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Abstract

Consumer credit services offered by electronic commerce plat-
forms provide customers with convenient loan access during
shopping and have the potential to stimulate sales. To under-
stand the causal impact of credit lines on spending, previous
studies have employed causal estimators, (e.g., direct regres-
sion (DR), inverse propensity weighting (IPW), and double
machine learning (DML)) to estimate the treatment effect.
However, these estimators do not treat the spending of each in-
dividual as a distribution that can capture the range and pattern
of amounts spent across different orders. By disregarding the
outcome as a distribution, valuable insights embedded within
the outcome distribution might be overlooked. This paper thus
develops distribution valued estimators which extend from
existing real valued DR, IPW, and DML estimators within
Rubin’s causal framework. We establish their consistency and
apply them to a real dataset from a large electronic commerce
platform. Our findings reveal that credit lines generally have
a positive impact on spending across all quantiles, but con-
sumers would allocate more to luxuries (higher quantiles) than
necessities (lower quantiles) as credit lines increase.

Introduction
“Buy now, pay later” (BNPL) is a FinTech credit product
offered by e-commerce platforms that allow consumers to
make purchases first and defer payments later. BNPL is be-
coming increasingly popular due to its convenience in online
shopping (Guttman-Kenney, Firth, and Gathergood 2023).
In practice, e-commerce platforms assign different credit
lines (the total amount of money that the platforms lends to
a consumer) to potential customers according to their per-
sonal information and the history of purchases, payments,
and default behaviors.

The primary goal of e-commerce platforms in introduc-
ing BNPL is to alter the consumption behavior of consumers,
which is usually characterized as a specific spending distribu-
tion formed by the consumption amounts of the consumer’s
all orders. The spending distributions of various consumers
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Figure 1: An example for the impact of credit lines change
on spending distribution shift (one point stands for spending
of one order).

are different. For example, in Figure 7, the spending distri-
bution of some consumers may exhibit a long tail, indicating
a preference for both low-price necessities and high-price
luxury items, whereas other consumers focus more on middle-
valued products.

An essential question for e-commerce platforms is whether
and how credit lines affect the consumption behavior of con-
sumers. Previous studies have shown that increasing credit
lines can lead to increased spending amounts, e.g., (Aydin
2022; Soman and Cheema 2002). Nevertheless, they use a
scalar quantity (e.g., average spending of all orders) to rep-
resent the spending of each consumer, which overlooks the
complexity of consumption behaviors. For example, consider
two consumers (A and B) in Figure 1. When the credit lines
of them both equal 5,000, their spending distributions formed
by 50 orders are the same, with an average spending of 30
dollars. Supposing the platform increases their credit lines
to 10,000, consumer A prefers to increase the spending of
all the orders by 20 dollars, and thus the shape of spending
distribution does not change but parallelly shifts to the right
by 20. On the other hand, consumer B prefers to purchase
more luxury goods and remains the spending amounts of
orders for necessities unchanged. The shape of consumer B’s
spending distribution has shifted dramatically, but the aver-
age spending is the same as the first consumer (also increased
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from 30 to 50). Even though these two consumers have the
same average spending, their spending behaviors are distinct
after the change in credit lines. In this case, focusing only
on the average spending loses some of the information of
distribution (e.g., the part of quantile information). To this
end, we propose to investigate how the changes of credit
lines affect the shift of spending distributions. However, this
raises another question: since classical causal inference liter-
ature targets the outcome of each individual as a scalar, how
can we perform causal inference when the outcome of each
individual is a distribution?

In this paper, we employ a novel causal framework to
tackle this problem, where the outcome of each unit is a dis-
tribution, and the treatment takes multiple values. Based on
Rubin’s causal framework (Rubin 1977, 1978, 2005), we pro-
pose three estimators of target quantities: Direct Regression
(DR) estimator, Inverse Propensity Weighting (IPW) estima-
tor, and Doubly Machine Learning (DML) estimator. We first
study the statistical asymptotic properties of these estimators.
Then, to implement these estimators, we develop a deep-
learning-based model named Neural Functional Regression
Net (NFR Net) to estimate the complex relationship between
functional output and scalar input. To assess the effective-
ness of our methods, we conduct a simulation study. The
results reveal that all three estimators are effective, espe-
cially for the DML estimator. We finally apply our approach
to investigate the causal impact of credit lines on spending
distributions based on a real-world dataset collected from a
large e-commerce platform. We find that when credit lines in-
crease, consumers’ spending tends to rise, which aligns with
previous literature. Additionally, we reveal that the impact of
credit lines is more significant in the high-quantile range of
spending distribution, suggesting that the increase in credit
lines is associated with greater demands for luxury goods
rather than necessities.

