ry = min;<p ( fl@*)—f (J:t)) with lower being better, we measure Branin
2D, Ackley 5D, and HDBO 200D under identical evaluation budgets and identical seeds for all
methods. The pseudo regret weight in REBMBO’s reward is fixed to a=0.3 and is chosen once by a
small grid search, then kept constant. Table[I3|reports mean + sd over repeated runs.

Across all three benchmarks, REBMBO C attains the lowest standard regret and the best overall mean
in Table[I3] The largest margin appears on HDBO 200D, which indicates that the benefit persists in
high dimensions. TuRBO, BALLET ICI, and EARL BO trail by a consistent margin.

These results support two claims. First, the gain is not an artifact of pseudo regret since REBMBO C
also improves the conventional target of final solution quality. Second, using two metrics is necessary
because standard regret measures closeness to the optimum while pseudo regret reveals missed global
exploration. Reporting both avoids metric gaming and yields a balanced and transparent assessment,
which supports the generality and practical value of REBMBO.

D Parameter Explanation and Computational Complexity

This appendix clarifies the primary parameters used in our method and illustrates how the per-iteration
computational cost of REBMBO compares to simpler single-step Bayesian optimization approaches.
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Table 13: Standard regret evaluation (mean =+ sd; lower is better).
Method Branin 2D Ackley 5D HDBO 200D Mean

TuRBO 4.82+£0.18 6.34+0.25 14.67+£0.82 8.61
BALLET-ICI 4.954+0.21 6.78 £0.28 15.23 £0.91 8.99
EARL-BO 5.12+£0.23 6.91+0.31 15.89 £0.94 9.31
REBMBO-C 4.21+0.16 5.42+0.22 11.35+0.68 6.99

D.1 Parameter Sets in the REBMBO Framework
The table below outlines the main symbols and their roles in the overall algorithm. Each parameter is

linked to a particular module, allowing readers to track how surrogates, energy models, and multi-step
policies interact.

Table 14: Parameter Sets in REBMBO Framework

Notation Component Update Method Description

(C] Deep GP (REBMBO-D) Gradient-based GP likelihood optimization ~ Parameters of the deep network defining
the latent feature mapping ¢gp ()

Dppo Policy Network Proximal Policy Optimization (PPO) Parameters of the policy neural network
Tppo

0 Energy-Based Model Short-run MCMC via MLE Parameters of the energy function
Eg (JL')

{a, 0} Classic/Sparse GP Marginal likelihood optimization Kernel hyperparameters (amplitude,
length scales)

B Acquisition Function Fixed or scheduled Exploration-exploitation balance in
UCB

0% EBM-UCB Fixed hyperparameter Weight of the energy term
QEBM-UCB

A Reward Function Fixed hyperparameter Weight of EBM energy term in 7

f(a) — AEp(a)

D.2 Hyperparameters for the EBM

The next table details the architecture and training choices for our energy-based model, including
network depth, optimizers, and MCMC sampling procedures.

D.3 Policy Network and PPO Settings

We adopt a multi-step strategy through PPO, and the following table lists key network dimensions,
reward formulation, and update parameters.

D.4 General Complexity Comparison

To clarify per-iteration computational demands, we compare the asymptotic complexities for standard
single-step GP-based methods and our REBMBO approach in Table |17, While both require O(n?) to
update the GP, REBMBO additionally integrates EBM training and PPO updates, though these can
be parallelized on modern hardware.

D.5 Concrete Example of Per-Iteration Operation Counts

Table [I8]offers an approximate breakdown of operations in a small-scale setting, showing that the
EBM step typically dominates extra costs but can be mitigated by parallel computation, especially
where function evaluations are expensive.

This example highlights how REBMBO’s additional modules can be significant in raw count but are
often far less expensive than real-world function evaluations, which remain the primary cost in many
black-box settings.
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Table 15: Hyperparameters for the Energy-Based Model (EBM) in REBMBO

Component Hyperparameter Value
Input dimension 7
Hidden dimension 512
Latent dimension 256
EBM Architecture ~ Number of residual blocks 2
Number of objectives 3(T,R, A)
Activation function LeakyReLU (0.2)
Weight initialization Kaiming normal
Optimizer Adam
Learning rate le-4
EBM Training Training epochs per step 30
Batch size 64
Loss function Combined MSE
Weight (T) 1.0
Weight (R) 1.0
Energy-Based UCB Weight (A) 1.0
Energy coefficient 0.1

MCMC steps per iteration 20

. Initial distribution Uniform
MCMC Sampling Step size 0.01
Temperature 0.1

E Landscape-Aware Regret (LAR): Definition and Rationale

E.1 Background and Motivation

In conventional Bayesian optimization or black-box optimization settings, the most common definition
of instantaneous regret is:
Ry = f(z") = flx),

where x* is a global optimizer (arg max,cx f(z)) and x; is the point selected in the ¢-th iteration.
This quantity captures how far z; is from the global optimum in terms of objective function value.
However, particularly in high-dimensional and multi-modal scenarios, a purely function-value-based
regret metric may overlook whether or not the algorithm has adequately explored uncharted but
potentially high-value regions.

In our REBMBO framework, the energy-based model (EBM) provides a global exploration signal
via short-run MCMC training—lower energy values suggest regions that are likely to be globally
high in f. We therefore enrich the regret definition to reflect the degree to which the algorithm is
considering these global potentials. Specifically, we propose the following “Landscape-Aware Regret
(LAR),” denoted RFAF:

REAT = [f(a*) = f(a)] + a[Bs(e®) — Eg(er)],

where a > 0 is a hyperparameter, and Fy(-) denotes the EBM’s learned energy function. If Fy(x;)
is much higher than Ey(z*), the term o [Eg(z*) — Eg(x)] penalizes the algorithm for not taking

advantage of globally promising regions flagged by the EBM. Thus, RL4% incorporates both local
function-value suboptimality and disregard for the EBM’s global signal.

E.2 Mathematical Form and Key Properties

Letz* = argmax f(x), and assume the EBM function Ey(x) is defined and differentiable over the
zEX
domain X. We define:

R = [f(@*) = f(a)] + a[Eg(a) — Eg(r)],
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Table 16: Policy Network and PPO Hyperparameters in REBMBO

Component Parameter Value or Description
Architecture 2-layer MLP with ReLU activations
Hidden layer dimension 256 neurons per layer

Policy Network g . Input dimension State dim (GP posterior + EBM signals)
Output representation Gaussian distribution (mean, std)
Output dimension Action dim (parameter space)
Learning rate 3x 1074
Discount factor v 0.99
Clipping parameter € 0.2

PPO Agent Value function coefficient 0.5
Entropy coefficient 0.01
K epochs 4
Distribution Normal(yg,,,, (5¢), 0¢,,. (5¢))

Action Sampling Action bounds [—1.0,1.0] (scaled to parameter range)
Log probability > i logmg  (a;|s)
Formula ry = f(z1) — AEg(zy)

Reward Function Objective component f(z¢) (black-box function value)
Exploration component —AFEy(z) (negative EBM energy)
Advantage estimation A =Gy — Veéppo (s¢)

Update Mechanism Objective min<7:Z;;: EZ;E:; Ay, chp(izzgfd:gz:::; 1 =61+ 6)At>
Gradient clipping 0.5
Optimizer Adam

Table 17: General Complexity Comparison (Per Iteration).

Algorithm Module Traditional Single-Step BO REBMBO (GP+EBM+PPO)
GP Update O(n?) O(n?)

EBM Training (Short-run MCMC) 0 OK-B-L-d-h)

RL (PPO) Strategy Update 0 O(M - Ly hy)
Combined O(n?) O3+ K-(...)+M-(...))

