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Abstract

Spoken Question Answering (SQA) has001
gained research attention and made remark-002
able progress in recent years. However, ex-003
isting SQA methods rely on Automatic Speech004
Recognition (ASR) transcriptions, which is005
time and cost-prohibitive to collect. This work006
proposes an ASR transcription-free SQA frame-007
work named Discrete Unit Adaptive Learning008
(DUAL), which leverages unlabeled data for009
pre-training and is fine-tuned by the SQA down-010
stream task. DAUL can directly predict the011
time interval of the spoken answer from the012
spoken document. We also release a new SQA013
benchmark corpus Natural Multi-speaker Spo-014
ken Question Answering (NMSQA) for testing015
SQA in realistic scenarios. The experimen-016
tal results show that DUAL performs competi-017
tively with the cascade approach (ASR + text018
QA), and DUAL is robust to real-world speech.019
We will open-source our code and model to020
inspire more SQA innovations from the com-021
munity.022

1 Introduction023

Spoken Question Answering (SQA) aims to find024

the answer from a spoken document given the ques-025

tion in either text or spoken form. SQA is crucial026

for speech assistants to answer the question from027

user spoken queries. The SQA system requires so-028

phisticated comprehension and reasoning ability. It029

also needs the listening capability to transcribe con-030

tent from audio. The machine must understand the031

global and fine-grained information in the spoken032

context and questions to predict the exact answer033

span in the long context.034

The conventional SQA system consists of an035

Automatic Speech Recognition (ASR) and a text036

QA model. However, Lee et al. (2018b) shows037

that speech recognition errors cause a catastrophic038

impact on the text QA system. Several works (Lee039

et al., 2019; You et al., 2021b,c; Su and Fung, 2020)040

intend to alleviate the negative effect of speech041

Figure 1: The illustration of the proposed DUAL frame-
work for ASR transcription-free SQA. All the passages,
questions, and answers are in spoken form. Our DUAL
framework can extract the time interval of the spoken
answer from the spoken passage without the help of
ASR transcriptions.

recognition error by knowledge distillation, which 042

is leveraged for adapting the text QA model to 043

be robust against recognition errors. On the other 044

side, Chuang et al. (2020) and Chung et al. (2021) 045

exploit paired speech and transcription to align the 046

semantics for constructing a cross-modal speech 047

and text pre-trained model. The cross-modal model 048

can be fine-tuned end-to-end, mitigating the speech 049

recognition error and improving SQA performance. 050

Nevertheless, current SQA research suffers from 051

the dependency on ASR transcriptions. It is time- 052

consuming and expensive to collect sufficient tran- 053

scriptions to train a low error rate and robust ASR. 054

Furthermore, ASR transcriptions are unaffordable 055

in low-resource languages and unavailable in lan- 056

guages and dialects without written form. To make 057

SQA applications more inclusive to all human lan- 058

guages, developing an ASR transcription-free SQA 059

system is critical. 060

In this work, we propose the first textless (i.e., 061

ASR transcription-free) SQA framework. Inspired 062

by the concept of Textless NLP (Lakhotia et al., 063

2021; Polyak et al., 2021; Kharitonov et al., 2021; 064
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Kreuk et al., 2021), which encodes speech into065