Our contributions can be summarized as follows:
• We are the first to explore the causal impact of credit lines

on spending when each consumer’s spending is summa-
rized as a distribution, and discover more detailed findings
on the distribution quantiles compared to the literature.

• We consider multiple treatment and propose three estima-
tors (i.e., DR, IPW, and DML estimators) for the target
quantities. We further study their statistical properties and
compare them in a simulation experiment.

• The relation between functional output and scalar input is
always non-linear and complex. Existing works captured
the relation by a linear or parameterized function, but we
develop a deep learning model ‘NFR Net’ to learn it.

Related Work
Causal inference is a significant challenge in various fields,
such as finance (Huang et al. 2021) and health care (Shi,
Blei, and Veitch 2019). The key assumption of classical
causal inference is that, given the treatment D = d, all
the units have the same potential outcome distribution (un-
conditional). As a result, the realization of the outcome for
each individual is a scalar point drawing from that poten-
tial outcome distribution (for instance, in Figure 2 when

D = d, the blue (red) point is a realization of the ith (jth)
unit). Under the assumption, several causal quantities are
introduced and studied. For instance, the average treatment
effect (ATE) (Chernozhukov et al. 2018) is the difference
between the means of any two potential outcome distribu-
tions (i.e., E[Y (D = d̄)] − E[Y (D = d)], or see the left
half of Figure 2). Another quantity is the quantile treatment
effect (QTE) (Chernozhukov and Hansen 2005) that studies
the difference between two potential outcome distributions
at τ -quantiles (i.e., Q(τ, Y (D = d̄))−Q(τ, Y (D = d))), or
see the right half of Figure 2).

Various methods have been proposed to estimate the causal
effect between treatment and outcome. A common approach
is constructing the estimators for the target quantities. For ex-
ample, Direct Regression (DR) incorporates all confounding
factors into a single regression function. The inverse propen-
sity weighting (IPW) method (Rosenbaum and Rubin 1983;
Hirano, Imbens, and Ridder 2003), on the other hand, assigns
weights to the units based on their propensity scores which
mimic RCTs in the pseudo population. However, both of
them require accurate estimations of the nuisance parameters,
such as the regression function and propensity scores. Dou-
bly Machine Learning (DML) (Chernozhukov et al. 2018)
method overcomes the shortcomings. It has the doubly ro-
bust property such that the accuracy of estimating nuisance
parameters can be loosened.

The above methods are restricted when the outcome of
each unit includes many observations or points and they
constitute a distribution. For example, the shopping spending
of a consumer may differ each time, and all the spending
amounts form a distribution. In this case, it is impossible
to infer the causal relationship via the standard framework
unless we reduce the distributions to points (e.g., take the
mean). Thus, it is necessary to seek alternative frameworks
for distributional outcomes.

The distributional outcome can be treated as a continuous
function. It is closely related to the field of functional data
analysis that analyzes data under information varying over a
continuum (Ramsay and Silverman 2005; Wang, Chiou, and
Müller 2016; Cai et al. 2022; Chen, Goldsmith, and Ogden
2016). (Jacobi, Wagner, and Frühwirth-Schnatter 2016) and
(Chib and Jacobi 2007) apply the functional data analysis to
study the relationship between functional outcomes and inde-
pendent variables based on the panel dataset. Nevertheless,
they do not focus on the causal studying. (Ecker, de Luna,
and Schelin 2023) considers a causal framework to study
the impact of treatment on the functional outcome. However,
their work conducts causal inference in Euclidean space. It
is believed that the random structure of the distributional
outcome is destroyed in the Euclidean space (Verdinelli and
Wasserman 2019; Panaretos and Zemel 2019). As such, (Lin,
Kong, and Wang 2023) considers the causal study in the
Wasserstein space, and we extend their framework to study
the causal effect on distributional outcomes under multiple
treatments and with a deep learning model NFR Net (sta-
tistical properties can be ensured as well). In this case, the
realization of the outcome for each unit is a distribution (for
example, in Figure 3 when D = d, the blue (red) distribution
is a realization of the ith (jth) unit).
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Figure 2: ATE and QTE in the literature. Figure 3: Causal Effect Map in our paper.