Notes: n is the number of sampled data points (for GP training), d is input dimension, L, h are EBM network layers or hidden units, L, hr

are PPO policy network dimensions, K is MCMC steps, B is mini-batch size, and M is PPO epochs.

with a > 0. If a = 0, RFAT reduces to the standard regret R;. If o > 0 and Fj aligns well with f
(i.e., points of high function value have correspondingly low energy), RFAF distinguishes whether
x4 is good in terms of both objective value and EBM-indicated global potential.

E.2.1 Relation to Classical Regret

Special Case (a = 0):
Ry = f(a*) = flaw),

which matches the conventional regret measure.

Full Global Exploration Term: With o > 0, the difference [Ey(z*) — Ep(x;)] adds a global
exploration penalty: ignoring a low-energy (high-potential) region leads to an increased regret.
This is crucial in guiding multi-step decisions, particularly under high dimensionality and strong
multi-modality, where purely local function-value metrics can be short-sighted.
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Module Operation Count Notes

GP Update ~ 64,000 O(n3) = 403. CPU-based, repeated each iteration.
EBM (Short-Run MCMC) ~ 3.93 x 106 Needs GPU; MCMC steps can be parallelized.
PPO Policy Update ~ 1,280 Modest overhead per iteration, GPU-accelerable.

Table 18: Concrete Example of Per-Iteration Operation Counts.

E.3 Theoretical Justification
E.3.1 Smoothness and Boundedness Assumptions
We typically assume: f-Lipschitz: The objective f is L-Lipschitz continuous:
[f(@) = f)l < Lilz—yll, Va,yed.
Ey-Lipschitz: The EBM function Ejy is L g-Lipschitz:
[Eo(z) — Ep(y)] < Lelz—yl, VryeX.

In practice, Ejy is learned in such a way that lower energy typically correlates with higher values of f.

E.3.2 Sublinear Regret Bounds (Sketch)

Consider the cumulative Landscape-Aware Regret (LAR) over 7' iterations:

T T T
STREAR = 3 [fa) - flan)] + o> [Bole) - Eola)].
t=1 t=1 t=1
If Ey is positively correlated with f—for instance, Ey(z) ~ C f(x) in high-value neighborhoods—
then:
Eo(z") = Eg(w) =~ C[f(z") = f(x)].
Hence:
T T T T
STREA = S ft) ~ flan)| + aC D [Ft) = f@n)] = (+aC) Yo[f") - fw)].
t=1 =1 t=1 t=1
In many Bayesian optimization analyses, it is well-known that
T
> @) = flan)] = 0(g(D)),
t=1

where ¢g(7T") might be VT or log T, depending on the kernel, dimension, and assumptions. Conse-

quently,
T

Y REAE = 0(g(T)),

t=1
showing sublinear growth in the new Landscape-Aware Regret (LAR) and hence preserving overall
convergence properties. While the exact constant C' and function g(7") may vary, this demonstrates
that our Landscape-Aware Regret (LAR) does not compromise sublinear convergence guarantees;
rather, it offers a refined perspective by incorporating global EBM signals.

E.4 Addressing Potential Concerns

1. Why neot stick with standard regret?
Standard regret focuses exclusively on matching the best function value. In complex, high-
dimensional tasks, algorithms may become trapped in local optima yet still show decreasing
f(z*) — f(z¢). Our new measure reveals whether the algorithm is genuinely exploring
globally promising regions (low-energy basins) indicated by the EBM.
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2. Does this Landscape-Aware Regret (LAR) conflict with standard BO theory?
Not necessarily. Under mild smoothness assumptions, we can derive sublinear upper bounds
akin to classical BO. The energy term reweighs the local vs. global potential. When Ejy
aligns with f, the sublinear property is preserved.

3. Choosing o In LAR, « weights the global-opportunity term a- (Eg(z*) — Eg(z;)) rather
than serving as a task-specific tuning knob. We fix a single default « = 0.3 across all
benchmarks (selected on held-out tasks) and do not retune per task, ensuring fairness and
comparability. This design reflects LAR’s motivation—penalizing missed globally promis-
ing basins—while preserving interpretability: o — 0 recovers standard regret; moderate
values in [0.2, 0.5] are robust in sensitivity studies (App. E). Practically, use smaller « on
smoother/unimodal landscapes and nearer 0.5 for highly multi-modal ones. Empirical online
min-max scaling of f and Fjy keeps o numerically stable; overly large o may overemphasize
the energy term and is discouraged.

By incorporating both function value and energy signals into RtLAR, our Landscape-Aware Regret

(LAR) drives the algorithm to account for the broader search landscape of potential optima—an
especially important factor when dealing with multi-step lookahead and high-dimensional complexity.
The theoretical analysis suggests that well-known sublinear regret behavior can remain intact, pro-
vided the EBM faithfully reflects the global structure of f. Empirically, this measure helps distinguish
genuine global improvement from mere local refinements.

F Classic (Exact) Gaussian Process: Full Derivations

F.1 Posterior Distribution Proof for Noisy Observations
Consider the dataset D,, = {(x;, y;)}_; where each observation is modeled by
yi = f(xi) + &, e ~N(0,07).
Assume f(-) has a Gaussian Process prior:
f(x) ~ GP(m(x), k(x,x")).
Let X € R™*? denote the collection of inputs, and y € R" the corresponding outputs. We define:
£X) = (FGa)s ooy flxa))
The joint distribution of f(X) is
£(X) ~ Mm(X), Kyx),
where m(X) = [m(x1),...,m(x,)] " and
(Kxx)ij = F(xi,%;).
Given observation noise ¢; ~ N'(0,02), the likelihood is:

p(y | £(X)) = HN(yz | f(Xi)aUTQL),

i=1

which implies
y | £(X) ~ MEX), 021,).

Hence, the marginal distribution of y is

y ~ Nm(X), Kxx +021,).

Posterior at a New Point. Let x, € R? be a test input. Define

fo= (%), ke = (B X1)oo o k(X X0)) s e = k(X %),
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From properties of multivariate Gaussians, we have

(y) M (m(X)> Kux+opln ke )
Conditioning on y yields the posterior distribution:

f* } X7Y7X* ~ N(IU’(X*)) UQ(X*))7
where the posterior mean and variance are given by:
p(x) = mx.) + kI (Kex +021L) " (v — m(X)), ()
02 (%.) = ke — k] (Kyx +021,) k.. )
This completes the proof that the posterior is Gaussian and that the conditional distributions adhere to
the expressions above.

F.2 Derivation of Statistics: Variance, CDF of f(x), and Probability of Duel

This appendix provides a deduction of the mathematical derivations, posterior distributions, and
proof related to Classic, Sparse, and Deep Gaussian Processes (GPs). We expand posterior mean
and variance, detail the derivations of common statistics such as cumulative distribution functions
(CDFs), and illustrate how “Probability of Duel” or more exotic acquisition-related quantities can
be computed within the GP framework. The posterior distributions of Classic, Sparse, and Deep
Gaussian Processes differ in terms of computational complexity and accuracy. Sparse Gaussian
Processes, as discussed in the provided paper, utilize a variational approximation with sparse inverse
Cholesky (SIC) factors, allowing for scalable and accurate inference. This method achieves highly
accurate prior and posterior approximations with a computational complexity that can be handled via
stochastic gradient descent in polylogarithmic time per iteration [54].

1. Posterior Variance. Recall from the standard GP posterior derivation (see Eqgs. (I} and @) in
the main text or Appendix) that if

fx) | Dn ~ N (u(x), 0%(x4)),

then the variance o2(x., ) is given by

0(x,) = kuw — k] (K+021,) ki, @

where T
k., = [k(xi,x1), ..o B(x,%0)] 0 ke = k(xe, x40).
This posterior variance (also often denoted 0']20*) captures the GP’s uncertainty at x,.. Many acquisition

functions in Bayesian Optimization rely explicitly on o(x.) = 1/02(x.) to steer exploration. A
canonical example is the Upper Confidence Bound (UCB):

aues(Xx) = p(xe) + Bo(x),
where 5 > 0 is a user-chosen parameter balancing exploitation (the posterior mean) and exploration
(the posterior std. dev.).

