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Abstract

Spoken Question Answering (SQA) has
gained research attention and made remark-
able progress in recent years. However, ex-
isting SQA methods rely on Automatic Speech
Recognition (ASR) transcriptions, which is
time and cost-prohibitive to collect. This work
proposes an ASR transcription-free SQA frame-
work named Discrete Unit Adaptive Learning
(DUAL), which leverages unlabeled data for
pre-training and is fine-tuned by the SQA down-
stream task. DAUL can directly predict the
time interval of the spoken answer from the
spoken document. We also release a new SQA
benchmark corpus Natural Multi-speaker Spo-
ken Question Answering (NMSQA) for testing
SQA in realistic scenarios. The experimen-
tal results show that DUAL performs competi-
tively with the cascade approach (ASR + text
QA), and DUAL is robust to real-world speech.
We will open-source our code and model to
inspire more SQA innovations from the com-
munity.

1 Introduction

Spoken Question Answering (SQA) aims to find
the answer from a spoken document given the ques-
tion in either text or spoken form. SQA is crucial
for speech assistants to answer the question from
user spoken queries. The SQA system requires so-
phisticated comprehension and reasoning ability. It
also needs the listening capability to transcribe con-
tent from audio. The machine must understand the
global and fine-grained information in the spoken
context and questions to predict the exact answer
span in the long context.

The conventional SQA system consists of an
Automatic Speech Recognition (ASR) and a text
QA model. However, Lee et al. (2018b) shows
that speech recognition errors cause a catastrophic
impact on the text QA system. Several works (Lee
etal., 2019; You et al., 2021b,c; Su and Fung, 2020)
intend to alleviate the negative effect of speech
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Figure 1: The illustration of the proposed DUAL frame-
work for ASR transcription-free SQA. All the passages,
questions, and answers are in spoken form. Our DUAL
framework can extract the time interval of the spoken
answer from the spoken passage without the help of
ASR transcriptions.

recognition error by knowledge distillation, which
is leveraged for adapting the text QA model to
be robust against recognition errors. On the other
side, Chuang et al. (2020) and Chung et al. (2021)
exploit paired speech and transcription to align the
semantics for constructing a cross-modal speech
and text pre-trained model. The cross-modal model
can be fine-tuned end-to-end, mitigating the speech
recognition error and improving SQA performance.

Nevertheless, current SQA research suffers from
the dependency on ASR transcriptions. It is time-
consuming and expensive to collect sufficient tran-
scriptions to train a low error rate and robust ASR.
Furthermore, ASR transcriptions are unaffordable
in low-resource languages and unavailable in lan-
guages and dialects without written form. To make
SQA applications more inclusive to all human lan-
guages, developing an ASR transcription-free SQA
system is critical.

In this work, we propose the first textless (i.e.,
ASR transcription-free) SQA framework. Inspired
by the concept of Textless NLP (Lakhotia et al.,
2021; Polyak et al., 2021; Kharitonov et al., 2021;



Kreuk et al., 2021), which encodes speech into
the pre-text discrete units, and the surprising find-
ings of pre-trained language model transferabil-
ity in Kao and Lee (2021), we propose the frame-
work, Discrete Unit Adaptive Learning (DUAL) for
textless SQA. DUAL leverages speech pre-trained
models to obtain quantized, length-condensed
speech representation from continuous audio sig-
nals. DUAL further adapts the pre-trained language
model for the speech representations and achieves
competitive SQA results without any ASR tran-
scriptions.

Furthermore, although there are increasing ef-
forts to build SQA benchmark corpora (Tseng et al.,
2016; Lee et al., 2018b; Rajpurkar et al., 2016; You
et al., 2020; Lee et al., 2018a; Ravichander et al.,
2021), there is a lack of natural SQA datasets to
measure SQA performance in environments that
capture real-world attributes. To benchmark SQA
in a more realistic setting, we release a novel bench-
mark corpus, Natural Multi-speaker Spoken Ques-
tion Answering (NMSQA). The corpus has the test
set spoken by human readers with text content ob-
tained from in-domain (SQuAD (Rajpurkar et al.,
2016)) and out-of-domain (NewsQA (Trischler
et al., 2017), QuAC (Choi et al., 2018)) corpora.
The training and validation set are synthesized from
Amazon Polly TTS service with industrial-grade
quality. Different real and synthesized speakers
read the pair of (context, question). NMSQA is
designed to offer a large-scaled training corpus and
human-read testing set for developing and evaluat-
ing SQA in real-world scenarios.