Causal Inference Framework
We denote D as the treatment and D ∈ D = {d1, . . . , dr},
X = [X1, · · · , Xn] ∈ X ⊆ Rn as the covariates/con-
founders with distribution FX and X is bounded. With scalar
outcomes, prior literature defines Y as the outcome variable
and Y (d) as the potential outcome variable when receiving
treatment D = d such that Y =

∑r
i=1 Y (di) · 1{D=di}.

The potential outcome distribution and density of (Y , Y (d))
are (FY , FY (d)) and (PY , PY (d)). In our framework, the
outcome of each unit is described as a distribution and
varies across units. We distinguish the differences by us-
ing Y as the outcome variable and Y(d) as the potential
outcome variable when receiving treatment D = d such
that Y =

∑r
i=1 Y(di) · 1{D=di}. The potential outcome

distribution and density of (Y,Y(d)) are (FY , FY(d)) and
(PY ,PY(d)). We assume that there are N -independent units,
i.e., {(Ds,Xs,Ys)}Ns=1.

Causal Assumptions
The following causal assumptions are standard under Rubin’s
framework (Rubin 2005): (1) Consistency (i.e., if D = di

occurs, then Y = Y(di) a.s.); (2) Ignorability/Unconfound-
ness (i.e., Y(di) ⊥⊥ D|X, ∀i ∈ {1, . . . , r}); (3) Overlap (i.e.,
P{D = di|X} > 0, ∀i ∈ {1, . . . , r}).We defer detailed
explanations about the causal assumptions to Appendix A.

Causal Quantities on Distributions
Since the realization of Y for each unit is a distribution, it is
inappropriate to conduct causal inference in the Euclidean
space as it destroys the structure of distributions. For exam-
ple, Figure 4 displays the 10 distributions (all are normal
distributions with different mean and variance), and the cor-
responding “mean” distribution using the Wasserstein metric
(Barycenter) and the Euclidean metric. We notice that the
“mean” distribution cannot preserve the Gaussian structure
unless the Wasserstein metric is used. We thus choose to
conduct causal inference in the Wasserstein space (Villani
2021; Panaretos and Zemel 2019; Feyeux, Vidard, and Nodet
2018). Here, we use the p-Wasserstein metric to characterize
the “distance” between two distributions (see Definition 1).
In the sequel, we let the realizations of Y , Y(d) reside in R.

Figure 4: The Euclidean mean and Barycenter of 10 distribu-
tions.

Definition 1. Let I ⊂ R,Wp(I) = {λ :
∫
I spdλ(s) <∞}

(λ is a distribution), and Λ(λ1, λ2) be the set containing the
joint distribution Π(λ1(s), λ2(t)) whose marginals are λ1

and λ2. The p-Wasserstein metric between λ1 and λ2 is

Dp(λ1, λ2) =

{
inf

Π∈Λ(λ1,λ2)

∫
I
|s− t|pdΠ(λ1(s), λ2(t))

} 1
p

.

Dp(·, ·) satisfies the axioms of a metric (i.e., non-negativity,
symmetric, and triangle inequality). Usually, we set p = 2.
Next, we introduce two quantities - the causal map and the
causal effect map.

Definition 2. The causal map of treatment di is denoted as
△di

1 such that
△di = µ−1

di , (1)

where µdi = argmin
v∈W2(I)

E
[
D2(Y(di), v)2

]
is the Wasserstein

barycenter/mean of units’ distributions when they take the
treatment di. The superscript “−1” of µdi is the inverse of
the cumulative distribution function (CDF) or the quantile

1△di is a function and should be △di(·) formally. In the sequel,
we use both △di and △di(·) interchangeably.
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Our framework Literature framework

Treatment/Covariates variable D/X D/X
Outcome variable Y , Y(d) Y , Y (d)