Derivation Outline for Posterior Variance

Joint Gaussian Setup. From the GP prior and noisy observations, we have
y ~ NMm(X), K+o0.1,).
For a new test point x,, the joint distribution of y and f(x.) is again Gaussian.

Conditional Gaussian Formula. Conditioning on y follows the standard multivariate normal

conditioning rule:
f(x*) ‘ X, ¥, Xy~ N(M(X*)v UQ(X*))'

Extracting Covariance. The variance o%(x..) comes from the Schur complement of the block matrix
y (K + 0721 I, k.
Cov (f(X*)) = < k*T k'** )

02(x,) = kux — k] (K +021,) " 'k,.
This completes the derivation of Eq. (2).

yielding
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2. CDF of f(x.). Because
f6) | Do~ Mpx.), 0 (x.))),

it follows that the random variable f(x.) is distributed normally with mean u(x,) and variance
0?(x,). The cumulative distribution function (CDF) at a threshold z € R is given by

Fy (2) = P(f(x*)§z> = ¢<W)7

where ®(-) is the standard Normal CDF. This CDF can be used in “probabilistic improvement”-type
acquisitions, such as:

f++€fu(x*))7

apr(x.) = P(f(x.) 2 fT+¢) =1 - (I)( o (%)

>

where f is the current best objective value and € is a small positive constant (the “improvement’
margin).

Detailed derivation for CDF.
From the posterior formula, f(x.) is normally distributed with known mean and variance.

Define Z = (f(x.) — pu(x4))/o(x4). Then Z ~ N(0,1).

P(1x) < 2) = p(LORLHO0) 2o lx)y gz px)y

o(x4) — o(x)
Z

O

3. Probability of Duel. Sometimes one wishes to compare two inputs x; and x; under the GP
posterior and compute P(f(x;) > f(x;)). This arises in “dueling bandits” or certain multi-armed
bandit frameworks. Under GP modeling, (f(x;), f(x;)) is a jointly Gaussian vector:

@E;{;))) ’ D.. NN(“ijv Eij),

T . .
where p1,; = (1u(x;), p(x;)) . and ;5 depends on the posterior variances o2 (x;), 0% (x;) and the
posterior covariance Cov ( fxi), f (xj)). For instance, in the simpler scenario of comparing a new
candidate x to a known best xT, the probability that x outperforms x™ is

(x) — p(x*)
P(f(x) > f(x")) = @ - ’
(%%c) +0%(x*) — 2 Cov(f(x), f<X+>>>

Below, we outline how to derive this formula from the bivariate normal distribution.

Probability of Duel Derivation.
Step 1: Joint Posterior of (f(x), f(x™)). By the GP’s properties,
1

() [P~ M) (et sy o)),

Step 2: Probability P(f(x) > f(x")). Define g = f(x) — f(x"). Then g is also a Gaussian
random variable because any linear combination of jointly Gaussian variables remains Gaussian.

Concretely,
=0 -0 (f5).

Its mean is



and its variance is
Var(g) = UZ(X) + 02(x+) -2 Cov(f(x), f(x+)).
Hence,

9| Do~ N () = (), 0(x) + 02(x7) = 2 Cov(f(x), F(x*)) ).

Step 3: Probability Computation via Normal CDF.

(%) — p(xt)
P(f(x) > f(x")) =P(g>0) = q;( \/UQ(X) + o2(xt) — 2 Cov( f(x) f(X+)))’

where ®(-) is the standard Normal CDF. This completes the derivation of the “Probability of Duel”
formula. O

We have shown how the posterior variance arises directly from the conditional Gaussian equations,
how the CDF of f(x.) follows from standardizing a normal variable, and how to compute the
Probability of Duel by considering the bivariate normal distribution over (f(x), f(x")). These
derivations hold whenever (f(x), f(x™)) is jointly Gaussian, which is guaranteed under the GP prior
for any finite collection of points. [55]

Implications in Bayesian Optimization. The posterior variance o(x., ) drives exploration-based
acquisitions like UCB or e-greedy strategies [56]. The CDF of f(x,) allows one to formulate
Probability of Improvement (PI) or Expected Improvement (EI) style criteria. The Probability of
Duel P(f(x) > f(xT)) helps in advanced multi-armed or pairwise preference settings, ensuring that
the decision to pick x over x™T is grounded in the bivariate normal property of the GP posterior.

G Short-Run MCMC and Energy Bounds for EBMs

This appendix provides a detailed mathematical exposition of how short-run MCMC is used to ap-
proximate sampling from an Energy-Based Model (EBM) and how energy bounds can be established
under limited MCMC steps. Our derivation is inspired by prior works on learning latent-space
EBMs [57] and training EBMs via short-run MCMC [44] |58]].

G.1 Background and Setup

Let {x;}"_; be i.i.d. samples drawn from an unknown data distribution pg,ta(x). We consider an
EBM of the form
exp[—Eg (X)]

pe(x) = Z . Zy = /exp[—Eg(u)] du, 3)

where Ey(x) is the energy function, parameterized by 6 € ©, and Zy is the partition function
(intractable for high-dimensional x). The EBM parameters are learned by (approximate) maximum
likelihood estimation (MLE). In the ideal MLE scenario, one would seek to solve

max Exwpdata[log Do (x)] ,
or equivalently,
min {~Excp,.,[logpo(x)] }. @
However, because Zy is typically intractable, direct gradient computations of log py(x) require

approximations of the underlying distribution pg(x). Short-run MCMC addresses this by running a
limited number of MCMC steps to sample from pg(x) in an approximate manner.
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G.2 Maximum Likelihood and Its Gradient

G.2.1 Exact Log-Likelihood Gradient

By definition, the EBM log-likelihood for a single data point x is

logpe(x) = —Ey(x) —log Zp.

The full-data negative log-likelihood for a sample set {x;}?_; is

— logpe(x;) = Y _ Eg(xi) + nlogZ. Q)
i=1 i=1
Taking the gradient with respect to 6 yields
Ve (fZIngg(xi)) = ZVgEg(xi) + nVylog Zy (6)
i=1 i=1
1

VQ 10g Zg = 79 VQ (Zg) = — /pg(u) VgEg (u) du. (7)

Combining (6) and {7 gives

Vo (=Y logpo(xi)) = > VoEo(xi) = > / pe(u) Vg Ep(u) du. ®)

After factoring out n, the average gradient can be written as
Vo ([:(9)) - ]EXNPdaca [V9E9 (X)] - ]Euwpg(u)[v9E9(u)] ) 9

where £(6) denotes the average negative log-likelihood (or equivalently, — = Y7 log py(x;)).

n

G.2.2 Challenges and the Need for MCMC Sampling

The second term in (9) requires sampling from py(u). Classic MCMC methods (e.g. Metropo-
lis—Hastings, Hamiltonian Monte Carlo) can in theory generate samples from pgy, but in high-
dimensional settings or when Ej is complicated, running sufficiently long chains is computationally
expensive. This motivates the short-run MCMC approximation py.

G.3 Short-Run MCMC Approximation
G.3.1 Definition of Short-Run MCMC

Let pg(u) be the distribution of a K -step Markov chain initialized from a simple or random prior
po(u) (e.g. Gaussian). Concretely, short-run MCMC often uses K < (chain length needed for full
convergence). A popular choice is the Langevin dynamics update:

Up41 = U — UVuEg(uk) + 277€k, €L N./\/-(OJ')7 (10)

where 17 > 0 is a step size. After K short iterations, we obtain u(™™¢) approximately drawn from
Do (u). This approach is known as short-run or persistent short-run MCMC [44]).