Our contributions can be summarized as follows:

* We propose the DUAL framework for SQA,
the first work to achieve textless SQA that
does not utilize ASR transcriptions.

* We open-source the dataset NMSQA to in-
spire innovation for SQA in real-world scenar-
ios.

* The experimental results show that DUAL
achieves competitive performance and sig-
nificantly outperforms the cascade approach
when the speech recognition error is higher
than the 30% word error rate.

* DUAL is more robust to realistic speech
than the cascade approach: DUAL retains
the performance in the real-speaker testing
set, whereas the cascade approach degrades
severely.

2 Related Work

Spoken Question Answering: SQA is the cru-
cial use case for voice assistants in our daily life.
Currently, there are increasing efforts toward SQA
benchmark corpora. TOEFL listening comprehen-
sion test (Tseng et al., 2016) is a multiple-choice
SQA dataset, but the scale of the data is limited.
Spoken SQuUAD (Lee et al., 2018b) is the first SQA
large-scale dataset. It adopts SQuAD (Rajpurkar
et al., 2016) to form a dataset with text questions
and spoken documents. Spoken-CoQA (You et al.,
2020) is also a large-scale dataset tailored to dia-
logue SQA. However, they still use the synthetic
speech by Google TTS. To push SQA toward real-
world scenarios, ODSQA (Lee et al., 2018a) is a
large-scale Chinese SQA corpus with real audio
recordings. NoiseQA (Ravichander et al., 2021)
and SD-QA (Faisal et al., 2021) propose a QA
dataset with real spoken question prompts. How-
ever, both NoiseQA and SD-QA only contain the
spoken queries, and they mainly focus on the text-
based QA system. In contrast, our NMSQA dataset
includes spoken questions and spoken documents
in both naturally synthetic and real speech.
Existing SQA methods intend to improve SQA
performance by mitigating or sidestepping the
ASR errors. Previous works adopt adversarial
domain adaptation (Lee et al., 2019), knowl-
edge distillation (You et al., 2021b,a,c,d), and
contextualized word embedding (Su and Fung,
2020) to alleviate the adverse effects of ASR
errors. Besides, end-to-end fine-tuning can also
ease speech recognition errors. Kuo et al. (2020)
tends to fuse acoustic information into the text
representation. SpeechBERT (Chuang et al.,
2020) and SPLAT (Chung et al., 2021) integrate
audio and text information to a joint cross-modal
representation for further SQA fine-tuning. Nev-
ertheless, due to the significant disparity between
speech and text representation, those cross-modal
representations still require ASR transcriptions
to align the embedding of speech and text. To
the best of our knowledge, existing SQA meth-
ods highly rely on ASR transcriptions, and our
work is the first step toward transcription-free SQA.

Textless NLP: Recent successes in self-supervised
speech representation learning (Hsu et al., 2021;
Baevski et al., 2020; Chen et al., 2021; Baevski
et al., 2019; Schneider et al., 2019; Riviere
et al., 2020; Ling and Liu, 2020; Liu et al., 2021,



2020b,a; Chung et al., 2020, 2019; Ravanelli et al.,
2020) enable discovering discrete units from raw
waveform without text supervision. The concept
of “Textless NLP” is to utilize such discrete units
to sidestep the ASR, which needs a large amount
of annotated speech and transcription and is only
applicable to the written form languages. “Textless
NLP” can make speech technologies inclusive to
all human languages. Polyak et al. (2021) leverages
the discrete units as the content-disentangled
component for speech re-synthesis. Lakhotia et al.
(2021); Kharitonov et al. (2021) pre-train the
speech generative language model based on the
discrete units. The speech discrete units can also
help the direct speech to speech translation (Lee
et al., 2021a,b) and speech emotion conversion
(Kreuk et al., 2021). However, previous works of
“Textless NLP” focus on speech generation tasks,
and our work is centered on the speech semantic
task.