the pre-text discrete units, and the surprising find-066

ings of pre-trained language model transferabil-067

ity in Kao and Lee (2021), we propose the frame-068

work, Discrete Unit Adaptive Learning (DUAL) for069

textless SQA. DUAL leverages speech pre-trained070

models to obtain quantized, length-condensed071

speech representation from continuous audio sig-072

nals. DUAL further adapts the pre-trained language073

model for the speech representations and achieves074

competitive SQA results without any ASR tran-075

scriptions.076

Furthermore, although there are increasing ef-077

forts to build SQA benchmark corpora (Tseng et al.,078

2016; Lee et al., 2018b; Rajpurkar et al., 2016; You079

et al., 2020; Lee et al., 2018a; Ravichander et al.,080

2021), there is a lack of natural SQA datasets to081

measure SQA performance in environments that082

capture real-world attributes. To benchmark SQA083

in a more realistic setting, we release a novel bench-084

mark corpus, Natural Multi-speaker Spoken Ques-085

tion Answering (NMSQA). The corpus has the test086

set spoken by human readers with text content ob-087

tained from in-domain (SQuAD (Rajpurkar et al.,088

2016)) and out-of-domain (NewsQA (Trischler089

et al., 2017), QuAC (Choi et al., 2018)) corpora.090

The training and validation set are synthesized from091

Amazon Polly TTS service with industrial-grade092

quality. Different real and synthesized speakers093

read the pair of (context, question). NMSQA is094

designed to offer a large-scaled training corpus and095

human-read testing set for developing and evaluat-096

ing SQA in real-world scenarios.097

Our contributions can be summarized as follows:098

• We propose the DUAL framework for SQA,099

the first work to achieve textless SQA that100

does not utilize ASR transcriptions.101

• We open-source the dataset NMSQA to in-102

spire innovation for SQA in real-world scenar-103

ios.104

• The experimental results show that DUAL105

achieves competitive performance and sig-106

nificantly outperforms the cascade approach107

when the speech recognition error is higher108

than the 30% word error rate.109

• DUAL is more robust to realistic speech110

than the cascade approach: DUAL retains111

the performance in the real-speaker testing112

set, whereas the cascade approach degrades113

severely.114

2 Related Work 115

Spoken Question Answering: SQA is the cru- 116

cial use case for voice assistants in our daily life. 117

Currently, there are increasing efforts toward SQA 118

benchmark corpora. TOEFL listening comprehen- 119

sion test (Tseng et al., 2016) is a multiple-choice 120

SQA dataset, but the scale of the data is limited. 121

Spoken SQuAD (Lee et al., 2018b) is the first SQA 122

large-scale dataset. It adopts SQuAD (Rajpurkar 123

et al., 2016) to form a dataset with text questions 124

and spoken documents. Spoken-CoQA (You et al., 125

2020) is also a large-scale dataset tailored to dia- 126

logue SQA. However, they still use the synthetic 127

speech by Google TTS. To push SQA toward real- 128

world scenarios, ODSQA (Lee et al., 2018a) is a 129

large-scale Chinese SQA corpus with real audio 130

recordings. NoiseQA (Ravichander et al., 2021) 131

and SD-QA (Faisal et al., 2021) propose a QA 132

dataset with real spoken question prompts. How- 133

ever, both NoiseQA and SD-QA only contain the 134

spoken queries, and they mainly focus on the text- 135

based QA system. In contrast, our NMSQA dataset 136

includes spoken questions and spoken documents 137

in both naturally synthetic and real speech. 138

Existing SQA methods intend to improve SQA 139

performance by mitigating or sidestepping the 140

ASR errors. Previous works adopt adversarial 141

domain adaptation (Lee et al., 2019), knowl- 142

edge distillation (You et al., 2021b,a,c,d), and 143

contextualized word embedding (Su and Fung, 144

2020) to alleviate the adverse effects of ASR 145

errors. Besides, end-to-end fine-tuning can also 146

ease speech recognition errors. Kuo et al. (2020) 147

tends to fuse acoustic information into the text 148

representation. SpeechBERT (Chuang et al., 149

2020) and SPLAT (Chung et al., 2021) integrate 150

audio and text information to a joint cross-modal 151

representation for further SQA fine-tuning. Nev- 152

ertheless, due to the significant disparity between 153

speech and text representation, those cross-modal 154

representations still require ASR transcriptions 155

to align the embedding of speech and text. To 156

the best of our knowledge, existing SQA meth- 157

ods highly rely on ASR transcriptions, and our 158

work is the first step toward transcription-free SQA. 159

160

Textless NLP: Recent successes in self-supervised 161

speech representation learning (Hsu et al., 2021; 162

Baevski et al., 2020; Chen et al., 2021; Baevski 163

et al., 2019; Schneider et al., 2019; Riviere 164

et al., 2020; Ling and Liu, 2020; Liu et al., 2021, 165
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2020b,a; Chung et al., 2020, 2019; Ravanelli et al.,166