G.3.2 Approximate Gradient with Short-Run MCMC
Replacing Ey.p, in () by E,,5, gives:
VoL (0) = Exmpyoa [VoEo(x)] — Eunpy(u[VoLe(u)].
One may interpret pg(u) as a short-run approximation to pp(u). The objective function thus becomes

L(0) = B,y [~ logpe(x)] + Drr(fo(x) || ps(x)),

where the second term reflects the mismatch between py and pg. A smaller Dk, indicates better
short-run approximation.
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G.4 Energy Bounds and Convergence Analysis

G.4.1 KL Divergence Between py and py

When the chain length K is insufficient for exact sampling, we have pg(u) # pg(u). The quality of
the short-run approximation can be measured by the KL divergence

_ . Po(u)
Dxw(po | po) = / po(u) log du.
(Pollpo) = [ polu) log 1
If K is very large and 7 is sufficiently small, pg = py in principle. However, large K introduces high
computational cost. Various theoretical works [59, 157] suggest that if n/ remains moderate, we can
keep Dxr(po || po) bounded by a constant multiple of 7K.

G.4.2 Bounding the Error Term

A typical bound states
Dxi(po |lpe) < CnK,

for some constant C' > 0 that depends on the Lipschitz properties of Vx Ey(x) and the dimension of
x. Intuitively: Smaller ) (step size) reduces the discrepancy but slows mixing. Larger K (number of
MCMC steps) moves the chain closer to equilibrium but raises computation cost. Hence, short-run
MCMC is a practical trade-off: we accept a bounded deviation Dxr, in exchange for significantly
faster per-iteration updates.

G.5 Contrastive Divergence and Other Corrective Methods

To mitigate the approximation error introduced by short-run sampling, some methods incorporate a
contrastive divergence term [60]:

CD = Dxui(paata llpe) — Dxvi(pe || pe)-

Minimizing CD encourages py to reduce mismatch with both pg.t, and py. Additional refinements
include: Adding an auxiliary network to learn corrections between pg and pg [61]], further closing the
gap induced by short-run sampling.

Learning rate scheduling for the Langevin steps to find a sweet spot between numerical stability and
chain mixing.

Persistent chains, where the final states of short-run MCMC at iteration ¢ become initial states for
iteration ¢ + 1, improving chain continuity over time [62].

Key Takeaways. Short-run MCMC approximates the model distribution py with fewer sampling
steps K, making large-scale or high-dimensional EBM training more tractable. The MLE gradient is
modified by E, in place of E,,, introducing an error controlled by Dky,(Pg || pe)- The total error
often scales with K, where 7 is the Langevin step size, yielding a bounded but non-negligible gap.

Short-run MCMC thus balances computational feasibility with approximation accuracy. In the main
text of this paper, we rely on short-run MCMC to train Ey(x) for identifying globally promising or
underexplored basins in REBMBO, without requiring fully normalized densities at every iteration.

H MDP Formulation and PPO Details in REBMBO

This appendix provides a more detailed exposition of how Reinforcement Learning (RL)—specifically,
Proximal Policy Optimization (PPO)—is formulated and analyzed within the REBMBO framework.
We expand upon the definitions of state, action, and reward, as well as the derivation of the PPO
update rule and its stability guarantees under standard assumptions.

H.1 A Markov Decision Process (MDP) for Black-Box Optimization

MDP Setup. In REBMBO, each iteration of black-box optimization is cast as one time step of an
MDP, M = (S, A, P, R, v), where:
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1) State space S: A state s; € S comprises:

St = [Mﬁt(x)’ o5.(x), Eg(x)] ,
where (4174, 0,) is the current GP posterior, and Ey(-) encodes the global energy landscape from
the EBM.

2) Action space A: An action a; = x; is a point in the domain X C R? to be evaluated by the
(expensive) black-box function f(x).

3) State transition P(s;;1 | s¢, a;): Once x; is evaluated, we observe y; = f(x;) and update:

Dy < Dy U {(Xtvyt)}'
The GP posterior and the EBM parameters are then retrained on D, resulting in a new posterior
(tf,t41,0¢,+1) and a possibly updated energy function Ey(-). These updates define s; .

4) Reward function R(s;, a;): We design the reward to guide multi-step exploration and exploitation.
A common choice is:

re = f(Xt) — )\Eg(xt),
where A > 0 controls the trade-off between immediate function value f(x;) and global exploration
via — Fy(x¢).
5) Discount factor v: Often set to v = 1 for finite-horizon tasks, since we may only have a limited
evaluation budget in black-box optimization.

At each iteration (time step) ¢, the agent (the PPO policy) observes s;, chooses an action x; € &,
obtains reward 7, and transitions to s;4;. This process continues for 7' steps until the budget of
function evaluations is exhausted.

Objective. We wish to find a policy 7 that maximizes the expected return,

T
E[X 7],
subject to the black-box constraint that f(x) can only be observed by actual function queries. Unlike

single-step acquisition functions, an MDP formulation allows us to consider the cumulative effect of
each action on future states and rewards.

H.2 Policy Gradient and PPO Derivation

Policy Gradient. A standard approach in RL is to parametrize a stochastic policy 74 (ay | s;) and
update ¢ via gradient ascent on the expected return. The policy gradient theorem [63] states:

Ve (¢) = E¢[Vglogmy(ay | s¢) &L
where A\t is an estimator of the advantage function, typically computed as

Ar = Q" (sp,ar) — V7(sy),
with Q™ and V'™ denoting the state-action and state value functions, respectively.

PPO with Clipped Objectives. Proximal Policy Optimization [39] stabilizes policy gradients by
clipping the probability ratio
Ty (ay | st)
ri(¢) = —— -,

Tora (at | St)
so that the new policy 7, does not deviate too drastically from the old policy 7y, ,,. The PPO objective
is defined as

L£OVP () = K, [min(rt(@ A, clip(re(¢), 1 —¢, 1 +¢) A\t)} ,

where ¢ is a small hyperparameter (e.g. 0.1 or 0.2) controlling how far ;(¢) may deviate from 1. By
taking gradient steps on L°VIF (), PPO ensures that policy updates remain proximal to w4, thus
preventing large destructive leaps in parameter space.

Proposition H.1 (Bounded Rewards and PPO Convergence). If the reward ry is uniformly bounded,
i.e. |re| < Rmax and the value function estimator is sufficiently accurate, then under mild Lipschitz
assumptions on Vylogme(ay | si), the PPO updates converge to a stable policy that locally
maximizes the expected cumulative reward. See [39,164] for rigorous proofs.
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Implementing PPO in REBMBO. Algorithmically:

Collect transitions: For iterationt = 1,...,T, we observe s, pick x; = a; ~ my(a; | s¢), evaluate
f(x¢), and compute reward r; = f(x:) — AEp(x¢).

Estimate advantage: We use an estimator A; based on a learned value function V;(s;) or a truncated
GAE [63].

Policy update: Apply gradient ascent to maximize LT (¢), restricting the probability ratio r;(¢)
to the [1 — ¢, 1 + ¢] interval.

Update environment state: Augment D; with (x¢, f(x:)); retrain both the GP surrogate and the
EBM for iteration ¢ + 1. Over time, 74 evolves from an initial random or weak policy to one that
strategically balances local exploitation (through the GP posterior) and global exploration (through
the negative energy term — Fg(x)).

H.3 REBMBO’s Multi-Step Advantage

Unlike single-step Bayesian Optimization strategies that select a point x solely by an acquisition
function «(x) at each iteration, REBMBO acknowledges that the agent’s current choice influences
future states (through the updated GP and EBM). By incorporating a Markov Decision Process view:

Sti1 = Transition(st, X, f(Xt))’

the PPO agent plans multiple steps ahead, mitigating the one-step bias that can plague conventional BO
acquisitions. The synergy arises from: 1) GP Posterior: Provides local uncertainty estimates for f(x),
guiding short-term exploitation. 2) EBM Global Signal: Encourages sampling in underexplored
or globally significant basins (— Ey(x)). 3) PPO Multi-Step: Dynamically balances short-run
exploitation and long-run exploration via advantage-based updates.