Cross-Disciplinary Transfer of Pre-training:

Cross-disciplinary transfer refers to transferring
knowledge from non-linguistic pre-trained lan-
guage models (LMs) to natural language or vice
versa. Papadimitriou and Jurafsky (2020) show
that a non-linguistic data (MIDI music or Java
code) pre-trained LSTM-based LM can adapt
to natural language LM by only fine-tuning the
word embedding. Chiang and Lee (2021) also
reveals that even if the language model is not
pre-trained on natural languages, the pre-trained
models still have the transferability for natural
language downstream tasks since the language
model learns to model the token dependencies
in the sequences. Recently, Kao and Lee (2021)
discovered that the text pre-trained models could
transfer the learned knowledge to the different
downstream tasks of non-text disciplines, such
as amino acid, DNA, and music. Specifically, as
long as the input sequence is discrete, fine-tuning
non-text sequence classification on text pre-trained
model yields comparable performance as the
non-text data pre-trained model. Since the LMs
are pre-trained on a sequential task, the network
weights are initialized more sensibly to capture
long-range dependencies compared to random
initialization schemes. Unlike the previous work,
our work is the first to adopt “cross-disciplinary
transferability of pre-training” to speech modality.

3 Method

3.1 Problem Formulation

The form of SQA dataset D is (q,p,a), corre-
sponding to the passage, question, and answer.
(q, p, a) is represented in spoken form in this work.
Specifically, our goal is to extract the starting and
ending time (ts,t.), denoted as answer span a,
from the spoken passage waveform p given the
spoken question waveform q. Because the output
answer is the time interval, the extracted spoken
answer is human-recognizable. It does not suffer
from speech recognition error or out-of-vocabulary
(OOV) as in the case of text answers.

3.2 DUAL framework

The DUAL framework consists of the Speech
Content Encoder (SCE) and Pre-trained Language
Model (PLM). We introduce the details of the com-
ponents in the following sections. we illustrate the
overview of the DUAL framework in Figure 2.

3.2.1 Speech Content Encoder

The SCE transforms the question-answer audio
waveform (q,p) to sequence of discrete units
(zq, 2zp). The pipeline of SCE is shown in the left
part of Figure 2.

Self-supervised Speech Representation: The self-
supervised speech pre-trained model can extract
informative feature representation. We adopt the
state-of-the-art self-supervised speech pre-trained
model HuBERT (Hsu et al., 2021) for feature ex-
traction!. HuBERT is trained by masked prediction
objective similar to BERT (Devlin et al., 2019).
The prediction target is the clustering index gen-
erated by K-means clustering of signal processing
features, e.g., Mel-frequency cepstral coefficients
(MFCC) features initially, and then the clustering
of learned latent representations in subsequent iter-
ations. We utilize the HuBERT-Large pre-trained
model containing 24 transformer encoder layers
pre-trained on LibriLight 60k hour dataset. Hu-
BERT encodes the raw waveform into frame-level
1024 dimension features. Each frame is equivalent
to 20 ms.

Speech Quantization: The goal of speech quanti-
zation is to discretize speech features for feeding
discrete units into the pre-trained language model.
The K-means clustering is the quantization method,
which is trained on the layer-wise representation of

"We use the open-source S3PRL (Yang et al., 2021) toolkit
to extract HuBERT-Large’s representation.
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Figure 2: (Left) The pipeline in speech content encoder. (Right) The overview of the DUAL framework.

HuBERT-Large”. We use LibriSpeech (Panayotov
et al., 2015) 100 hour subset to train the K-means
clustering model, and the number of clusters K
is 64, 128, and 512. After clustering, the discrete
units are represented by the clustering index. We
merge the duplicate discrete units to shorten the
sequence length and remove the duration informa-
tion, forming the dense speech discrete sequence
of the question and passage (zq, zp). We record
the duration of duplication as cq and ¢y, for zq and
Zp, SO we can recover the frame-level indices to
convert the answer span back to time interval at the
inference stage.

3.2.2 Pre-trained Language Model

The learning model is a BERT-like transformer
encoder model. The input is the discrete units of
spoken questions and passages (zq, Zp). Because
SQA is a very challenging task to train from scratch,
we leverage the cross-disciplinary transferability of
PLM (Papadimitriou and Jurafsky, 2020; Kao and
Lee, 2021; Chiang and Lee, 2021) to help the SQA
downstream task. Specifically, we use the weight of
text PLM for network initialization and randomly
assign the text pre-trained input embeddings for
discrete units similar as Kao and Lee (2021). The
different random embedding assignments do not

2We discovered that different layers contain different
acoustic and linguistic information. We will discuss this in the
ablation study.

significantly affect the final performance (details
are in the Ablation Study in Section 5.1). The
input of PLM is the concatenated discrete units of
question and passage pair (zq, Zp), and the target
is the start and end position (ys, y.) after the de-
duplication process.

