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ABSTRACT

Mixture-of-Experts (MoE) models have gained attention as a novel approach to
developing large language models (LLMs), praised for their ability to enhance
performance by utilizing multiple experts. However, while increasing the number
of experts in these models can yield performance gains, it also introduces sig-
nificant trade-offs, such as substantial memory overhead and increased inference
time, limiting their scalability and practical deployment. In this work, we conduct
a thorough analysis of expert utilization and identify inefficiency: many experts
are underutilized, leading to suboptimal resource allocation with limited improve-
ment. To address this issue, we propose ExpertZIP, a progressive framework for
MoE models that leverages a Huffman tree-based expert fusion technique. This
progressive approach systematically merges underutilized experts step by step,
ensuring their essential contributions are maintained while drastically reducing
memory usage and computational demands. Our approach yields a 17.23x reduc-
tion in model size and a 4.84x improvement in inference time, with only a 1.18%
decrease in average accuracy compared to the original 64-expert Switch Trans-
former model. Moreover, it demonstrates a 6.47% increase in accuracy relative to
models with an equivalent number of experts. These results demonstrate that our
optimized framework provides performance on par with larger models, offering
an efficient solution for resource-constrained and real-time applications.

1 INTRODUCTION
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Figure 1: Comparison of original MoE architectures and ExpertZIP architectures. The original
architecture suffers from higher memory consumption and longer inference times. In contrast, our
approach achieves similar performance with reduced memory usage and shorter inference times.

The Mixture-of-Experts (MoE) model has become a prominent architecture in large language mod-
els (LLMs) Shazeer et al. (2017); Clark et al. (2022); Du et al. (2022); Zhou et al. (2022); Jiang et al.
(2024), particularly for its ability to utilize different specialized experts to enhance performance
across various natural language processing tasks. The core idea behind MoE is to train multiple spe-
cialized experts and use a gating network to dynamically select which experts should handle a given
input, enabling efficient and targeted problem-solving. This selective routing enables MoE models
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to scale effectively, significantly improving tasks such as machine translation, text generation, and
question answering Lepikhin et al. (2021); Fedus et al. (2022).
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Figure 2: Effect of number of experts on model size and
inference time in Switch Transformers.

Although adding more experts usually
increases model performance, it also
results in significantly higher memory
usage and longer inference times (see
Fig. 1 and 2). As the number of experts
grows, the overall parameter count of
the model expands substantially. Even
though only a subset of experts is acti-
vated during inference, the parameters
of all experts must be loaded and man-
aged in memory, increasing both mem-
ory usage and access overhead. Fur-
thermore, inference with different acti-
vated experts for different tokens further
contributes to inference latency. These
factors make deploying MoE models in
real-world environments, particularly in
resource-constrained settings, challenging. Balancing model performance with computational effi-
ciency becomes crucial as models continue to scale. For example, deploying large MoE models in
real-time applications, such as on mobile devices, can be both expensive and impractical.

Through our analysis of expert utilization within MoE models shown in Fig. 3, we observe that the
usage of experts is often highly imbalanced. Many experts are underutilized, being rarely activated
across different input samples. This imbalance is quantified by the selected frequency, represent-
ing the proportion of times an expert is chosen across the layers for a given dataset. The selected
frequency for each expert in a layer indicates how often it is activated, with the sum of selected
frequencies across all experts in a layer equal to 1. This imbalance suggests that the performance
gains from adding more experts may not scale proportionally, as certain experts are not fully lever-
aged. Importantly, we also observe that even the less frequently used experts still contribute valuable
information to the model’s overall performance. This finding suggests that removing underutilized
experts to reduce model complexity could result in losing important information, leading to a degra-
dation in model accuracy.

To address these inefficiencies, we propose a novel approach called ExpertZIP (see Fig. 1) that
enhances the efficiency of MoE models by merging underutilized experts rather than discarding
them. Our method employs a weight combination strategy, utilizing Huffman tree Huffman (1952)
to identify and combine the least significant experts. The Huffman tree, a well-known data structure
used for data compression and encoding, suits our approach as it allows progressive merging of
the least frequent experts and can preserve the most important one, perfectly aligning with our
goal of balancing performance and efficiency. Additionally, since it is a tree structure, we can
reduce the number of experts by stopping at a certain level. This approach ensures that the model
retains the critical contributions of all experts while reducing redundancy and maintaining a compact
architecture. Additionally, since we apply fusion to reduce the experts, we can preserve the original
model’s knowledge to achieve similar or surpassing performance compared to the original one.

This solution leads to a more efficient and deployable model architecture, making it suitable for
real-world applications. By reducing the number of experts, we achieve significant savings in both
memory usage and inference time. Our experiments demonstrate that the optimized model achieves
performance comparable to or surpassing models with more experts. Specifically, in classification
tasks, our method results in only a 1.18% drop in average accuracy, while in summarization tasks, the
ROUGE-1 score Lin (2004) decreases by just 3.09%. Despite these minor performance reductions,
the model achieves a 4.84x improvement in inference time and a 17.23x reduction in model size.
As for comparing with the same number of experts after fusion, our approach can increase at most
6.47% and 7.74% on the classification and summarization task. These results validate the effec-
tiveness of our approach, demonstrating its suitability for deployment in environments with limited
resources but still preserving its performance, such as edge devices and real-time applications.
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Figure 3: Expert selection distribution across different layers for the GLUE and SuperGLUE bench-
marks is highly imbalanced with Switch Transformer. The data, aggregated from seven datasets
within these benchmarks, shows that certain experts are selected frequently, while others are rarely,
if ever, utilized. This indicates significant inefficiencies in the utilization of experts.

2 RELATED WORK

2.1 EXPERT MERGING IN MIXTURE-OF-EXPERTS MODELS

The Mixture-of-Experts (MoE) model has gained prominence in large language models (LLMs)
for its scalable capacity Rajbhandari et al. (2022); Li et al. (2023a); Jiang et al. (2024); Cai et al.
(2024). However, as complexity increases, efficient expert utilization and computational overhead
become significant challenges. Recent methods have aimed to enhance efficiency and scalability
while maintaining or improving performance through expert merging.

Key approaches include MEO He et al. (2023), which enables top-K expert selection without signifi-
cantly increasing FLOPs. The Lory framework Zhong et al. (2024) optimizes auto-regressive models
by using similarity-based data batching. ZIPIT Stoica et al. (2023) introduces a “zip” operation for
merging disjoint tasks, aligning features across and within models for partial merging, effectively
addressing feature compatibility issues. MC-SMoE Li et al. (2023b) leverages routing policies in
sparse MoE to merge experts based on activation frequency, followed by compression to reduce
memory and FLOPs. REPAIR Jordan et al. (2022) mitigates variance collapse in model merging by
rescaling activations, improving interpolation performance and reducing accuracy barriers.

Most existing methods focus on model architecture, limiting the use of underutilized experts and
failing to fully exploit their potential. Our approach addresses this by merging underutilized experts
and adjusting the number of experts per layer, leading to more efficient capacity utilization and
greater adaptability across configurations.