Potential outcomes distribution (density) FY(d)(·) (PY(d)(·)) FY (d)(·) (PY(d)(·))
Metric Wasserstein Euclidean

Space of outcome variable W2(I) I ∈ R
Realization of outcome variable distribution scalar

Target quantity △di , △dij E[Y (di)], E[Y (di)]− E[Y (dj)]

Table 1: Comparisons between our framework and the framework given in the literature.

function. Hence, the causal effect map between treatment di
and dj is

△dij = △di −△dj = µ−1
di − µ−1

dj . (2)

The causal effect map in Eqn. (2) is an analogy to the
ATE (E[Y (di)]− E[Y (dj)]) in the literature. However,△di ,
△dj and △dij are functions, but E[Y (di)], E[Y (dj)], and
E[Y (di)]− E[Y (dj)] are scalars. In Table 1, we summarize
the differences between the framework in our paper and in
the literature.
Remark 1.
1. Classically, the case “distribution over R” means that

a realization is a point (scalar or vector) drawing from
the distribution of the potential outcome, while the case

“distribution over distributions” means that the realiza-
tion is a distribution. For instance, let µ and σ be the
mean and standard deviation of a normal distribution,
and (µ, log σ) ∼ N (0, I2). If the realization (µ, log σ) of
a unit (e.g., a consumer) is (0.1,−0.5), then it means that
a collection of observations (e.g., spending amounts of all
orders) are drawn from N (0.1, e−1) for this unit.

2. △di(·) is a quantile function (inverse of CDF), so does
△dij (·). Further, we can explore the impact of between
treatment di and dj on the distributional outcome respec-
tively at a specific τ quantile level by△dij (·), i.e.,

△dij (τ) = △di(τ)−△dj (τ) = µ−1
di (τ)− µ−1

dj (τ).

Note that△dij (τ) differs from the quantile treatment ef-
fect (QTE) in the literature (e.g., (Machado and Mata
2005; Chernozhukov and Hansen 2005)).△dij (τ) is the
τ -quantiles difference of the barycenters under treatments
di and dj , but QTE is the τ -quantiles difference of the
potential outcome distributions under two treatments. It
is thus inappropriate to compare them or study△dij (τ)
using the approaches in the QTE literature. The visualized
difference of the two quantities is given in Figure 2 and 3.

We need to ensure △di is identifiable such that we can
estimate it from an observed dataset. It is also necessary
to simplify the calculation of µdi to address the computa-
tional complexity of optimal transport. Proposition 1 states
an equivalent form of△di without computing optimization
and guarantees that we can estimate it from the observed
dataset:
Proposition 1. Given the conditions in Definition 1 and
2, and Assumptions (1) - (3) hold, we have (1) △di =
E
[
Y(di)−1

]
; (2)△di is identifiable.

The first assertion gives a simpler way to compute △di ,
while the second assertion ensures that △di is identifiable.
We defer the proofs to Appendix D.

Estimators

Similar to the causal inference methods in the literature
(Horvitz and Thompson 1952; Chernozhukov et al. 2018),
we also propose three estimators to compute the causal
map △di , namely (1) Direct Regression (DR) estimator
(△di;DR), (2) Inverse Probability Weighting (IPW) estima-
tor (△di;IPW ), and (3) Double Machine Learning (DML)
estimator (△di;DML). Let πdi(X) = P{D = di|X} and
mdi(X) = E

[
Y−1|D = di,X

]
. Given that there are N

units. The estimators△di;DR,△di;IPW , and△di;DML are
given in Eqns. (3), (4), and (5) respectively:

1

n

n∑
s=1

mdi(Xs), (3)

1

n

n∑
s=1

1{Ds=di}

πdi(Xs)
(Y−1

s ), (4)

1

n

n∑
s=1

[
mdi(Xs) +

1{Ds=di}

πdi(Xs)
(Y−1

s −mdi(Xs))
]
. (5)

Theory and Algorithm

In practical scenarios, when using all the available units to
train the regression function mdi(Xs) and propensity score
function πdi(Xs), there is a risk of over-fitting. To mitigate
this issue, a cross-fitting technique, as introduced by (Cher-
nozhukov et al. 2018), is commonly employed. Along this
way, we also need to obtain the cross-fitting estimators of
△di according to Eqns. (3), (4), and (5).