Because the length of speech discrete units is
much longer than text and the duration of the spo-
ken passage itself is long, the standard maximal
length of PLM (typically 512) is not enough in
our case. As a result, we leverage the sparse trans-
former PLM for a lengthy document, Longformer
(Beltagy et al., 2020), to model the long (zq, Zp).
Longformer is a BERT-like model for long doc-
uments, pre-trained on the unlabeled long text
documents and optimized for training efficiency
by sparse attention mechanism, such as local and
global attention, to support up to 4096 tokens.

3.2.3 Training Objective

The training objective is similar to canonical QA
fine-tuning in text QA. A randomly initialized lin-
ear layer is added on the top to predict the start
and end index. Let 6 represents the trainable
weights of the model, shown as the gradient flow
in Figure 2. ¢, = [Cpy,Cpy, ..., Cp, | is the du-
ration of duplication of every discrete units zp,
in zp = [Zpy, Zpy, ---s Zp,)- (ts,1e) is the ground
truth start and end time in second, and we convert
the answer span to index level (ys, ye ). The overall



Property train dev test-SQuAD test-OOD

# of Sample 95024 21199 101 166

Hour 297.18 37.61 2.61 8.36

# of Speaker 12 12 60 60

Real Speaker X X v v

Content Source SQuAD-train  SQuAD-dev-1 SQuAD-dev-2 NewsQA-dev, QuAC-dev
Speech Quality Natural, Clean Natural, Clean Disfluent, Noisy Disfluent, Noisy

Table 1: The properties and splits of NMSQA dataset.

training objective is to minimize the loss L(6) as
the sum of the negative log probabilities of the true
start and end indices on all the examples. L(6) can
be written as below:

— " log P(ys|zq, 2p; ) + log P(yelzq, 2p; 0)

At the inference stage, we convert the predicted
start and end indices (s, Je) to the frame level
by cp, and finally transform them to the time level
(ts,tc). Since each frame of HuBERT is 20 ms
duration, we multiply 0.02 for the second-level
time.

Ys Ye
s =002x) cp, fe=002x) cp,
k=1 k=1

4 Experiments
4.1 Corpus Description

We propose a new listening comprehension task
named Natural Multi-speaker Spoken Question An-
swering (NMSQA). The details of the NMSQA
corpus are listed in Table 1. The train and dev set is
the spoken version of the SQuAD v1.1 dataset, one
of the largest QA datasets from Wikipedia para-
graphs and human-written questions. We randomly
split the SQuAD dev set into the disjoint SQuAD-
dev-1 and SQuAD-dev-2 for the NMSQA dev set
and test set. The Amazon Polly Text-to-Speech
service® is used for generating natural speech. We
randomly assign the 12 TTS speakers and ensure
that different speakers speak the spoken document-
question pairs. Overall, there are 297.18 / 37.61
hours of audio for the train/dev set.

Moreover, we are releasing two versions of the
realistic test set. One is test-SQuAD, the human
readers are requested to read the SQuAD-dev-2 nat-
urally. Different from test-SQuAD, the test-OOD
set contains other QA data in NewsQA (Trischler
et al., 2017) and QuAC (Choi et al., 2018). Due

3https://aws.amazon.com/tw/polly/
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Figure 3: The illustration of evaluation the predicted
answer and ground-truth answer in time-level.

to the data distribution shift, the original dev set
in NewsQA and QuAC is too tricky for even the
text QA model trained on SQuAD. We select the
sub-set of development set in NewsQA and QuAC
where the text QA model* can correctly answer and
randomly sample 166 question and answer pairs
for human readers. There are 60 human readers,
and the gender is balanced (30 males / 30 females).
The test-SQuAD and test-OOD have 2.67 and 8.36
hours of audio, respectively. The answer intervals
are annotated by force alignment (McAuliffe et al.,
2017). The details of human data collection are in
Appendix E.