2.2 MODEL ENSEMBLE TECHNIQUES

Model ensemble techniques enhance robustness and performance in machine learning by leverag-
ing model diversity, improving generalization, and mitigating overfitting. Key approaches include
Bagging Breiman (1996); Khwaja et al. (2015); Błaszczyński & Stefanowski (2015), which reduces
variance by training on data subsets, Boosting Freund et al. (1996); Waltner et al. (2019), which
sequentially corrects errors, and Stacking Wolpert (1992); Low et al. (2019); Kang et al. (2020),
which combines model outputs using a meta-learner.

Recent advancements have applied ensemble methods to deep learning, such as Deep Ensembles
Lakshminarayanan et al. (2017); Buschjäger et al. (2020), which aggregate independently trained
neural networks for improved performance and uncertainty estimation, and Snapshot Ensembles
Huang et al. (2017); Zhang et al. (2020), which create ensembles within a single training run to
minimize additional costs. Further innovations, like ME-TRPO Kurutach et al. (2018) for reinforce-
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ment learning and SESoM PENG et al. (2023) for few-shot learning, highlight the growing use of
ensemble techniques in various domains.

In this work, we integrate ensemble principles into MoE models by fusing underutilized experts.
This approach retains diversity and robustness while significantly reducing computational overhead.
Our method ensures that all experts’ contributions are preserved, leading to a more efficient model
that balances performance and complexity, particularly in resource-constrained environments.

3 BACKGROUND

3.1 MIXTURE OF EXPERTS

Mixture-of-Experts models offer an advanced approach to improving the efficiency and scalability
of Transformer architectures. These models replace feed-forward network (FFN) layers with MoE
layers, where only a subset of expert FFNs is activated for each input. In an MoE layer, E experts
are defined as FFN(·; θ1), . . . ,FFN(·; θE), each mapping an input from Rd to Rd. For a given
input token x with hidden state hx ∈ Rd, the routing function R(hx) selects the top k experts,
and the output ox ∈ Rd is computed as: ox =

∑
i∈Top-k(R(hx))

ei · FFN(hx; θi), where ei =

Softmax(R(hx))i represents the normalized routing score for the i-th expert.

3.2 HUFFMAN TREE

Huffman tree Huffman (1952) is a widely-used data structure for lossless data compression designed
to merge the nodes based on frequencies. It starts by constructing a binary tree, where each leaf
represents a symbol, and the path from the root defines the binary code for that symbol. Given a
set of symbols with frequencies, the algorithm iteratively merges the two least frequent symbols,
assigns binary digits to each branch, and recalculates combined frequencies until only one node
remains. In the context of our designed MoE models, each expert corresponds to a symbol, with
activation frequency analogous to symbol frequency.

4 METHODOLOGY

We aim to enhance the efficiency of MoE models by strategically reducing the number of experts
while preserving or improving overall performance. Our approach is designed to facilitate the fusion
of any number of experts, ensuring the retention of essential knowledge throughout the process.
The methodology is structured into expert selection via the Huffman tree, expert fusion through a
progressive weighted sum approach, and fine-tuning of the fused model. This process ensures that
the contributions of each expert are preserved during fusion, allowing for flexible reduction without
compromising the model’s integrity.

4.1 EXPERT SELECTION STRATEGY USING HUFFMAN TREE

The first phase of our approach involves selecting which experts to fuse based on their utilization
frequency within the MoE model. Our analysis has revealed that there is often a significant imbal-
ance in expert utilization, where specific experts are underutilized. This underutilization suggests
that these experts contribute less to the overall performance, making them prime candidates for fus-
ing. To systematically identify and select these underutilized experts, we employ the Huffman tree,
a well-known data structure for Huffman coding. Huffman tree is particularly suited for this task
because it optimally fuses elements with the lowest frequencies, which aligns with our objective of
reducing the number of underutilized experts and supporting the fusion of any desired number of
experts by halting at a specified stage.

For each MoE layer, we calculate the selected frequency of the experts based on the training data.
The distribution is denoted as F l = {f l

1, f
l
2, . . . , f

l
N}, where f l

i represents the selected frequency of
the i-th expert at the l-th layer. The frequency f l

i is computed as the proportion of input tokens in
the dataset for which expert ei is among the top-k experts selected by the routing function R(hl

x),
where hl

x is the hidden state of input token x at the l-th layer, and D represents the set of input
tokens in the training data. The selected frequency f l

i is formally calculated as:
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f l
i =

1

k|D|
∑
x∈D

1{ei∈Top-k(R(hl
x))}, (1)

where 1{·} represents the indicator function. In our study, we set k = 1, meaning that for each input
token, only the top-1 expert is selected. To control the reduction rate of experts, we define a variable
called speed, which dictates the rate at which experts are fused and reduced. For example, if the
original number of experts is 16 and the speed is set to 2, the experts are reduced to 8 before fine-
tuning. The speed variable allows flexibility in choosing the granularity of reduction and ensures
that fine-tuning is performed at each step to maintain optimal performance.

The Huffman tree process then fuses the two experts with the lowest frequencies iteratively, forming
a new expert whose frequency is the sum of the frequencies of the original two experts. This process
is repeated until the desired number of experts, Ne, is achieved. In practice, we use a min heap
to efficiently extract the node with the minimum frequency for each step. To illustrate the fusing
process, we provide an example in Fig. 4 where eight experts are gradually merged into one expert.
We also provide the detailed steps of our Huffman tree-based expert fusing process in Alg. 1.

4.2 WEIGHTED SUM FUSING OF EXPERTS

The second phase of our methodology involves fusing the experts identified in the previous phase.
Once the Huffman tree process selects the underutilized experts, we fuse these experts by computing
a weighted sum of their parameters, specifically designed to preserve knowledge. Formally, for the
l-th MoE layer, let El = {e1, e2, · · · , eN} represent the original set of experts, and F l denotes
their corresponding selected frequencies. The set of fusing indices provided by the Huffman tree
is denoted by Mf . The fusing process begins by initializing each new expert e′n in the new set El′

with a zero weight. For each original expert em identified for fusion, its parameters Wem is scaled
by its selected frequency f l

m and added to a new weight We′n for expert e′n. After aggregating all
contributions, the weight of e′n is normalized by the total frequency selected by the merged experts.
This normalization step ensures that the overall magnitude of the weights remains consistent, thereby
preserving model stability and performance. The weight We′n

for a new expert e′n is computed as:

We′n
=

∑
m∈Mf [n]

Wem × f l
m∑

m∈Mf [n]
f l
m

, (2)

where Mf [n] represents the merging set that forms the new expert e′n. Using a weighted sum based
on selected frequencies, we ensure that the most important characteristics of the original experts
are preserved during the fusion process, preventing loss of critical knowledge. Alg. 2 outlines the
detailed steps involved in this expert fusing process. This approach not only reduces redundancy
but also maintains the model’s overall performance. Once the fusion process is complete, we further
fine-tune the model on downstream tasks to optimize its performance and compensate for potential
loss of accuracy during the fusion phase. This fine-tuning step ensures the fused model reaches its
maximum potential, restoring performance drop and maintaining robustness across tasks.