2020) enable discovering discrete units from raw167

waveform without text supervision. The concept168

of “Textless NLP” is to utilize such discrete units169

to sidestep the ASR, which needs a large amount170

of annotated speech and transcription and is only171

applicable to the written form languages. “Textless172

NLP” can make speech technologies inclusive to173

all human languages. Polyak et al. (2021) leverages174

the discrete units as the content-disentangled175

component for speech re-synthesis. Lakhotia et al.176

(2021); Kharitonov et al. (2021) pre-train the177

speech generative language model based on the178

discrete units. The speech discrete units can also179

help the direct speech to speech translation (Lee180

et al., 2021a,b) and speech emotion conversion181

(Kreuk et al., 2021). However, previous works of182

“Textless NLP” focus on speech generation tasks,183

and our work is centered on the speech semantic184

task.185

186

Cross-Disciplinary Transfer of Pre-training:187

Cross-disciplinary transfer refers to transferring188

knowledge from non-linguistic pre-trained lan-189

guage models (LMs) to natural language or vice190

versa. Papadimitriou and Jurafsky (2020) show191

that a non-linguistic data (MIDI music or Java192

code) pre-trained LSTM-based LM can adapt193

to natural language LM by only fine-tuning the194

word embedding. Chiang and Lee (2021) also195

reveals that even if the language model is not196

pre-trained on natural languages, the pre-trained197

models still have the transferability for natural198

language downstream tasks since the language199

model learns to model the token dependencies200

in the sequences. Recently, Kao and Lee (2021)201

discovered that the text pre-trained models could202

transfer the learned knowledge to the different203

downstream tasks of non-text disciplines, such204

as amino acid, DNA, and music. Specifically, as205

long as the input sequence is discrete, fine-tuning206

non-text sequence classification on text pre-trained207

model yields comparable performance as the208

non-text data pre-trained model. Since the LMs209

are pre-trained on a sequential task, the network210

weights are initialized more sensibly to capture211

long-range dependencies compared to random212

initialization schemes. Unlike the previous work,213

our work is the first to adopt “cross-disciplinary214

transferability of pre-training” to speech modality.215

3 Method 216

3.1 Problem Formulation 217

The form of SQA dataset D is (q,p, a), corre- 218

sponding to the passage, question, and answer. 219

(q,p, a) is represented in spoken form in this work. 220

Specifically, our goal is to extract the starting and 221

ending time (ts, te), denoted as answer span a, 222

from the spoken passage waveform p given the 223

spoken question waveform q. Because the output 224

answer is the time interval, the extracted spoken 225

answer is human-recognizable. It does not suffer 226

from speech recognition error or out-of-vocabulary 227

(OOV) as in the case of text answers. 228

3.2 DUAL framework 229

The DUAL framework consists of the Speech 230

Content Encoder (SCE) and Pre-trained Language 231

Model (PLM). We introduce the details of the com- 232

ponents in the following sections. we illustrate the 233

overview of the DUAL framework in Figure 2. 234

3.2.1 Speech Content Encoder 235

The SCE transforms the question-answer audio 236

waveform (q,p) to sequence of discrete units 237

(zq, zp). The pipeline of SCE is shown in the left 238

part of Figure 2. 239

Self-supervised Speech Representation: The self- 240

supervised speech pre-trained model can extract 241

informative feature representation. We adopt the 242

state-of-the-art self-supervised speech pre-trained 243

model HuBERT (Hsu et al., 2021) for feature ex- 244

traction1. HuBERT is trained by masked prediction 245

objective similar to BERT (Devlin et al., 2019). 246

The prediction target is the clustering index gen- 247

erated by K-means clustering of signal processing 248

features, e.g., Mel-frequency cepstral coefficients 249

(MFCC) features initially, and then the clustering 250

of learned latent representations in subsequent iter- 251

ations. We utilize the HuBERT-Large pre-trained 252

model containing 24 transformer encoder layers 253

pre-trained on LibriLight 60k hour dataset. Hu- 254

BERT encodes the raw waveform into frame-level 255

1024 dimension features. Each frame is equivalent 256

to 20 ms. 257

Speech Quantization: The goal of speech quanti- 258

zation is to discretize speech features for feeding 259

discrete units into the pre-trained language model. 260

The K-means clustering is the quantization method, 261

which is trained on the layer-wise representation of 262

1We use the open-source S3PRL (Yang et al., 2021) toolkit
to extract HuBERT-Large’s representation.
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Figure 2: (Left) The pipeline in speech content encoder. (Right) The overview of the DUAL framework.

HuBERT-Large2. We use LibriSpeech (Panayotov263

et al., 2015) 100 hour subset to train the K-means264

clustering model, and the number of clusters K265

is 64, 128, and 512. After clustering, the discrete266

units are represented by the clustering index. We267

merge the duplicate discrete units to shorten the268

sequence length and remove the duration informa-269

tion, forming the dense speech discrete sequence270

of the question and passage (zq, zp). We record271

the duration of duplication as cq and cp for zq and272

zp, so we can recover the frame-level indices to273

convert the answer span back to time interval at the274

inference stage.275

3.2.2 Pre-trained Language Model276

The learning model is a BERT-like transformer277

encoder model. The input is the discrete units of278

spoken questions and passages (zq, zp). Because279

SQA is a very challenging task to train from scratch,280

we leverage the cross-disciplinary transferability of281

PLM (Papadimitriou and Jurafsky, 2020; Kao and282

Lee, 2021; Chiang and Lee, 2021) to help the SQA283

downstream task. Specifically, we use the weight of284

text PLM for network initialization and randomly285

assign the text pre-trained input embeddings for286

discrete units similar as Kao and Lee (2021). The287

different random embedding assignments do not288

2We discovered that different layers contain different
acoustic and linguistic information. We will discuss this in the
ablation study.