We split the N units into K disjoint groups. Let the kth

group be Dk of size Nk, ∀k = 1, · · · ,K. Denoting D−k =
∪Kr=1,r ̸=kDr, we use D−k to obtain m̂k

di(X), π̂k
di(X), which

are the estimations of mk
di(X), πk

di(X) for the kth group. Ŷ is
the empirical estimation of Y . We then useDk to compute the

estimation of △k
di (i.e., △̂

k

di;DR, △̂
k

di;IPW , and △̂
k

di;DML)
according to Eqns. (6), (7), and (8) respectively. We thus

define △̂
k

di;DR, △̂
k

di;IPW , and △̂
k

di;DML in Eqns. (6), (7),
and (8) respectively
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1

Nk

∑
s∈Dk

m̂k
di(Xs) (6)

1

Nk

∑
s∈Dk

1{Ds=di}

π̂k
di(Xs)

Ŷ−1
s (7)

1

Nk

∑
s∈Dk

[
m̂k

di(Xs) +
1{Ds=di}

π̂k
di(Xs)

(Ŷ−1
s − m̂k

di(Xs))
]
. (8)

Denoting w ∈ {DR, IPW,DML}, the cross-fitting esti-
mators are △̂di;w such that

△̂di;w =
K∑

k=1

Nk

N
△̂

k

di;w. (9)

We study the consistency of △̂di;w. When w = DR or IPW ,
the results are deferred to Appendix C. When w = DML,
the consistency result is given in Theorem 1 while the proofs
and the notational meanings are deferred to Appendix D.
Theorem 1. Let m̃k

di(X) (m̂k
di(X)) be the estimate of

E[Y−1|D = di,X] using the true Y (estimated Ŷ) based
on D−k. Suppose that, for any k, ρ4π = E[|π̂k

di(X) −
πdi(X)|4], ρ4m = max{~m̃k

di − mdi~4, 1 ≤ i ≤ r} =

max{[
∫
∥m̃k

di(x) −mdi(x)∥2dFX(x)]2, 1 ≤ i ≤ r}. Un-
der the convergence assumptions in Appendix D, we have

1. ∥△̂di;DML−△di∥ = OP (N
− 1

2 +N− 1
2 ρπ +N− 1

2 ρm+
ρπρm).

2. If ρmρπ = o(N− 1
2 ), ρm = o(1) and ρπ = o(1), then√

N
(
△̂di;DML − △di

)
converges weakly to a centred

Gaussian process.

Theorem 1 not only gives the consistency of △̂di;DML, but
also gives the convergence speed of △̂di;DML. It is indeed a√
N -consistent estimator.
We can also investigate the

√
N -consistency of the DR

or IPW estimators. In fact, we can obtain the desired results
by setting 1{D=di} = 0 and (mdi , m̂k

di , m̃k
di) = (0, 0, 0) in

the proofs of Theorem 1 respectively. Last but not least, we
summarize the steps of computing △̂di;w in Algorithm 1.

Models
To estimate the target quantity △di , we need to estimate
several nuisance parameters accurately, e.g., Y−1, πdi(X),
and mdi(X). First, to estimate Y−1, we can estimate Y em-
pirically and invert the estimated Y (CDF) for each unit to
get the Ŷ−1. Second, πdi(X) is the propensity score that
can be estimated using the multi-class logistic regression,
random forest classifier, or feed-forward networks. Finally,
we can estimate the regression function mdi(X) by regress-
ing the outcome Y−1 on treatment D and covariates X via
a functional-on-scalar regression. The first two quantities
can be well estimated using the classical approaches. On
the other hand, the third quantity, mdi(X), is difficult to es-
timate accurately using the classical functional regression
approach. Specifically, the classical functional regression

Algorithm 1: Computations of △̂di;w

Require: The observations of (Ds,Xs,Ys)Ns=1.
Ensure: △̂di;w for w ∈ {DR, IPW,DML}.

1: Split (Ds,Xs,Ys)Ns=1 to K disjoint units groups Dk of
size Nk and form D−k.

2: Estimate Ŷ−1
s for each unit s.

3: for k ← 1 to K do
4: Regress D w.r.t. X based on D−k and obtain π̂k

di .
5: Regress Ŷ−1 w.r.t. (D,X) based on D−k and ob-

tain m̂k
di .

