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Abstract

Byzantine-robust learning has emerged as a
prominent fault-tolerant distributed machine
learning framework. However, most techniques
focus on the static setting, wherein the identity of
Byzantine workers remains unchanged through-
out the learning process. This assumption fails
to capture real-world dynamic Byzantine behav-
iors, which may include intermittent malfunc-
tions or targeted, time-limited attacks. Address-
ing this limitation, we propose DynaBRO - a
new method capable of withstanding any sub-
linear number of identity changes across rounds.
Specifically, when the number of such changes is
O(VT) (where T is the total number of training
rounds), DynaBRO nearly matches the state-of-
the-art asymptotic convergence rate of the static
setting. Our method utilizes a multi-level Monte
Carlo (MLMC) gradient estimation technique ap-
plied at the server to robustly aggregated worker
updates. By additionally leveraging an adaptive
learning rate, we circumvent the need for prior
knowledge of the fraction of Byzantine workers.

1. Introduction

Recently, there has been an increasing interest in large-
scale distributed machine learning (ML), where multiple
machines (i.e., workers) collaboratively aim at minimizing
some global objective under the coordination of a central
server (Verbraeken et al., 2020; Kairouz et al., 2021). This
approach, leveraging the collective power of multiple com-
putation nodes, holds the promise of significantly reducing
training times for complex ML models, such as large lan-
guage models (Brown et al., 2020). However, the growing
reliance on distributed ML systems exposes them to poten-
tial errors, malfunctions, and even adversarial attacks. These
Byzantine faults pose a significant risk to the integrity of the

"Department of Electrical and Computer Engineering, Tech-
nion, Haifa, Israel. Correspondence to: Ron Dorfman <rdorf-
man @campus.technion.ac.il>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

learning process and could lead to reduced reliability and
accuracy in the predictions of the resulting models (Lamport
et al., 2019; Guerraoui et al., 2023).

Due to its significance in distributed ML, Byzantine fault-
tolerance has attracted considerable interest. Indeed, many
prior works have focused on Byzantine-robust learning, aim-
ing to ensure effective learning in the presence of Byzantine
machines. These efforts have led to the development of al-
gorithms capable of enduring Byzantine attacks (Feng et al.,
2014; Su & Vaidya, 2016; Blanchard et al., 2017; Chen
et al., 2017; Alistarh et al., 2018; Guerraoui et al., 2018;
Yin et al., 2018; Allen-Zhu et al., 2020; Karimireddy et al.,
2021; 2022; Farhadkhani et al., 2022; Allouah et al., 2023).

While the existing body of research has significantly ad-
vanced the understanding of Byzantine-robust learning, a
notable gap persists in the treatment of the problem. The
vast majority of research in this area has focused on the static
setting, wherein the identity of Byzantine workers remains
fixed throughout the entire learning process. Nevertheless,
real-world distributed learning systems may often encounter
dynamic Byzantine behaviors, where machines exhibit er-
ratic and unpredictable fault patterns. Despite the impor-
tance of these scenarios, the investigation of robustness
against such dynamic behaviors remains underexplored.

In federated learning, for instance, the concept of partial par-
ticipation inherently introduces a dynamic aspect (Bonawitz
et al., 2019; Kairouz et al., 2021). Workers typically join
and leave the training process, leading to a scenario where a
Byzantine worker might be present in one round and absent
in the next. In fact, the same node might switch between
honest and Byzantine behaviors; such fluctuations could
stem from strategic manipulations by an adversary seeking
to evade detection, or due to software updates that inadver-
tently trigger or resolve certain security vulnerabilities. An-
other domain includes volunteer computing paradigms (Ki-
jsipongse et al., 2018; Ryabinin & Gusev, 2020; Atre et al.,
2021), characterized by a large pool of less reliable workers
and regular occurrences of node failures. Prolonged training
times of complex ML models in these settings often result
in intermittent node failures, typically due to hardware is-
sues, network instabilities, or maintenance activities. These
domains, where dynamic Byzantine behaviors are prevalent,
pose challenges unaddressed by the static approach.
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Previous research has established that convergence is
unattainable when Byzantine workers change their iden-
tities in each round (Karimireddy et al., 2021).! How-
ever, it remains unclear how a limited number of identity-
switching rounds affects the convergence rate. This work
addresses this challenge by introducing a new method we
term DynaBRO. We establish its convergence, noting that
it maintains the asymptotic convergence rate of the static
setting as long as the number of rounds featuring Byzantine
behavior alterations does not exceed O(v/T), where T is
the total number of training rounds. Beyond this threshold,
the convergence rates begin to degrade linearly with the
increase in the number of such rounds.

The key ingredient of our approach is a multi-level Monte
Carlo (MLMC) gradient estimation technique (Dorfman &
Levy, 2022; Beznosikov et al., 2023), serving as a bias-
reduction tool. In Section 3, we show that combining it
with a large class of aggregation rules (Allouah et al., 2023)
mitigates the bias introduced by Byzantine workers in the
static setting, an analysis of independent interest. Transi-
tioning to the dynamic setting in Section 4, we refine the
MLMC estimator with an added fail-safe filter to address its
inherent susceptibility to dynamic Byzantine changes that
could introduce a significant bias. This modification is cru-
cial due to the estimator’s reliance on multiple consecutive
samples. Then, in Section 5, we shift our focus to optimality
and adaptivity. The introduction of a new aggregation rule
enables us to derive asymptotically optimal convergence
bounds for a limited number of identity-switching rounds.
Furthermore, by employing an adaptive learning rate, we
eliminate the need for prior knowledge of the objective’s
smoothness and the fraction of Byzantine workers. Finally,
in Section 6, we explore the practical aspects and benefits of
our approach through experiments on image classification
tasks with two dynamic identity-switching strategies.

2. Preliminaries and Related Work

In this section, we formalize our objective, specify our as-
sumptions, and overview relevant related work.

2.1. Problem Formulation and Assumptions

We consider stochastic optimization problems, where the

objective is to minimize the expected loss given an unknown

data distribution D and a set of loss functions {z — F(-;£)}

parameterized by ¢ ~ D. Formally, our goal is to solve:
min f(z) = E¢up [F(26)] )]
e

where K C R? is the optimization domain. To this end,

we assume there are m workers (i.e., computations nodes),

'"The lower bound of Karimireddy et al. (2021) applies when
the number of Byzantines is logarithmic in the number of rounds.

each with access to samples from D. This homogeneous
setting was previously studied in the context of Byzantine-
robust learning (Blanchard et al., 2017; Alistarh et al., 2018;
Allen-Zhu et al., 2020), and it is realistic in collaborative
learning scenarios, where workers may have access to the
entire dataset (Kijsipongse et al., 2018; Diskin et al., 2021;
Gorbunov et al., 2022). For each round ¢, we define G, C
{1,...,m} as the set of honest workers, adhering to the
prescribed protocol; the remaining workers are Byzantine
and may send arbitrary vectors to the server. Notably, in the
static setting, the identity of honest workers is fixed over
time, i.e., G; is identical across rounds. Allen-Zhu et al.
(2020) refer to this dynamic model as ID relabeling. For
simplicity, we assume the fraction of Byzantine workers is
fixed across rounds and denote itby § :== 1—1|G1|/m < 1/2.

We focus on smooth minimization, namely, we assume the
objective f is L-smooth, i.e., for every x,y € IC, it holds
that (y) < f(x) + V(@) (y — 2) + § |ly — z|*. Addi-
tionally, we will adopt one of the following two assumptions
regarding the stochastic gradient noise.

Assumption 2.1 (Bounded variance). For every z € IC,
Eewp||VF(2;8) = VF(@)|* < o” .

This standard assumption in Byzantine-robust optimiza-
tion (Karimireddy et al., 2021; 2022; Farhadkhani et al.,
2022; Allouah et al., 2023) is utilized in Section 3 to estab-
lish intuition in the static setting. For the dynamic case, we
require a stronger assumption of deterministically bounded
noise (Alistarh et al., 2018; Allen-Zhu et al., 2020).2

Assumption 2.2 (Bounded noise). Forevery z € K, £ ~ D,
IVF(z;6) = V()| <V.

We provide convergence bounds for both convex and non-
convex problems, presenting only non-convex results for
brevity and moving convex analyses to the appendix.? For
the convex case, we assume a bounded domain, as follows:

Assumption 2.3 (Bounded domain). The domain /C is con-
vex, compact, and for every =,y € K: ||z — y|| < D.

Notations. Throughout, ||| represents the Lo norm, and
forany n € N, [n] := {1,...,n}. We denote any optimal
solution of (1) by * and its corresponding optimal value
by f*. Additionally, we define F; as the filtration at round
t, encompassing all prior randomness. Expectation and
probability are denoted by E and P, respectively, with [,
and PP, indicating their conditional counterparts given J.
Finally, we use standard big-O notation, where O(-) hides
numerical constants and @() omits poly-logarithmic terms.

>While our analysis could extend to sub-Gaussian noise (up
to logarithmic factors), it becomes more technical. Thus, follow-
ing Allen-Zhu et al. (2020), we opt for bounded noise to ensure
simplicity and technical clarity (see footnote 3 therein).

3Since global non-convex minimization is generally intractable,
we focus on finding an approximate stationary point.
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Table 1. Comparison of history-dependence in different Byzantine-robust techniques.

Method Per-worker Cost Window Size Window Type

ByzantineSGD (Alistarh et al., 2018) T T Deterministic

SafeguardSGD (Allen-Zhu et al., 2020) T O(T>/8) Deterministic

Worker-momentum (e.g., Karimireddy et al., 2021) T @(ﬁ ) * Deterministic
MLMC (ours) O(TlogT)* O(log T)* Stochastic

* For momentum parameter o := 1 — 3 oc 1/3/T.
T In expectation.

2.2. Related Work

The importance of history for Byzantine-robustness. It
has been well-established that history is critical for achiev-
ing Byzantine-robustness in the static setting. Karimireddy
et al. (2021) were the first to formally prove that any memo-
ryless method—where the update for each round depends
only on computations performed in that round—may fail
to converge. As we detail in Section 3.1, the importance
of history arises from the ability of Byzantine workers to
inject in each round bias proportional to the natural noise
of honest workers, which is sufficient to circumvent con-
vergence. Thus, employing a variance reduction technique,
requiring some historical dependence, is crucial to mitigate
the injected bias. Consequently, they proposed applying a
robust aggregation rule to worker momentums instead of
directly to gradients. By setting the momentum parame-
terasa:=1—[F o1/ \/T, they achieved state-of-the-art
convergence guarantees in the presence of Byzantine work-
ers. This momentum method has emerged as the leading
approach for Byzantine-robust learning, with its efficacy
also demonstrated through empirical evidence (El-Mhamdi
et al., 2020; Farhadkhani et al., 2022; Allouah et al., 2023).

Additional history-dependent methods include Byzanti-
neSGD (Alistarh et al., 2018) for convex minimization and
SafeguardSGD (Allen-Zhu et al., 2020) for finding local
minima of non-convex functions. Both techniques esti-
mate the set of honest workers by tracking worker statistics
(e.g., gradient-iterate products) and applying some median-
based filtering. While ByzantineSGD relies on the entire
history, SafeguardSGD uses information within windows of
Ty € O(T"/®) rounds and incorporates a reset mechanism.
Consequently, SafeguardSGD can withstand Byzantine iden-
tity changes occurring between these windows. However,
there is no reason to assume that ID relabeling occurs only at
specific rounds, and our method can handle such changes at
any round, without restrictions on when the changes happen.

Although history dependence is crucial in static environ-
ments, it poses significant challenges in dynamic settings,
in which history may become unreliable. For example, the
computations of a Byzantine worker turning honest may
still be influenced by prior misbehaviors if the history de-

pendence window encompasses those rounds. Therefore,
methods that rely on long historical information are vulnera-
ble to such identity changes. Our approach relies on MLMC
gradient estimation technique, which confines the history
window size to O(log T') in expectation; refer to Table 1 for
a comparison between different history-dependent methods.

Byzantine-robustness and worker sampling. To date,
we are only aware of two works that address the challenges
of the dynamic setting (Data & Diggavi, 2021; Malinovsky
etal., 2023), where the dynamic behavior stems from worker
sampling, i.e., different workers may actively participate in
each training round. Data & Diggavi (2021) were the first to
study this challenging setting, providing convergence results
for both strongly- and non-convex objectives. Yet, their
upper bounds include a non-vanishing term proportional to
the gradient noise, which is sub-optimal in the homogeneous
setting. Malinovsky et al. (2023) improved upon previous
limitations, proposing Byz-VR-MARINA-PP, which can
handle some rounds dominated by Byzantine workers. Their
work follows a rich body of literature on Byzantine-robust
finite-sum minimization (Wu et al., 2020; Zhu & Ling, 2021;
Gorbunov et al., 2022). Nonetheless, these studies do not
provide excess loss (i.e., generalization) guarantees.

MLMC estimation. Originally utilized in the context of
stochastic differential equations (Giles, 2015), MLMC meth-
ods have since been applied in various ML and optimization
contexts. These include, for example, distributionally robust
optimization (Levy et al., 2020; Hu et al., 2021) and latent
variable models (Shi & Cornish, 2021). Asi et al. (2021)
employed an MLMC optimum estimator for calculating
proximal points and gradients of the Moreau-Yoshida enve-
lope. Specifically for gradient estimation, MLMC is useful
for efficiently generating low-bias gradients in scenarios
where obtaining unbiased gradients is either impractical or
computationally intensive, e.g., conditional stochastic op-
timization (Hu et al., 2021), stochastic optimization with
Markovian noise (Dorfman & Levy, 2022; Beznosikov et al.,
2023), and reinforcement learning (Suttle et al., 2023).
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3. Warm-up: Static Robustness with MLMC

In this section, we study the static setting where Byzantine
machine identities are fixed across time. We develop intu-
ition in Section 3.1, illustrating how Byzantine machines
can hinder convergence. In Section 3.2, we introduce our
MLMC estimator, present its bias-variance properties, and
highlight its role as a bias reduction technique. Finally, in
Section 3.3, we show how integrating the MLMC estimator
with a robust aggregation rule implies Byzantine-robustness.

3.1. Motivation

We examine the distributed stochastic gradient descent up-
date rule, defined as x4 11 = = — DA(ge1,- - - » Gt,m ), With
n > 0 as learning rate, A : R4*™ — R? as an aggregation
rule, and g; ; representing the message from worker ¢ € [m]
at time ¢ € [T']. In the Byzantine-free case, A typically aver-
ages the inputs, yet a single Byzantine worker can arbitrarily
manipulate this aggregation result (Blanchard et al., 2017).