5 EXPERIMENTS

5.1 SETTINGS

Our experiments utilize the Switch Transformers Fedus et al. (2022). We select the model with
8, 16, 32, and 64 experts. Models with a larger number of experts are excluded due to hardware
limitations. The experiments are conducted on an NVIDIA A100 GPU with 80GB of memory.
Detailed hyperparameters of the experiments can be found in Appx. D. Unless otherwise specified,
we reduce the number of experts by setting the speed to 2.

5.2 DATASET

To evaluate our proposed method, we conduct experiments on both classification and summarization
tasks using datasets from GLUE, SuperGLUE, and CNN/Daily Mail (CNNDM). For the classifica-
tion tasks, we select CoLA Warstadt et al. (2019), SST-2 Socher et al. (2013), MRPC Dolan &
Brockett (2005), and QNLI Rajpurkar et al. (2016) from the GLUE benchmark, which tests various

5
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Figure 4: Example of fusing steps starting from eight experts. (Left) Weighted results of each expert.
(Right) Alternative illustration with Huffman tree.

Table 1: Performance results after applying ExpertZIP, with experts reduced speed=2.

Original Size Classification (Accuracy ↑) Summarization (ROUGE-1 ↑)
64 32 16 8 64 32 16 8

64 78.62 78.30
(+1.28%)

77.72
(+2.80%)

77.65
(+6.47%) 36.19 35.88

(+0.06%)
36.05

(+4.98%)
35.35

(+7.74%)

32 - 77.31 76.89
(+1.71%)

76.61
(+5.05%) - 35.86 34.70

(+1.05%)
34.26

(+4.42%)

16 - - 75.60 75.08
(+2.94%) - - 34.34 33.40

(+1.80%)

8 - - - 72.93 - - - 32.81

aspects of language understanding such as grammatical acceptability, sentiment analysis, sentence
equivalence, and question answering. Additionally, we include BoolQ Clark et al. (2019), RTE Da-
gan et al. (2005), and WiC Pilehvar & Camacho-Collados (2019) from the SuperGLUE benchmark,
focusing on tasks like question answering, textual entailment, and word sense disambiguation. For
the summarization task, we utilize the CNN/Daily Mail (CNNDM) dataset (Nallapati et al., 2016),
which pairs news articles with human-written summaries, offering a rigorous test of a model’s ability
to generate concise and coherent summaries from longer texts.

5.3 EVALUATION METRICS

To evaluate the performance of our proposed method, we use different metrics depending on the
task. For classification tasks, we use accuracy, the ratio of correctly predicted labels to the total
number of samples. A higher accuracy score indicates better classification performance, as more
predictions align with the true labels. For summarization tasks, we use the ROUGE-1 Lin (2004),
which measures the overlap of unigrams (single words) between the generated summary and the
reference summary (ROUGE-2 and ROUGE-L are reported in Appx. I). The higher the ROUGE-1 is,
the more overlap exists, reflecting better summarization quality in capturing important information
from the reference text. The reported results are all re-implemented and fine-tuned by ourselves.

5.4 RESULTS

Knowledge Preservation. In Tab. 1, we present the outcomes of applying ExpertZIP for classi-
fication and summarization tasks, demonstrating that the knowledge from the large experts can be
preserved. Starting with 16, 32, and 64 experts, the number of experts is halved after each fusion
step. When reducing the number of experts from A to B (A > B), the performance on each task
is better than the original model with B experts. For instance, classification tasks see performance
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Table 2: Performance results of ExpertZIP and ExpertZIP* starting from 64 experts on classification
tasks. ExpertZIP halves the number of experts at each step, while ExpertZIP* gradually reduces by
halving until 16 experts, then one at a time.

Method # of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
SwitchT. 64 82.65 94.72 84.31 91.60 71.71 68.59 56.74 78.62

ExpertZIP

32 81.50 93.81 85.05 90.76 72.26 68.95 55.80 78.30 (-0.41%)
16 78.24 92.32 84.56 90.08 72.72 69.68 56.43 77.72 (-1.14%)
8 76.70 91.40 83.58 89.97 72.66 70.40 55.64 77.19 (-1.82%)
4 75.55 91.17 84.31 89.68 72.69 70.40 56.27 77.15 (-1.87%)
2 75.84 91.28 85.29 89.84 72.97 68.95 55.49 77.09 (-1.95%)
1 75.26 91.28 84.07 90.01 73.39 68.23 56.89 77.02 (-2.04%)

ExpertZIP*

8 77.85 92.55 84.31 90.10 73.61 69.31 55.80 77.65 (-1.23%)
4 77.28 92.20 84.07 90.06 73.70 69.68 57.05 77.72 (-1.14%)
2 76.80 92.09 85.05 89.93 73.91 69.31 57.21 77.76 (-1.09%)
1 77.09 92.09 84.80 90.30 73.52 68.95 57.05 77.69 (-1.18%)

Table 3: (Left) Performance results of ExpertZIP on the summarization task, starting with 64 experts
with speed = 2. (Right) Comparison of model size and inference time between the original 64-expert
model and progressively smaller expert configurations.

Method # of Experts ROUGE-1 ↑
SwitchT. 64 36.19

ExpertZIP

32 35.88 (-0.86%)
16 36.05 (-0.39%)
8 35.35 (-2.32%)
4 35.28 (-2.51%)
2 35.56 (-1.74%)
1 35.07 (-3.09%)

# of Experts Model Size (B) ↓ Time (ms) ↓
64 3.79 164.38

32 1.98 (1.91x) 97.05 (1.69x)
16 1.07 (3.54x) 63.98 (2.57x)
8 0.62 (6.11x) 47.66 (3.45x)
4 0.39 (9.72x) 40.70 (4.04x)
2 0.28 (13.54x) 35.16 (4.68x)
1 0.22 (17.23x) 33.93 (4.84x)

gains of up to 6.47% (64 → 8) compared to the Switch Transformers originally have only 8 ex-
perts, while summarization tasks experience up to a 7.74% improvement (64 → 8) in ROUGE-1
scores. This demonstrates that ExpertZIP effectively preserves the model’s knowledge, allowing for
the reduction of expert numbers without sacrificing crucial information or performance.

Unchanged Performance with Smaller Size and Faster Speed. Tab. 2 further illustrates the per-
formance of ExpertZIP and ExpertZIP* on classification tasks. ExpertZIP reduces the number of
experts by half at each step, while ExpertZIP* employs a slower reduction strategy, halving until
16 experts and then reducing one at a time. Both approaches show minimal performance loss com-
pared to the Switch Transformers 64-expert configuration. ExpertZIP* demonstrates slightly better
preservation of accuracy, with average accuracy dropping by only 1.18%, while ExpertZIP results
in a decrease of 2.04%. This highlights the effectiveness of these strategies in maintaining strong
performance while reducing the model’s complexity. Tab. 3 (left) focuses on the summarization
task, showing that even when the number of experts is reduced to as low as one, the ROUGE-1 score
remains competitive, with only a 3.09% drop compared to the switch transformers 64-expert model.
Tab. 3 (right) highlights the significant reductions in model size and inference time. By reducing the
number of experts, the model size shrinks by up to 17.23x and inference time decreases by 4.84x
when reduced to a single expert. These results demonstrate the efficiency of ExpertZIP in drastically
improving resource usage without sacrificing much performance.