4.2 Evaluation

Since the output target in the NMSQA dataset is
the temporal span of the spoken answer, there is no
text output to evaluate the Exact Match (EM) or F1
score as in the text QA task. Following the eval-
uation metric proposed by Lee et al. (2018b) and
Chuang et al. (2020), we adopt the Frame-level F1
score (FF1) and Audio Overlapping Score (AOS)
to evaluate performance. These two metrics di-
rectly measure the SQA performance as a function
of the predicted time intervals. The calculation is
as follow:

XxXny Xny
P= X R= Y
2X P xR XNy
FFl= ——x1 A = 1
PR x 100% oS XUYX 00%

*The text QA model is a typical BERT (bert-base-uncased)
QA model fine-tuned on SQuAD v1.1 with 88.2 F1 score.



dev test-SQuAD test-OOD

Input Model " kp) | A0S FFI | AOS  FFI | AOS
With ASR transcriptions (Cascade Approach)
ASR prediction (SB) Longformer’ 56.74 49.72 17.34 1527 16.92 15.66
ASR prediction (W2v2-st-ft) Longformer! 65.67 58.34 64.17 57.44 57.67 50.31
Without ASR transcriptions (DUAL)
HuBERT-64 Longformer 47.76 4222 39.03 3297 32.58 28.39
HuBERT-128 Longformer 54.22 48.52 5593 49.13 38.63 34.61
HuBERT-512 Longformer 55.02 49.59 17.28 1246 10.35 740

Table 2: The performance of DUAL and cascade approach on the NMSQA dev and test set. The Longformer’ means
the Longformer model has been fine-tuned on clean text SQuAD-v1.1; otherwise, the Longformer is pre-trained by
unlabeled text data.

ASR LibriSpeech test-clean NMSQA dev NMSQA test
SB 3.08 15.75 61.70
W2v2-st-ft  1.90 10.48 11.28

Table 3: Word Error Rate (WER) of the two off-the-shelf ASR models on different speech datasets. “NMSQA test”

set includes “test-SQuAD” and “test-OOD”.

X 1is the audio time interval of the predicted an-
swer, and Y is the audio time interval of the ground-
truth answer. See Figure 3 for illustration. The
higher FF1 and AOS score mean more significant
overlapping between the ground truth time interval
and the predicted time span.

4.3 Cascade Approach

The SQA cascade approach comprises an ASR
model and a QA model trained on clean text. The
ASR model is used for Speech-to-Text conversion,
and the text QA model will predict the text answer
span based on the ASR predictions. The text QA
model is a Longformer-based model fine-tuned on
SQuAD vl.1, denoted as Longformer’ in our exper-
iments. We use the online available model check-
point® for text QA inference. The Longformer®
obtains 91.54 F1 score and 85.14 EM score on the
text SQUAD v1.1 dataset. Because the final answer
target is the time interval of the spoken answer, we
adopt the force alignment (McAuliffe et al., 2017)
to retrieve the time interval in seconds.

We use two open-source pre-trained ASR mod-
els for the cascade approach. One is from Speech-
brain (Ravanelli et al., 2021)%, referred to as
SB. The other is the open-source Wave2vec 2.0-
large with self-training fine-tuning (Baevski et al.,

>https://huggingface.co/valhalla/longformer-base-4096-
finetuned-squadv1

Shttps://huggingface.co/speechbrain/asr-crdnn-rnnlm-
librispeech

2020), called W2v2-st-ft for simplicity. The Word
Error Rate (WER) of them on different speech
datasets are listed in Table 3, and the details of
the ASR models are in Appendix C. Both SB and
W2v2-st-ft utilize LibriSpeech (Panayotov et al.,
2015) 960 hour dataset as supervised ASR data;
however, W2v2-st-ft is much more robust than SB
on the NMSQA test set since it leverages the large
amount of 60k hour unlabeled data and self-training
procedure.

4.4 Results

In the following, “HuBERT-K" means the input
of DUAL is the clustering results from HuBERT-
Large 22th layer representation with K clusters.