Ideally, A would isolate the Byzantine inputs and average
the honest inputs, yielding a conditionally unbiased gradient
estimate with reduced variance. However, Byzantine work-
ers can blend in by aligning their messages closely with
the expected noise range of honest gradients. Thus, they
can inject a bias that is indistinguishable from the natural
noise inherent to honest messages, thereby hindering con-
vergence. Specifically, if honest messages deviate by o from
the true gradient, Byzantine workers can introduce a bias of
O(0+/6) at each round, effectively bounding convergence to
a similarly scaled neighborhood (Ajalloeian & Stich, 2020).

Addressing this challenge, a straightforward mitigation strat-
egy might involve all honest workers computing stochastic
gradients across large mini-batches. This approach reduces
their variance, thereby shrinking the feasible ‘hiding region’
for Byzantine messages. As we establish in Appendix A,
theory suggests a mini-batch size of Q(T") is required to
ensure sufficiently low bias. However, this approach proves
to be extremely inefficient, necessitating an excessive total
of Q(T?) stochastic gradient evaluations per worker.

Instead of implicitly reducing Byzantine bias through honest
worker variance reduction, we propose a direct bias reduc-
tion strategy by employing an MLMC gradient estimation
technique post-aggregation, i.e., to the robustly aggregated
gradients. In the next section, we introduce the MLMC esti-
mator and establish its favorable bias-variance properties.

3.2. MLMC Gradient Estimation

Our MLMC estimator utilizes any mapping M ; : R4xN —
R? that, given a query vector = and a budget N (in terms of
stochastic gradient evaluations), produces a vector whose
mean squared error (MSE) in estimating V f () is inversely

proportional to N. Formally, for some ¢ > 0, we have

2
E Mz, N) - V()| < CN vz eR:LNeN. (2)

The MLMC gradient estimator is defined as follows:
Sample J ~ Geom(1/2) and, denoting g7 := M ¢ (x, 27), set

0 2J (gJ _gJ—l)7 2J < T
0, otherwise

The next lemma details its properties (cf. Dorfman & Levy,
2022, Lemma 3.2; and Appendix B).

Lemma 3.1. For M satisfying Equation (2), we have that

1. Bias(gMMC) := |[EgMMC — V f(2)|| < /2¢2/T.
2. Var(gMMC) = IE||gMLMC—EgMLMCH2 < 14c%logT.

3. The expected cost of constructing gM™MC is O(log T).

This result implies that we can use M to construct a gradi-

ent estimator with: (1) low bias, proportional to 1/ VT (2)
near-constant variance; and (3) only logarithmic cost.

3.3. Byzantine-Robustness with MLMC Gradients

Next, we show that combining the MLMC estimator with a
robust aggregation rule ensures Byzantine-robustness. We
consider (4, 5)-robust aggregation rules, a concept recently
introduced by Allouah et al. (2023), which unifies preceding
formulations like (0max, ¢)-RAgg (Karimireddy et al., 2022).

Definition 3.2 ((d, ks)-robustness). Let & < 1/2 and k5 > 0.
An aggregation rule A is (9, k;5)-robust if for any vectors
g1s s gm, and any set S C [m] of size (1 — §)m, we have

— 2 ks — 2
A1, -, gm) — Fs]| S@ZIIgi—gsll :
i€S

where Gg = |—é‘ > ics Ji-

This definition includes, for example, coordinate-wise me-
dian (CWMed, Yin et al., 2018) and geometric median (Pil-
lutla et al., 2022). The lemma below shows that robustly ag-
gregating mini-batch gradients from honest workers yields a
mapping satisfying Equation (2) with ¢? = 202 (/{5 + %)
Lemma 3.3. Consider z € K andletgY ..., g bem vec-
tors such that Vi € G, g is a mini-batch gradient estimator
based on N i.i.d samples, i.e., g~ = % Z,ﬁ[:l VE(z;€),

where £ Hdp, Then, under Assumption 2.1, any (9, ks)-
robust aggregation rule A satisfies

202 1
B A ) - V@ < 5 (st )
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Algorithm 1 Byzantine-Robust Optimization with MLMC

Input: Initial iterate z; € RY,
fort=1,...,Tdo
Draw J; ~ Geom(1/2)
for i € [m] in parallel do
for j € {0,J; — 1, J;} do
Compute 77 ; < 57 Sp_y VF(wi3&L,)
end for
Send (gt 79 ggtl_l
end for
for j € {0,J, — 1, J;} do
gl AFi1s- - F1m)
end for

learning rate 7.

,g;]‘L) if i € G, else send (x, *, *)

// robust aggregation

=0 (@\ijt - /g\Jt 1)7 Ji < Jmax= Llog TJ
gt < 9¢ + .
0, otherwise.

zpp1 — i (ze — nge)
end for

Building on this result, we propose Algorithm 1. In each
round ¢ € [T'], honest workers compute and send mini-batch
gradients of sizes 1, 27¢~1, and 27¢, with .J; ~ Geom(/2).
Then, the server applies a robust aggregation rule to each
group of gradients and subsequently constructs an MLMC
estimator as in Equation (3) to perform an SGD update. The
next result confirms the convergence of Algorithm 1 for
non-convex functions; its full proof and convex analysis are
deferred to Appendix C, with a proof sketch provided here.

Theorem 3.4. Under Assumption 2.1, with a (9, kg)-robust
aggregator A, consider Algorithm | with learning rate given

byn = min{ﬁ7 %} where v = kg + % and
Ay = f(x1) — f*. Denoting V; =V f(x;), it holds that

T 2
1 o LA02ylogT  2(LA; + 20%7)
72 E <164/ .
T4 IVell” <16 T + T

When k5 € O(0), e.g., for CWMed combined with Nearest
Neighbor Mixing (Allouah et al., 2023), the rate in Theo-
rem 3.4 is consistent with the state-of-the-art convergence
guarantees (Karimireddy et al., 2021; Allouah et al., 2023),
up to a y/log " factor. Moreover, the expected per-worker
sample complexity is O(T log T'), representing a modest in-
crease of only a log T factor over existing methods. Yet, our
approach is conceptually different that prior work. Instead
of implicitly reducing Byzantine-induced bias through hon-
est worker variance reduction, we use direct bias reduction
strategy by constructing MLMC gradients post-aggregation.

Proof Sketch. For n < one can show that the SGD

1
7

updates X411 =1

Z]EHVtII < & + —ZEVQ

— ng; satisfy (cf. Lemma A.2)

T
2
ZEHth
t=1

“
where b, = Eg; — V, and V2 := E||g; — Eg;||* are the
bias and variance of g, respectively. Combining Lemma 3.1
with Lemma 3.3 implies that for every ¢ € [T], we have

o] < 20\/? and V2 <280%ylogT . (5)

Plugging these bounds and tuning 7 concludes the proof. [

4. DynaBRO: Dynamic Byzantine-Robustness

In this section, we transition to the dynamic setting, demon-
strating how a slightly modified version of Algorithm 1
endures a non-trivial number of rounds with ID relabeling
(i.e., identity changes). This modification involves adding
a fail-safe filter designed to mitigate potential bias from
identity switches during the MLMC gradient construction.

Since the MLMC gradient in round ¢ depends solely on 27¢
computations per-worker in that round, if identity changes
occur only between rounds, e.g., when only communications
could be altered, then Algorithm 1 can be seamlessly ap-
plied in the dynamic setting and our analysis remains valid.
However, Byzantine-robustness addresses a broader range
of failures, where identity changes may also arise during dif-
ferent gradient computations within a round. For instance,
in data poisoning attacks (Huang et al., 2020; Schwarzschild
et al., 2021), some gradients for the same worker might be
contaminated while others remain clean, depending on the
integrity of the sampled data. To address this challenge,
we propose a fail-safe filter specifically designed for the
MLMC gradient. Initially, we slightly adjust our notation:
we denote by gf the set of honest workers in round ¢, at
the k-th gradient computation, with k£ € [2" t]. In addition,

J
we define 7, .= {t : G} =---= G} as the set of static
rounds, where worker identities remain fixed within the
round, and 7,4 :=[T]\ 75 indicates the set of dynamic rounds.

MLMC fail-safe filter. Recall the MLMC gradient for-
mula for J; < |logT'|, g; = g9 +27(§{*—g;/*"). Its bias-
variance analysis in the static case hinges on Lemma 3.3,
which asserts that for each level j, the squared distance
between g] and g} s proportional to 277. However,
this lemma is not applicable in dynamic rounds due to the
absence of a consistent set of honest workers. Since the
MLMC elements of a worker, g,;f 271 and g;{ ¢, are averages of
gradients computed during the round, even a single instance
of Byzantine behavior could compromise them. This might
disrupt the expected trend of decreasing distances between
aggregated gradients at consecutive levels. To counteract
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Algorithm 2 DynaBRO (Dynamic Byzantine-Robust Optimization)

Input: Initial iterate 7; € RY, learning rate sequence {1; },,, universal coefficient C' := /8log (16m?2T) .

fort=1,...,T do
Draw J; ~ Geom(1/2)
fork=1,...,27t do
for ¢ € [m] in parallel do

Compute and send g, <= VF(z; &) if i € GF, else send

end for
end for
for i € [m] in parallel do

. ; .
Compute g/ ; < > Zizl gﬁi forj € {0,J; — 1, J;}

end for
for j € {0,J, — 1, J;} do 4
Option 1: g7 + A(gﬂjl, . ,gg’m), ce =/
Option 2: G} < MFM(g] ,, ...
end for

Gl TH=2CV/V20), cg =612

Il Ais (0, kg)-robust; v := 2k4 ,17

/l See Algorithm 3

Define fail-safe event & = {H’g\;]’ — 37N < (14 V2)eeCV)V 2Jt}

. ~0 2Jt (./g\ijt — 9t
Construct MLMC gradient g; < g; + 0
Update 441 < ic(zt — nege)
end for

~Jt—1

), if J; < |logT| and &; holds

otherwise.

this potential manipulation, we introduce an event &; to
verify that this distance remains within expected bounds:

&= {la a7 < L+ VROV VT L ©)

where C' := 4/8log (16m2T). If & holds, we proceed with

the standard MLMC construction; otherwise, we revert to
a simpler aggregated gradient using a single sample per-
worker, similar to when J; > [logT'| (see Algorithm 2).
The parameter c¢ is set to ensure that & holds with high
probability in static rounds, where this modification con-
tributes only a lower-order term to the bias. In dynamic
rounds, it restricts the bias to a near-constant level.

The convergence of our modified algorithm is established in

the following theorem, detailed in Appendix D.

Theorem 4.1. Under Assumption 2.2, with a (9, ks)-robust

aggregator A, consider Algorithm 2 with Option 1 and with
VAL

a fixed learning rate 1 := min {730\2 T TTosT’ L }, where

v = 2ks + = and Ay == f(x1) — f*. Then, it holds that

T
1 2 LA1vlogT
= E <12 —_—
T; IVF(@)I” <120V ==

2LA| +9C%V?y
e

where C := /8log (16m?2T).

When there are no identity switches during gradient com-
putations within the same round (i.e., |74| = 0), we revert

74| log T

16022
+ Viy—r

to the rate established in Theorem 3.4 for the static setting,
but with o effectively replaced by C'V due to differing noise
assumptions. The bounded noise assumption allows the
application of a concentration inequality, ensuring that &;
occurs with high probability in static rounds. When identity
switches are present, convergence is still assured, provided
that the number of identity-switching rounds is sub-linear.
Specifically, Theorem 4.1 leads to the subsequent corollary.

Corollary 4.2. The asymptotic convergence rate implied by
Theorem 4.1 is given by

liE”Vf(xt)HQé@ Vv w-i-lﬁv@ )
T T T

Thus, Algorithm 2 can withstand 74| € O(\/T/~) dy-
namic rounds (omitting dependence on L, A1, and V), while
matching the static convergence rate. Concretely, when

Ks € O(0), this rate becomes O (V LA, (6 + 1/m)/T).

Proof Sketch. Following the methodology of Theorem 3.4,
we bound & 27 E[Vf(x)||* as in Equation (4). The
bias and variance bounds for g; are detailed in Lemma D.4.
We highlight key differences from the static setting: in static
rounds, the bias is similarly bounded with an additional
lower-order term, reflecting instances where & does not
hold. In dynamic rounds, &; limits the expected distance be-
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tween aggregated gradients at consecutive levels as follows:
~j—1
Et—l[”gt -9 ']1st(j)} =

PURR , V2y
i 16 - 6 PIE)] ) €0 (5 ) |
where &;(j) is defined as in Equation (6) given J; = j.
Taking expectation w.r.t J; leads to

MSE, == E,_1|lg: — Vf(z)]* € O(V?y) .

Consequently, the bias and variance are bounded as
O(V,/7) and O(V?7), respectively. Substituting these
bounds and setting 1 completes the proof. |

When worker-momentum fails. As detailed in Ap-
pendix E, the worker-momentum approach may fail when
Byzantine workers change identities. By meticulously craft-
ing a momentum-tailored dynamic attack that leverages the
momentum parameter and exploits its diminishing effect
on past gradients, we can induce sufficient drift (i.e., bias)
across all momentums simultaneously. This strategy re-
quires only O(+/T) rounds of identity switches, which our
method can withstand, as shown in Corollary 4.2. It remains
an intriguing open question whether the worker-momentum
method can be augmented with a mechanism similar to our
fail-safe filter to handle identity changes.

5. Optimality and Adaptivity

While we have demonstrated convergence for Algorithm 2
when employing a general (4, x5)-robust aggregator, this
class of aggregators does not ensure optimal convergence un-
der the bounded noise assumption. This limitation arises be-
cause the most effective aggregator features k5 € O(J) (Al-
louah et al., 2023), suggesting that the Byzantine-related
error term scales with /d/7 at best. Conversely, the opti-
mal scaling under this noise assumption is proportional to
5/\/T (Alistarh et al., 2018; Allen-Zhu et al., 2020).

In this section, we introduce the Median-Filtered Mean
(MFM) aggregator. Although it does not meet the (0, k5)-
robustness criteria, it facilitates near-optimal convergence
rates. Additionally, by employing an adaptive learning rate,
we eliminate the need for prior knowledge of the smoothness
parameter and the fraction of Byzantine workers, which is
typically necessary to determine the learning rate.