significantly affect the final performance (details 289

are in the Ablation Study in Section 5.1). The 290

input of PLM is the concatenated discrete units of 291

question and passage pair (zq, zp), and the target 292

is the start and end position (ys, ye) after the de- 293

duplication process. 294

Because the length of speech discrete units is 295

much longer than text and the duration of the spo- 296

ken passage itself is long, the standard maximal 297

length of PLM (typically 512) is not enough in 298

our case. As a result, we leverage the sparse trans- 299

former PLM for a lengthy document, Longformer 300

(Beltagy et al., 2020), to model the long (zq, zp). 301

Longformer is a BERT-like model for long doc- 302

uments, pre-trained on the unlabeled long text 303

documents and optimized for training efficiency 304

by sparse attention mechanism, such as local and 305

global attention, to support up to 4096 tokens. 306

3.2.3 Training Objective 307

The training objective is similar to canonical QA 308

fine-tuning in text QA. A randomly initialized lin- 309

ear layer is added on the top to predict the start 310

and end index. Let θ represents the trainable 311

weights of the model, shown as the gradient flow 312

in Figure 2. cp = [cp1, cp2, ..., cpn] is the du- 313

ration of duplication of every discrete units zpi 314

in zp = [zp1, zp2, ..., zpn]. (ts, te) is the ground 315

truth start and end time in second, and we convert 316

the answer span to index level (ys, ye). The overall 317
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Property train dev test-SQuAD test-OOD
# of Sample 95024 21199 101 166
Hour 297.18 37.61 2.61 8.36
# of Speaker 12 12 60 60
Real Speaker ✕ ✕ ✔ ✔

Content Source SQuAD-train SQuAD-dev-1 SQuAD-dev-2 NewsQA-dev, QuAC-dev
Speech Quality Natural, Clean Natural, Clean Disfluent, Noisy Disfluent, Noisy

Table 1: The properties and splits of NMSQA dataset.

training objective is to minimize the loss L(θ) as318

the sum of the negative log probabilities of the true319

start and end indices on all the examples. L(θ) can320

be written as below:321

−
∑

log P (ys|zq, zp; θ) + log P (ye|zq, zp; θ)322

At the inference stage, we convert the predicted323

start and end indices (ŷs, ŷe) to the frame level324

by cp and finally transform them to the time level325

(t̂s, t̂e). Since each frame of HuBERT is 20 ms326

duration, we multiply 0.02 for the second-level327

time.328

t̂s = 0.02×
ŷs∑
k=1

cpk t̂e = 0.02×
ŷe∑
k=1

cpk329

330

331
4 Experiments332

4.1 Corpus Description333

We propose a new listening comprehension task334

named Natural Multi-speaker Spoken Question An-335

swering (NMSQA). The details of the NMSQA336

corpus are listed in Table 1. The train and dev set is337

the spoken version of the SQuAD v1.1 dataset, one338

of the largest QA datasets from Wikipedia para-339

graphs and human-written questions. We randomly340

split the SQuAD dev set into the disjoint SQuAD-341

dev-1 and SQuAD-dev-2 for the NMSQA dev set342

and test set. The Amazon Polly Text-to-Speech343

service3 is used for generating natural speech. We344

randomly assign the 12 TTS speakers and ensure345

that different speakers speak the spoken document-346

question pairs. Overall, there are 297.18 / 37.61347

hours of audio for the train/dev set.348

Moreover, we are releasing two versions of the349

realistic test set. One is test-SQuAD, the human350

readers are requested to read the SQuAD-dev-2 nat-351

urally. Different from test-SQuAD, the test-OOD352

set contains other QA data in NewsQA (Trischler353

et al., 2017) and QuAC (Choi et al., 2018). Due354

3https://aws.amazon.com/tw/polly/

Figure 3: The illustration of evaluation the predicted
answer and ground-truth answer in time-level.