4.4.1 Natural and Clean Speech

The natural and clean speech refers to the dev set
of NMSQA. The experimental results are shown in
Table 2 "dev" column. On the top of the Table 2 are
the cascade approaches with paired transcriptions.
For the results on the dev set, the performance of
ASR prediction with W2v2-st-ft (FF1 65.67) is
much better than SB (FF1 56.74) due to its lower
speech recognition error. At the bottom part of
Table 2, bypassing the ASR transcription stage,
DUAL achieves 55.02, 54.22, 47.76 FF1 on the
dev set for HuBERT with different discrete code-
book sizes 512, 128, 64, respectively. As the size of

"https://huggingface.co/facebook/wav2vec2-large-960h-
Iv60-self



the input dictionary discovered from HuBERT rep-
resentations grows, the performance improves. The
performance degradation occurs especially when
the unit size is 64, suggesting that small codebook
sizes lose important fine-grained content informa-
tion. On the contrary, using the larger codebook
size, e.g., 128 and 512 clusters, can preserve more
acoustic information and gain better performance
on the dev set. Although DUAL’s performance
is slightly worse than the ASR cascade model, it
is surprising that DUAL’s performance is close to
the cascade approach (SB). The non-trivial perfor-
mance of DUAL demonstrates that it learns sophis-
ticated speech semantics directly from speech data
without the additional speech-to-text conversion or
the supervision of ASR transcription.

4.4.2 Realistic and Noisy Speech

The experimental results are shown in Table 2 "test-
SQuAD" and "test-OOD" columns.

In-domain content: The content source of test-
SQuAD is in-domain since it is based on SQuAD.
We observe that the cascade approach (SB) drops
the performance sharply due to the very high WER
(61.70) on the real speech, whereas the W2v2-st-
ft ASR model is more robust and remains simi-
lar performance as in the clean dev set. The evi-
dent performance difference for the two cascade
approaches reveals the issues of ASR robustness.
In reality, training a robust ASR system like W2v2-
st-ft with self-training on 60k hours requires huge
computational resources not available for many ap-
plication and research institutions. The undesirable
ASR error propagation truly exists in real-world
scenarios.

On the other side, when using the appropriate
codebook size (K = 128), DUAL can retain the
performance in test-SQuAD, showing remarkable
robustness of realistic speech. The performance
on test-SQuAD is even slightly higher than the dev
set for HUBERT-128. The surprising robustness
may come from the speech quantization and the de-
duplication procedure, which contains the essential
acoustic content information while removing the
noise and reducing the impact on disfluent speech
(i.e., lots of pauses in speech).

We also observe that the different number of
clusters in DUAL causes considerably dissimilar
performance. HuBERT-128 obtains 55.93 FF1
score, while HuBERT-64 gets 39.03 FF1 score and
HuBERT-512 only attains 17.28 FF1 score. The
experimental results indicate that even though the

Layer FF1 AOS
5 35.14 3049
10 44.89 39.52
15 46.90 41.78
21 51.94 46.59
22 54.22 48.52
23 53.07 47.63

Table 4: Experiments of clustering on different hidden
representations of HuBERT-Large. The number of clus-
ters is 128 for all the experiments. The performance is
evaluated on the NMSQA dev set.

large clustering number stores more acoustic infor-
mation and gains better performance in a clean dev
set, it also amplifies undesirable artifacts in out-of-
domain speech and leads to catastrophic domain
mismatch. The real-world testing concludes that
selecting the adequate clustering number is crucial
for robust DUAL performance.

Out-of-domain Content: The test-OOD set comes
from out-of-domain content sources that differ
from SQuAD. Compared to "test-SQuAD", all the
performance in Table 2 "test-OOD" drop. The re-
sults show that out-of-domain examples are more
sensitive to speech recognition errors. The cascade
approaches and DUAL both suffer from perfor-
mance degradation in the test-OOD set.

5 Analysis and Discussion
5.1 Ablation Study

Different Layer for Speech Quantization: Table
4 shows the results of clustering on different layers’
hidden representations. We choose the 5, 10, 15,
21, 22, 23 layers for experiments. The best perfor-
mance is at the 22th layer, which achieves 54.22
FF1 score and 48.52 AOS score. The top layers (21,
22, 23) have better performance than the bottom
layers (5, 10, 15).

In self-supervised speech representation, dif-
ferent layers encode different acoustic and lin-
guistic information. Chen et al. (2021) shows
that HuBERT-Large’s top layers contribute most
for content and semantic-related tasks (such as
Phoneme Recognition and Intent Classification) in
the weighted-sum fine-tuning scheme (Yang et al.,
2021). Their analysis results align with the experi-
mental results in Table 4, showing that the layers
with more content information are more suitable
for speech quantization and beneficial to the final
SQA performance. We also conduct further layer-
wise analysis in Appendix A.