Median-Filtered Mean. Consider vectors gi,...,gm,
and a threshold parameter 7. Our proposed aggregation
method, outlined in Algorithm 3, computes the mean of vec-
tors within 7 -proximity of a representative median vector,
Jmed- This median is chosen to ensure that the majority of
messages fall within a 7 /2 radius of it. If no such median
vector exists, i.e., if there is no vector around which at least

Algorithm 3 Median-Filtered Mean (MFM)
Input: Vectors g1, ..., g, threshold 7.
M {i€[m]:[{jelm]:lg;— gl <7/2} > m/2}
if M # () then

Jmed < g; for some i € M
g+ {Z € [m] : ”97 - gmed” < T}
g = Gl Zie@ 9i
else
g« 0
end if
Return: g

half of the other messages lie within a 7 /2 radius, the algo-
rithm defaults to outputting the zero vector. We note that a
similar mechanism for gradient estimation was previously
used by Alistarh et al. (2018); Allen-Zhu et al. (2020).

In Appendix F.1, we demonstrate that the MFM aggregator
does not satisfy the (4, k5)-robustness criteria. Yet, by ap-
propriately setting the threshold parameter 7, we achieve a
superior asymptotic bound on the distance between aggre-
gated and true gradients in static rounds. This leads to an
improved convergence rate, as we detail later. What follows
is an informal statement of Lemma F.3.

Lemma 5.1 (Informal). Consider the setting of Lemma 3.3,
replacing Assumption 2.1 with Assumption 2.2, and let
gN = MFM(gY ..., gN; TN) be the output of Algorithm 3
with TN € ©(V/V/N). Then, with high probability,

I8 — Vi@ 60<V2 (‘5”;)) .

Conversely, a (4, Ks) robust aggregator yields a worse

asymptotic bound of O (/@5 + 1)); see Lemma D.1.

Adaptive learning rate. For some 79 > 0, we con-
sider the following version of the AdaGrad-Norm learning
rate (Levy et al., 2018; Ward et al., 2020; Faw et al., 2022):
= ——— . ™

2= 19l

It is well-known that AdaGrad-Norm adapts to the gradient’s
variance and the objective’s smoothness, achieving the same
asymptotic convergence rates as if these parameters were
known in advance (Kavis et al., 2022; Attia & Koren, 2023).
Unlike the specifically tuned learning rate in Theorem 4.1,
this adaptive learning rate does not incorporate V, L, or J.
Yet, our method still requires knowledge of the noise level VV
to set the MFM threshold. While it may initially seem that §
is also necessary for configuring the parameter c¢ within the
event &, we can adjust c¢ to be independent of J by trivially
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bounding it. Thus, our method effectively adapts to both the
smoothness L and the fraction of Byzantine workers §.

We now present the convergence result for Algorithm 2
when employing the MFM aggregator (Option 2) alongside
the AdaGrad-Norm learning rate. For ease of analysis, we
consider problems with bounded objectives, such as neural
networks with bounded output activations, e.g., sigmoid or
softmax (cf. Appendix H for a detailed analysis).

Theorem 5.2. Suppose Assumption 2.2 holds and f is
bounded by M (i.e., max, |f(z)] < M). Considering Al-
gorithm 2 with Option 2 and the AdaGrad-Norm learning
rate as given in Equation (7), define ¢ = % + noL. Then,

T =
1 2 5 7, ¢, el
T;Enwmw 60<<v FtE V]

where 7 = 3262 + %

In contrast to Theorem 4.1, the third term, associated with
the number of dynamic rounds, lacks a factor of 4 due to our
adjustment of the parameter cg to O(1) instead of O(/7).
Had we utilized the latter, as in Option 1, a similar bound
could be achieved, but it would necessitate prior knowledge
of . Consequently, the absence of this 7 factor restricts
the number of dynamic rounds we can withstand without
compromising convergence to |74] € O(v/3T), a more
restrictive bound compared to Corollary 4.2, as detailed
in Corollary H.5. With this more restrictive number of
dynamic rounds, we achieve a (near-)optimal convergence

rate of O <V (02 + 1/m)/T) This observation raises a

compelling open question: Does adaptivity inherently lead
to decreased robustness against Byzantine identity changes?

Proof Sketch. Our proof mirrors the approach used in Theo-
rem 4.1, with two key differences. First, using the AdaGrad-
Norm learning rate leads to G2 = ZZ;I IV £ (z0)||” ex-
hibiting a ‘self-boundness’ property, in contrast to the non-
adaptive, learning rate-dependent bound in Equation (4).
Lemma G.4 formalizes this property, indicating:

T
EG < 2¢( | Y EVZ + \2ES3 + /2GS | +ES3 |
t=1

where 5% = Zle ||b¢]|%. Secondly, adjusting cg to O(1)
results in slightly different bias and variance bounds in
dynamic rounds, lacking 7 factors. Specifically, we have:*

e O veelO0)  tem
Tomy). “E\002), ter

Applying these bounds, solving for EG?2., and dividing by

T yields the final bound. ]

teTy
tETS7

“Here, we ignore the low-probability event where the MFM
aggregator outputs zero. See Lemma H.2 for a formal statement.

6. Experiments

In this section, we provide numerical experiments to eval-
uate our approach. In our experiments, we aim to demon-
strate: (1) the trade-off between an algorithm’s history
window size dependence and its susceptibility to dynamic
Byzantine changes; and (2) the benefit of our MLMC-based
method compared to the prominent worker-momentum ap-
proach (Karimireddy et al., 2021; Farhadkhani et al., 2022;
Allouah et al., 2023). To this end, we study two types of
simulated dynamic identity-switching strategies:

1. Periodic(X): Once in every K rounds, a new sub-
set (of size dm) of Byzantine workers is sampled uni-
formly at random. Between any two such samplings,
all worker identities remain fixed. A lower value of K
corresponds to a higher rate of identity switches, which
implies a stronger dynamic attack.

2. Bernoulli(p, D, §,,x): For each worker, we sample
X ~ Ber(p) independently across workers and itera-
tions. If X = 1, then the worker becomes Byzantine
for a fixed duration of D iterations, up to a maximum
of dax-fraction of Byzantine workers per iteration.

Note that for the Periodic strategy, the number of Byzantine
workers in each iteration remains the same, whereas for the
Bernoulli strategy, it changes throughout training.

We study image classification on the MNIST (LeCun et al.,
1998) and CIFAR-10 (Krizhevsky et al., 2009) datasets us-
ing convolutional neural networks (CNNs) with 2 and 4
layers, respectively, as in Allouah et al. (2023). Additional
training details are deferred to Appendix J for brevity. We
benchmark our method against worker-momentum using
momentum parameter 5 € {0.9,0.99}, as well as against
vanilla SGD, which corresponds to 8 = 0. In our exper-
iments, we did not use the fail-safe MLMC filter, opting
instead for Algorithm 1. Since the MLMC estimator typi-
cally requires multiple gradient computations per update, to
ensure a fair comparison, we present all results based on an
equivalent total number of gradient computations. We ran
all experiments with 5 random seeds and report their mean
and standard deviation.

MNIST. We first consider the MNIST dataset under the
Periodic(K) switching strategy for different values of K €
{5,10,20,100} and K — oo, corresponding to the static
setting where the set of Byzantine workers is fixed. In
this setup, we consider m = 17 workers, of which ém =
8 are Byzantine. In Figure 1, we visualize the final test
accuracy when the Byzantine workers implement the sign-
flip attack (SF, Allen-Zhu et al., 2020) and the server uses
the coordinate-wise trimmed mean aggregator (CWTM, Yin
et al., 2018). As observed, the performance of our approach
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Figure 1. Final test accuracy on MNIST under the Periodic(XK)
identity-switching strategy for different values of K. Byzantine
workers implement the SF attack and the server employs CWTM.

remains stable across different values of K. On the other
hand, for worker-momentum, performance declines as K
decreases, with higher momentum values experiencing more
significant effects. For example, momentum with § = 0.99
fails when K = 100, whereas with 5 = 0.9 it performs
well even when K = 20. These results are expected, as
momentum with parameter [ effectively averages the last
1% iterations, leading us to anticipate this switching rate
as its ‘break-off’ point. In Appendix J.1, we provide the
results of an analogous experiment with a different pair of

attack and aggregator, demonstrating a similar trend.

CIFAR-10. Next, we consider CIFAR-10 classification
with m = 25 workers under the Bernoulli(p, D, §,,,ax)
switching strategy. We investigate three switching configu-
rations: (1) p = 0.01, D = 10; (2) p = 0.01, D = 50; and
(3) p = 0.05, D = 10. For all configurations, we restrict
the maximum fraction of Byzantine workers in any single
iteration to d,,.x = 0.72 (equivalent to 18 out of 25 work-
ers), indicating that the fraction of Byzantine workers in any
given iteration may exceed 0.5. In Appendix J.2, we present
similar results for d,,,x = 0.48. The Byzantine workers em-
ploy the inner-product manipulation attack (IPM, Xie et al.,
2020), while the server utilizes CWMed. We compare our
method against vanilla SGD and momentum with parameter
B = 0.9. In Figure 2, we display the test accuracy and
histograms of the fraction of Byzantine workers throughout
training. Surprisingly, for the first configuration, which ex-
hibits a relatively low number of Byzantine workers in any
iteration, momentum with 3 = 0.9 slightly outperforms our
method. However, in the other configurations, which have a
larger number of Byzantine workers per iteration and a non-
negligible number of iterations with § > 0.5, our method
significantly outperforms both SGD and momentum.
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Figure 2. Test accuracy and histogram of the fraction of Byzantine
workers over time on CIFAR-10 under the Bernoulli(p, D, dmmax)
identity-switching strategy for different values of p and D. Byzan-
tine workers employ the IPM attack and the server uses CWMed.

7. Conclusion and Future Work

In this work, we introduced DynaBRO, a novel approach for
Byzantine-robust learning in dynamic settings. We tackled
the challenge of Byzantine behavior alterations, demon-
strating that our method withstands a substantial number of
Byzantine identity changes while achieving the asymptotic
convergence rate of the static setting. A key innovation is
the use of an MLMC gradient estimation technique and its
integration with a fail-safe filter, which enhances robust-
ness against dynamic Byzantine strategies. Coupled with an
adaptive learning rate, our approach further alleviates the
necessity for prior knowledge of the smoothness parameter
and the fraction of Byzantine workers.

Several important avenues for future research emerge from
our study. First, we study the homogeneous case, where all
workers minimize the same objective. Extending our analy-
sis to heterogeneous datasets is an exciting and challenging
direction since a direct application of our approach results
in suboptimal bounds for this setting. Another direction in-
cludes exploring simultaneous adaptivity to the noise level,
the smoothness, and the fraction of Byzantine workers; this
presents a complex challenge as we are unaware of any opti-
mal aggregation rule that is agnostic to both the noise level
and the fraction of Byzantine workers.
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Appendix Outline

We provide a concise outline of the appendix structure as follows:

Appendix A. General analysis of SGD with biased gradients for convex and non-convex functions.

Appendix B. Proof of properties for the MLMC estimator (Lemma 3.1).

Appendix C. Analysis of the MLMC approach in the static Byzantine setting for convex and non-convex objectives.
Appendix D. Analysis of the dynamic Byzantine setting where identities change over time.

Appendix E. Analyzing how the worker-momentum method fails in scenarios involving Byzantine ID relabeling.
Appendix F. Properties of the MFM aggregator, introduced to guarantee optimal convergence rates.

Appendix G. Results mirroring Appendix A using AdaGrad-Norm as the learning rate.

Appendix H. Convergence guarantees for DynaBRO with MFM and AdaGrad-Norm — improved rates and adaptivity.
Appendix I. Technical lemmata.

Appendix J. Experimental setup and training details.

A. SGD with Biased Gradients
Consider the SGD update rule, defined for some initial iterate 2; € R? and a fixed learning rate 1 > 0 as,

Ty = (2 — nge) @
where g, is an estimator of V f (z,) with bias b, := E[g, — V f(x)|x¢] and variance V2 := E[||g; — Eg¢||* |z:).

The following lemmas establish bounds on the optimality gap and sum of squared gradients norm for SGD with (possibly)
biased gradients, when applied to convex and non-convex functions, respectively. All our convergence results rely on these
lemmas; to be precise, we derive bounds on the bias and variance of the relevant gradient estimator and plug them into our
results in a black-box fashion.

Lemma A.1 (Convex SGD). Assume f is convex. Consider Equation (8) withn < ﬁ If the domain K is bounded with
diameter D (Assumption 2.3), then

D> g D&
Ef(Fr) = ") < o7 + 7 D EVE+ 5 D Ebdl,
t=1 t=1

~ T+1
where Ty = £ Zt:JFQ Tt

Proof. By the convexity of f, the gradient inequality implies that
Do EBf(w) = f@) < Y EVf(a) (-2 = Y Elg (@ —a")] = Y Ep] (v —a")] . ©
te[T) te[T] te[T] te[T)

Focusing on the first term in the R.H.S, by applying Lemma [.2 with x = z*, we have

" 1 * . 1
> Elg/ (i —a")) < o > (Eth —2*|* — Efler — H2) + (]E[QZ(J% —zp41)] — ?EHJC:& - $t+1||2)
te([T] l te([T] te([T] "
D? 1
< W + (E[Qt—r(xt — Te41)] — %EH% - -Tt+1|2) ) (10)

te[T]
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where the last inequality follows from a telescoping sum and ||z; — x* ||2 < D2, On the other hand, by the smoothness of f,
we can bound the L.H.S as follows:

Z (Ef(ze) — f(2")) 2 Z Ef(wi41) — f(2*) = E[Vf(2e) T (341 — 24)] — £E||$t —zeal?) . AD
2

te[T] te(T]

Plugging Equations (10) and (11) back into Equation (9) yields:
> (EBf(zig) — f(@¥) <

te[T]
D? 1 L .
o T (E[(Qt = V(@) (2 — p41)] - (27] - 2) Ellz: — $t+1||2> > BB (@ — "))
te[T] te[T]
D2 T 1 2 T *
<o+ El(9: = V(@) T (2 = we41)] = Ellze =z |” ) = D E[b/ (¢ — ¥)]
2n 4n
te[T) te(T]
‘D2 T 1 2 *
S5t El(g: —Egi) " (@ — wey1)] — —Elloy — 2 ]|* ) = D B (w41 —27)]
U 4n
te[T] te[T)
D2 2 T *
< o T S OEVZ - D ER (w41 — 7)),
te(T] te[T]
where the second inequality uses 2— -L>1 and the final inequality uses Young’s inequality, ' b — 3 Lo)? < 5 Lal.