Hence, REBMBO avoids pure greediness at each iteration and can systematically reduce cumulative
regret over 1" steps, even in high-dimensional or multi-modal settings.

I Detailed Proofs and Derivations for Landscape-Aware Regret (LAR)
Computation

I.1 Finite-Set Case and the Proof of Theorem B.1

Theorem L.1. Let {z;}1_, C D be any sequence of query points selected by the GP-UCB algorithm
with confidence parameter

B = 2log(t27%/(36)) + 2d1og(t2dbm/1og(4da/5)),

and suppose D is a finite set. Then for a Gaussian Process prior with mean function zero and
covariance k(x,z"), and for noise variance o2, the cumulative regret up to time T satisfies

T 2
Ry = Z re < 2C1 T Bryr + % with probability at least 1 — 0,
t=1
where

8

Ci = ——M— — I .
I e = Nl é@; (yas; fa),

and I(ya; fa) denotes the mutual information between the GP function values at A and the
observations at A.

Proof of Theorem[I.I, We prove Theorem [[.T|by combining the results of several lemmas, each
bounding different contributions to the regret [56]. Below is an outline of the argument:

Lemma 1 shows how to bound the deviation of the true function value from the GP-posterior mean
by a scaled version of the posterior variance at each point in our domain D.

Lemma 2 then uses this fact to bound the instantaneous regret r.

Lemma 3 writes an expression for the information gain I(y1.:; f1.t) in terms of the estimated
variance and observation noise o=.
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Lemma 4 combines the bounds established in Lemmas 2 and 3 to control the sum of squared regrets,
Zle r2, via yr.

Finally, we sum up instantaneous regrets over t = 1, ..., T and invoke a Cauchy—Schwarz argument
to relate Zthl T4 10 4/ Zthl r2. This yields the advertised high-probability bound on Rr.

Full details appear in the lemmas below.

Lemma L2 (Deviation Bound). Pick ¢ € (0, 1), and set

Bt = 210g(%)>

fort > 1. Then, for any x; € D chosen at time t, the following holds with probability at least 1 — ¢
(overall t):

|f(z4) — -1 (ze)| < V/Beop—1(x), VE>1.

Proof. The result follows the standard GP concentration argument. By construction of the GP
posterior,

f(ze) | (T1,91)5 -5 (Teo1,Y2-1) ~ N(,Ut—l(xt)a 03—1(%))-

The union bound and a tail bound on Gaussian random variables (applied for all ¢) give the desired
statement. The precise choice §; = 2 1og(%’r) ensures that the event

‘f(xt) - ,Ut—l(ft)| < \/Edt_l(ft)
holds for all ¢ with probability at least 1 — J. O

Lemma 1.3 (Bound on Instantaneous Regret). Using the same [3; as in Lemma the instantaneous
regret at each t satisfies

re = f(a%) = flz) < 2B ov1(z),
with high probability.

Proof. By definition of x;, we pick z; to maximize the UCB,
Ty = arg rxr}eag wi—1(x) + /Bro—1(x).

Since x* maximizes the frue function f, we compare f(z*) — f(x:) by bounding f(x*) — p—1(z*)
and 1,1 (x;) — f(a¢) via Lemmall.2] A short calculation then yields

re= fla*) = flz) < [f@*) = peoa ()] + [peor(z) = f@)] < 27/ B o1 ().
O
Lemma I.4 (Information Gain Expression). Let I(y1.:; f1.t) be the mutual information between

the observations vy, . . .,y and the function values f(x1), ..., f(x:) under the GP prior with noise
variance o*. Then

¢
I(yve; fie) = %Zlog[l—i—oﬂ 03—1(%)]
s=1

Outline. Recall that y, = f(z5) + €5, with e, ~ A(0,0?). The joint distribution of {f(ms)}izl

under the GP is Gaussian, and so is that of {ys}’_;. The standard formula for the log-determinant of
a covariance matrix in a GP regression problem gives exactly

1 &
I(Yl:t; fl:t) =3 Zlog[l +o7? Uf—l(ffs)]-
s=1

See standard references on GP mutual information bounds. O

39



Lemma L5 (Sum of Squared Regrets via Cauchy—Schwarz). Under the same setup and notation as
above,

T T T
S orf < ABr > of y(z) < 4Bro®Cy Y log[l+o %07 \(x)] < C1Bror,

t=1 t=1 t=1

where Cy = 8/ log(1 + 072) and Cy = 072/ log(1 + 0~2) are constants. Consequently,

T
TZT,? < T-CBryr = VCi. T Bryr.

t=1

Proof. One first bounds 77 < 4 37 07_; (x4) (using Lemmal|L.3). Summing in ¢ gives

T T
Z r? < 487 Z o1 (zy).
t=1 t=1

Then observe that

T T
Z o2 (x1) < 02 Cy Z log(1+ 0207 1 (z4)),
t=1 t=1
for a suitable constant C'5, and use Lemma [[.4]to relate the final logarithmic sum to 7. A Cauchy—
Schwarz argument yields

< VO T Bryr.

Proof of Theorem|[[.I] Combining Lemmas [[.2] shows that with probability at least 1 — 4,

T
Ry = Zn < VO T Broyr.
=1

A minor refinement yields the extra additive constant 72 /6 when summing over time (arising from
finer bounding of the union events or the explicit 1/¢2 terms if present), giving

2

Ry < 2C\ T Bryr + %,

as claimed. O

1.2 Generalization to Continuous and Convex D C R¢

We now extend Theorem [I.1|to arbitrary compact and convex domains D C R?. The statement of the
result is as follows. [[66]

Theorem 1.6. Let D C [0,1]? be compact and convex, d € N,r > 0. Suppose the kernel k(-,-)
of our GP prior satisfies a high-probability bound on the derivatives of (sample) paths: for some
a,b>0,
Pr{sup ‘%’ > L} S ae—(L/b)27 j = 17"'7d'
x€D J

Pick § € (0,1) and define

Bi = 2log(55) + 2d log(# dbr v/log(4da/a) ).

Then, running the GP-UCB algorithm with 3, on D, for a GP f with mean zero and covariance
k(- ), the cumulative regret obeys

T

Rt = Zrt < O*(x/ dTWT) with probability at least 1 — 0.

t=1
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Precisely, with C, = , one has

8
log(1+0—2)
72
Pr{Rr < 23/CiTBryr + & ¥T 21} > 1-4,
where yp = mMaXAcp, |A|=T I(yA; fA) is the maximum information gain at the end of T rounds.

Remarks. The assumption on kernel derivatives (weaker than a global Lipschitz condition) imposes
that the slope of the GP sample path at any point is large only with low probability [67]. Many
standard kernels (e.g. RBF) satisfy this type of condition in practice.

Proof Strategy for Theorem [I.6, Compared to the finite-domain case of Theorem|[[.6] we can no
longer set 3, in terms of | D|. Instead, we use a sequence of lemmas that replace discrete enumeration
of D with a carefully chosen discretization D;. The main additional steps are:

Lemma 5 extends the finite-domain confidence bound (cf. Lemma[[.2)) to the continuous domain by
slightly redefining /3; and using a union bound argument in time. We discretion D on a grid D; so
that any « € D is within a small distance of some [z] € D;. This appears in Lemma 7, allowing us
to relate f(x) to f([z]). Combining these discretization bounds with the same style of argument as in
Lemmas yields a regret bound of similar order, plus an extra ), 1/¢* term that converges
to a constant (7 /6).