6: Compute △̂
k

di;w using Eqns. (6), (7) and (8) accord-
ing to w.

7: end for
8: Compute △̂di;w using Eqn. (9).

Figure 5: The proposed NFR Net.

(Ramsay and Silverman 2005) assumes that the regression
equation between outcome Y−1 and predictors (D,X) can
be approximated by a finite series of some pre-determined
basis functions, i.e., the response function Y−1(t) equals

D

v∑
l=1

[
γ0lϕl(t) +

n∑
j=1

Xjγjlϕl(t)

]
+ ϵ(t), (10)

where (D,X) = [D,X1, · · · , Xj , · · · , Xn] are predictors;
{ϕ1, . . . , ϕv} are basis functions, e.g., B-spline basis; γjl
with 0 ≤ j ≤ n and 1 ≤ l ≤ v are regression parameters;
and ϵ(t) is the noise term.

However, the relation between Y−1(t) and (D,X) may
not be additive as in Eqn. (10). Generally, the relationship
is non-linear and complex. To this end, we design Neural
Functional Regression (NFR) Net to address this issue. The
NFR Net consists of two parts: (1) the numerical layers, and
(2) the continuous layer (see Figure 5). Under our framework
and settings, the numerical layers aim to learn the u repre-
sentations F(D,X; θ) = [F1(D,X; θ), · · · ,Fu(D,X; θ)]⊤,
where each Fi(D,X; θ), 1 ≤ i ≤ u is a linear coeffi-
cient to constitute the target distribution. The representations
F(D,X; θ) is then processed by a continuous layer to output
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Figure 6: 10 instances of
simulated quantile function
(Y−1).

Figure 7: The spending distri-
bution of 10 consumers from
a e-commerce platform.

a function Ỹ−1, i.e.,

Ỹ−1(t; θ, {γij}) =
u∑

i=1

Fi (D,X; θ)
v∑

j=1

γijϕj(t), (11)

where {γij} now are trainable parameters and {ϕj(t)} are
pre-defined basis functions.

The model can be trained as follows: let L be the loss
metric (e.g., L1 or L2 loss), and our task is finding the optimal
θ, {γij} by minimizing the loss function L(θ, {γij}):

min
θ,{γij}

L(θ, {γij}) :=
∫

L(Ỹ−1(t; θ, {γij}), Ŷ−1(t))dt.

(12)
In practice, we can estimate the integral using the trapezoidal
rule/Simpson’s rule by taking any number of discrete quantile
points t.

Synthetic Experiment2

Data Generation Process Since the ground truth is unavail-
able in the real dataset, we simulate data using the following
data generation process for the sth unit to test our proposed
model similar to many other causal inference studies:

Y−1
s (Ds) = c+ (1− c)(E[D] +

√
Ds)×

n
2∑

j=1

exp(X2j−1
s X2j

s )
n
2∑

k=1

exp(X2k−1
s X2k

s )

B−1(αj , βj) + ϵs, (13a)

P{Ds = d | Xs} =
exp(γ⊤

d Xs)
r∑

w=1

exp(γ⊤
wXs)

. (13b)

In our experiment, we set n = 10. We assume that covari-
ates X1, X2 ∼ N (−2, 1), X3, X4 ∼ N (−1, 1), X5, X6 ∼
N (0, 1), X7, X8 ∼ N (1, 1), X9, X10 ∼ N (2, 1), and
ϵs ∼ N (0, 0.05). B−1(α, β) is the inverse CDF of Beta
distribution with the shape parameters α and β. We select
5 inverse Beta CDFs, where each one has different param-
eters to ensure the complexity of the distribution function.

2Our code is available at https://github.com/lyjsilence/The-
Causal- Impact-of-Credit-Lines-on-Spending-Distributions.