Using Cauchy-Schwarz inequality, we have be(xtH — ) < ||be|| |lwg+1 — x*|| < D |be|; plugging this bound and

using Jensen’s inequality gives
= * 1 *
Ef(Zr) — f(z") < T Z Ef(ze+1) — f(2") < f"’* Z EVZ"’* Z E[[be]| -
te(T) tG[T
O

Lemma A.2 (Non-convex SGD). Consider Equation (8) with K = R? (i.e., unconstrained) and n < L+, and let A| =

f(z1) — f*. Then,
T T T
1 2A1  nL 1 2
. < —— L .
7 L EIVS @I < T+ SRV 4 1 B

Proof. We begin our proof by following the methodology presented in Lemma 2 of (Ajalloeian & Stich, 2020). By the
smoothness of f, we have

2
L
Ero1f(2i1) < J (@) = 0V (@) "Bragi + 1 Eua o]

2
= ()~ 0V ()T (V) + b0 + TE (V24 B Bl
_ _ 2 T ﬂ 2 ﬂ 2
= f(z) = nlIVf(@)I” =0V f(ze) b + B Vi + 9 IV f(xe) + byl
2
< (@) = IV Tl 09 ) b+ LIV + T (19 7@ P + 29 7)o+ )
2L
= @) = 2 (IVF @I + b)) + L2v2,
2 2

where the last inequality follows from 1 < % Denote: A; := Ef(x;) — f*. By rearranging terms and taking expectation,
we obtain

2 (At — At+1)

E|Vf(z)|” < +nLEV? + E [|be||”

14
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Summing over ¢ € [T,

5 T L & |
2o 2 - — >+ — ?
ZEHVf zy)[|” < nZ(At Apy1) + T Z]Evt +Tt:ZIE”bt“

which concludes the proof. O

B. Efficient Bias-Reduction with MLMC Gradient Estimation

In this section, we establish the properties of the MLMC estimator in Equation (3) through the proof of Lemma 3.1.
Lemma 3.1. For M satisfying Equation (2), we have that

1. Bias(gMMC) = ||[EgMMC — V f ()| < v/2¢2/T.
2. Var(¢gMMC) = IEIHgMLMCfIEgI"IU\’IC||2 < 14c%logT.

3. The expected cost of constructing gM™M€ is O(log T).

Proof. Our proof follows those presented in Lemma 3.1 of (Dorfman & Levy, 2022) and in Proposition 1 of (Asi et al., 2021).
1

Let Jyax = |[logT'|, and recall that EH g’ —Vf(x) ||2 < g—f By explicitly writing the expectation over .J ~ Geom(;

have

), we
Jmax

EgMMC =Eg® + ) " 277 - 2E[g) — ¢/ '] = E[g'm]
j=1

where the last equality follows from a telescoping sum. Thus, be Jensen’s inequality, it holds that

5 — 90| = g™ - 95t0)] < VBl - VI < \f 55 <

where the last inequality follows from 2Jmax = 9gllogT| > T'/2. For the second part, we have

EHgMLMC . ]EgMLMCH2 < ]EHgMLMC . Vf(m)||2 < ZEHQMLMC . 90||2 + 2E||go . Vf(x)||2
Focusing on the first term in the R.H.S,

Jmax

EHgMLMC 22 J . 22]E||g jleZ

Jmax

<23 2 (Elly’ - Vi@ +Elg" - V@)
max 2 Jmax
<222](2] ;>:62162<6C210gT,
j=
where the last inequality uses Jy.x < log7'. Using E Hgo —Vf(x) Hz < 2, we have
EHgMLMC — EgMLMCH2 <2.6c%logT +2-¢® < 14c%1ogT .

Finally, since we call M ¢(x; 1), and with probability 277 we call M (x;27) and M ¢(x;27~1), the expected number of
stochastic gradient evaluations is at most 1 + Zj‘:"'ﬂl"‘ 279 (274207 =1+ 3Jpax < 14 3logT € O(log T). O
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C. Static Byzantine-Robustness with MLMC Gradient Estimation

In this section, we analyze Algorithm 1 in the standard, static setting, where the identity of Byzantine workers remains fixed.
We show that distributed SGD with MLMC estimation applied to robustly-aggregated gradients is Byzantine-resilient.

We begin by establishing Lemma 3.3, which asserts that utilizing a (0, xs)-robust aggregator when honest workers compute
stochastic gradients over a mini-batch satisfies Equation (2) with ¢? = 20?2 (/@; + %)

Lemma 3.3. Consider x € K and let g , ..., gN be m vectors such that Vi € G, g is a mini-batch gradient estimator

based on N i.i.d samples, i.e., g~ = % 25:1 VF(x;€"), where £ YD, Then, under Assumption 2.1, any (0, ks )-robust
aggregation rule A satisfies

2
EllAGY, .. g - Vi@ < 2 (m + ;) ,

Proof. For ease of notation, denote gV = A(gY,...,gY) and gV = ‘?ﬂzieggﬁv . Since Eg" = Vf(x), and by the
(0, kg )-robustness of A, we have

E|[gY - V()| = EHAN -7’ +El|g" - V(@)
> STE|gY - gV|]* + B3V - Vi@

IQ’\ =
%EH gN = V@) + (55 + DE|gY = V()|
0.2 2
SﬁgN-‘r(lﬁg-‘r )\QIN

_UQ(R +f”~6+1>
TN\ g

<202 +1
29 st =
- N T )

where the second inequality holds as gV forevery i € G and g" are the averages of NV and |G|N i.i.d samples, respectively,
each with variance bounded by o2, In the last inequality we used |G| > m/2. O

C.1. Convex Case

Next, we now establish the convergence of Algorithm 1 in the convex setting.

Theorem C.1. Assume f is convex. Under Assumptions 2.1 and 2.3, and with a (0, ks)-robust aggregator A, consider
Algorithm 1 with learning rate

. D 1
= mm{8m/'yTlogT7 QL} ’

where v = Kgs + % Then, for everyT > 1,

loeT LD?
Ef(ng)—f(gc*)glor)mﬂ(;C§ + 5

Proof. Employing Lemma A.1, we have

T

Ef(zr) — f(z") < _m Tznzm 2> Elnl, (12)

where b, and V; are the bias and variance of g;, respectively. Combining Lemma 3.1 with Lemma 3.3 implies that

be| = |Ege — V()| < \/ 1/% and EV? =E|g — Eg| < 280%ylogT . (13)
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We note that computing g; requires O(m log T') stochastic gradient evaluations, in expectation. Plugging these bounds back
to Equation (12) gives:

Ef(zr) — f(z* )<D—2+28 logT +2Do /L < L D—+64 logT | + 2Do /L
T = o1y no?vlog N7 <3 Tn no?~ylog o\ T

D
80\/A~Tlog T’ 2L
sum of the first two terms as,

Since 7 = min { } applying Lemma 1.7 with @ = %2, b = 6402ylog T, and ¢ = 2L, enables to bound the

D? ylogT  2LD?
—— + 64n0*ylog T < 16D .
Tn + 64noc-ylog1 < o T + T

Plugging this bound back gives:

_ . [ylogT = LD? v [ylogT — LD?
E — <8D 2D — < 10D .
f(@r) — f(=*) <8Dc T + T +2Dco TS 0Do T + T

C.2. Non-convex Case

Moving forward, we establish the convergence of Algorithm 1 for non-convex functions in Theorem 3.4, restated here.

Theorem 3.4. Under Assumption 2.1, with a (9, /15) robust aggregator A, consider Algorithm 1 with learning rate given by
7 = min {ML } where v == ks + + and Ay := f(x1) — f*. Denoting Vy =V f(x), it holds that

VLT log T’ L
T 2
1 9 [LAo2ylog T 2(LA; + 20%)
f§ E <1 .
T4 IVell” <16 T + T

Proof. We follow the proof of Theorem C.1, substituting Lemma A.1 with Lemma A.2, which implies that

1 & 2A
7 DBVl _Tfl+fZEVt + = ZlEllbtll (14)
t=1

Plugging the bounds in Equation (13), we then obtain

2y

T

02"}/

T

4o A
ZEHVf ) <—+28nLo ylog T + §2<T1 +16nLo ylogT)
n

Since = min {ﬁ, %}, applying Lemma 1.7 with ¢ = %, b= 16Lo>ylogT, and ¢ = L, allows us to bound

the sum of the first two terms as follows

Al 2 LA10'2’}/10gT LAl
— 4 16nL logT < 84/ .
T + 16nLo“vylogT < 8 T + T

Substituting this bound back yields:

T 2
1 9 LA o2ylogT 2 (LA1 + 20 'y)
— g E||V < 164/ .

17
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D. Dynamic Byzantine-Robustness with General (4, x)-robust Aggregator
In this section, we analyze DynaBRO (Algorithm 2) with Option 1, which utilizes a general (4, x)-robust aggregator.
Recall that Algorithm 2 with Option 1 performs the following update rule for every ¢t € [T7:

Ji ~ Geom(1/2)

27

» , . , 1 . '
gl < A(Gl s Glm), Whereg], = 5 Z V(x4 5,{“71-) foreveryi € Gyift ¢ 74 (15)
k=1
97 (AJf Gt~ 1) ifJ, < Jua = |log T| and & (.J;) holds
gt<_§?+ t \9 G t,. |log T t(Jt) (16)
0, otherwise

zev1 < Hi(@e — mege)
where the associated event £;(J;) in this scenario is defined as,

cvy 1
=< g A]‘ b < 9)%€ = = log (16m2T =2 —. 1
8t(‘]75) {lgt H ( + \/>) \/27*; 5 Ce ﬁ? c 8 Og( 6m )7 Y Ks + m ( 7)

We start by establishing a deterministic and a high probability bound on the distance between the true gradient and the
robustly-aggregated stochastic gradients, when honest workers compute gradients over a mini-batch. By combining these
bounds and adjusting the probability parameter, we provide an upper bound on the expected squared distance, i.e., MSE, as
presented in Corollary D.2.

Lemma D.1. Consider the setting in Lemma 3.3, i.e., let v € K and G , ..., g be m vectors such that for each i € G,
gYN is a mini-batch gradient estimator based on N € N i.i.d samples. Then, under Assumption 2.2, any (9, ks)-robust
aggregation rule A satisfies,

LAGY, -, g8) = V@) < 2(4rs +1) V2
2. With probability at least 1 — p,
_ _ V2y
[AGY....5%) - V@) < 0222
where C? = 8log (4m/p).

Proof. Denote the aggregated gradient and the empirical average of honest workers by g% :=A(gY,...,Y) and gV ==
I?l\ > e gf" , respectively. Thus,
2 ~ N2 _ 2
1% = Vi@ < 2[]g" = a"[|" + 25" - Vi@

2
o 2l =aVI 2 - v
i€g

4K _ 2 _ 2
< ﬁ STIgN —VI7 + (4rs +2) 7Y - V(@)
i€G

where we used [|a + b||* < 2|ja||*+2||b]|* and the (8, x5 )-robustness of A. Since it trivially holds that |gN = V@) <V
forevery i € G and ||g"¥ — V f(z)|| <V, we have

gV = Vf(x || < 2(4ks + 1)V?

which establishes the first part. For the second part, we employ the concentration argument presented in Lemma I.1. With
probability at least 1 — p, it holds that

2log 2/p log 2/p

(18)
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as |G| > m/2. Additionally, for each i € G separately, we have with probability at least 1 — p that

2log (2/p)
—

Hence, with probability at least 1 — (1 + |G|)p, the union bound ensures that Equations (18) and (19) hold simultaneously
forevery i € G. Since 1 — (1 + |G|)p > 1 — 2|G|p > 1 — 2mp, with probability at least 1 — p it holds that

2 2
2
5% - Vi@ < (v W) +(ans +2) (W W) 810g(?)’fv<““2”%“>

< 8lo v’ 2/@—1—
g p N 5 )

which concludes the proof, assuming m > 2. O

gy - Vi) <V (19)

Corollary D.2 (MSE of Aggregated Gradients). Let gV ,...,g" be as defined in Lemma D.1, with N < T. Under
Assumption 2.2, any (9, ks )-robust aggregator A satisfies,

_ _ 2 _ 2C2V2
where C' = +/8log (16m>T) and = 2ks + — as in Equation (17).
Proof. By choosing p = —=, item 2 of Lemma D.1 implies that with probability at least 1 — 4mT,
C?V2y

JA@GY,....5)) - Vi) <

\/\2

In addition, by item 1 of Lemma D.1, we have ||A(g1’, ..., 75) — Vf(z) H2 2(4ks +1)V?, deterministically. Combining

these results, by the law of total expectation, we get
D’ < C*V2y eV VY 2021227
N

where the second inequality follows from % < +, and the last inequality from C? > 1 and N < T. [

Before we establish bounds on the bias and variance of the MLMC gradient estimator defined in Equation (16), we show
that &, is satisfied with high probability.

Lemma D.3. Consider E(J;) defined in Equation (17). For everyt € 75 and j = 0,. .., Jyax, we have

NS
Ptfl(gt(.j)> = 1 omT )

where the randomness is w.r.t the stochastic gradient samples.

Proof. By item 2 of Lemma D.1, we have

Y ceCV Y [~y 1 .
—1 <|gi_vt”< \/2—]) ]P)t 1(||gi—vt||<CV 2]) 21_M7 v]:07‘~~7Jmax~

This bound, in conjunction with the union bound, allows us to bound P;_1(&;(5)°) as,

CgCV)
V2i

cy i cy
<m1({ —vill> SN {1 - v > 2 )

CgCV ~j—1 CgCV
I3 WW>¢2>+R10I -V > 2

RAQ@ﬂ—Rq@%ﬁHDU+V%

< + 1 }
— 4AmT 4mT 2mT

19
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Moving forward, we now provide bounds on the bias and variance estimator in Equation (16). In Lemma D.4, we establish
that the bias in static rounds (¢ € 75) is proportionate to V1/~y/T, whereas in bad rounds it is near-constant; the variance is
also near-constant for every ¢ € [T].

Lemma D.4 (MLMC Bias and Variance). Consider g; defined as in Equation (16). Then,
1. The bias by == E;_19; — V¢ is bounded as

bl < {zcv\/jmv\/;joy, teTs
tll =

4CV/y1ogT, tery

2. The variance V2 .= E;_1 |g; — Et_lgt||2 is bounded as

V2 <16C*V2:ylog T, Vte [T] .

Proof. Our proof closely follows and builds upon the strategy employed in Lemma 3.1. We begin by bounding the variance,

> o o 2
Vtz =Es1 llgr — Et—lgtHQ <Ei1llg: — VtH2 = Z 2771 Hﬁ? +2 (95 — gt 1) L <maxtné(i) — Ve
j=1

o Jmax
<23 0B (60 - VilP 42 Y 2B (I8 - 5 e )]
j=1 J=1

Jmax

= 2Ea [|3f — Ve 42 ) P B 19 -5 e, O

j=1

~(h

where the last equality holds as Z;’il 277 = 1. Focusing on (), by the law of total expectation, we have that

(14_\/5)202]}27 - 602]}2’7
27 - 2

B (16— 9 1P1e)] = Eoon (167 — 30 I2160)] PEG)) <
<1

where the first inequality follows from the bound of |[g/ — g7~ *|| under the event & () (see Equation (17)). Furthermore, by

Corollary D.2, we can bound E;_1|g? — V,||? < 2C?V2. Substituting these bounds back into Equation (20) finally gives:

2 o 602V2
V2 <Eiqllge — Vil|* <4C?V2y 42> 27

j=1

< AC?V?y 4+ 120°V? Y Jax < 16C*V*ylog T,

where the last inequality follows from Jy,ax < logT'.