to the data distribution shift, the original dev set 355

in NewsQA and QuAC is too tricky for even the 356

text QA model trained on SQuAD. We select the 357

sub-set of development set in NewsQA and QuAC 358

where the text QA model4 can correctly answer and 359

randomly sample 166 question and answer pairs 360

for human readers. There are 60 human readers, 361

and the gender is balanced (30 males / 30 females). 362

The test-SQuAD and test-OOD have 2.67 and 8.36 363

hours of audio, respectively. The answer intervals 364

are annotated by force alignment (McAuliffe et al., 365

2017). The details of human data collection are in 366

Appendix E. 367

4.2 Evaluation 368

Since the output target in the NMSQA dataset is 369

the temporal span of the spoken answer, there is no 370

text output to evaluate the Exact Match (EM) or F1 371

score as in the text QA task. Following the eval- 372

uation metric proposed by Lee et al. (2018b) and 373

Chuang et al. (2020), we adopt the Frame-level F1 374

score (FF1) and Audio Overlapping Score (AOS) 375

to evaluate performance. These two metrics di- 376

rectly measure the SQA performance as a function 377

of the predicted time intervals. The calculation is 378

as follow: 379

P =
X ∩ Y

X
R =

X ∩ Y

Y
380

FF1 =
2× P ×R

P +R
× 100% AOS =

X ∩ Y

X ∪ Y
× 100% 381

4The text QA model is a typical BERT(bert-base-uncased)
QA model fine-tuned on SQuAD v1.1 with 88.2 F1 score.
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Input Model dev test-SQuAD test-OOD
FF1 AOS FF1 AOS FF1 AOS

With ASR transcriptions (Cascade Approach)
ASR prediction (SB) Longformer† 56.74 49.72 17.34 15.27 16.92 15.66
ASR prediction (W2v2-st-ft) Longformer† 65.67 58.34 64.17 57.44 57.67 50.31
Without ASR transcriptions (DUAL)
HuBERT-64 Longformer 47.76 42.22 39.03 32.97 32.58 28.39
HuBERT-128 Longformer 54.22 48.52 55.93 49.13 38.63 34.61
HuBERT-512 Longformer 55.02 49.59 17.28 12.46 10.35 7.40

Table 2: The performance of DUAL and cascade approach on the NMSQA dev and test set. The Longformer† means
the Longformer model has been fine-tuned on clean text SQuAD-v1.1; otherwise, the Longformer is pre-trained by
unlabeled text data.

ASR LibriSpeech test-clean NMSQA dev NMSQA test
SB 3.08 15.75 61.70
W2v2-st-ft 1.90 10.48 11.28

Table 3: Word Error Rate (WER) of the two off-the-shelf ASR models on different speech datasets. “NMSQA test”
set includes “test-SQuAD” and “test-OOD”.

X is the audio time interval of the predicted an-382

swer, and Y is the audio time interval of the ground-383

truth answer. See Figure 3 for illustration. The384

higher FF1 and AOS score mean more significant385

overlapping between the ground truth time interval386

and the predicted time span.387

4.3 Cascade Approach388

The SQA cascade approach comprises an ASR389

model and a QA model trained on clean text. The390

ASR model is used for Speech-to-Text conversion,391

and the text QA model will predict the text answer392

span based on the ASR predictions. The text QA393

model is a Longformer-based model fine-tuned on394

SQuAD v1.1, denoted as Longformer† in our exper-395

iments. We use the online available model check-396

point5 for text QA inference. The Longformer†397

obtains 91.54 F1 score and 85.14 EM score on the398

text SQuAD v1.1 dataset. Because the final answer399

target is the time interval of the spoken answer, we400

adopt the force alignment (McAuliffe et al., 2017)401

to retrieve the time interval in seconds.402

We use two open-source pre-trained ASR mod-403

els for the cascade approach. One is from Speech-404

brain (Ravanelli et al., 2021)6, referred to as405

SB. The other is the open-source Wave2vec 2.0-406

large with self-training fine-tuning (Baevski et al.,407

5https://huggingface.co/valhalla/longformer-base-4096-
finetuned-squadv1

6https://huggingface.co/speechbrain/asr-crdnn-rnnlm-
librispeech

2020)7, called W2v2-st-ft for simplicity. The Word 408

Error Rate (WER) of them on different speech 409

datasets are listed in Table 3, and the details of 410

the ASR models are in Appendix C. Both SB and 411

W2v2-st-ft utilize LibriSpeech (Panayotov et al., 412

2015) 960 hour dataset as supervised ASR data; 413

however, W2v2-st-ft is much more robust than SB 414

on the NMSQA test set since it leverages the large 415

amount of 60k hour unlabeled data and self-training 416

procedure. 417

4.4 Results 418

In the following, “HuBERT-K” means the input 419

of DUAL is the clustering results from HuBERT- 420

Large 22th layer representation with K clusters. 421

422

4.4.1 Natural and Clean Speech 423

The natural and clean speech refers to the dev set 424

of NMSQA. The experimental results are shown in 425

Table 2 "dev" column. On the top of the Table 2 are 426

the cascade approaches with paired transcriptions. 427

For the results on the dev set, the performance of 428

ASR prediction with W2v2-st-ft (FF1 65.67) is 429

much better than SB (FF1 56.74) due to its lower 430

speech recognition error. At the bottom part of 431

Table 2, bypassing the ASR transcription stage, 432

DUAL achieves 55.02, 54.22, 47.76 FF1 on the 433

dev set for HuBERT with different discrete code- 434

book sizes 512, 128, 64, respectively. As the size of 435

7https://huggingface.co/facebook/wav2vec2-large-960h-
lv60-self
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the input dictionary discovered from HuBERT rep-436