Comparison with Other Methods. Tab. 4 compares the performance and model size of our pro-
posed ExpertZIP approach with existing pruning, quantization, and merging methods on GLUE and
SuperGLUE. The results show that ExpertZIP achieves competitive performance with significantly
reduced model size, highlighting its efficiency in preserving knowledge while minimizing resource
requirements. Notably, the enhanced variant, ExpertZIP*, consistently outperforms other methods,
achieving the highest average score with the lowest performance degradation (-1.18%) compared
to the original 64-expert Switch Transformer model. These results demonstrate the effectiveness of
ExpertZIP in maintaining model robustness while optimizing computational efficiency.
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Table 4: Performance comparison between ExpertZIP (and its enhanced variant ExpertZIP*) and
other compression methods across GLUE and SuperGLUE benchmarks.

Category Method Model Size CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
SwitchT. (64 expert) 3.79B 82.65 94.72 84.31 91.60 71.71 68.59 56.74 78.62

Pruning /
Quntization

Task-Specific Chen et al. (2022) 0.22B 70.25 86.43 75.76 80.24 67.24 65.43 57.21 71.79 (-8.69%)
PS-MoE Lu et al. (2024) 0.22B 72.14 87.18 74.38 83.25 70.75 64.97 56.43 72.73 (-7.49%)
UV-MoE He et al. (2024) 0.22B 71.25 88.47 80.23 79.67 71.71 65.43 56.89 73.38 (-6.67%)

Merging
REPAIR Jordan et al. (2022) 0.52B 74.02 90.21 83.27 86.75 73.39 67.23 58.42 76.18 (-3.10%)
ZipIt Stoica et al. (2023) 0.52B 73.98 91.78 82.58 87.90 72.14 66.18 57.05 75.94 (-3.41%)
M-SMoE (1 expert) Li et al. (2023b) 0.52B 75.18 92.43 83.53 88.94 74.29 68.59 56.43 77.06 (-1.98%)

Ours ExpertZIP (1 expert) 0.22B 75.26 91.28 84.07 90.01 73.39 68.23 56.89 77.02 (-2.04%)
ExpertZIP* (1 expert) 0.22B 77.09 92.09 84.80 90.30 73.52 68.95 57.05 77.69 (-1.18%)
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Figure 5: Comparison of different expert selection strategies.
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Figure 6: Comparison of different weight fusion strategies.

5.5 ABLATION STUDY

Expert Selection. We compare four methods based on performance to identify how more balanced
expert combinations lead to better results. The Max-Max strategy, which pairs experts with the high-
est selected frequencies, creates a more imbalanced expert selection. The random strategy, pairing
experts randomly, also fails to produce improvements as the lack of structure in expert selection leads
to unpredictability. In contrast, the Max-Min strategy, which pairs experts with the highest and low-

est frequencies, achieves a more balanced contribution, resulting in better performance than Max-
Max and random strategies. Our proposed ExpertZIP method, which ensures both flexibility and
a balanced distribution of expert contributions, achieves the best performance because it not only
promotes balance but also leverages the Huffman tree structure. This approach minimizes the im-
pact on high-frequency experts, focusing the merging process on lower-frequency experts, thereby
preserving the performance of the most important experts (see Fig. 5).
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Weight Fusion. We conduct a comparative analysis involving three fusion methods to show that
our fusion approach is the most effective. Fig. 6 presents the results of our proposed method along-
side two alternative strategies. The ExpertZIP (Large) method retains only the expert with the high-
est selected frequency, the ExpertZIP (Average) method assigns equal weights to all selected experts,
and the ExpertZIP (Weighted) method employs a weighted sum based on the relative importance of
each expert. The experimental outcomes highlight that the ExpertZIP (Weighted) approach yields
the best performance, as it effectively captures the differential contributions of each expert, leading
to superior overall results. Notably, the inferior performance of the Large method, which removes
less frequently selected experts, reinforces the observation made in our introduction that even un-
derutilized experts can contribute valuable information to the model’s overall performance. This
supports the idea that removing these experts outright may result in losing critical information, lead-
ing to performance degradation. Thus, our findings highlight the importance of retaining and fusing
expert contributions, even from less frequently activated experts, to maintain model accuracy.
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Figure 7: Comparison across different speeds.

Fusion Speed. We evaluated the effect of
varying speed approaches on model per-
formance. We tested five different speeds,
including a constant rate (decreasing the
number of experts by 1 in each step) and
speeds of 2, 4, 8, and 16, where each
speed represents dividing the number of ex-
perts by the corresponding factor at each
step. The experimental results, shown in
Fig. 7, indicate that slower reduction speeds
yield better performance. Specifically, the
constant speed and lower division factors
preserve model accuracy more effectively,
while faster speeds lead to greater performance degradation.

6 DISCUSSION

In this section, we explore additional architectures to evaluate the robustness and adaptability of
ExpertZIP. Specifically, we integrate ExpertZIP into the Mixtral 8x7b model Jiang et al. (2024)
to address a limitation in Switch Transformers Fedus et al. (2022). While Switch Transformers is
powerful, it requires fine-tuning for each downstream task. Each expert in Switch Transformers is
tailored for a single task, reducing adaptability across tasks. In contrast, Mixtral 8x7b leverages 8
experts to handle various tasks simultaneously, enhancing generalization through task diversity. This
makes Mixtral 8x7b an ideal candidate to test whether ExpertZIP can benefit without compromising
the model’s generalization capabilities. Therefore, we conduct additional experiments to evaluate
ExpertZIP’s effectiveness in this more versatile setting.

Given this key difference, we aim to investigate whether ExpertZIP, shown to optimize expert uti-
lization in other MoE models, remains effective in a scenario where generalization plays a more
prominent role, as in the Mixtral 8x7b model. By incorporating ExpertZIP into Mixtral 8x7b, we
aim to determine if it could still provide the same benefits and performance maintenance with expert
fusing without compromising the model’s ability to generalize across various downstream tasks.
Due to limitations in hardware resources, we opt to experiment with a speed 4 configuration, where
the number of experts is progressively reduced from 8 to 2 experts. We then fine-tune the model
for 1 epoch on the RedPajama-1B dataset, a large-scale dataset designed for pretraining language
models Computer (2023). This experiment allows us to test ExpertZIP’s ability to optimize large
MoE models while retaining essential performance metrics.

Additionally, we investigate the effects of fine-tuning on varying amounts of data, specifically 1%,
5%, and 10% of the dataset, to evaluate the performance trade-offs at different data scales. To com-
prehensively assess the model’s generalization capabilities, we expand our evaluation beyond tradi-
tional benchmarks like GLUE and SuperGLUE Wang et al. (2019b;a) by incorporating a wider array
of challenging tasks such as MMLU Hendrycks et al. (2020), HellaSwag Zellers et al. (2019), PIQA
Bisk et al. (2020), ARC (Easy and Challenge) Clark et al. (2018), MathQA Amini et al. (2019), and
Winogrande Sakaguchi et al. (2021). These benchmarks provide a diverse range of reasoning, com-
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Table 5: Performance comparison between the original Mixtral 8x7b model and the ExpertZIP
model across various GLUE and SuperGLUE tasks on the RedPajama-1B dataset.