Embedding Assignment FF1  AOS
Most frequent 5422 48.52
Least frequent 46.88 41.68
Random 51.66 46.23
Re-emb 8.87 17.23
Scratch (baseline) 6.12 491

Table 5: Ablation study of embedding assignment. All
experiments use the HuBERT-128 setting. Performance
is measured on the NMSQA dev set.

Input Embedding Assignment: Table 5 shows
the ablation study of different embedding assign-
ments. "Most frequent" and "Least frequent”" mean
that we randomly assign the n discrete units to the
pre-trained embedding of the top-n and the least-n
frequent vocabularies. The vocabulary frequency
is determined by the Byte-Pair Encoding (BPE) on
unlabeled text data. "Random" refers to randomly
selecting pre-trained input embedding regardless
of the frequency. "Re-emb" denotes to randomly
re-initialize input embedding by the normal distri-
bution. "Scratch" means the Longformer model is
not pre-trained on the unlabeled text data.

The experimental results indicate that randomly
assigning the pre-trained input embeddings for dis-
crete units does not result in very different per-
formance. The result of the "Random" is com-
parable to the "Most frequent" initialization, and
"Least frequent” causes slightly worse performance
than "Most frequent." The performance degrada-
tion may come from the poor quality of the least
frequent vocabularies’ pre-trained embeddings.

5.2 DUAL vs. Cascade Approach

We compare the performance of the cascade ap-
proach (SB) and DUAL (HuBERT-128) for differ-
ent levels of WER. Specifically, we split the NM-
SQA dev set into subsets by ASR (SB) WER from
0% to 70%. In Figure 4, we observe that the FF1
score drops significantly as the WER rises. This is
the typical phenomenon of speech recognition er-
ror propagation. On the other hand, DUAL attains
a similar FF1 score for different levels of WER
sub-groups. Because DUAL does not depend on
ASR transcriptions, there is no correlation between
WER and DUAL’s FF1 score. When the WER
is below 30%, the cascade approach outperforms
DUAL; but when WER exceeds 30%, DUAL’s FF1
score is much higher than the cascade approach.
Since the content of SQuAD is based on Wikipedia,
it usually includes proper nouns (e.g., abbreviation

o
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Figure 4: Frame-level F1 (FF1) score for DUAL and
cascade approach (SB), evaluated on the small groups
of full NMSQA dev set at different levels of ASR (SB)
WER.

and institution). The Out-Of-Vocabulary (OOV)
easily leads to speech recognition error and con-
sequently low SQA performance, whereas DUAL
can still retain the performance.

6 Conclusion and Future Work

In this work, we propose the first textless (i.e., ASR
transcription-free) SQA framework. The proposed
DUAL framework only utilizes unlabeled speech
and text data for pre-training and fine-tuning by
the spoken questions, passages, and answer time
intervals. The DUAL framework directly predicts
the answer time span without text supervision or
acoustic word boundary. Furthermore, we collected
a new natural, multi-speaker SQA benchmark cor-
pus named NMSQA. The NMSQA contains real
speakers for the test set and large-scale data for the
training and development set. The experimental
results show that DUAL performs competitively
with the cascade approach on NMSQA. DUAL is
also robust to real-world noise in the NMSQA test
set when selecting the appropriate codebook size.

We plan to investigate the discrete units pre-
training on PLM to capture the better semantic
representation of speech for future work. We also
want to unfreeze the fixed speech content encoder
to fine-tune on SQA jointly.

This work shows proof of concept to model the
challenging SQA task by audio-level annotations
only. Our DUAL framework is applicable to all
spoken languages for building SQA without the
supervision of text transcriptions. Furthermore,
we hope the NMSQA dataset can help the SQA
community develop robust SQA systems.
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A Probing: Content Information for
Different Layers

The Weight of Layer-wise Representation on Phoneme Recognition
0.5
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Figure 5: The weight of the final weighted-sum rep-
resentation is fine-tuned by LibriSpeech 100 hour
phoneme recognition downstream task. The most sig-
nificant weight is at the 22¢h layer.