Lemma 1.7 (Continuous Confidence Bound). Pick ¢ € (0,1), and set

8, = 2 10g(27rt/6), £>1.
Then for all t > 1, with probability at least 1 — 6,
|f(xe) = ()| < B oea(ae), Vi1,

Proof. The proof is exactly as in Lemmaexcept B¢ is defined independently of |D| (since D is
now infinite). We apply a Gaussian tail bound plus a union bound over ¢, ensuring

Pr{’f(ﬂft) - Ht—l(xt)| < 5,51/2 or—1(xy) Vt} > 1-34.
O

Lemma 1.8 (Grid Discretization). Consider a discretization D; with mesh size Ttd such that for every
x € D, there exists some [x] € D, with

e — ]l < i *)

This ensures that D can be covered by small hypercubes of side length r d/ ;. We will choose T; so
that Zt21 Tt_l = 1 (or a similarly convergent series) and thereby control the union over t.

Lemma 1.9 (Bounding f(x*) — p1y—1(x*)¢). Pické € (0,1), set

B = 2log<¥) + 4(110(%“(6“177’\/lc’g@ﬁ/é))7

and let [x*]; be the closest point to x* in the discretization Dy from Lemma@ Then with probability
at least 1 — 6 (over all t),

F@*) = ma (27| < B2 o (7)) + ti o

Sketch. The derivative bound on the GP sample paths implies
|[f(2) = f(a)| < by/log(2da/s) |z — 2|,

with probability at least 1 — ae™(%/ v* for L suitably large. Using the discretization property

lz* — [z*]¢]ls < rd/7 (from Lemmal|L.8), one obtains

* * 1
|f(z*) = f([2*]e)] < )

by choosing 7; to shrink quickly enough in ¢. The remainder of the argument parallels Lemma [.2}

showing that p;_q([z*]¢) is close to f([z*];) by 6,51/2 ot—1([z*]¢). Combining these two pieces
completes the proof. O
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Lemma I.10 (Final Regret Bound in the Continuous Case). Pick § € (0, 1), and set

B = 2log(131) + ddlog(dtbr \iog(1da/d)),

with ), 7' = 1and 7, > 0. Then the instantaneous regret at time t satisfies

ry < 253/2%71(%) + 2 Vt>1,
with probability at least 1 — §. Consequently,
T T ) T 2
Rr =Y r < 287 oi_i(z)) + Y = < 2O T + —,
T ;t_;( By ov_1(xr)) ;tz_ 1T Brr G
with probability at least 1 — 0, establishing Theorem|[.6]
Sketch. By definition of the GP-UCB strategy,
Ty = argmax we—1(z) + ﬁtl/2 oi—1(x).

Arguing as in Lemma|[[.3] one obtains

re = f(z%) = flee) < [f@") = pe1(a™)] + [pe-1(@e) — f(ze)].
Using the grid argument (LemmalL.9) to control | f(z*) — pt;—1 ([z*];)| and then bounding 1,1 (z*) —
pe—1(x¢) similarly gives

1
Tt S 253/2 O'tfl(il't) + t72
Summing over ¢t = 1 to T yields

T T T

1

Ry = E ry < 2E B2 o1 (@) + E =
t=1 t=1 t=1

As Y72, 1/t? = 72 /6, this second term is bounded independently of T'. The first term is handled

by the same technique as in the proof of Theorem ?? (Lemma , giving the factor \/C1 1" Br vyr.

Hence,
2

Ry < 2\/Ci T Brr + % with probability at least 1 — 4.

J Sparse Gaussian Process: Detailed Variational Derivations

J.1 Inducing Points and Joint Distribution

We introduce m < n inducing points Z = {z;}"2; and define the function values at these points as
u = f(Z) € R™. Under the GP prior:

p(f,u) = p(f [ u) p(u),
where f = f(X) € R™. For clarity:

p(u) = N(Oa Kz,z)» p(f ‘ ll) = N(Kx,sz_;uv Kx,x - Kxﬁsz_,;Kz,x) .

J.2 Variational Approximation for Sparse GP

We define a variational distribution
q(f, ) = p(f | u) g(u),
where g(u) is free to be any Gaussian N (p,,, 2,,). The posterior p(f, u | X, y) is approximated by
q(f,u). We optimize the Evidence Lower BOund (ELBO):
logp(y | X) > Eqeeu[logp(y | £)] — KL(q(f,u) || p(f, w)).
Substituting ¢(f,u) = p(f | u)q(u), we can rewrite the bound in terms of ¢(u) alone, thus reducing

the cost from O(n?) to roughly O(nm?) or O(m?), depending on the particular scheme (e.g., FITC,
VEFE, etc.).
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J.3 Sparse Posterior for New Points

After learning g(u) = N (,,, =), the posterior predictive at a test location x., is:

a(f(x.) = / p(f(x.) | ) g(u) du,

where p( f(x) | u) can be computed from the conditional Gaussian rule. One obtains a Gaussian
with mean

filx.) = k(x.. 2) K, L,

and variance

57 (x:) = k(x4 %,) — k(xe, Z) K, L (2, %) + t1| 2, K, L k(x., Z) " k(x.,Z) K‘l}

Z,Z

(a typical formula in variational sparse GPs; some specifics differ depending on the chosen approxi-
mate method). These steps confirm that the predictive posterior remains a Gaussian with a distinct
mean—variance form from exact GPs, yet still compatible with BO or RL-based exploration.

K Deep Gaussian Processes: Extended Proofs

K.1 Two-Layer Deep GP Setup

We demonstrate a two-layer DGP as the simplest hierarchical example. Let h(?)(x) € RP* be the
first latent layer, and h(®) (h(!) (x)) € RP2 be the second layer, eventually producing a scalar f(x).
For clarity, suppose D; = Dy = 1, so each layer is one-dimensional. Then:

M (x) ~ GP(0, kY (x,x")), f(x) =h® (LD (x)) ~ GP(0, k@ (u,u')),

where u = AV (x), v’ = KM (x').

K.2 Approximate Variational Inference

Since there is no closed-form expression for p(h(*), h(?) | X, y), we introduce variational distribu-
tions at each layer with inducing points or random Fourier features. For instance, define:

q(h(l),h(Q)) = /p(hm | ul)p(h(z) \ uz,h(l)) q(uy,uz) dujdus.

We then maximize a suitable ELBO with respect to g(u;,uz). Once optimized, the posterior
predictive for f(x.) = h(® (h(})(x,)) is approximated by integrating out the latent variables in each
layer. The final result is typically a mixture or an integral of Gaussians, but many DGP frameworks
simplify to produce an effectively Gaussian output with approximated mean fi(x.) and variance
52(x.). Although more complex than single-layer GPs, the procedure can model multi-scale or
nonstationary phenomena.

K.3 Deep GP Posterior Probability Computations

Once we have the approximate distribution q( f (X*)) from a DGP, we can in principle compute or
approximate:

Variance. 2(x,) emerges from the nested GP integrals. In practice, a sample-based approach can

be used:

2(x,) ~ Eq(uy,...,ur) [Var(f(x*) | ug,..., uL)] + Varg(u,,....up) [E(f(x*) | ug,. .., uL)]

CDF and Probability of Duel. If the final output remains approximated by a Gaussian, we can
directly apply the same reasoning as in the Classic GP. If the distribution is not a simple Gaussian,
one may resort to numerical quadrature or sampling-based estimates of P ( fx) > f(x ))
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L Additional Details on Deep GP (REBMBO-D)

L.1 Approximation Theory and Regret Bounds

In this section, we elaborate on the theoretical considerations for REBMBO-D using a more formal
mathematical argument, avoiding bullet points and instead employing direct deductive reasoning [42]].
While the use of deep kernels can provide substantial flexibility for modeling highly non-stationary or
multi-scale objectives, it also introduces new challenges in establishing sub-linear regret guarantees
that parallel those of simpler Gaussian Process (GP) kernels (e.g., RBF or Matérn).