resentations grows, the performance improves. The437

performance degradation occurs especially when438

the unit size is 64, suggesting that small codebook439

sizes lose important fine-grained content informa-440

tion. On the contrary, using the larger codebook441

size, e.g., 128 and 512 clusters, can preserve more442

acoustic information and gain better performance443

on the dev set. Although DUAL’s performance444

is slightly worse than the ASR cascade model, it445

is surprising that DUAL’s performance is close to446

the cascade approach (SB). The non-trivial perfor-447

mance of DUAL demonstrates that it learns sophis-448

ticated speech semantics directly from speech data449

without the additional speech-to-text conversion or450

the supervision of ASR transcription.451

4.4.2 Realistic and Noisy Speech452

The experimental results are shown in Table 2 "test-453

SQuAD" and "test-OOD" columns.454

In-domain content: The content source of test-455

SQuAD is in-domain since it is based on SQuAD.456

We observe that the cascade approach (SB) drops457

the performance sharply due to the very high WER458

(61.70) on the real speech, whereas the W2v2-st-459

ft ASR model is more robust and remains simi-460

lar performance as in the clean dev set. The evi-461

dent performance difference for the two cascade462

approaches reveals the issues of ASR robustness.463

In reality, training a robust ASR system like W2v2-464

st-ft with self-training on 60k hours requires huge465

computational resources not available for many ap-466

plication and research institutions. The undesirable467

ASR error propagation truly exists in real-world468

scenarios.469

On the other side, when using the appropriate470

codebook size (K = 128), DUAL can retain the471

performance in test-SQuAD, showing remarkable472

robustness of realistic speech. The performance473

on test-SQuAD is even slightly higher than the dev474

set for HuBERT-128. The surprising robustness475

may come from the speech quantization and the de-476

duplication procedure, which contains the essential477

acoustic content information while removing the478

noise and reducing the impact on disfluent speech479

(i.e., lots of pauses in speech).480

We also observe that the different number of481

clusters in DUAL causes considerably dissimilar482

performance. HuBERT-128 obtains 55.93 FF1483

score, while HuBERT-64 gets 39.03 FF1 score and484

HuBERT-512 only attains 17.28 FF1 score. The485

experimental results indicate that even though the486

Layer FF1 AOS
5 35.14 30.49
10 44.89 39.52
15 46.90 41.78
21 51.94 46.59
22 54.22 48.52
23 53.07 47.63

Table 4: Experiments of clustering on different hidden
representations of HuBERT-Large. The number of clus-
ters is 128 for all the experiments. The performance is
evaluated on the NMSQA dev set.

large clustering number stores more acoustic infor- 487

mation and gains better performance in a clean dev 488

set, it also amplifies undesirable artifacts in out-of- 489

domain speech and leads to catastrophic domain 490

mismatch. The real-world testing concludes that 491

selecting the adequate clustering number is crucial 492

for robust DUAL performance. 493

Out-of-domain Content: The test-OOD set comes 494

from out-of-domain content sources that differ 495

from SQuAD. Compared to "test-SQuAD", all the 496

performance in Table 2 "test-OOD" drop. The re- 497

sults show that out-of-domain examples are more 498

sensitive to speech recognition errors. The cascade 499

approaches and DUAL both suffer from perfor- 500

mance degradation in the test-OOD set. 501

5 Analysis and Discussion 502

5.1 Ablation Study 503

Different Layer for Speech Quantization: Table 504

4 shows the results of clustering on different layers’ 505

hidden representations. We choose the 5, 10, 15, 506

21, 22, 23 layers for experiments. The best perfor- 507

mance is at the 22th layer, which achieves 54.22 508

FF1 score and 48.52 AOS score. The top layers (21, 509

22, 23) have better performance than the bottom 510

layers (5, 10, 15). 511

In self-supervised speech representation, dif- 512

ferent layers encode different acoustic and lin- 513

guistic information. Chen et al. (2021) shows 514

that HuBERT-Large’s top layers contribute most 515

for content and semantic-related tasks (such as 516

Phoneme Recognition and Intent Classification) in 517

the weighted-sum fine-tuning scheme (Yang et al., 518

2021). Their analysis results align with the experi- 519

mental results in Table 4, showing that the layers 520

with more content information are more suitable 521

for speech quantization and beneficial to the final 522

SQA performance. We also conduct further layer- 523

wise analysis in Appendix A. 524
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Embedding Assignment FF1 AOS
Most frequent 54.22 48.52
Least frequent 46.88 41.68
Random 51.66 46.23
Re-emb 8.87 7.23
Scratch (baseline) 6.12 4.91

Table 5: Ablation study of embedding assignment. All
experiments use the HuBERT-128 setting. Performance
is measured on the NMSQA dev set.

