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ABSTRACT

We propose to improve multi-concept prompt fidelity in text-to-image diffusion
models. We begin with common failure cases—prompts like “a cat and a clock”
that sometimes yields images where one concept is missing, faint, or colliding
awkwardly with another. We hypothesize that this happens when the diffusion
model drifts into mixed modes that over-emphasize a single concept it learned
strongly during training. Instead of re-training, we introduce a corrective sampling
strategy that steers away from regions where the joint prompt behavior overlaps
too strongly with any single concept in the prompt. The goal is to steer towards
“pure” joint modes where all concepts can coexist with balanced visual presence.
We further show that existing multi-concept guidance schemes can operate in un-
stable weight regimes that amplify imbalance; we characterize favorable regions
and adapt sampling to remain within them. Our approach, CO3, is plug-and-play,
requires no model tuning, and complements standard classifier-free guidance. Ex-
periments on diverse multi-concept prompts indicate improvements in concept
coverage, balance and robustness, with fewer dropped or distorted concepts com-
pared to standard baselines and prior compositional methods. Results suggest that
lightweight corrective guidance can substantially mitigate brittle semantic align-
ment behavior in modern diffusion systems.

1 INTRODUCTION

Recent diffusion models (Ho et al., 2020; Ramesh et al., 2022a; Rombach et al., 2022) have ushered
significant breakthroughs in Text-to-Image (T2I) synthesis, producing high-fidelity images from
textual descriptions. However, ensuring the generated images faithfully adhere to the prompt, a
challenge known as semantic alignment (Chefer et al., 2023; taihang Hu et al., 2024; Liu et al., 2023),
remains a problem. Concretely, for a given prompt C, T2I models like StableDiffusion (Rombach
et al., 2022) sample from the modes (or high probability regions) of the learned distribution, p(x|C).
While such models can produce high resolution images in general, every so often, the results are
surprisingly misaligned even for very simple prompts containing few concepts, e.g., C=“a cat and a
dog”. Diagnosing exactly why this behavior emerges periodically is difficult. It is conceivable that
the complex training process in high dimensions, especially in conjunction with text embeddings,
creates some problematic modes in p(x|C).
We hypothesize that problematic modes in p(x|C) arise when they overlap with modes of individ-
ual concept distribution p(x|ci). Such an overlap biases the generation toward a single concept ci,
reducing the prominence of others. For instance, across images of c1 = “cat” in the training dataset,
a few may have an inconspicuous or partial c2 = “dog” in the background. This image may still
fall under the mode of p(x|C). We attribute this to training instabilities and relatively less coverage
of multi-concept prompts C, which cause the model to assign high probability even to weakly con-
forming images. Said differently, an image of a big cat and an inconspicuous dog can get assigned
high probabilities under p(x|C), causing semantic misalignment.

Preventing such problematic modes warrants strict and specialized training paradigms; a difficult
task for such large models. However, “curing” them after their occurrence is a more viable approach
Assuming our hypothesis is true, we propose a cure for problematic modes. Our intuitive idea is
to go away from problematic modes and move towards modes under which none of the individual
concepts are strong. To realize this, we propose to design a corrector that generates samples from
the following distribution:

p̃(x | C) ∝ p(x | C)∏
i p(x | ci)

. (1)
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Figure 1: The figure illustrates our hypothesis on mode overlap using a simple 2D toy ex-
ample. (a) Two modes of the distribution pt(x|”a cat and a dog”) (in green contour) has
significant overlap with the modes of the individual concept distributions pt(x|”a cat”) (in
red contour) and pt(x|”a dog”) (in orange contour). (b) The proposed corrector distribution
pt(x|"a cat and a dog")/(pt(x|”a cat”)pt(x|”a dog”)) suppresses these overlaps, steering
the generation away from problematic modes. The arrows indicate the denoising directions.