Method # of Experts % of Dataset CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
Mixtral 8x7b 8 66.25 85.55 73.04 58.39 85.38 70.04 60.19 71.26

ExpertZIP 2
1% 65.58 77.06 69.36 55.23 76.64 62.12 52.83 65.55 (-8.01%)
5% 64.71 80.80 68.42 53.98 80.09 65.57 55.67 67.03 (-5.94%)
10% 65.03 83.65 67.99 57.04 81.35 66.55 56.98 68.43 (-3.97%)

Table 6: Performance comparison between the original Mixtral 8x7b model and the ExpertZIP
model across diverse reasoning and commonsense tasks on the RedPajama-1B dataset.

Method # of Experts % of Dataset MMLU HellaS PIQA Arc-e Arc-c MathQA WinoG Average ↑
Mixtral 8x7b 8 68.81 67.65 83.57 76.81 56.23 36.98 77.43 66.45

ExpertZIP 2
1% 58.47 66.92 76.61 68.61 48.16 30.14 69.35 59.75 (-10.08%)
5% 63.57 71.02 78.08 72.61 52.53 32.17 70.38 62.91 (-5.33%)
10% 66.13 70.85 79.55 71.64 55.27 32.44 73.67 64.22 (-3.36%)

monsense, and multiple-choice question tasks, which test the model’s ability to generalize beyond
its training data.

Table 7: Comparison of size and inference time.

# of Experts Model Size (B) ↓ Time (ms) ↓
8 46.70 756.07

2 12.88 (3.63x) 650.93 (1.21x)

After applying ExpertZIP to reduce the
number of experts and fine-tune on these
benchmarks, the performance on 10% of the
RedPajama-1B dataset drop by 3.97% on
GLUE and SuperGLUE tasks (see Tab. 5),
and 3.36% on reasoning and commonsense
tasks (see Tab. 6). These minimal perfor-
mance decreases illustrate that ExpertZIP effectively reduces the model size without significant
accuracy loss, even when applied to larger and more complex models. Additionally, the model size
is reduced by 3.63x, and inference time is shortened by 1.21x (see Tab. 7), demonstrating the ef-
ficiency gains provided by ExpertZIP. Furthermore, this result shows that ExpertZIP maintains the
model’s generalization ability across different datasets and diverse task domains, confirming that the
technique is scalable and adaptable to a broader range of real-world scenarios.

7 CONCLUSION AND FUTURE WORK

In this paper, we present ExpertZIP, a novel framework for optimizing Mixture-of-Experts models by
fusing underutilized experts through a Huffman tree-based expert fusion technique. Our approach
addresses the inefficiencies caused by imbalanced expert utilization, significantly reducing model
size and inference time while maintaining near-equivalent performance. Specifically, we demon-
strated that our method, applied to the Switch Transformer model, achieves a 17.23x reduction in
model size and a 4.84x improvement in inference time, with only a 1.18% drop in accuracy for clas-
sification tasks and a 3.09% drop in ROUGE-1 score for summarization tasks. Furthermore, when
compared with Switch Transformer models having the same number of experts after fusion, our
approach shows improvements of up to 6.47% on classification tasks and 7.74% on summarization
tasks. Additionally, we successfully test ExpertZIP on the Mixtral 8x7b model, designed to han-
dle multiple tasks simultaneously and enhance generalization. Our results confirm that ExpertZIP
remains effective even on this more generalized architecture, demonstrating its scalability and adapt-
ability. In our future planning, we aim to investigate strategies for dynamically adjusting the number
of experts at different layers. This could lead to even greater improvements in model efficiency and
performance, expanding the applicability of MoE models to a broader range of real-world scenarios.
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A ALGORITHM

In this section, we provide the detailed algorithms that form the core of our approach for compressing
Mixture of Experts (MoE) models. Algorithm 1 outlines the Huffman tree-based method for select-
ing and fusing underutilized experts, leveraging their utilization frequencies to identify candidates
for merging systematically. This process ensures that the most redundant experts are prioritized for
fusion, guided by the principles of Huffman coding.

Algorithm 2 presents the weighted sum fusion process, where the parameters of the selected experts
are aggregated based on their utilization frequencies. This technique ensures that critical knowledge
from the original experts is preserved, while maintaining model stability and performance. These
algorithms work in tandem to achieve significant compression in the number of experts, balancing
model efficiency and effectiveness.

Algorithm 1 Huffman Fusing

Input: Selected frequency F = {f1, f2, · · · , fN}, number of required expert Ne

Output: List of fusing indices Mf

1: heap← heapifiy([f{1}, f{2}, · · · , f{N}]) ▷ Creating a data heap
2: Mf ← []
3: while size of heap > Ne do
4: fx ← Extract minimum element from heap
5: fy ← Extract minimum element from heap
6: fx∪y ← fx + fy; Insert fx∪y into heap ▷ Fusing two experts and insert back to heap
7: end while
8: while size of heap > 0 do
9: fK ← Extract minimum element from heap

10: Append K into Mf

11: end while
12: return Mf

Algorithm 2 Fusing Expert for l-th MoE Layer

Input: Original expert for l-th MoE layer El = {e1, e2, · · · , eN}, selected frequency for l-th MoE
layer F l = {f l

1, f
l
2, . . . , f

l
N}, and number of required expert Ne

Output: New expert for l-th MoE layer El′

1: El′ ← {}
2: Mf ← Huffman Fusing(F l, Ne) ▷ Fuse experts based on their frequencies
3: for each n in (1 · · · Ne) do
4: e′n ← Initialize a new MoE layer with weight of zeros
5: count← 0 ▷ Accumulate the total selected frequency
6: for each original expert k in Mf [n] do
7: e′n ← e′n + em × f l

m
8: count← count+ f l

m
9: end for

10: El′ ← El′ ∪ (e′n/count)
11: end for
12: return El′

B VISUALIZATION OF EXPERT IMBALANCE

In this section, we present the visualization of expert selection imbalance across different layers
in the MoE model. Fig. 8, 9, and 10 illustrate the selected frequency distribution of experts for
models with 8, 16, and 32 experts, respectively, across various encoder and decoder layers. These
visualizations highlight how specific experts are selected more frequently than others, indicating an
imbalance in the utilization of the experts in each layer.
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Figure 8: Selected frequency distribution of experts in each MoE layer for the model with 8 experts.
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Figure 9: Selected frequency distribution of experts in each MoE layer for the model with 16 experts.
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Figure 10: Selected frequency distribution of experts in each MoE layer for the model with 32
experts.
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C DETAILS OF THE DATASET

Tab. 8 provides an overview of the datasets used in our experiments. We evaluate our approach on
the GLUE and SuperGLUE benchmarks, which consist of various natural language understanding
tasks, as well as the CNNDM dataset for summarization. For each dataset, we report the size of the
training and test sets, the domain of the dataset, and the average length of the input sentences.