Proceeding to bound the bias, for every ¢ € [T], we have by Jensen’s inequality,

1bell < \/Ei1llge — Vel|* < 40V\/410gT .

However, for ¢ € 7, the Byzantine workers are fixed, and a tighter bound can be derived. Taking expectation w.r.t J; gives:

Jmax

Et—1[g¢] 22 S P [yt +27 <§§ -9 ) ]l{jskimx}ﬂ&(a)} =B [g)]+ > Era K/g\f —§5_1> ]lst(j)} :
j=1 j=1
(2D
Utilizing Lemma 1.5, we can express each term in the sum as,

E:y [(ﬁi —/9\5_1) ﬂft(j)} =E¢ [ﬁtv ~gi” 1} —Ei [A — g E )" }}pt_l(gt(jy) :

20
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Denote the last term in the RH.S by z/ :==E,_; {gt — g7 NE) ] P:_1(&:(4)°). Plugging this back into Equation (21),
we obtain:

Jmax

Eialg) =Eiafgf]+ > (Etfl[/g\f -9 - ) B [g7™] + vt

j=1
where y; == — Zj‘“f‘ z]. Thus, by the triangle inequality and Jensen’s inequality, it holds that
el = IEe—1lge = Valll = [Ee—1 67 + ye = Vel < [Bema [ = Vil || + [ Ee—1e] (22)

—~ 2
< VB l57™ — Vo + Eeor e

<20V1/ +Eeo1 |yl (23)

where the last inequality follows from Corollary D.2 and 2”/=»x > T'/2. Our objective now is to bound ||y, ||; note that for
every 5 = 1,..., Jmax, W€ can bound 2] using Jensen’s inequality as follows:

ol = B 37 = M 1E0)] Proa (8609 | < Boca [ = 5 N6 )] P (€0 -

By item 1 of Lemma D.1, for every j = 0, . .., Jiayx it holds that ||§ — V|| < V+/2(4ks + 1), which implies that

167 =07 < g7 — Vel + 115!~ = Vel < 2V/2(4ks +1) .

In addition, we have by Lemma D.3 that P;_1 (€;(j)¢) < 5. Thus, we obtain:

2
127 < 2V\/2(rs + 1) - 4

T_T

where we used % < 2. This in turn implies, by the triangle inequality, the following bound on y;:

ot
luell < Z il < 2\ /2 mxszv\f 8

where we used J,.x < log T Plugging this bound back into Equation (23) yields:

log T
||bt||g20v,/%+2v,/% O? , Vier,.

Using the established bounds on bias and variance, we derive convergence guarantees for the convex and non-convex cases.

O

D.1. Convex Case

The following result establishes the convergence of our approach in the convex setting.

Theorem D.5. Assume f is convex. Under Assumptions 2.2 and 2.3, and with a (0, ks)-robust aggregator A, consider
Algorithm 2 with Option 1 and a fixed learning rate given by

: D 1
nt—n'_mm{ﬁcv\/m’u} '

Then, for Tp = % tTJFQI x4, the following holds:

I T LD?
Ef(Zr) — f(z*) < 90DV /2 (;g ~ 7 +4CDV\/ylogT 717l d'
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Proof. By Lemma A.1, we have

T

Ef(fT)—f<x*_2T ZJEVt 23 B

Substituting the established bounds on ||b;|| and V,? from Lemma D.4,

2
Ef(@r) - fz*) < 2 1 169C?V% logT+<ZE||bt+ZE||btn>

— 2T
teETy teETs

1 ( D? 9412 D ~ v logT

- (= logT | += (4CV+/y1ogT 20V [ =42V, — T -
<T77 + 36nC*V*~log >+T ( CV+/7log Td+< cy T+ V —— ( |7al)
D? |74l [~ [y logT

<Tn+367702V2'ylogT>+4CDV\/710gT +20DVY T 2DV ——

IN
N

N | =

Since 1 = min {W, ﬁ } applying Lemma 1.7 with a = D?/T,b = 36C?V?vlog T, and ¢ = 2L, allows us to
bound the sum of the first two terms as follows

D2 logT 2LD2
2 13600tV ylog T < 120DV 12081 .
Ty T T

Plugging this bound back gives:

ogT LD 7 log T
Ef(:fT)—f(x*)§6CDV\/W3§ 4 4CDV\/ylogT ‘d|+2CDv,/ +2Dv,/ Og
logT LD? V71logT
gsch/V‘;? + == +4CDV\/'ylogT‘d|+CDV 1708

vmT
1 T LD
<9cDVy/ L 3? +4CDV\/fylogT‘ Tal
where in the second inequality we used C' = 24/21og (16m?2T") > 24/logT to bound the last term. O

This theorem implies the following observation.
Corollary D.6. If |74| € O(\/T), the first term dominates the convergence rate, which is O(DV+/7/T). Specifically, for

ks € O(0) this rate is given by @(DV (6 + Y/m) /T).
D.2. Non-convex Case

Having established the proof for the convex case, we move on to proving convergence in the non-convex scenario. For ease
of reference, Theorem 4.1 is restated here.

Theorem 4.1. Under Assumption 2.2, and with a (0, ks )-robust aggregator A, consider Algorithm 2 with Option I and a
fixed learning rate given by
VA, 1 }

e = { 3CV/ITlogT L
where vy = 2K5 + % Then, the following holds:

T
1 ) LAvlogT  2LA; + 9C2V2% 242 |7al
< .
- > E[V.|* < 120V T + - +16C%V2ylog T2

t=1

Proof. Utilizing Lemma A.2, we get:

1 & 9A, L & 1 &

=Y E Pl “NTE|b? . 24

T 2 [V f(ze)||” < Tn T T E: EV; +T;:1 ([0 24)
———

=(*)
22
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Bounding (x): Using the bound on the bias in item 1 of Lemma D.4, we can bound

T 2
2 2 2 2452 v v logT
t§:1IE||bt|| §jE||bt|| +§ E b < 6cvyogTTd+(2cv,/T+2v,/ T ) (T — |7a])

teETq t¢Ta

4C%V%y  4V?ylog® T
<16C’2V2710gT7d+2T( V7 4V7ylog >

T mT?
C2V2ylog T
< 16C%V2y log T|ra| + 8C?V2 + LTOg
m
< C*V?%y (16]74]log T +9) ,

where the second inequality follows from (a + b)? < 2a? + 2b% and T' — |74| < T; the third inequality uses 8 log T < C?;
and the last inequality follows from log T' < mT.

Substituting the bound on (x) and the variance bound from Lemma D.4 back into Equation (24) yields:
C?V%y (16|74|log T + 9)
T

) C?V2y (16|74|log T +9)
+ T

T

1 2A

7 > E|V ()| < T—nl +16nLC*V2ylog T +
t=1

A
<2 (1 +9nLC2V2ylog T
Tn

Utilizing Lemma 1.7 with a = A, /T,b = 9LC?*V?ylog T, and ¢ = L enables to bound the sum of the first two terms as

Al LAl’)/ log T LAl

— +9nLC*V?*ylog T < 6CV4/ :

T + 97 VeylogT < 6CV T + T
Plugging this bound, we get:

T
1 2 LAylogT ~ 2LA;  C*V2%y (16|74]logT + 9)
—» E <12C
T?:l [V f(ze)]|” < 120V4/ T t—t T

LAyylogT  2LA; +9C2V? log T
= 120 | =2 1+Z?CV7+1602V277|M|;§ .

E. When Worker-Momentum Fails

Next, we take a detour, to show how the worker-momentum approach may fail in the presence of Byzantine identity changes.
To this end, we introduce a Byzantine identity switching strategy, which utilizes the momentum recursion to ensure that all
workers suffer from a sufficient bias. For simplicity, we consider a setting with m = 3 workers>, of which only a single
worker is Byzantine in each round.

For some round ¢, consider the following momentum update rule with parameter 5 € [0, 1) for worker i,

M = Biy—1;+ (1 — B)Gei -

As mentioned, this update rule effectively averages the last 1/« gradients, where « := 1 — 3. Thus, the 1/« rounds following
a Byzantine-to-honest identity switch still heavily depend on the Byzantine behavior. Intuitively, this ‘healing phase’ of
1/ rounds is the time required for the worker to produce informative honest updates. Our attack leverages this property to
perform an identity switch once in every 1/3a, to maintain all workers under the Byzantine effect, i.e., to prevent workers
from completely ‘healing’ from the attack. Recall that existing approaches to Byzantine-resilient strategy suggests choosing
a1/ VT to establish theoretical guarantees (see, e.g., Karimireddy et al., 2021; Allouah et al., 2023). Thus, henceforth,
we will assume o < 1/6 and, for the sake of simplicity, that 1/3« is an integer.

3For general m, we can divide the workers into 3 groups and apply our switching strategy to these groups.
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Figure 3. Optimality gap (f(z+) — f™) under static (top) and dynamic (bottom) attacks across various momentum parameters and for
different attack strengths (A = 0, 0.5, 1, 2, 5). The average and 95% confidence interval are presented over 20 random seeds.

We divide the 7T training rounds into epochs (i.e., windows) of size 1/ ~ /T. Within these epochs, we perform an identity
switch once in every 1/3« rounds, periodically, implying 3 identity switches per-epoch and 37" € O(+/T)) switches overall.
Concretely, denoting by g, ; the gradient used by worker ¢ € {1, 2, 3} at time ¢ to perform momentum update, we consider
the following attack strategy:

1 — 1 ]
Gti = Gti +ve -1t mod — € - +1,L )
’ ’ « 3a 3o

where g, ; is an honest stochastic gradient and v, is an attack vector to be defined later. Note that under this attack strategy,
there is indeed only a single Byzantine machine at a time in all rounds.

Denote by m; ; = my; + b;,; the momentum used by worker ¢ in round ¢, where m; ; = (1 — a)my—1,; + age; is the
honest momentum (without Byzantine attack) and b; ; is the bias introduced by our attack. We want to find a recursion for
by, to characterize the dynamics of the deviation from the honest momentum protocol. By plugging 7;—1 ; and g, ;, we get:

— 1 i—1 i
Tt i 1 —1i b1, i . t mod — € 1, —
my, ( o) (my—1;+ by 1,)+a(gt, + vy { 0 {3 + ]})

1 ,— 1 ;
=my;+(1—a)bi—1;+av,- 1t mod — € ! Jrl,i .
’ ’ a 3a 3a

This implies the following recursion for the bias of worker 1,

1 1—1 )
bt’i:(l—a)btl,i—i—avt-]l{t mod o € [ i +1’30j} .

Let v € R? be some fixed vector. By carefully choosing v;, as we describe next, we ensure that b; ; = v for all rounds #

under which worker ¢ is Byzantine. Note that by ; = vy, and by 2 = by 3 = 0. We distinguish between the first epoch and
the following ones. For the first epoch, i.e., t € [1/a], we choose:

1 2
v =u- 1/047 te{g—f—l,%—f—l}
1, otherwise.
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Momentum=0.9 Momentum=0.99 Momentum=0.995

o o

Static Attack

Dynamic Attack

— Mean, A=0 — CWMed, A=0.5 =—— CWMed, A=2.0 @ Initial iterate
CWMed, A=0 === CWMed, A=1.0 =—— CWMed, A=5.0 % Finaliterate

Figure 4. Optimization trajectories under static (top) and dynamic (bottom) attacks for a range of momentum parameters and for different
attack strengths (A = 0,0.5, 1, 2, 5). Note that under the dynamic attack, the algorithm converges to a sub-optimal solution.

For the subsequent epochs, i.e., t € [é + 1, T} , we choose:

Ve =

Y. (1-(1-a)¥*) /a, t modL=1
1, otherwise.

The following lemma establishes that all worker momentums are sufficiently biased under this attack.

Lemma E.1. Given the above attack, for any t starting from the second epoch, the following holds for i = 1,2, 3:

My = My + 00,
where 0, ; € [Omin, 1] for each i and for allt > 1/a. Here, Oy = (%)4 > 0.48.

Proof. Let us examine the bias dynamics of the first worker under the described attack.

In the first third of each epoch, namely, for ¢ mod é S [% + 1, i] , we have a fixed bias of b; ; = v. For the remaining
two thirds, we have an exponential bias decay, where b; 1 = 6, v for 0, 1 :== (1 — a)(tfi)m‘)d . Since 3t is decreasing
with ¢ for 8 < 1, the coefficients sequence 6, ; obtains its minimum at the end of each epoch, when ¢ mod i = 0, given by
(1- a)z/?’a. For o < 1/6, it holds that (1 — a)2/3a > (%)4 ‘= Omin. Since 0y 2 and 6 3 are simply a shift of 6; ; by 1/3«
and 2/3a rounds, respectively, they satisfy the same bounds. O

Given the above bias statement, any robust aggregation rule has no ability to infer an unbiased momentum path, and it would
arbitrarily fail as v is unbounded.

We provide an empirical evidence to demonstrate our observation using a simple 2D quadratic example. Consider the

function f(x) = %xTAx with € R? and A is the matrix E ﬂ . In our attack setup, each worker (i = 1, 2, 3) employs

momentum-SGD. The honest gradient oracle for each worker is defined as g ; = V; + n.;, where n; ; i N(0, o2l )

with 0 = 0.5. We set the attack vectorto v = \ - [1 1] T, and examine various values of A € {0,0.5,1,2,5} (A =0
corresponds to the Byzantine-free setting). At the server level, we process the worker-momentums using either simple
averaging (Mean) or coordinate-wise median (CWMed). The aggregated momentum 7, is then used in the update rule:

25



Dynamic Byzantine-Robust Learning

Tiy1 = Ty — Ny with a learning rate n = 5 - 1073 over T = 3000 rounds. We experiment with various momentum
parameters (5 from {0.9,0.99,0.995}, corresponding to « values of {0.1.0.01,0.005}, and repeat each experiment with 20
different random seeds. Note that these values correspond to |74| = 999, 90, 45 rounds with Byzantine identity changes.
Additionally, we include a ’static attack’ scenario where only the first worker is consistently Byzantine, using g1 = g¢,1 +v
throughout all rounds.