Figure 1 illustrates the intuition behind our proposal. Our corrector distribution p̃(x|C) assigns low
probability to regions where p(x|C) overlaps with individual p(x|ci); we deem them as degenerate
modes dominated by a single concept. By suppressing these overlaps, the corrector emphasizes pure
p(x|C) modes where all concepts coexist without one overwhelming the others. From a probabilis-
tic perspective, this acts as a corrective factor: while p(x|C) may assign high probability to weakly
conforming images due to training noise or limited multi-concept data, dividing by the marginals re-
moves this bias and sharpens the distribution toward genuine multi-concept samples. As a result, the
modes we target are more semantically aligned and less prone to concept suppression or distortion.

Correction sampling from p̃(x|C) can be achieved by composing scores from constituent component
distributions ∇x log p(x|C), {∇x log p(x|ci)}i (Liu et al., 2022). While there are many ways to
compose, we analyse and show that composition through weighted sum of Tweedie-means—in the
Tweedie denoised space—offers a more general framework that subsumes existing approaches.

In particular, we show that two classes of correction sampling—noise-resampling and latent correc-
tion (Bao et al., 2024; Rassin et al., 2023; taihang Hu et al., 2024; Kwon & Ye, 2025)—become
special cases of Tweedie-mean composition under different weighting schemes. This allows us to
design a hybrid composition framework that serves the purpose of resampling at time T , and then
toggles to latent correction at later steps. By latent, we mean that the correction steps are accom-
plished in between each DDIM time step, allowing CO3 to be a plug-and-play, model-agnostic and
gradient-free approach for T2I models. Comparison of CO3 against SOTA baselines shows stronger
semantic alignment to prompts (measured using multiple metrics), giving empirical evidence of our
hypothesis.

2 BACKGROUND

■ Conditional generation using Classifier-Free Guidance (CFG). In diffusion-based Text-to-
Image (T2I) generation (Rombach et al., 2022; Saharia et al., 2022a; Ramesh et al., 2022b), given
the noisy latent xt at timestep t, a denoised estimate can be derived using Tweedie’s formula:

x̂0 =
xt −

√
1− ᾱt ϵθ(xt, c, t)√

ᾱt
, (2)

where ϵθ denotes the predicted noise conditioned on the text prompt c, and ᾱt is the cumulative
product of the noising schedule. This step corresponds to the denoising stage, recovering an estimate
of the clean signal x0. In the DDIM sampler (Song et al., 2021), under the noise-free condition, the
subsequent step deterministically evolves x̂0 to xt−1 without introducing additional stochasticity:

xt−1 =
√
ᾱt−1 x̂0 +

√
1− ᾱt−1 ϵθ(xt, c, t). (3)

Here, the same predicted noise ϵθ is reused, eliminating the renoisification step present in stochastic
samplers such as DDPM(Ho et al., 2020). This perspective highlights how the Tweedie decompo-
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sition denoising via x̂0, followed by deterministic reconstruction of xt−1, is naturally aligned with
DDIM sampling.

In practice, most T2I models adopt classifier-free guidance (CFG) (Ho & Salimans, 2022), where
predictions from both the conditional and unconditional models are combined:

ϵλ,ct = λ ϵθ(xt, c, t) + (1− λ) ϵθ(xt,∅, t) (4)

where λ > 1 controls the guidance strength. ϵλ,ct is the composed noise prediction under CFG. Then
the denoising and DDIM steps proceed as before, but using ϵλ,ct in place of ϵθ(xt, c, t).

Tweedie View with CFG. Substituting ϵλ,ct into the Tweedie denoising and DDIM update yields:

x̂λ,c0 =
xt −

√
1− ᾱt ϵ

λ,c
t√

ᾱt
=

1√
ᾱt
x̂tweedie[ϵ

λ,c
t ], (5)

xt−1 =

√
ᾱt−1√
ᾱt

x̂tweedie[ϵ
λ,c
t ] +

√
1− ᾱt−1 ϵ

λ,c
t (6)

where x̂tweedie[ϵ
λ,c
t ] := xt−

√
1− ᾱt ϵ

λ,c
t is the Tweedie mean from the CFG noise at t. Thus, CFG

in the Tweedie framework can be interpreted as modifying the denoised estimate x̂0 to x̂λ,c0 before
the deterministic step to xt−1 (Chung et al., 2024; Kwon & Ye, 2023).