Table 8: Summary of the datasets used in our experiments. The table includes the corpus name,
training and test set sizes, domain, and average sentence length (Avg. Len.). The GLUE and Super-
GLUE benchmarks contain various natural language understanding tasks, while CNNDM is used
for summarization.

Benchmark Dataset Train Test Domain Avg. Len.

GLUE

CoLA 8.5k 1k Misc. 14.50
SST-2 67k 1.8k Movie reviews 32.56
MRPC 3.7k 1.7k News 68.37
QNLI 105k 5.4k Wikipedia 60.25

SuperGLUE
BoolQ 9427 3245 Google queries, Wikipedia 157.40
RTE 2490 3000 News, Wikipedia 79.08
WiC 5428 1400 WordNet, VerbNet, Wiktionary 34.04

- CNNDM 287.1k 11.5k News, Mail 257.99

D HYPERPARAMETERS

Tab. 9 summarizes the hyperparameters used in our experiments for fine-tuning the models on the
various datasets. The table includes the number of fine-tuning epochs, learning rate (lr.), whether
BF16 precision is used, and the batch size for each dataset. The settings for GLUE and SuperGLUE
benchmarks are tuned to ensure optimal performance across natural language understanding tasks.
At the same time, the CNNDM dataset used for summarization requires a different configuration,
particularly a larger learning rate and a smaller batch size due to the dataset’s complexity.

Table 9: Summary of the hyperparameters used for fine-tuning on various datasets. The table lists the
number of epochs, learning rate (lr.), BF16 precision usage, and batch size for each dataset. Different
configurations are used for the GLUE, SuperGLUE benchmarks, and the CNNDM summarization
dataset to ensure optimal performance across tasks.

Benchmark Dataset # of Epochs lr. BF16 Batch Size

GLUE

CoLA 10 5e-5 True 32
SST-2 5 5e-5 True 32
MRPC 10 5e-5 True 32
QNLI 5 5e-5 True 32

SuperGLUE
BoolQ 10 5e-5 True 32
RTE 15 5e-5 True 32
WiC 15 5e-5 True 32

- CNNDM 1 1e-4 True 16

E FINE-TUNING TIME COST

Tab. 10 presents the fine-tuning time required for the Switch Transformer across various downstream
tasks, categorized by the number of experts utilized. The table includes results for the GLUE and
SuperGLUE benchmarks, as well as the CNNDM dataset for summarization.
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Table 10: Fine-tuning time (in hours) for the Switch Transformer across various downstream tasks,
grouped by the number of experts.

Benchmark Dataset 32 Experts 16 Experts 8 Experts 4 Experts 2 Experts 1 Experts

GLUE

CoLA 0.5 hr 0.3 hr 0.2 hr 0.2 hr 0.1 hr 0.1 hr
SST-2 2.0 hr 1.3 hr 0.9 hr 0.7 hr 0.6 hr 0.5 hr
MRPC 0.3 hr 0.2 hr 0.1 hr 0.1 hr 0.1 hr 0.1 hr
QNLI 3.2 hr 2.4 hr 1.8 hr 1.4 hr 1.2 hr 1.1 hr

SuperGLUE
BoolQ 1.0 hr 0.7 hr 0.5 hr 0.4 hr 0.3 hr 0.3 hr
RTE 0.5 hr 0.3 hr 0.2 hr 0.2 hr 0.1 hr 0.1 hr
WiC 0.8 hr 0.6 hr 0.5 hr 0.4 hr 0.3 hr 0.3 hr

- CNNDM 4.2 hr 3.3 hr 2.6 hr 2.2 hr 1.9 hr 1.8 hr

F RESULT WITHOUT FINE-TUNING

Tab. 11 and 12 summarize the performance of the Switch Transformer with 64 experts and its re-
duced configurations using ExpertZIP without fine-tuning. Tab. 11 shows the results across various
tasks in GLUE and SuperGLUE benchmarks, along with the average score degradation as the num-
ber of experts decreases. Tab. 12 highlights the ROUGE scores on the CNNDM summarization task
under similar settings.

Table 11: Performance of the Switch Transformer (64 experts) and ExpertZIP configurations (with
fewer experts) on GLUE and SuperGLUE benchmarks without fine-tuning.

Method # of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
SwitchT. 64 82.65 94.72 84.31 91.60 71.71 68.59 56.74 78.62

ExpertZIP

32 77.18 92.89 82.60 90.01 69.97 67.87 57.68 76.89 ( -2.25%)
16 58.87 85.67 72.79 86.75 64.43 64.98 56.43 69.99 (-12.33%)
8 57.14 78.10 72.55 85.65 63.12 64.26 55.17 68.00 (-15.62%)
4 55.61 75.80 71.57 85.12 63.91 63.18 55.17 67.19 (-17.01%)
2 54.83 74.31 70.59 85.15 63.09 62.82 55.49 66.61 (-18.03%)
1 53.02 70.87 70.59 84.94 63.33 61.73 54.70 65.45 (-20.12%)

Table 12: Performance of the Switch Transformer (64 experts) and ExpertZIP configurations (with
fewer experts) on CNNDM without fine-tuning.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
64 36.19 16.46 27.44
32 32.42 13.09 24.24
16 31.55 12.59 23.62
8 31.40 12.18 22.73
4 25.36 8.69 19.14
2 25.32 8.85 19.04
1 24.70 7.68 19.04

G EXPERTZIP WITH OTHER MOE MODEL

Tab. 13 and 14 present additional experimental results to evaluate the robustness of ExpertZIP
against the DeepSeek-MoE model Dai et al. (2024). The experiments span a variety of tasks from
GLUE, SuperGLUE, and reasoning benchmarks.

These results highlight the ability of ExpertZIP to perform effectively with fewer experts and limited
data usage, demonstrating its adaptability and reliability in diverse scenarios. ExpertZIP showcases
its potential as a resource-efficient alternative to larger MoE configurations by reducing the number
of experts while maintaining strong performance.
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Table 13: Performance comparison between the original DeepSeekMoE model and the ExpertZIP
model across various GLUE and SuperGLUE tasks on the RedPajama-1B dataset.

Method # of Experts % of Dataset CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
DeepSeekMoE 64 67.50 62.73 81.29 49.37 72.48 62.45 50.78 63.80

ExpertZIP 8
1% 58.17 57.46 75.69 50.17 67.22 59.32 50.78 59.83 (-6.22%)
5% 60.29 59.85 77.34 50.23 68.59 60.15 51.23 61.10 (-4.23%)

10% 61.35 61.78 78.53 51.38 69.29 60.03 51.59 61.99 (-2.84%)

Table 14: Performance comparison between the original DeepSeekMoE model and the ExpertZIP
model across diverse reasoning and commonsense tasks on the RedPajama-1B dataset.