In Figure 3, we illustrate the optimality gap during the training process. Notably, in the presence of a dynamic attack (where
A > 0), we observe that the error plateaus at a sub-optimal level for all values of the momentum parameter. Furthermore,
there is a clear trend that shows an increase in the final error magnitude in direct proportion to the strength of the attack (as
A increases). This trend is distinct from what we observe under a static attack, where such a correlation between the attack
strength and final error is not apparent.

Correspondingly, in Figure 4, we present a representative example showcasing the optimization paths under the influence of
the static and dynamic attacks, with various momentum parameters. The trajectories visibly diverge towards sub-optimal
points under dynamic attacks, with the divergence growing as the attack strength, i.e., A, is increased. In contrast, the
static attack scenarios reveal paths that remain relatively stable despite changes in attack strength. This visual illustration
underscores the possible failure of the worker-momentum approach under dynamic Byzantine attack.

F. Properties of the MFM Aggregator

In this section, we establish the properties of the MFM aggregator, crucial for our analysis of Section 5. Additionally, in
Appendix F.1, we demonstrate that MFM does not meet the (J, x)-robustness criteria.

We assume the gradient noise is bounded (Assumption 2.2) and consider the MFM aggregator with inputs g2', ..., g asin
Lemma 3.3 and threshold parameter set to 7, = 2C,V/V'N, where C,, := /8log(2m/p).

Initially, we introduce the following event, under which we derive valuable insights regarding Algorithm 3.

7, zkg(mnnﬁ}_

p
e N 25

B:{Wegzwf—Vﬂmug
Here, we analyze Algorithm 3 assuming the honest workers are fixed when computing mini-batches.

First, we show that B is satisfied with high probability.
Lemma F.1. For every x € R, it holds that P(B) > 1 — p.

Proof. Since forevery i € G, ¥ = + 227:1 VF(x;€), where ||VF(x; &) — Vf(z)|| <V, utilizing Lemma I.1 implies

that with probability at least 1 — p, we have Hgfv —Vf(x) H < Vy/ 21%(2/’3). Employing the union bound and using
|G| < m establishes the result. O

Next, we establish some results assuming 3 holds.
Lemma F.2. Under the event B, the following holds:

1. The set M is not empty.
2.6¢@
3. Foreveryi € G, we have ||§{V — Vf(a:)H < 27;)N.
Proof. Following the proof of Claim 3.4 in Alistarh et al. (2018): under the event 3, for every 4, j € G, we have by the

triangle inequality that |g¥ — g% || < ||gN — Vf(2)|| + ||g} — VF(z)|| < 72"/2. Since § < /2, every i € G is also in
M, namely, G C M, which concludes the first part.

For the second and third parts, we first show that ||gmea — V£ (z)|| < 37" /4; assuming || gmea — V.f (2)|| > 375" /4, we get
by the triangle inequality that ||gmea — g2 || > 7" /2 for every i € G, thus contradicting the definition of gmeq (chosen from
M) as |G| > m/a.

26



Dynamic Byzantine-Robust Learning

To prove the second part, fix some i € G. By the triangle inequality: ||§Y — gmea|| < [|7Y — V£ (2)|| + l|gmea — V.f (z)] <
7. /a+ 37" /a = TN, where the bound on ||gl¥ — V f(x)|| follows from the definition of B ThlS bound implies that i € G
as well, concludmg the second part.

Finally, note that for any i € G, the triangle inequality implies ||’ i @) < 17N = gmed]| + lgmea — Vf(@)]| <
TN +37 /s < 27'N where H gi' — gmedH < TN holds for any 7 € G as estabhshed in the previous part. O

With these insights, we now prove Lemma F.3, which, similarly to Lemma D.1, provides deterministic and high-probability
bounds on the aggregation error.

Lemma F.3. Consider the setting in Lemma D.1 and let g < MFM(gY, ..., g"N; 7;N) be the output of Algorithm 3 with

TN = 2C,V/V/'N, where C,, := \/8log(2m/p). Then,

~ 2
L gV = Vi@ < $(TY? + 20 + IVF(@)[° <200V + |[VF ()]
2. With probability at least 1 — p,

~N 2 2C22 1 2
g™ = V@) < ~ E+1286 )

Proof. Denote: V = V f(z). To prove the first part, we consider two cases: when M is either empty or non-empty. If
M = (), then g%V = 0, leading to || gV — VH [V||*. In the case where M is non-empty, the triangle inequality implies

that
7 -l = |5 2 @ - V)| < 5 Sl -
i€G zeg
Since gmea = g~ for some i € M, by the definition of M, there are more than /2 machines whose distance from gpeq is
bounded by 7," /2. Since there are at most dm < ™/2 Byzantine workers, it implies that at least one of the above workers is
good; denote one such worker by ¢ € G. Thus, for every i € Q\ we can bound,
N

Hgi\/ _VH S Hgf\f _gmedH “!‘Hgmed_gé\]H“'Hgé\[ _VH S +V7

N N
<7, <Tp /2 v

where the first bound is by the definition of Q\ , the second bound is a consequence of the chgsen ¢ (and the definition of
Jmed)> and the final bound is trivial for any good worker. Since this bound holds for any i € G, it also holds for §N . Thus,
using (a + b)? < 2a® + 2b?, we have

A

Overall, in any case, we have that

9
4

(T,5) + V2> = g(EN)Q +2V2 .
(V)2 +2V% +||V|)*

3" - v <max{|V|| (7;N)2+2v2}gg
9 4031/2
2

2V + ||V
2 4av? 4 |9
< 20C2V* +||V||?
where we used C’g > 1. This concludes the first part.
For the second part, we denote the average of honest workers by g" = ﬁ >ieg gY and define the following events:

i log (2/p) N
C—{Hg vH<2v — +457;,},

7. {HgN_vH <2y 10%(2/17)} _

mN
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Our objective is to establish that C holds with probablhty at least 1—2p. Recall that under the event B (Equation (25)), the
set M is non-empty (item 1 of Lemma F.2), implying g™V Dic G gN,and G C G. Hence, under the event 3, we have

Ig\
that
1 1 1
% =9 = ||z 2 @ ~V)| = EZ@N—VH? > @ -v)
91 == 91 % 9=,
<191
<Dgv v 2 5 o -
i€G\G
2~
<o -Vl + 218 \gl 2
<[lg" = Vil + 407", (26)
where the first inequality follows from the triangle inequality and the fact that Zzeg( gy — V) = |G|(g" — V); the second

inequality is due to |G| > |G| > ™/2 and item 3 of Lemma F.2, namely, ||g~ — V|| < 27N forall i € G: and the last

inequality follows from |Q \ G| <|[m]\ G| = dm.

Based on Equation (26), we infer that, under the event B, if C occurs, then so does C, implying P(C|B) > P(C|B).
Furthermore, we have by Lemma F.1 that P(8) > 1 — p > 0. Combining these properties and utilizing Lemma 1.6 yields:

P(C) > P(C) —P(B°) > P(C) —p.. 27)
By Lemma 1.1, it holds with probability at least 1 — p that
_ ny 2log (2/p log (2/p
HgN_vH—— SN (V@ <V g|N/ SN /
i€G ne[N]

In other words, IP(E ) > 1 — p, indicating, as per Equation (27), that with a probability of at least 1 — 2p,

I3~ — V]|<2V\/log 20) | 45N — oy, /108 2/P) 2/p 165v\/21°g @m/p) _ \/log (2m/p) <+8f5>.

This result finally implies that with probability at least 1 — p,

N 2 4V%log (4m/p) > 8V2log (4m/p) 9 2022 5
— _— < ——m—— 12 + 12
gy —v||” < 5 f +8V25) < N + 85 —— - 1207,
where we used (a 4 b)? < 2(a* 4 b?) and 8log (4m/p) < 16log (4m/p) = 2C2. O

Combining the bounds established in Lemma F.3, we can derive an upper bound on the expected (squared) aggregation error,
mirroring Corollary D.2.

Corollary F.4 (MSE of Aggregated Gradients). Consider the setting in Lemma D.1, let g < MFM(g,...,gN;TN) be
the output of Algorithm 3 with TV = 20V /N = 4V/21log (16m2T)/N, and assume that N < T. Then,

2 _ OV HVf(iv)II2

Ells
|57 =vi@" < =g SmT
where C? := 8C? = 64 log(16m*T) and 7 = L + 3262

Proof. Utilizing the previous lemma, we have with probability at least 1 — o=,

N 2 2022 9
5% = V@ < = +1285" ) .
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Additionally, we always have that

15 = V()| < 20C2V + |V f ()]

Thus, by the law of total expectation, we get

N 2 2C2V2
Blg - Vi@ < 255 (& + 1288 + (20002 + VS @F) - o
507V |V (@)
— 12 2
N ( 86>+ 2mT + 8mT
_ o IV £ ()
= 25662
N (2 2560 ) 8mT
_ sene 2\, IVI@)I®
<55 (5 vawr) + IO
_ OV V@)
N 8mT
where the second inequality follows from the assumption that N < T'. O

The bound in Corollary F.4 closely resembles that in Corollary D.2, differing by an additional factor of “Vf (2 )“ . This
variation stems from the specific structure of the MFM aggregator, specifically due to the rare event where the set M is
empty, leading to an output of g = 0.

F.1. MFM is not (9, x)-robust
Consider Algorithm 3 with a threshold 7 > 0, and let z € R?. Suppose every honest worker i € G provides the true
gradient, g; = V f (), while every Byzantine worker submits g; = V f(z) + 27, for some v € R? with ||v|| = 1. In this

case, M is not empty as M = G. Since all vectors are within %T of each other, G contains all workers. Consequently, the
aggregated gradient, g, is given by V f(z) + 27 6v. Denoting the average of honest workers by § = ﬁ Yicg 9i = Vi(z),

S . ~ . S ) 1 all?
the above implies a nonzero aggregation error ||g — g||, while the ‘variance’ among honest workers, i Yicg llgi —all”s
remains zero. This scenario fails to satisfy Definition 3.2.

G. AdaGrad with Biased Gradients

Consider the AdaGrad-Norm (Levy, 2017; Ward et al., 2020; Faw et al., 2022) (also known as AdaSGD, Attia & Koren
2023) update rule, defined for some parameter 79 > 0 as follows:

Ter1 = Hic(zy — mege), e = S — , (AdaGrad-Norm)

2
e gl

where g, has bias by = E[g; — V f(z)|2] and variance V2 := E[||g; — Eg.||* |z.].

In Appendices G.1 and G.2, convergence bounds for (AdaGrad-Norm) are deduced for convex and non-convex objectives,
respectively.

G.1. Convex Analysis

We commence with a lemma that establishes a second-order bound on the linearized regret of (AdaGrad-Norm), essential in
our convex analysis. The proof is included for completeness.

Lemma G.1 (Levy, 2017, Theorem 1.1). Suppose Assumption 2.3 holds, i.e., the domain K is bounded with diameter
D = max, yex ||z — y|| and consider (AdaGrad-Norm). Then, for every u € K, the iterates x1, . . ., xr satisfy:

T D2 T

2
ool =) < (o +m) |l
t=1 210 =1
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Proof. For every u € IC, we have that

IN

2 2 2
41 = ull” < llze = ull” — 2009 (we — u) +0* e

Rearranging terms, we get:

2 2
”xt - ’LL” - H‘Tt+1 - U” + @ || H2
2n; 2 Mt

IA

gtT (z¢ — u)

Summing over ¢ € [T'], we then obtain:

i T )<|x1u||2+i||xtun2(1 1 )gi ol
gy (2 —u) < ——— )+ g
i ' 2m 2 Nt—1 g LMt

e

>> Uoz lg:)”
-t >

g A

IA
M‘Uw
VN
P
+
]~
—~
an
|

AN

|
N
s
+l\)

3
N
5

D2
= (g +m)

where the second inequality uses |z, — u||*> < D? for every ¢ € [T'] and ; < 1,1, and the final inequality stems from
Lemma [.4. O

We now establish a regret bound for AdaGrad-Norm.
Lemma G.2. Assume f is convex. Under Assumption 2.3, the iterates of (AdaGrad-Norm) satisfy:

ERr <D [2) EV2+2D Ellb|> + D > Elbel| +2D | > EIV £z,
te[T] te[T] te[T] te[T]

where Ry =31y (f(24) —

Proof. By the convexity of f,

ERr < Z Vf(x)" (zy — x* Z g (xg —x*) | + Z E[-b, (z; —2%)] . (28)

te[T) te([T] te([T]

=(4) =(B)

Bounding (A). Utilizing Lemma G.1 with 19 = D/+/2 and Jensen’s inequality, we obtain:

E[> g/ (@—2)| <DE| 2> |lgll’| <D [2) Elg]?*.
te[T] te[T] te(T]

We can bound the second moment of g; as follows:
B 1llgel? = Eeollge — Beorgell® + 1Beo1ge® < V2 + 21bel|* + 2|V f (o) (29)
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where we used [|a + b||* < 2 ||a]|® + 2||b||*. Plugging this bound back, we get that (A) is bounded as

th r,—2")| <D QZ]EVt +2D E||b:|* + 2D ZIEHVf xt)]
te[T) te[T) te[T) te(T)

Bounding (B). By Cauchy-Schwarz inequality and Assumption 2.3,

> B0 (m —a)] < Y Elllbll [lze — 2] <D Y Elfbe]] -
te[T]

te[T) te[T]

Incorporating the bounds on (A) and (B
ERr <D [2) EV2+2D Ellb:|> + D > Elbell +2D | > BV f(x)|
te[T] te[T] te[T] te[T]

G.2. Non-Convex Analysis

) into Equation (28) concludes the proof, as

The subsequent lemma establishes an upper bound on the sum of squared gradient norms when utilizing AdaGrad-Norm for
bounded functions.