DR IPW DML

Lasso 0.124 ± 0.053 0.044 ± 0.021 0.038 ± 0.032
Ridge 0.118 ± 0.050 0.044 ± 0.021 0.034 ± 0.027

Elastic net 0.124 ± 0.053 0.045 ± 0.021 0.038 ± 0.032
MCP 0.118 ± 0.050 0.044 ± 0.021 0.034 ± 0.027

D/DML 0.300 ± 0.240 0.044 ± 0.021 0.037 ± 0.026
NFR 0.052 ± 0.027 0.044 ± 0.021 0.034 ± 0.026

Table 2: MAE between true and estimated causal effect maps
under various methods of regressing Ŷ−1 w.r.t. (D,X) (mean
± standard deviation with 50 trials). Best results are in bold.
The IPW results are similar because the same classifier (ran-
dom forest) is used to get the propensity scores.

The treatment D takes the value in {d1, d2, d3, d4, d5} with
a softmax distribution. c ∈ [0, 1] is the constant that controls
the strength of the causal relationship between treatment D
and outcome distribution Y−1. In one experiment, 5, 000 in-
stances are generated according to Eqns. (13a) - (13b). For
each unit s, 100 observations are sampled from the inverse
CDF using the inverse transform sampling method. Figure
6 summarizes 10 simulated instances, indicating that the in-
verse CDF of each instance varies widely.

Baselines In our experiment, we consider two aspects of
potential baseline methods. The first aspect is from the statis-
tical field, where approaches such as those presented in (Lin,
Kong, and Wang 2023) assume a linear relationship between
the functional output and the scalar input. They utilize regular-
ization techniques like lasso, ridge, and elastic net to estimate
the causal effect map. Additionally, (Chen, Goldsmith, and
Ogden 2016) addresses situations with a large number of co-
variates by using the group minimax concave penalty (MCP)
for variable selection and fitting. However, these methods in-
herently assume a linear form between the functional output
and scalar input, possibly overlooking the presence of non-
linear relationships in the data. The second aspect is from the
deep learning field, where we compare our model with classi-
cal Double/debiased machine learning (D/DML) proposed in
(Chernozhukov et al. 2018). This approach introduces a DML
estimator to investigate the causal impact of scalar input on
scalar outcome. To model the functional outcome, we con-
duct independent regressions at interesting quantiles using a
standard MLP. Subsequently, we concatenate all the quantile
counterfactuals to form a distribution.

Experiment Setting The classification and functional re-
gression models are trained separately. 5, 000 generated in-
stances are trained using 5-fold cross-fitting, i.e., 4, 000 in-
stances are used to train, and 1, 000 instances are used to
obtain the three estimators (i.e., DR, IPW, and DML estima-
tor). At last, we average the obtained estimators from the 5
folds as the final results. In the classification task, we use the
same classifier (i.e., random forest) to compute IPW for all
the estimators. The training details are given in Appendix E.

Evaluation Metric Since L(θ, {γij}) in (12) is continu-
ous, we discretize it and compare the mean absolute error
(MAE) between true causal effect map △dij (1 ≤ i, j ≤ 5)
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Quantiles Low Middle High Low→Middle Low→High

10% 28.0 (27.8, 28.3) 29.9 (29.8, 30.0) 30.6 (30, 31.2) 6.79%↑ 9.29%↑
20% 43.6 (43.4, 43.9) 47.4 (47.1, 47.8) 48.8 (47.9, 49.5) 8.72%↑ 11.93%↑
30% 58.7 (58.3, 59.0) 65.5 (65.1, 65.9) 67.5 (66.5, 68.4) 11.58%↑ 14.99%↑
40% 75.2 (74.7, 75.6) 86.8 (86.3, 87.2) 91.0 (90.0, 92.1) 15.43%↑ 21.01%↑
50% 94.9 (94.3, 95.6) 115.8 (114.9, 116.9) 122.4 (121.1, 123.8) 22.02%↑ 28.98%↑
60% 119.0 (118.2, 119.7) 150.8 (149.7, 152.0) 170.8 (167.4, 174.7) 26.72%↑ 43.53%↑
70% 155.1 (153.7, 156.4) 207.0 (205.6, 208.5) 256.0 (251.8, 261.5) 33.46%↑ 65.05%↑
80% 212.9 (210.8, 214.6) 325.6 (323.2, 328.3) 433.0 (424.4, 442.7) 52.94%↑ 103.38%↑
90% 381.0 (374.1, 386.7) 654.5 (650.7, 658.4) 1020.3 (1003.8, 1036.9) 71.78%↑ 167.80%↑

Table 3: The results of the causal map of three treatments at 9 quantiles (mean and 95% CI).