■ Correction-based approaches for conditional generation. A number of recent works have ad-
dressed the challenge of compositional text-to-image generation using correction-based approaches
(Chefer et al., 2023; Liu et al., 2023; Bao et al., 2024; Rassin et al., 2023; taihang Hu et al., 2024).
During sampling with classifier-free guidance, these methods iteratively correct the latent variable
by applying gradient updates of the form

xk+1
t = xkt − s∇xt

L(xt, c), k = 1, 2, . . . ,M − 1. (7)
and then use the final refined latent xMt to predict the next DDIM step xt−1, using Eqs. 5 and 6.
Here L(xt, c) is a task-specific loss function that enforces better alignment with the target condition
c, and s is a step size. This iterative update can be interpreted as correcting the diffusion guidance
process using a corrector distribution of the form:

p̃t(xt, c) ∝ exp
(
−L(xt, c)

)
, (8)

which refines the generative process at each timestep. In the special case where the step size s = σ2
t

= 1 − ᾱt (the noise scale at timestep t), the update rule becomes equivalent to iterative Tweedie-
mean correction (see Eq. 5 above), where xk+1

t is reinterpreted as the next estimated Tweedie mean
given xkt for the distribution p̃t(xt, c).

■ Composable-diffusion. Generating samples that satisfy multiple conditions {c1, . . . , cK} can be
formulated as sampling from the joint distribution

p̃0(x0 | c1, . . . , cK) ∝
K∏

k=1

p0(x0 | ck). (9)

To achieve this, Liu et al. (2022) proposed composable diffusion, which directly composes the output
scores (predicted noises) from different conditional diffusion models using CFG during sampling.

Specifically, in the text-to-image setting, if the prompt C can be decomposed into constituent con-
cepts {c1, c2, . . . , cK}, the outputs of the corresponding diffusion chains can be combined as

ϵ̃λ,Ct = ϵϕt + λ1
(
ϵc1t − ϵ

ϕ
t

)
+ λ2

(
ϵc2t − ϵ

ϕ
t

)
+ · · ·+ λK

(
ϵcKt − ϵ

ϕ
t

)
(10)

where ϵϕt denotes the unconditional score, and λk controls the guidance strength for concept ck. The
next sample is then predicted via the Tweedie formulation:

xt−1 =

√
ᾱt−1√
ᾱt

x̂tweedie

[
ϵ̃λ,Ct

]
+

√
1− ᾱt−1 ϵ̃

λ,C
t . (11)

Although this approach is model-agnostic and conceptually simple, its performance is often poor,
since the above linear composition of scores is incorrect or doesn’t correspond to the score of the
diffusion forward distribution p̃t(xt | c1, . . . , cK) at any timestep t > 0 (Du et al., 2024).

In summary, both the correction-based approach and the composable diffusion idea can be inter-
preted as different ways of approximating Tweedie-means x̂tweedie[ϵ

λ,c
t ] at time t.
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3 CO3: CONTRASTING CONCEPTS TO COMPOSE

We aim to combine the strengths of correction-based approaches and composable diffusion. On one
hand, correction-based methods are powerful and explicitly improve compositional alignment, but
they are subject to the complex gradient of the base model. On the other hand, composable diffusion
is fully model-agnostic, but suffers from poor performance because linear score composition is not
consistent with the diffusion forward process.

To take advantage of both, assume that prompt C can be decomposed into constituent concepts
{c1, c2, . . . , cK}. We propose an explicit Concept Contrasting corrector distribution based on our
hypothesis on mode overlap discussed in Sec. 1. Specifically, we define the corrector distribution at
each timestep t as:

p̃t(xt, C) ∝
pt(xt | C)w0∏K

k=1 pt(xt | ck)wk

, (12)

where {w0, w1, . . . , wK} are composition weights. As discussed in Sec. 1, this corrector steers the
generation toward regions where the distribution pt(xt | C) is high, while simultaneously avoiding
regions of overlap with the individual concept distributions {pt(xt | ck)}k. Observe that this en-
courages the model to generate samples that satisfy all concepts in C without over-emphasizing any
single concept. We present the CO3 corrector pseudo code in Algorithm 1.