Lemma G.3. Assume f is bounded by M, i.e., max, |f(x)| < M, and consider (AdaGrad-Norm) with K = RY. The
iterates x1, . . ., xT satisfy:

T T
S el + 32 (V) — 90T V() -

t=1 t=1

Z IV fx)]|” < (7?04 +770L>

Proof. By the smoothness of f, for every z,y € R? we have that f(y) < f(z)+Vf(z)" (y—z)+ % |ly — x||*. Plugging-in
the update rule z;41 = xy — n.g:, we obtain:

2
Flaen) < F@) =V f@) g0+ 22 gl
= Fla) ~m IV FI 4 10 (V) — 90T V) + 2L g

Rearranging terms and dividing by 7; gives:

f@e) = f(@41) L77t

. lgell® + (Vf(ze) — gi) " Vf(ae) -

IV f(@)|* <

Denoting A; == f(x;) — f* and Apax = maxycir) f(2¢) — f*. Thus, the above is equivalent to

Ay — Ay L
(@) < S==0 s S gl 4+ (V) — 90 S (a)
Summing overt = 1,...,T, we obtain that

Ay —A L

DNV < D == T D mellgel® + Y0 (VS () = 90)" V()

te[T] te[T] Nt te[T] te[T]

B + 5 Z ne llgell + Z (V) —g0) ' V(ze) (30)
tG (1] te[T)
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where the last inequality follows from:

T

T T
A — A A A
Z t t+1 _ +Z( )At T+l +Z< )At S max 7
N Mi—1 nr . Me—1 nr

t=1 "t t=2 t=2

which holds as 7; = 770(23:1 ||97H2)_1/ 2 is non-increasing. Next, we can bound the second term in the R.H.S of
Equation (30) using Lemma .4 with a; = ||g;||? as follows:

S el =m0 Y ”gf” o [ il

te(T) tel) \/ ey llgsl? te(T)

Injecting this bound and 7y back into Equation (30) and considering that A, < 2M concludes the proof. O

Leveraging Lemma G.3, we derive the following bound, instrumental in proving Theorem 5.2.
Lemma G.4. Assume f is bounded by M and consider (AdaGrad-Norm) with K = R<. Denote:

T T T
Gh =Y VS, V=Y VA Sh=3 bl
t=1 t=1 t=1

For every T > 1, it holds that

EG2. < 2¢ <\/IEV1%T +/2ES3 + \/2EG2T> RS2
where ( == 217—1\5 + no L.

Proof. Employing Lemma G.3, we get

EGT <CE| > llael*| + Y EBl=b/ V()] -
te[T] te([T]

=(A) =(B)

Bounding (A). We apply a technique akin to the one utilized in the proof of Lemma G.2. Concretely, applying
Equation (29) and using Jensen’s inequality, yields

E \/Z loel?| < |3 (BV? +2B|ll” + 2B|V f(2)|) < /EVZy + \/2BS3 + /28G5 .
t

e[T] te[T)

Bounding (B). Employing Young’s inequality, namely, a "6 < 1 llal|* + % ||b]|?, results in

1 1
> E[-b V(w)] <72E|\bt\| +3 ZEuth :§E5%+§EG2T.

te[T) te([T] te[T]

Substituting the bounds on (A) and (B) implies that

1 1
EG2 < ¢ <\/EV1%T +\/2ES3 + \/2]EG?F) + 5ES} + SEGE.
Subtracting 2IFL‘GV2 and multiplying by 2 establishes the result. O
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H. Dynamic and Adaptive Byzantine-Robustness with MFM and AdaGrad

Following the methodology outlined in Appendix D, this section focuses on analyzing Algorithm 2 with Option 2. Here,
we replace the general (J, x)-robust aggregator with the MFM aggregator and incorporate the adaptive AdaGrad learning
rate (Levy et al., 2018; Ward et al., 2020; Attia & Koren, 2023).

Recall that Algorithm 2 with Option 2 and learning rate defined in Equation (7) performs the following update rule for
every t € [T:

Ji¢ ~ Geom(1/2)

g _j _j ; .20y 2log (16m?2T)
J J J .7 J . — /)

oy <_MFM(gt,1""agt,m1T )7 T T \/27 =4V 2 (31)
27 (AJf—AJt 1), if J, < Joax = |log T| and &,(J;) hold

g =0+ 9¢ — 9 I t_. a [log T'| and &;(J;) holds (32)
0, otherwise

T < e (we —mege), ne = % ) (33)

a1 llgsll

where the associated event & (J;) in this case is defined as,

E(Jy) = {||A"t g <a+ f)cf/;’;}} . e =6V2, C:=2V2C = 8y/log (4m?T) . (34)

For ease of writing, we denote: 7 := % + 3262

We start by showing that &, is satisfied with high probability, mirroring Lemma D.3.
Lemma H.1. Consider £(J;) defined in Equation (34). For everyt € 7o and j =0, ..., Jmax, we have

1
P, 1(&E(5 1——:
-1(&(4)) = T’
where the randomness is w.r.t the stochastic gradient samples.
Proof. By item 2 of Lemma F.3, for every j = 0, ..., Jyax (separately), we have with probability at least 1 — SmT,
. 2022 2021/2 8C°V?y V3
5] — V|2 < 57 ( - 12852) ( + 12862) = > T

where we used - + 12857 < 4 (L 4 326%) = 47 and C? = 8C?2. Therefore, we have

ceCV 3CY i CV\f 1
— - < Jo_
1<| = Vil > % ) =P <|| = Vi > 73) <Pia <|gt Vil > o) S 8mT

where we used cgC = 6/2C = 3@, and ¥ = i +3262<9asd < 1/2. This bound, in conjunction with the union bound,
allows us to bound P;_1 (& (5)¢) as,

Pr1(6:(7)°) = Pros (ngt > (11 VR Cgm’)

NGt
E{ -vil > S U] - vl > <52 )

ceCV . ceCV
<Prs (17 - v > €LY )+Pt1(ng v )

V2i 2i—1

1 11
= 8mT  8mT  4mT '
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Next, using Corollary F.4 and Lemma H.1, we establish bounds on the bias and variance of the MLMC estimator defined in
Equation (32), resembling those outlined in Lemma D.4.

Lemma H.2 (MLMC Bias and Variance). Consider g; defined as in Equation (32). Then, for every m > 2,

1. The bias by = E;_19: — V¢ is bounded as

~ ﬁ \/5(5'1} logT (1+V2) || V4]
Il < { VYT T v*'Zﬁm;’ten'
195 log TCy + Ll t€Tq

2. The variance V2 := By_1 ||gs — Ey_19:||” is bounded as

V2 < {14@2V2ﬁ10gT+1ogT||Vt||2, ters
¢

125C2 )2 logT + Hfﬂiy, tery

Proof. Our proof technique parallels that of Lemma D.4. Starting in a similar fashion, we can bound the variance as shown
in Equation (20), namely,

Jmax

2 ; .
V2 <Eiillge — Vil < 2By |30 — Ve|” + 2 Z 27 Er [Hgt 9P ]lé‘t(j)} . (35)

j=1

=(1)

Unlike in Lemma D.4, here we bound () differently for ¢ € 74 and ¢ € 7,. This is because the bound within the event &; in
Equation (34) deviates from that in Equation (17) by a factor of /7. Alternatively, one could introduce a factor of /7 to
maintain a similar analysis; however, in doing so, the event would no longer be oblivious to §, which contradicts one of our
objectives in utilizing the AdaGrad learning rate.

For every ¢ € [T] (including ¢ € 74), it holds that

(1+V2)PcC?y? 54C?V?

27 - 2 7

Bt |5 - 5 11e)| = Eemn |13 - 3 IP16)] PEG)) <
<1

where in the final inequality, we utilize the constraint on ||§/ — g7 ||, conditioned on the event & (j) (cf. Equation (34)).

However, considering ¢ € 7, (static rounds), we employ a more careful analysis. Specifically, Corollary F.4 implies that
Ei1|19] = 9 1P L,y | < Bemrllg] — 37717 < 2Bennllg] — Viol® + 2Bea[lg] " — Vel
2125 2 225 2
Co (O IV, (G IV
27 8mT 2i—1 8mT
o (3C°V*F IV
27 4mT

~ ~ 2
_ 6CV2 5 4 31Vl
— 2] )

where the last inequality follows from 27 < T and m > 2. We can thus conclude that

54C2)?, t ey

1
2
e 13 - 31" “ﬂ&m}ﬁm'{«pwa+wwm2 ten
4 ) S
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In addition, Corollary F.4 implies that E,_1 |39 — V,||2 < C2V25 + IV®  plugging these bounds back into Equation (35)
y p t ST ggimg q
establishes the variance bound. Specifically, for ¢ € 7y,

N VAR o 5402122
2 . 2< 2452 || t J .
V2 <Ei1lg: — Vil _2<va+ ST +2§j2
~ays IVl ~202
= 20°%V%5 + + 108C? V2 Jax
AmT

IVl

< 125C*V?1og T ,
= 8Lt T

where in the last inequality we used 7 < 8.5 for m > 2, and 1 < Jyax < logT. On the other hand, for ¢ € 74, it holds that

27

~ max 6C2V2~ V
VP <Eiillge = Vill” <2 <C2v2a Vi > +2 § : 2 i+ 4Vl
IVe1* A5 |
4mT + ]-QC V 7 ”VtH max

< 14C*V?*31og T +log T || V¢||?

= 20%V%5 +

where the last inequality follows from 1 < Jiax <logT and 5= < logT'.

Moving forward, we proceed to establish a bounds on the squared bias, following a similar approach as demonstrated in the
proof of Lemma D.4. For t € 74, we trivially bound the bias by the square root of the MSE as follows:

1bell = |Ei—19: — Vel < \/Eecillge — Vel)? 125C2V2 1o gT+”vt|| 1251og TCV + L Avell . (36)
NS

For t € 74, we repeat the steps from the proof of Lemma D.4, leading to the derivation of Equation (22), i.e.,

[bell < NEe—1(37™™ = Vil + |Ee1gell < |Ee—1 (g7 — Velll +Eomt|lyell (37)
=(A) =(B)

whete y, = — 275 2], and 5f = B [g] — 51 1€.)°| P (€5,

Bounding (A): Utilizing Corollary F.4 and Jensen’s inequality, we get

. N C2v2y |V A (27 IVl
E Jmax _ V| < \VE Jmax _ 7 DY it + < Oy =2 + 2L
1Ee-1[g: 2l \/ e-119; = 9Jmax 8mT — v 1 vV 8m1 ’

where we used 27/max > T/2,

Bounding (B): By the triangle inequality and Jensen’s inequality, we have

Jmax Jmax

EPMLIEDILE I8 - 3G [P (EG)) -

By item 1 of Lemma F.3, for every j = 0, ..., Jyax, we have that ||[g] — V|| < \/2002V2 + |Ve|? < V20CV + | V]|
Therefore, it holds that

197 =3 < g = Vall + 1 = Vil < 2 (V20OY + [Vl
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In addition, by Lemma H.1, we have for every j = 0, ..., Jax that P,_1 (E:(4)¢) < 4mT Combining these bounds, we
conclude that

J,
Sy 1 (V200V + Vi) Jmax . (V20CV + ||V¢||) log T
< E \/ . — < .
lyell < = 2 ( 200V + ”vt”> 4mT 2mT - 2mT

Substituting the bounds on (A) and (B) back into Equation (37) implies that for every ¢ € 7:
v V20OV + ||V log T - [27  VB5CVlegT | ||V 1 log T

/8m 2mT mT 2 o2omT mT
<6y 2y n V5CVlog T N Vel (1 10gT>
T mT 2v/2m \vT T
- [25 5CVIogT  (1++/2
oy B, VECVIosT (14 V3) Vil
mT 2v2mT
where the second inequality follows from % < ﬁ, which holds for every m > 2; and in the last inequality we used
logT < /2T, which holds VT' > 1. O

Similarly to the approach employed in Appendix D, we now utilize the established bias and variance bounds to derive
convergence guarantees for Algorithm 2 with Option 2. We use the following notations, as in Appendix G:

Re =Y (flw) = f(a), Gh =Y |IVf@)l®, Vip:= Y V& b= lbel, SF:= D Ilbell*

te[T) te[T] te[T) te[T) te[T]

H.1. Convex Case

The following theorem implies convergence in the convex case. For ease of analysis, we assume that V f (z*) = 0, which
enables using Lemma 1.3; this is the case when /C contains the global minimizer of f. To alleviate this assumption, one
could consider adopting a more sophisticated optimistic approach (Mohri & Yang, 2016). Yet, we refrain from doing so to
maintain the clarity of our presentation and analysis.

Theorem H.3. Assume f is convex and x* satisfies V f (x*) = 0. Under Assumptions 2.2 and 2.3, consider Algorithm 2
with Option 2 and the AdaGrad-Norm learning rate specified in Equation (7), where ng = D /2. For every T > 1, we have

. JlogT  24|r4|vIogT = 78y/|rallogT  6logT 10y 16logT
Ef(xT)—f(:c*)SCDV<14 /w;g | AlralVioe T W+ ogT 10V  16log >+

T T mT T mT3/2
392LD?log T
T b)
where T = % Zthl z; and C == 2:/2C.

Proof. Applying Lemma G.2, we have

ERp <D [2Y EVZ+2D | > E|b|*+D Y Elbe]| +2D [ Y E[V ()|
te[ T] te[T] te[T] te([T]

-D 2IE2V12T + DEby.p + 2D\ /ES2 + 2D /EG2. . (38)

Bounding EV?,. Utilizing the variance bound from Lemma H.2, we get that

EVir =Y EVZ+ > EV?

teETq teETs

= E||Vf ()| 21,2~ )
< 24,2 2452
< ;@d: <125C Vlog T+ =12 +t§€7-: (140 V25 log T + log TE|[V f ()] )
< 125C%V2 14| log T + 14C*V?*3T log T + log TEG?. . (39)
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Bounding Eb;.7. Employing the bias bound from Lemma H.2, we obtain:

Ebir = Y E|bll + > Ellb|

teETy teTs
1E||W(fft)|> fCVlogT (1 4+ V2)E[V (x|
< V1251og TCV + cy
t;ﬁ( & T t; T mT 2v2mT
- - V1 T 1
< \/1251og TCV|r4| + CV\/25T + V5CVlog i f Z ||V f ()
m 2v te (1)

. - VlegT 1
< \/1251og TCV| 4| + CV 2aT+‘/SC:IOg 2% EG2.

where in the second inequality we used the fact that 1+—\/‘§/§ > 1, and the last inequality arises from the application of the

Cauchy-Schwarz inequality and Jensen’s inequality, specifically } -, . 7 E[|V f(z1)]| < VT \/ >term EIIVf (@) 112

Bounding ES2. We start by bounding ||b;||” for every ¢ € [T]. From Equation (36), we have for all ¢ € 74 that

IV f ()]
AamT

For t € 7,, employing Lemma H.2 and using (a + b + ¢)? < 3(a? + b% + ¢2) gives:

2 ~ -
logT 1 2 2125 1502121 2T E 2
b || < (CV\/7 \fcv og ( +\[)|Vf(a:t)||> < 6C=V 7. 5C*V” log +9 IV f(z)]|

6] < 125C%V? log T +

24/2mT T m2T2 AmT

Thus, we can bound ES% as follows:

ES? =Y Ellbe|® + > E[be)?

teETq teETs
<3 (125620210 7 EIVA@OIP > 6C*V25 | 15C*V2log” T 9E||V (4]’
- & amT T m2T? amT
teTq teTs
~ ~ 15C%V? log? T 9
< 125C%*V? |74 log T 2?3 EG2. . 4
< 125C7V7|7q|log T + 6C7V75 + e t T G5 (40)

Plugging these bound back into Equation (38) and rearranging terms yields:

ERp < D\/ 250C2V2|74|log T + 28C2V23T log T + 2log TEGZ. +

5 . DVlogT (1++2)D
\/125logTCDV|Td|+C’DV\/2§/T+\/gcn}jog L 0+v2) EGZ. +

2v2m
- - 15C2121 2T 9

D1/ 12562V2 7y log T + 6C2125 4 2207V 108 EGZ. +
2T dmT

EG2.
< (V250 4 2v/125)CDV/ |14l log T + (V28 + V2)CDV\/3T log T + V125C DV|74|/log T +
- logT - - logT 1
\/BCDvOi +2V6CDV\/F + 2/15C DY -2 +D< 21og T + V2,3 ),/EG?T

mVT Vom F
. . . . ) - logT
< 390DV log T+ 7CDVA/AT log T+ 12C DV \/log T+ 3ODV%+ 5CDV\/A+ 80DV% +
m
::B
7D\/2L1og TER
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where in the last inequality follows from v/2 + 1\'/"[ + \/f:ﬁ + 2 < 7 (for m > 2), and the application of Lemma 1.3,

which holds since we assume K contains a global minimum, i.e., V f(z*) = 0. Employing Lemma 1.8 with a = ER,
b=DB,c=7D,andd = 2LlogT, we get

ERr < 2B +392LD?logT .