(computed from Eqns. (13a) - (13b)) and estimated causal
effect map △̂dij on 5 quantiles with levels ranging from 10%
to 90%. We repeat the experiment 50 times to report the mean
and standard deviation of MAE.

Experiment Results Table 2 presents a summary of the ex-
periment results (A table of quantiles 10%, 30%, 50%, 70%,
90%, and Average is given in Appendix). We observe several
key findings: Firstly, NFR Net demonstrates superior perfor-
mance compared to all statistical models, particularly on the
DR methods. This result can be attributed to the capability of
our proposed model to capture non-linear patterns between
covariates and the outcome distribution effectively. Secondly,
NFR Net outperforms the D/DML method. The advantage
stems from our ability to model the outcome as a function. In
contrast, D/DML treats each quantile as independent scalar
points, overlooking the continuous structure of the distribu-
tion. Lastly, DML can utilize the IPW estimator to correct
most of the bias in the DR estimator, and the DML estimator
demonstrates improved robustness compared to both the DR
and IPW estimators.

Empirical Experiment
E-commerce platforms face a significant challenge in com-
prehending the impact of credit lines on consumer spending
patterns, particularly in terms of the shift in spending distri-
bution caused by changes in the credit lines. To address this
issue, we employ our approach by leveraging data collected
from a large e-commerce platform. The platform assigns
distinct credit lines to users based on various factors such
as income, age, and past behaviors like shopping and de-
fault behaviors. Besides, the platform provides users with an
interest-free, one-month loan option for their purchases, with
the condition that the total loan amount must not exceed their
assigned credit lines.

We collect data from 4,043 platform users. The data com-
prises various variables, such as demographic information
(e.g., age, income, and location), purchasing behaviors (e.g.,
the total number of orders, the amount paid for each order),
and financial information (e.g., credit lines assigned by the
platform, the total number of loans, and the presence of de-
fault records). Appendix F displays a detailed statistical de-
scription. All the paid amounts of orders constitute a unique
spending distribution for each user (e.g., Figure 7). In our
empirical study, we investigate the causal maps when the

credit lines take values as Low (from 0 to 9,000), Middle
(from 9,000 to 15,000), and High (higher than 15,000).

In Table 3, we give 9 percentiles of the causal map△High,
△Middle, and△Low of all the consumers’ spending distribu-
tions if they are assigned to High, Middle, and Low credit
lines, respectively. Generally, the lower quantile of spend-
ing distribution stands for life necessities, while the higher
quantiles represent luxury goods. Our findings support prior
research (Aydin 2022; Soman and Cheema 2002), revealing
a positive correlation between credit lines and spending since
the causal effect maps△High−△Low and△Middle−△Low

are always positive at all quantiles. Additionally, we observe
that such an effect is heterogeneous across different quantiles.
Specifically, when the credit lines increase, the spending on
higher quantiles (e.g., higher than 70%) grows significantly
while the spending on lower quantiles increases relatively
slowly. For example, when credit lines change from Low to
High, the spending at 90% quantile increases from 381.0
to 1020.3 (increasing about 167.8%) while the spending at
10% quantile only increases from 28.0 to 30.6 (increasing
about 9.3%). This suggests that users tend to increase their
spending on luxury goods or services when they are able to
access higher credit.

Conclusion
We study the causal inference on distributional outcomes with
multiple treatments in the Wasserstein space. Our target quan-
tity, the causal effect map, is the analogy to ATE in classical
causal inference literature. We then propose three estimators,
i.e., DR, IPW, and DML estimators, and study their asymp-
totic properties. Our proposed NFR Net captures complex
patterns among covariates, treatments, and functional out-
comes, which is verified by the synthetic experiment. More-
over, we apply it to a credit dataset and explore the causal
relationship between credit lines and spending distributions.
We find that when credit lines increase, the spending at every
quantile level increases, with a more significant change at
higher quantiles.

Generally, the credit lines is measured continuously, and
a potential future research direction involves investigating
causal inference in the context of continuous treatment. Ad-
ditionally, the realized distribution can be multivariate, such
as the joint distribution of spending behavior and credit risk,
providing an opportunity to explore such scenarios.
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