Input Embedding Assignment: Table 5 shows525

the ablation study of different embedding assign-526

ments. "Most frequent" and "Least frequent" mean527

that we randomly assign the n discrete units to the528

pre-trained embedding of the top-n and the least-n529

frequent vocabularies. The vocabulary frequency530

is determined by the Byte-Pair Encoding (BPE) on531

unlabeled text data. "Random" refers to randomly532

selecting pre-trained input embedding regardless533

of the frequency. "Re-emb" denotes to randomly534

re-initialize input embedding by the normal distri-535

bution. "Scratch" means the Longformer model is536

not pre-trained on the unlabeled text data.537

The experimental results indicate that randomly538

assigning the pre-trained input embeddings for dis-539

crete units does not result in very different per-540

formance. The result of the "Random" is com-541

parable to the "Most frequent" initialization, and542

"Least frequent" causes slightly worse performance543

than "Most frequent." The performance degrada-544

tion may come from the poor quality of the least545

frequent vocabularies’ pre-trained embeddings.546

5.2 DUAL vs. Cascade Approach547

We compare the performance of the cascade ap-548

proach (SB) and DUAL (HuBERT-128) for differ-549

ent levels of WER. Specifically, we split the NM-550

SQA dev set into subsets by ASR (SB) WER from551

0% to 70%. In Figure 4, we observe that the FF1552

score drops significantly as the WER rises. This is553

the typical phenomenon of speech recognition er-554

ror propagation. On the other hand, DUAL attains555

a similar FF1 score for different levels of WER556

sub-groups. Because DUAL does not depend on557

ASR transcriptions, there is no correlation between558

WER and DUAL’s FF1 score. When the WER559

is below 30%, the cascade approach outperforms560

DUAL; but when WER exceeds 30%, DUAL’s FF1561

score is much higher than the cascade approach.562

Since the content of SQuAD is based on Wikipedia,563

it usually includes proper nouns (e.g., abbreviation564

Figure 4: Frame-level F1 (FF1) score for DUAL and
cascade approach (SB), evaluated on the small groups
of full NMSQA dev set at different levels of ASR (SB)
WER.

and institution). The Out-Of-Vocabulary (OOV) 565

easily leads to speech recognition error and con- 566

sequently low SQA performance, whereas DUAL 567

can still retain the performance. 568

6 Conclusion and Future Work 569

In this work, we propose the first textless (i.e., ASR 570

transcription-free) SQA framework. The proposed 571

DUAL framework only utilizes unlabeled speech 572

and text data for pre-training and fine-tuning by 573

the spoken questions, passages, and answer time 574

intervals. The DUAL framework directly predicts 575

the answer time span without text supervision or 576

acoustic word boundary. Furthermore, we collected 577

a new natural, multi-speaker SQA benchmark cor- 578

pus named NMSQA. The NMSQA contains real 579

speakers for the test set and large-scale data for the 580

training and development set. The experimental 581

results show that DUAL performs competitively 582

with the cascade approach on NMSQA. DUAL is 583

also robust to real-world noise in the NMSQA test 584

set when selecting the appropriate codebook size. 585

We plan to investigate the discrete units pre- 586

training on PLM to capture the better semantic 587

representation of speech for future work. We also 588

want to unfreeze the fixed speech content encoder 589

to fine-tune on SQA jointly. 590

This work shows proof of concept to model the 591

challenging SQA task by audio-level annotations 592

only. Our DUAL framework is applicable to all 593

spoken languages for building SQA without the 594

supervision of text transcriptions. Furthermore, 595

we hope the NMSQA dataset can help the SQA 596

community develop robust SQA systems. 597
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A Probing: Content Information for846

Different Layers847

Figure 5: The weight of the final weighted-sum rep-
resentation is fine-tuned by LibriSpeech 100 hour
phoneme recognition downstream task. The most sig-
nificant weight is at the 22th layer.