Method # of Experts % of Dataset MMLU HellaS PIQA Arc-e Arc-c MathQA WinoG Average ↑
DeepSeekMoE 64 37.81 77.38 80.03 76.05 48.12 31.76 70.48 60.23

ExpertZIP 8
1% 30.18 70.76 75.03 74.19 45.72 27.47 63.04 55.20 (-8.35%)
5% 32.25 72.59 77.68 75.83 47.34 28.90 65.29 57.13 (-5.15%)

10% 34.91 74.36 78.52 75.35 47.26 29.18 68.23 58.26 (-3.27%)

H EXPERTZIP WITH OTHER TASKS

To further validate the versatility of ExpertZIP, we evaluate its performance on additional tasks:
WinoGrandeSakaguchi et al. (2021), WikiQAYang et al. (2015), and SQuAD Rajpurkar (2016).
These tasks test the model’s reasoning, question-answering, and comprehension capabilities. For
evaluation, WinoGrande and WikiQA are measured in terms of accuracy, while SQuAD is evaluated
using the exact-match. Tab. 15 compares the results of Switch Transformer (64 experts) with various
configurations of ExpertZIP using fewer experts. The results demonstrate that ExpertZIP maintains
competitive performance across these tasks, even with a significantly reduced number of experts,
underscoring its robustness and efficiency.

Table 15: Performance of ExpertZIP across additional tasks: WinoGrande, WikiQA, and SQuAD,
compared to the full Switch Transformer model with 64 experts.

Method # of Experts WinoGrande WikiQA SQuAD
SwitchT. 64 62.98 95.61 65.81

ExpertZIP

32 62.18 95.32 65.39
16 61.96 95.43 65.66
8 61.78 95.10 65.41
4 61.34 95.07 65.01
2 61.67 94.95 64.97
1 61.23 94.95 64.83

I DETAILS OF EXPERIMENT RESULTS

In this section, we provide a detailed overview of the experiment results. The number of experts
is progressively reduced using various approaches, and performance metrics, including accuracy or
ROUGE scores, are reported for each configuration.

Tab. 16 and 28 show the baseline results of fine-tuning the original Switch Transformers pre-trained
weights without applying expert fusion techniques. This serves as a reference point to compare the
impact of applying ExpertZIP.

The results of applying ExpertZIP with different fusion strategies are detailed in the subsequent
tables. Tab. 29 shows the results of reducing the number of experts using a weighted-based approach,
where the number of experts is progressively halved. Likewise, Tab. 17 and 30 display the results
for an average-based fusion approach, also halving the number of experts at each step. Similarly,
Tab. 18 and 31 present the results using a large-based fusion strategy.
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The max-min and max-max approaches to determining how experts should be fused are shown in
Tab. 19 and 21 for classification tasks, and Tab. 32 and 34 for summarization tasks. Additionally,
Tab. 20 and 33 present the outcomes of using a random fusion approach.

For the experiments starting with fewer experts, the results are presented in Tab. 22, 23, 24, and 25.
These experiments begin with 16 experts and gradually reduce the number of experts using different
reduction strategies. Tab. 22 shows the results of gradually reducing one expert at a time (constant
1), while Tab. 23, 24, and 25 show the performance when reducing the number of experts by factors
of 4, 8, and 16, respectively.

Lastly, for experiments starting with 32 and 16 experts, Tab. 26 and 27 show the results of halving
the number of experts using the weight fusion approach on classification tasks. Similarly, the results
for ExpertZIP applied to the summarization task, starting with 32 and 16 experts, are presented in
Tab. 35 and 36, respectively.

Table 16: Results of fine-tuning the original Switch Transformers pre-trained weights on different
classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
64 82.65 94.72 84.31 91.60 71.71 68.59 56.74 78.62
32 80.92 94.04 85.78 89.77 69.30 63.54 57.84 77.31
16 82.07 91.06 83.09 88.30 66.91 63.54 54.23 75.60
8 74.21 92.09 79.66 85.94 65.99 59.93 52.66 72.93

Table 17: Results of fine-tuning after applying ExpertZIP, starting with 64 experts and progressively
halving the number of experts through weight fusion using an average-based approach on different
classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
64 82.65 94.72 84.31 91.60 71.71 68.59 56.74 78.62
32 80.92 93.81 84.80 90.48 71.71 68.23 56.90 78.12
16 79.19 92.09 84.31 89.88 72.81 69.31 56.11 77.67
8 76.70 91.63 83.82 89.64 72.57 68.23 55.96 76.94
4 75.26 91.86 83.82 89.44 72.91 68.23 56.30 76.83
2 75.07 91.63 83.82 89.88 72.57 67.51 56.27 76.68
1 74.78 90.94 84.07 89.58 72.84 67.51 56.58 76.61

Table 18: Results of fine-tuning after applying ExpertZIP, starting with 64 experts and progressively
halving the number of experts through weight fusion using a large-based approach on different
classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
64 82.65 94.72 84.31 91.60 71.71 68.59 56.74 78.62
32 81.21 93.69 83.82 90.61 71.59 68.59 55.33 77.83
16 78.81 91.86 84.80 89.84 70.95 66.43 55.49 76.88
8 76.89 91.28 83.82 89.95 71.01 64.26 55.33 76.08
4 75.74 91.51 82.35 89.18 71.25 63.18 55.17 75.48
2 75.17 90.60 82.35 89.33 71.65 63.90 54.23 75.32
1 74.50 90.25 81.86 89.46 71.44 63.90 55.33 75.25
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Table 19: Results of fine-tuning. Starting with 64 experts and progressively halving the number of
experts using the max-min approach to determine how experts should be fused on different classifi-
cation tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
64 82.65 94.72 84.31 91.60 71.71 68.59 56.74 78.62
32 81.02 94.04 85.54 90.32 71.80 67.51 56.74 78.14
16 79.58 92.32 85.05 90.01 72.29 67.51 55.80 77.51
8 76.61 91.06 82.84 89.88 72.72 67.87 55.64 76.66
4 76.13 90.83 83.09 89.60 73.00 67.51 55.96 76.59
2 75.74 90.48 83.33 89.05 73.27 66.79 56.27 76.42
1 75.17 90.71 83.09 89.47 73.27 67.15 55.80 76.38

Table 20: Results of fine-tuning. Starting with 64 experts and progressively halving the number of
experts using the random approach to determine how experts should be fused on different classifi-
cation tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
64 82.65 94.72 84.31 91.60 71.71 68.59 56.74 78.62
32 80.15 93.12 84.80 90.76 72.23 68.59 55.33 77.85
16 78.72 91.74 85.54 90.43 72.63 67.51 55.33 77.41
8 76.51 91.06 82.84 89.42 72.63 66.79 55.64 76.41
4 74.59 90.25 82.84 89.29 72.97 67.51 56.27 76.25
2 74.69 90.48 82.11 89.24 72.29 68.59 56.27 76.24
1 74.98 90.83 82.35 89.88 73.03 66.06 56.11 76.18