To investigate the performance gap between the
former and the latter layers, we follow the con-
cept of using weighted-sum representation as the
final representation to train downstream phoneme
recognition (PR) task as in (Yang et al., 2021). By
training on LibriSpeech (Panayotov et al., 2015)
100 hour dataset, the frozen Hubert-Large model
with trainable weights and upstream linear model
achieved 3.53 phoneme error rate (PER) on Lib-
riSpeech test-clean. PR is a content recognition
task that transcribes an utterance into the smallest
content units (phoneme). The weights of different
layers indicate how much content information is
stored in that layer. The result is shown in Figure
5. The top layers have significantly larger weight,
especially at the 22th layer. The results demon-
strate that the top layer-wise representation in the
HuBERT-Large model encodes more content infor-
mation than other layers.

B Training Details

For DUAL, we use the official Longformer check-
point on Longformer-base model®, which starts
from the original ROBERTa checkpoint and is pre-
trained for masked language modeling (MLM) on
long documents. We search the learning rate in [3e-
5, 5e-5, 7e-5, 1e-4] and report the best performance.
We set the learning rate warmup step as 500, grow-
ing up linearly to the peak value and then linearly
decaying to 0. All the DUAL experiments use 4

8https://huggingface.co/allenai/longformer-base-4096
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Tesla V100s with an overall 128 batch size for up
to 5000 training steps. The training takes about one
day. If the length of discrete units (zq, zp) input
exceeds 4096, we truncate the passage zp,.

C Details of ASR Models

The Speechbrain (SB) ASR model consists of
CRDNN with CTC/Attention and RNNLM trained
on LibriSpeech 960 hour dataset. This ASR model
achieves 3.08 WER on LibriSpeech test-clean and
obtains 15.75 WER on the development set of the
NMSQA dataset but only 61.70 WER on the test-
ing set. The high testing WER points out the ASR
robustness issues of the real-world applications.

On the other hand, W2v2-st-ft ASR model is
the Wav2vec 2.0-Large model. First pre-trained on
Libri-light and LibriSpeech, then self-training and
fine-tuning on Librispeech 960 hour. W2v2-st-ft
achieves 1.90 WER on Librispeech test-clean set.
The WER on the NMSQA development and testing
set are 10.48 and 11.28, respectively.

D Can we learn sophisticated semantic
information solely from speech data?

We try to fine-tune SQA as a downstream task
for the state-of-the-art self-supervised pre-trained
speech representation model such as HuBERT (Hsu
et al., 2021). However, we find out that SQA
speech input is too long for self-supervised speech
models, which can only receive about 15 seconds
of speech; however, the duration of spoken para-
graphs is usually longer than 1 minute. The lack of
a long-range and efficient self-supervised speech
pre-trained model causes the difficulty to model
high-level semantic information by speech data it-
self.

E Details of Human Data Collection

The test set of NMSQA is an audio set collected
from human readers reading SQuAD, NewsQA,
and QuAC Corpora. The corpora are split into sen-
tences, and human readers are provided content
in the form of text sentences and are requested to
read and record the audio of the reading. The au-
dio length is around 11 hours, with around 3600
sentences in total that are later composed back to
documents. Each sentence is on average 5s or 10
words. The human readers are gender-balanced (30
male, 30 female). For quality control, we had an
initial quality control batch of 1.2 hours of audio
(425 sentences) by 16 speakers (8 male, 8 female)



and evaluated the quality of the initial batch be-
fore proceeding the data collection. The recording
condition guideline is derived from LibriVox® with
some adjustments to suit our scenario. A quiet en-
vironment is required for recording, and external
USB microphones plugged into the computers are
preferred to built-in microphones.

For the audio recording, we use the wav files
(two-channel audio sampled at 44,100 Hz) as the
recording format. The readers are advised to a)
read the text before recording it, b) allow pauses
between sentences and paragraphs, ¢) enunciate at
a relaxed steady pace, d) speak up and try for a
steady volume level, e) place the microphone at
an appropriate location, f) take breaks in between,
to avoid mental and vocal fatigue. The human
reader sourcing and data collection are handled
by ANONYMOUS, a third-party vendor that has
established history in data collection for Al and
machine learning research. The data collection
and storage fully comply with stringent security,
privacy, and ethics requirements.

*https:/librivox.org/
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