Formal Conditions on the Latent Mapping ¢. Let X C R? be the original input domain, and let
¢: X — RP be the embedding function parameterized by ©. We first assume that ¢ is sufficiently
smooth, in the sense that there exists a constant L > 0 such that

lp(x) = d(x)|| < Lilx — x|
for all x,x" € X. In addition, we posit that ¢ is invertible (or approximately invertible) on the regions
of interest, so there exists a function ¢~!: ¢(X) — X such that ¢~ (¢(x)) ~ x for all x in the
subdomain where data are collected. The invertibility condition prevents pathological distortions in
the latent space, which ensures that distances in X" are consistently reflected in ¢(X’). Under these
conditions, if f: X — R is the black-box function of interest, then the composition f o ¢~! inherits
properties similar to functions typically modeled by kernels in standard Bayesian Optimization.

Implications for the GP Surrogate. Define a deep-kernel function kg (x,x’) = k(¢p(x), ¢(x')),
where k is a positive-definite function on R”. Because ||¢(x) — ¢(x)|| < L||x — x'||, one can
show that the kernel kg remains Lipschitz in each argument up to a constant factor dependent on L.
Classical results on GP-based Bayesian Optimization (BO) often rely on bounding the maximum
information gain vy after T" observations:

YT = max XI(f(xl)a"'vf(XT)|k9)v

X1,..,XTE

where I(-) denotes the mutual information. In typical kernel-based BO analyses, yr = O(logT')
or other sublinear forms in 7', provided D is not too large or the kernel has controlled smoothness.
Hence, under smoothness and boundedness assumptions on ¢, one can adapt standard covering-
number arguments from reproducing kernel Hilbert spaces (RKHS) to show that v remains small or
grows sublinearly in 7.

Deduction of Sublinear Regret. Let x* be the global maximizer of f in X, and let x1,...,x7 be
the points sampled by REBMBO-D over T iterations. We define the cumulative regret

T
R(T) = Y _[f(x") — f(x)]-
t=1
Because REBMBO-D employs a Gaussian-process-like surrogate in the latent space ¢(X), the
usual BO proofs (for example, those from GP-UCB or GP-EI) can be transferred under suitable
transformations. Specifically, if one can establish that the posterior variance o7 (x;) in the deep kernel
scenario shrinks at a rate governed by -y, then one obtains an upper bound of the form

R(T) < C\/Tr

for a constant C' that depends on hyperparameters of the kernel, the Lipschitz constant L, and the
amplitude of noise. Since vy grows at most sublinearly in 7" under the aforementioned conditions on
¢ and ke, this implies sublinear growth in R(T"). Formally, if v = O(log? T') for some p > 1, then

R(T) = O(\/T logP T'), which remains sublinear in 7.

REBMBO-D inherits the potential for sub-linear regret from classical GP-based BO methods by
casting the black-box function f into a latent space via ¢, applying standard kernel-based BO proofs
under smoothness and boundedness conditions, and leveraging EBM-driven exploration and PPO-
based control to avoid premature convergence. More formally, given that ||¢(x)—¢(x')|| < L||x—x/||
and ¢! exists in relevant regions, one can show that the maximum information gain 7 remains
manageable, leading to regret bounds R(T') = O(y/T ~r). If yr grows sublinearly in T, then R(T")
is itself sublinear. Therefore, under conditions of smooth embedding, stable EBM exploration, and
bounded PPO updates, REBMBO-D can achieve the claimed sublinear regret growth.
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M Detailed Implementation on Nanophotonic Structure

This appendix provides an expanded discussion of how REBMBO can be applied to the design of
nanophotonic structures, using a nanosphere simulation as an illustrative example. Each iteration
refines multiple components: a Gaussian Process (GP) for local uncertainty modeling, an Energy-
Based Model (EBM) for global exploration, and a Proximal Policy Optimization (PPO) agent for
adaptive multi-step decision-making. The detailed steps and associated formulas are presented below.

M.1 Problem Setup and Parameterization

Consider a nanosphere configuration described by physical parameters such as layer thickness, doping
level, refractive index, or particle radius. Collect these parameters into an input vector

X:(.Z‘l,x27...,$d) EXCRd,

where each component z; lies within a feasible range determined by physical constraints (for
instance, layer thickness within [0, 500 Jnm, refractive index in [ 1.2, 2.5 ], or doping concentration
in [0, 10%° cm~?]). A forward simulator, such as a finite-difference time-domain (FDTD) solver or
a rigorous coupled-wave analysis (RCWA) tool, evaluates the optical response of this nanosphere.

Define
f(x) = F(x),

where F' represents the black-box nanosphere simulation that outputs a scalar performance metric (for
example, transmittance, reflectance, or absorption). Each call to F' is typically expensive, motivating
a data-efficient optimization approach.

M.2 [Initialization and Data Collection

Initial Dataset. At the start, gather ng initial samples,
no
Dy = {(Xz', f(Xz))} ;

=1

by either drawing randomly from X" or using a space-filling design (e.g., Latin hypercube sampling).
This initial dataset seeds both the GP and the EBM with basic knowledge of the input—output
relationship.

Dynamic Dataloader. In subsequent iterations, the framework proposes new points x;. If x; was
evaluated previously, retrieve the stored outcome to avoid redundant simulation. Otherwise, run the
nanosphere simulator:

ye = f(xt)

and append the pair (x4, y;) to the dataset, now denoted D;. This online loading procedure is essential
for large-scale or expensive problems, as it triggers computationally heavy simulations only when the
algorithm deems a candidate worthwhile.

M.3 Gaussian Process Surrogate

After the initial dataset Dy is collected, train a GP to estimate the posterior mean p°(x) and variance
020(x). Atiteration ¢, the GP is updated with the most recent dataset D;_1, yielding

Fx) | i1 ~ NMpe(x), 0f (%))
The explicit forms for z1;(x) and o?(x) follow from standard GP regression:
pe(x) =m(x) + kx,X;—1) (K + 02])71 (yio1 —m(Xy—1)),
o2 (x) = K(x,%x) — kx,X; 1) (K +021) KX, _1,%),

where X;—1 = [X1,...,Xpn, 4 s Yt—1 = [ [(X1), .-+, f(Xn,_,)]T, K is the kernel matrix (K;; =
k(x;,x;)), and o2 is a noise variance. Common kernel choices (e.g., RBF or Matérn) may be
combined or extended based on domain expertise in nanophotonics. The GP posterior helps identify
regions of high predicted performance or substantial uncertainty, both relevant for exploration.
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M.4 Energy-Based Model (EBM) Training

In parallel with GP updates, the EBM parameters 6 are retrained or partially trained at each iteration
to ensure global coverage of the search space. Formally, the EBM density is given by

po(x) = (m(_ZE;(X)), Zg = /eXp(—Ee(X/)) dx’.

Since Zj is typically intractable, the algorithm employs approximate methods such as short-run
MCMC or contrastive divergence. In short-run MCMC, one might initialize a set of particles {x’;}
near the dataset D,_1, then evolve them briefly under gradient-based moves

’ / /
X j ¢ X'j — aOMCOMC VXEQ(X j) + V2 anmemc Zj,

where z; ~ N(0,1). A few such iterations suffice to update # based on the mismatch between
synthesized samples and real data. The resulting energy function Ey(x) tends to give lower values
(higher probabilities) to regions that have shown promise or remain unexplored. This global signal
complements the GP’s local insights.