Finally, dividing by 7" and utilizing Jensen’s inequality establishes the result:

ylogT  24|r4|\/1ogT  78+/|r4|logT  6logT = 10v/%  16logT
Ef(zr) — f(z )<77%T<CDV<14W+ |Td|\/E+ \/W+60g n Oﬁ_’_ 6log >+

T T mT T mT3/2

392LD%logT
—

Theorem H.3 suggests the following observation holds true.

Corollary H.4. As long as |14| € O(VAT), the first term dominates the convergence rate, implying an asymptotically
optimal bound of O(DV /(6% + 1/m) /T).
H.2. Non-convex Case

Theorem 5.2. Suppose Assumption 2.2 holds, with f bounded by M (i.e., max, |f(x)| < M). Define ¢ := 277—124 + 1oL, and
consider Algorithm 2 with Option 2 and the AdaGrad-Norm learning rate. For everyl’ > 3,

27 log T Slog T 6logT
( \/IT;Iog 4 g,/ losT  6log )+

T
= BV < 8OV
t=1

T mT3/2
~ 125|74|log T 65  15log® T 1024¢2%log T
VT@R) Vol il S= R R .
S < T * T m2T? T
Proof. Utilizing Lemma G.4 gives:
EG2 < 2¢ <\/IEV1%T +/2ES2 + \/QEG2T> +ES2. @1)

Employing the bounds on EV%. and ESZ as given in Equations (39) and (40), respectively, we obtain

EG2 < 2¢ ( \/ 125C2V2|7y|log T + 14C2V25T log T + log TEGZ, +

~ oo 30C2V210g” T 9
\/25002V2|Td|1ogT+1202V2'y+ mgTog + 5 =BG} + 1/2IEG2T> +

15C2V2 log? r..9

~27 52 2492 ~ 2
125C2V2 g log T + 602V + ——— 2 — 4+ —EG}
~ - —  GlogT
<200V (\/125+\/25o) VI7allog T + 41/3T log T + 4+/7 + +
mvVT
N 1510g? T
o2 (125|Td| log T + 6 + Of)
m?T
3 2
g( log T erﬂ) EG + ;= TEGT
6logT ~ 151og® T
< 2(CV (27\/|Td|logT+8\/fyTlogT+ ff) + G2 <125|Td|1ogT+6a+Wf2gT> +

8¢y/log TEGZ + 5]EG‘ZT
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where in the last inequality we used 1 + \/;ZTF ++v2 < 4and 473T < %, both of which hold for m7T" > 6. Subtracting

%EG% and multiplying by 2 gives:

6logT
mVT

=B

EG2. < 4¢CV (27\/|Td| log T + 8v/AT log T +

16¢1/log TEG .

Similarly to the proof of Lemma G.2, we apply Lemma 1.8 with a« = EG%, b = B, ¢ = 16¢, and d = log T to obtain:

. 151log* T
) 42022 (125Td log T + 65 + °g>

m2T

EG% < 2B +1024¢%log T .

Dividing by T concludes the proof,

T ~
1 EG3 (27 log T logT  6logT
) E|Vf($t)||2=GT<8CCV< Vrallog +8\/’Y ogT  Glog >+
t=1

T T T mT3/2

~ ~ 2 2
4022 (125|rd|logT L, 151og T) 1024¢*log T

T T m2T? T

The above convergence bounds implies the subsequent result, mirroring Corollary 4.2.

Corollary H.5. Theorem 5.2 establishes the following asymptotic convergence rate:

1 & 2 _ A 1 1 2|74l

Thus, as long as the number of bad rounds |74 is O(1/(62 + 1/m)T) (omitting the dependence on 1y, L, M, and V), the
established convergence rate is asymptotically optimal.

I. Technical Lemmata

In this section, we provide all technical results required for our analysis.

The following result by Pinelis (1994) is a concentration inequality for bounded martingale difference sequence.

Lemma L1 (Alistarh et al., 2018, Lemma 2.4). Let X;,...,Xr € R? be a random process satisfying
E[X¢|X1,...,X¢—1] =0and | X¢|| < M a.s. for all t € [T). Then, with probability at least 1 — p:

T
ZXt < M+/2Tlog (2/p) .

In our convex analysis, we use the following classical result for projected SGD.

Lemma L2 (Alistarh et al., 2018, Fact 2.5). If x;11 = Il (z¢ — nge) = argmin ¢ |y — (21 — n9¢) %, then for every

z € IC, we have

|2z — fct+1||2 + |z — JUHQ . |21 — $||2
21 21 2n '

9 (¢ — ) < g/ (24 — T441) —

Next is a classical result for smooth functions.

Lemma L.3 (Levy et al., 2018, Lemma 4.1; Attia & Koren, 2023, Lemma 8). Let f : R? — R be an L-smooth function and
x* = argming,cpa f(z). Then,

IVf(@)* < 2L (f(z) - f(@")), Vo eR?.
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We utilize the following lemma by Auer et al. (2002), commonly used in the online learning literature, when analyzing our
method with the AdaGrad-Norm learning rate.

Lemma 1.4 (McMahan & Streeter, 2010, Lemma 5; Levy, 2017, Lemma A.1). For any sequence a1, . ..,a, € Ry,

The next two lemmas arise from fundamental probability calculations.

Lemma L.5. For any random variable X and event &,

E[X - 1¢] = E[X] — E[X|EP(£°) .

Proof. By the law of total expectation:
E[X - 1g] =E[X - 1¢|E]P(E) + E[X - L¢|E°P(E°) = E[XIE]P(E) = E[X] — E[X|E|P(E°) .
=0
O
Lemma L6. For any three events A, B, C satisfying P(A) > 0 and P(B|A) > P(C|A), we have P(B) > P(C) — P(A°).

Proof. By the law of total probability, we have
P(B) = P(B|A)P(A) + P(B|A°)P(A°) > P(C|A)P(A) . 42)
—————
>0
Again, by the law of total probability,
P(C) =P(C|A)P(A) + P(C|A°) P(A°) < P(C|A)P(A) + P(A°) .
——
<1

Since P(A) > 0, we can establish a lower bound for P(C|A) as follows:

P(C) — P(A7)

P(C|A) >
Substituting this bound back gives:

P(C) — P(A°)

P(B) > P(A)

-P(A) = P(C) — P(A°) .

Finally, we utilize the following lemmas in our analysis to establish convergence rates.

Lemma L.7. Leta,b > 0, ¢ > 0, and consider n = min {\/ﬂ/b, 1/0}. Then,

g—0—bn§2\/ab—&—ac.
n

Proof. Assume that \/a/v < l/c. In this case we have { + by = 2vab. Alternatively, if I/c < 1/4/v, then 5ty =
ac + b/c < ac + v ab. Therefore, we always have

%—l—bnﬁmax{?x/%’ac—i—\/%} SZ\/@—%(LC.
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Lemma L8. Leta,b,c,d > 0O witha > 0. Ifa < b+ cVda, then a < 2b + 4dc?

Proof. Consider two cases. If b > C\/ﬂ, then we can bound,
a<b+ eVd-a <2b.
Otherwise, b < ¢v/d - a and we can bound,
a<b+ eVd-a < 2¢Vd - a .
Dividing by y/a > 0, we get that 1/a < 26\/&, which is equivalent to a < 4dc?. We can thus conclude that
a < max {Qb, 4dc2} < 20 + 4dc? .

J. Experimental Details

In this section, we describe the experimental setup and training details for the image classification tasks in Section 6.

Hardware and training times. We run all experiments on a machine with a single NVIDIA GeForce RTX 4090 GPU.
For the MNIST experiments, the runtime of each configuration is ~ 5 minutes and for CIFAR-10 it is &~ 45 minutes.

Architectures and training details. We adopt the CNN architectures from Allouah et al. (2023), as detailed in Table 2.

Table 2. Training details and hyperparameters.

Dataset MNIST CIFAR-10
Conv(64)-ReLLU-BatchNorm-
Conv(20)-ReLLU-MaxPool- Conv(64)-ReLU-BatchNorm-MaxPool-Dropout(0.25)-
Architecture Conv(20)-ReLLU-MaxPool- Conv(128)-ReLU-BatchNorm-

FC(500)-ReLU-FC(10)-SoftMax | Conv(128)-ReLU-BatchNorm-MaxPool-Dropout(0.25)-
FC(128)-ReLU-Dropout(0.25)-FC(10)-Softmax

# of iterations 5000 8000

Learning rate % 10 drop after 4000 iterations % 10 drop after 6000 iterations
Weight decay 10~%

Base batch size 32 64

# of workers (m) 17 25

In our experiments, we use a base mini-batch of size B (32 for the MNIST experiments and 64 for the CIFAR-10
experiments). That is, in each iteration, each worker observes B samples. This implies that for the baselines we use a fixed
mini-batch of size B, whereas for our method, which employs the MLMC estimator, in level J we use B - 27 samples
for gradient estimation. Following Dorfman & Levy (2022), we limit the maximal value of .J to be smaller than |log T'|,
specifically Jyax = 7, which we found to perform well in practice. For both MNIST and CIFAR-10 we use a learning rate
schedule where the initial learning rate is reduced by a factor of 10 for the final 1000,/2000 iterations, respectively.

Byzantine Attacks. Next, we describe the attacks that the Byzantine workers employ in our experiments. Let g denote the
average of honest messages in some round. We consider the following attacks:

« Sign-flip (SF, Allen-Zhu et al., 2020): each Byzantine worker computes a stochastic gradient and returns its negative.

¢ Inner-Product Manipulation (IPM, Xie et al., 2020): all Byzantine workers return the negative, re-scaled average of
the honest messages, i.e., —eg. We follow Karimireddy et al. (2021) and use ¢ = 0.1.

¢ A Little is Enough (ALIE, Baruch et al., 2019): Let o denote the (element-wise) standard deviation vector of honest
messages. All Byzantine workers return the vector g — zo, where z € R is computed as in Baruch et al. (2019);
Karimireddy et al. (2021) (cf. Appendix G in the latter). For the MNIST experiments with m = 17 and dm = 8, we
have z ~ 1.22.
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J.1. MNIST Classification with Periodic Identity-Switching Strategy

In Figure 5, we show the full training curves on MNIST, corresponding to the final accuracy results presented in Figure 1.
That is, we show the test accuracy as a function of the number of observed samples (x batch size x # of workers, i.e., total
sample complexity) under the Periodic switching strategy for different values of K, where Byzantine workers employ the
SF attack and the server uses CWTM. For the momentum and SGD methods, we used an initial learning rate of 7 = 0.01
and for DynaBRO it is = 0.05. We observe that our method performs well across all values of K. However, when the
switch rate K is small (specifically, smaller than the effective momentum horizon of ﬁ), momentum SGD fails to learn
something meaningful and performs similarly to a random guess. When K is larger, momentum performs better, e.g., when
K = 100 momentum with parameter S = 0.9 slightly outperforms our method.

CWTM-SF
K=5 K=10 K=20
100 100 1 100
751 751 751
50 50 501
251 251 251
a —_—
© 0 1500 3000 4500 0 1500 3000 4500 0 1500 3000 4500
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(xbatch size per worker)

= DynaBRO -~ SGD (B =0) = Momentum, 8 =0.9 —— Momentum, B =0.99

Figure 5. Test accuracy on MNIST under the Periodic(K) identity-switching strategy for different values of K. Byzantine workers
employ SF attack and the server implements CWTM aggregation.
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Figure 6. Final test accuracy on MNIST under the Periodic(X) identity-switching strategy for different values of K. Byzantine workers
employ ALIE attack and the server implements geometric median (GM) aggregation.

In Figures 6 and 7, we show the test accuracy on the same MNIST configuration, but with Byzantine workers utilizing the
ALIE attack (Baruch et al., 2019) and the server using the geometric median (GM, Pillutla et al., 2022) aggregator. For this
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configuration, all methods are trained with the same initial learning rate of 7 = 0.01. While here momentum with parameter
0.9 performs reasonably when K = 5, the general trend is similar — our method has consistent accuracy across different
values of K and momentum improves as K increases.
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Figure 7. Test accuracy curves corresponding to the final results presented in Figure 6.

J.2. CIFAR-10 Classification with Bernoulli Identity-Switching Strategy

In this section, we present an additional configuration for the CIFAR-10 task under the Bernoulli(p, D, 6,,.x) switching
strategy, with a different maximum fraction of Byzantine workers. Instead of using dmax = 0.72 (maximum 18 Byzantine
workers per iteration), we limit the maximum to 12 Byzantine workers, corresponding to dymax = 0.48. This demonstrates
that similar results to those in the main text are observed when there are fewer than half Byzantine workers in all iterations.
For both configurations, we used an initial learning rate of 7 = 0.01 for momentum and SGD, and 1 = 0.05 for DynaBRO.
In Figure 8, we show the results when d,,,x = 0.48, mirroring those in Figure 2.
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Figure 8. Test accuracy and histogram of the fraction of Byzantine workers on CIFAR-10 under the Bernoulli(p, D, dmax) strategy for
different values of p and D with dmax = 0.48. Byzantine workers employ the IPM attack and the server uses CWMed.
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