Table 21: Results of fine-tuning. Starting with 64 experts and progressively halving the number
of experts using the max-max approach to determine how experts should be fused on different
classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
64 82.65 94.72 84.31 91.60 71.71 68.59 56.74 78.62
32 78.62 92.20 84.56 91.09 73.46 67.15 56.43 77.64
16 75.26 90.94 83.33 90.12 73.06 66.06 56.27 76.43
8 74.40 90.48 82.35 89.82 72.75 66.43 55.49 75.96
4 74.21 90.48 82.60 89.11 72.14 66.43 55.33 75.76
2 73.73 90.25 82.60 89.11 72.20 66.06 55.33 75.61
1 73.63 90.71 82.11 89.20 72.02 66.06 55.02 75.54
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Table 22: Results of fine-tuning after applying ExpertZIP, starting with 16 experts and gradually
reducing the number of experts one at a time (constant 1) using a weighted-based approach to fuse
the weights on different classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
16 78.24 92.32 84.56 90.08 72.72 69.68 56.43 77.72
15 78.43 93.00 85.29 90.23 73.24 69.31 55.33 77.83
14 77.85 92.66 86.03 90.54 73.67 68.59 55.80 77.88
13 77.66 92.32 85.54 90.37 73.64 68.59 55.49 77.66
12 77.85 92.32 84.80 90.24 73.82 68.59 55.80 77.63
11 77.66 92.43 85.05 90.43 73.94 69.31 55.64 77.78
10 78.43 92.78 84.31 90.35 73.94 69.31 54.55 77.67
9 77.37 92.43 84.56 90.35 74.19 69.31 55.80 77.72
8 77.85 92.55 84.31 90.10 73.61 69.31 55.80 77.65
7 78.04 92.66 84.31 90.37 73.67 69.68 55.64 77.77
6 77.56 92.09 84.56 90.15 73.21 69.68 56.74 77.71
5 77.28 92.20 84.07 89.91 74.43 69.31 56.27 77.64
4 77.28 92.20 84.07 90.06 73.70 69.68 57.05 77.72
3 77.66 92.55 83.82 90.06 73.70 68.23 57.99 77.72
2 76.80 92.09 85.05 89.93 73.91 69.31 57.21 77.76
1 77.09 92.09 84.80 90.30 73.52 68.95 57.05 77.69

Table 23: Results of fine-tuning after applying ExpertZIP, starting with 16 experts and reducing the
number of experts by a factor of 4 (speed 4) using a weighted-based approach to fuse the weights
on different classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
16 78.24 92.32 84.56 90.08 72.72 69.68 56.43 77.72
4 75.46 91.06 83.82 89.38 72.57 68.95 56.90 76.88
1 74.40 91.28 83.33 89.24 73.30 68.23 56.90 76.67

Table 24: Results of fine-tuning after applying ExpertZIP, starting with 16 experts and reducing the
number of experts by a factor of 8 (speed 8) using a weighted-based approach to fuse the weights
on different classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
16 78.24 92.32 84.56 90.08 72.72 69.68 56.43 77.72
2 74.21 91.40 84.31 89.09 72.39 69.31 55.02 76.53
1 74.68 91.51 83.58 89.11 72.23 68.95 55.49 76.51

Table 25: Results of fine-tuning after applying ExpertZIP, starting with 16 experts and reducing the
number of experts by a factor of 16 (speed 16) using a weighted-based approach to fuse the weights
on different classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
16 78.24 92.32 84.56 90.08 72.72 69.68 56.43 77.72
1 74.21 90.37 83.33 89.55 72.29 68.23 56.90 76.41
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Table 26: Results of fine-tuning after applying ExpertZIP, starting with 32 experts and progressively
halving the number of experts through weight fusion using an weighted-based approach on different
classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
32 80.92 94.04 85.78 89.77 69.30 63.54 57.84 77.31
16 75.26 91.28 84.31 89.97 72.97 68.95 55.49 76.89
8 74.40 90.37 83.82 89.24 73.30 68.23 56.90 76.61

Table 27: Results of fine-tuning after applying ExpertZIP, starting with 16 experts and progressively
halving the number of experts through weight fusion using an weighted-based approach on different
classification tasks.

# of Experts CoLA SST2 MRPC QNLI BoolQ RTE WiC Average ↑
16 82.07 91.06 83.09 88.30 66.91 63.54 54.23 75.60
8 78.14 90.25 82.60 90.23 68.04 60.65 55.64 75.08

Table 28: Results of fine-tuning the original Switch Transformers pre-trained weights on the CN-
NDM summarization task.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
64 36.19 16.46 27.44
32 35.86 16.58 28.07
16 34.34 14.40 26.11
8 32.81 13.36 24.25

Table 29: Results of fine-tuning after applying ExpertZIP, starting with 64 experts and progressively
halving the number of experts through weight fusion using a weighted-based approach on the CN-
NDM summarization task.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
64 36.19 16.46 27.44
32 35.88 15.90 27.61
16 36.05 16.56 27.32
8 35.35 15.43 27.28
4 35.28 15.92 27.37
2 35.56 16.34 26.66
1 35.07 15.27 26.18

Table 30: Results of fine-tuning after applying ExpertZIP, starting with 64 experts and progressively
halving the number of experts through weight fusion using a average-based approach on the CN-
NDM summarization task.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
64 36.19 16.46 27.44
32 35.73 16.04 27.02
16 35.29 15.71 26.92
8 34.40 14.96 26.67
4 34.30 15.18 26.19
2 34.59 14.86 26.21
1 34.69 14.97 26.49

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 31: Results of fine-tuning after applying ExpertZIP, starting with 64 experts and progressively
halving the number of experts through weight fusion using a large-based approach on the CNNDM
summarization task.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
64 36.19 16.46 27.44
32 35.18 15.66 26.56
16 35.00 14.77 26.18
8 34.41 15.20 27.12
4 34.13 15.15 26.37
2 33.17 13.87 24.62
1 32.89 13.62 24.33

Table 32: Results of fine-tuning. Starting with 64 experts and progressively halving the number
of experts using the max-min approach to determine how experts should be fused on the CNNDM
summarization task.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
64 36.19 16.46 27.44
32 35.61 15.35 27.30
16 34.97 14.91 26.06
8 34.82 15.12 26.60
4 35.07 15.13 26.40
2 34.85 15.61 26.73
1 34.75 15.01 26.29

Table 33: Results of fine-tuning. Starting with 64 experts and progressively halving the number
of experts using the random approach to determine how experts should be fused on the CNNDM
summarization task.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
64 36.19 16.46 27.44
32 35.12 15.17 26.20
16 35.02 15.40 26.48
8 34.72 15.49 26.30
4 34.38 15.16 26.41
2 34.02 14.91 25.82
1 33.99 14.56 25.17
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Table 34: Results of fine-tuning. Starting with 64 experts and progressively halving the number of
experts using the max-max approach to determine how experts should be fused on the CNNDM
summarization task.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
64 36.19 16.46 27.44
32 35.31 15.80 26.85
16 34.67 15.40 26.41
8 34.43 15.21 26.56
4 34.53 15.26 26.47
2 34.09 14.81 26.35
1 33.73 14.02 25.21

Table 35: Results of fine-tuning after applying ExpertZIP, starting with 32 experts and progressively
halving the number of experts through weight fusion using a weighted-based approach on the CN-
NDM summarization task.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
32 35.86 16.58 28.07
16 34.70 15.81 26.95
8 34.26 13.89 25.20

Table 36: Results of fine-tuning after applying ExpertZIP, starting with 16 experts and progressively
halving the number of experts through weight fusion using a weighted-based approach on the CN-
NDM summarization task.

# of Experts ROUGE-1 ROUGE-2 ROUGE-L
16 34.34 14.40 26.11
8 33.40 14.65 25.29
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