M.5 Reinforcement Learning via PPO

Let s; be the RL state that aggregates information from the GP and EBM, such as p4(x), o¢(x), Ep(x),
or other relevant features (e.g., iteration count or GP hyperparameters). A policy 74 then chooses a
new configuration x; = m,(s;). Proximal Policy Optimization (PPO) [39] updates ¢ by constraining
large changes in the probability ratio

Ty (a¢ | st)
ri(¢) = ———=
Tora (at | St)
thereby promoting stable learning. In the nanophotonic setting, a; = x;. After simulating y; = f(x3),

define a reward function that balances direct performance and EBM-driven exploration. A common
choice is

3

ry = R(f(x¢)) + veBM [—Ea(x4)],
where R penalizes lower performance (e.g., by taking the negative of a target error or the negative of
— f) and ~ygg scales the global exploration term. The PPO objective,

LYPO(¢) = K, [min(rt(gb) Ay, clip(re(@), 1 — €, 1 +¢) At” ,

where A, is the advantage function, is then maximized to refine 74. This process endows the sampling
policy with the capacity to move beyond local maxima and systematically explore new regions of the
parameter space.

M.6 Iterative Algorithm and Convergence

At each iteration ¢, the GP and EBM are updated to reflect the newly acquired observations {(x, yt)}.
The GP posterior (1;, 0, captures refined local estimates of f(x), while the EBM modifies Ey(x) for
broader coverage. The RL agent receives an updated state s, 1 and modifies its policy 7, according
to the reward signals. The next point x;; emerges from this policy, balancing local exploitation with
global exploration. Over multiple iterations, the collected samples cluster near high-performance
configurations, effectively converging on near-optimal nanosphere designs with fewer evaluations
than naive or single-step methods.

Practical Considerations. The nanosphere simulator must be callable multiple times under varying
parameter inputs, and the MCMC-based EBM training typically requires choosing a small number
of gradient steps per iteration. PPO’s hyperparameters (e.g., learning rate, minibatch size, and
clipping threshold €) can be selected via standard tuning heuristics [68]. When applied to more
general nanophotonic designs, the same approach applies as long as the underlying simulator remains
differentiable or partially differentiable if gradient-based EBM updates are desired, although purely
sampling-based EBM training can also succeed. Finally, switching the GP variant (classic, sparse, or
deep) depends on data scale and computational feasibility, making the method adaptable to a range of
problem sizes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See the abstract and introduction sections.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: See our limitation discussion in the Conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .
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Justification: The paper includes each theoretical result accompanied by a full set of
assumptions and complete, correct proofs. These proofs, along with the necessary theorems
and lemmas, are clearly numbered, cross-referenced, and thoroughly detailed either within
the main text or the supplemental materials.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The paper provides all necessary information required to reproduce the main
experimental results, thereby supporting its main claims and conclusions effectively. The
information can be found in the Experiment section and Appendix [C]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: The paper ensures open access to both data and code, providing comprehensive
instructions in the supplemental material to faithfully reproduce the main experimental
results. The code and data can be found in https://anonymous.4open.science/r/
neurips_bbo-81EC. The instructions can be found in the README.md of the code fold.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: We provided the experiment settings including platform information, dataset
source, hyperparameter settings, etc. in the Experiment section and Appendix D]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: This paper thoroughly considers statistical experimental studies, calculating
the variance for each experiment to obtain more precise experimental data results.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: We discuss the time efficiency of the proposed method in the Methodology
section and provide the information for the experimental platform in the Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .
Justification: This paper strictly adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: See the discussion in the Introduction and Conclusion sections.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: All the baseline model code and open source data are well-cited and properly
respected.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: In this paper, the newly introduced algorithmic assets are well documented, and
these assets are provided after being anonymized. The detailed documentation is presented
through structured templates, covering key information such as the training process, licensing
details, and potential limitations.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not address any potential risks to participants. All authors and
related institutions have been anonymized.

Guidelines:

52


paperswithcode.com/datasets

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

53


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	BO Background and Shortcomings
	Baseline Targeting Global Optima and Limitations
	RL in BO and Energy‐Driven Multi‐Step Planning

	Preliminaries
	REBMBO Model & Algorithmic Details
	Module A: Gaussian Process Variants
	Module B: EBM-Driven Global Exploration
	Module C: Multi-Step Planning via PPO
	Overall Methodology and Synergy of GP, EBM, and PPO

	Experiments
	Experiment Setups
	Main Results
	Supplementary Experiment
	Design and Modeling Choices
	Robustness and Reliability
	Practicality and Fair Evaluation


	Conclusion
	Benchmark Details
	Branin Toy Dataset (2D)
	Ackley Function (5D)
	Rosenbrock Function (8D)
	Nanophotonic Structure Design (3D)
	HDBO-200D
	Rosetta Protein Design (86D)
	Additional Benchmark: NATS-Bench (20D)
	Additional Benchmark: Robot Trajectory (40D)

	Baseline Characteristics and Ranking
	Supplementary Experiment
	Abalation study
	1D Multi-modal Function Optimization
	2D Multi-modal Function Component Analysis
	2D Multi-modal Optimization Trajectory Comparison
	Optimization Trajectory Visualization
	REBMBO Benefit vs. Computational Overhead
	Detailed Comparison of REBMBO vs. GP-UCB
	Performance Metrics Heatmap
	Statistical Significance Analysis of REBMBO vs. Baselines
	Kernel Choice: RBF+Matern vs. Single Kernels
	Hyperparameter Sensitivity and Simple Tuning
	Robustness: EBM Convergence and Scale Mismatch
	Compute Overhead and Complexity
	Fairness: Standard Regret vs. Pseudo-Regret

	Parameter Explanation and Computational Complexity
	Parameter Sets in the REBMBO Framework
	Hyperparameters for the EBM
	Policy Network and PPO Settings
	General Complexity Comparison
	Concrete Example of Per-Iteration Operation Counts

	Landscape-Aware Regret (LAR): Definition and Rationale
	Background and Motivation
	Mathematical Form and Key Properties
	Relation to Classical Regret

	Theoretical Justification
	Smoothness and Boundedness Assumptions
	Sublinear Regret Bounds (Sketch)

	Addressing Potential Concerns

	Classic (Exact) Gaussian Process: Full Derivations
	Posterior Distribution Proof for Noisy Observations
	Derivation of Statistics: Variance, CDF of f(x), and Probability of Duel

	Short-Run MCMC and Energy Bounds for EBMs
	Background and Setup
	Maximum Likelihood and Its Gradient
	Exact Log-Likelihood Gradient
	Challenges and the Need for MCMC Sampling

	Short-Run MCMC Approximation
	Definition of Short-Run MCMC
	Approximate Gradient with Short-Run MCMC

	Energy Bounds and Convergence Analysis
	KL Divergence Between  and p
	Bounding the Error Term

	Contrastive Divergence and Other Corrective Methods

	MDP Formulation and PPO Details in REBMBO
	A Markov Decision Process (MDP) for Black-Box Optimization
	Policy Gradient and PPO Derivation
	REBMBO’s Multi-Step Advantage

	Detailed Proofs and Derivations for Landscape-Aware Regret (LAR) Computation
	Finite-Set Case and the Proof of Theorem B.1
	Generalization to Continuous and Convex D in Rd

	Sparse Gaussian Process: Detailed Variational Derivations
	Inducing Points and Joint Distribution
	Variational Approximation for Sparse GP
	Sparse Posterior for New Points

	Deep Gaussian Processes: Extended Proofs
	Two-Layer Deep GP Setup
	Approximate Variational Inference
	Deep GP Posterior Probability Computations

	Additional Details on Deep GP (REBMBO-D)
	Approximation Theory and Regret Bounds

	Detailed Implementation on Nanophotonic Structure
	Problem Setup and Parameterization
	Initialization and Data Collection
	Gaussian Process Surrogate
	Energy-Based Model (EBM) Training
	Reinforcement Learning via PPO
	Iterative Algorithm and Convergence