To investigate the performance gap between the848

former and the latter layers, we follow the con-849

cept of using weighted-sum representation as the850

final representation to train downstream phoneme851

recognition (PR) task as in (Yang et al., 2021). By852

training on LibriSpeech (Panayotov et al., 2015)853

100 hour dataset, the frozen Hubert-Large model854

with trainable weights and upstream linear model855

achieved 3.53 phoneme error rate (PER) on Lib-856

riSpeech test-clean. PR is a content recognition857

task that transcribes an utterance into the smallest858

content units (phoneme). The weights of different859

layers indicate how much content information is860

stored in that layer. The result is shown in Figure861

5. The top layers have significantly larger weight,862

especially at the 22th layer. The results demon-863

strate that the top layer-wise representation in the864

HuBERT-Large model encodes more content infor-865

mation than other layers.866

B Training Details867

For DUAL, we use the official Longformer check-868

point on Longformer-base model8, which starts869

from the original RoBERTa checkpoint and is pre-870

trained for masked language modeling (MLM) on871

long documents. We search the learning rate in [3e-872

5, 5e-5, 7e-5, 1e-4] and report the best performance.873

We set the learning rate warmup step as 500, grow-874

ing up linearly to the peak value and then linearly875

decaying to 0. All the DUAL experiments use 4876

8https://huggingface.co/allenai/longformer-base-4096

Tesla V100s with an overall 128 batch size for up 877

to 5000 training steps. The training takes about one 878

day. If the length of discrete units (zq, zp) input 879

exceeds 4096, we truncate the passage zp. 880

C Details of ASR Models 881

The Speechbrain (SB) ASR model consists of 882

CRDNN with CTC/Attention and RNNLM trained 883

on LibriSpeech 960 hour dataset. This ASR model 884

achieves 3.08 WER on LibriSpeech test-clean and 885

obtains 15.75 WER on the development set of the 886

NMSQA dataset but only 61.70 WER on the test- 887

ing set. The high testing WER points out the ASR 888

robustness issues of the real-world applications. 889

On the other hand, W2v2-st-ft ASR model is 890

the Wav2vec 2.0-Large model. First pre-trained on 891

Libri-light and LibriSpeech, then self-training and 892

fine-tuning on Librispeech 960 hour. W2v2-st-ft 893

achieves 1.90 WER on Librispeech test-clean set. 894

The WER on the NMSQA development and testing 895

set are 10.48 and 11.28, respectively. 896

D Can we learn sophisticated semantic 897

information solely from speech data? 898

We try to fine-tune SQA as a downstream task 899

for the state-of-the-art self-supervised pre-trained 900

speech representation model such as HuBERT (Hsu 901

et al., 2021). However, we find out that SQA 902

speech input is too long for self-supervised speech 903

models, which can only receive about 15 seconds 904

of speech; however, the duration of spoken para- 905

graphs is usually longer than 1 minute. The lack of 906

a long-range and efficient self-supervised speech 907

pre-trained model causes the difficulty to model 908

high-level semantic information by speech data it- 909

self. 910

E Details of Human Data Collection 911

The test set of NMSQA is an audio set collected 912

from human readers reading SQuAD, NewsQA, 913

and QuAC Corpora. The corpora are split into sen- 914

tences, and human readers are provided content 915

in the form of text sentences and are requested to 916

read and record the audio of the reading. The au- 917

dio length is around 11 hours, with around 3600 918

sentences in total that are later composed back to 919

documents. Each sentence is on average 5s or 10 920

words. The human readers are gender-balanced (30 921

male, 30 female). For quality control, we had an 922

initial quality control batch of 1.2 hours of audio 923

(425 sentences) by 16 speakers (8 male, 8 female) 924
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and evaluated the quality of the initial batch be-925

fore proceeding the data collection. The recording926

condition guideline is derived from LibriVox9 with927

some adjustments to suit our scenario. A quiet en-928

vironment is required for recording, and external929

USB microphones plugged into the computers are930

preferred to built-in microphones.931

For the audio recording, we use the wav files932

(two-channel audio sampled at 44,100 Hz) as the933

recording format. The readers are advised to a)934

read the text before recording it, b) allow pauses935

between sentences and paragraphs, c) enunciate at936

a relaxed steady pace, d) speak up and try for a937

steady volume level, e) place the microphone at938

an appropriate location, f) take breaks in between,939

to avoid mental and vocal fatigue. The human940

reader sourcing and data collection are handled941

by ANONYMOUS, a third-party vendor that has942

established history in data collection for AI and943

machine learning research. The data collection944

and storage fully comply with stringent security,945

privacy, and ethics requirements.946

9https://librivox.org/
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