To sample from the unnormalized probability distribution in Eq. 12, an well-known approach is to
compose the concept distributions {pt(xt | ck)}k in the space of score functions (Liu et al., 2022; Du
et al., 2024). We break-away from this approach and compose the distribution in the Tweedie mean
space; we show how this offers a more general framework for composition. In Tweedie-denoised
space we define composition as:

x̃tweedie = w0 x̂tweedie[ϵ
λ,C
t ] + w1 x̂tweedie[ϵ

λ,c1
t ] + . . . + wK x̂tweedie[ϵ

λ,cK
t ], (13)

Algorithm 1 DDIM with CO3 Corrector
Require: xT , number of DDIM steps T , timestep

threshold Tc, prompt C, set of concepts {ck}
1: for t = T down to 1 do
2: if t > Tc then
3: x

(2)
t ← CO3(xt, C, c1, . . . , ck)
▷ Proposed correction

4: xt ← x
(2)
t

5: end if
6: xt ← DDIM step(xt) ▷ Inverse DDIM
7: end for

where w0 > 0 and w1, . . . , wK < 0 are
concept weights. Note: x̂tweedie[ϵ

λ,ck
t ] is

the Tweedie mean corresponding to the CFG
composed noise prediction ϵλ,ckt for concept
ck with guidance weight λ.

How should composition weights be cho-
sen? We analyze the effect of different
weight assignments to Eq. 13, in particular,
how the constraint on the concept weights wi

influences both the theoretical interpretation
and the empirical behavior of the composi-
tional Tweedie mean.

A valid compositional Tweedie mean x̃tweedie in Eq. 13 must be one that can be expressed in the
definition given in equation 5 as DDIM goes through a series of Tweedie means for image generation
as described in section 2. Lemma 1 shows that this is guaranteed only when the weights satisfy the
normalization condition

∑
i wi = 1.

Lemma 1. Let x̂tweedie[ϵ
λ,c
t ] := xt − σt ϵ

λ,c
t be the tweedie mean from CFG composed noise

ϵ̃t
λ = ϵϕt +λ(ϵ

C
t −ϵ

ϕ
t ) for some λ. Let, ˜̂xtweedie be the composed tweedie-mean defined as ˜̂xtweedie =∑

k wkx̂tweedie[ϵ
λ,ck
t ]. Then,

a) CO3-corrector: ˜̂xtweedie can be expressed in the form of a tweedie-mean at time t, i.e.
˜̂xtweedie = x − σt ϵ̃λ̃,Ct if and only if

∑
k wk = 1. Here λ̃ = λ and CFG composed noise

ϵ̃λ̃,Ct = ϵϕt + λ(
∑

k wkϵ
ck
t − ϵ

ϕ
t ).

b) CO3-resampler: ˜̂xtweedie = −λ σt
∑

k wkϵ
ck is weighted noise if and only if

∑
k wk = 0.

Remarks: 1 See Appendix section A.2 for proof. Lemma 1 a) shows that when
∑

k wk = 1,
denoted as CO3-corrector, the composed Tweedie-mean corresponds to the CFG composed noise
ϵ̃λ̃,C = ϵϕ+λ(

∑
k wkϵ

ck−ϵϕ) with the same guidance scale λ. This preserves the relative guidance

4
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strength between unconditional and conditional scores as proposed by classifier-free guidance (CFG)
(see Eq. 4). This is in contrast to composable diffusion methods (Liu et al., 2022; Du et al., 2024)
which use arbitrary guidance weights {λi} for composing different concepts (see Eq. 10); hence this
does not preserve the CFG form. We believe this explains, at least partly, why composable diffusion
often produces out of manifold samples. See Sec. A.5 in Appendix for more discussion.

2 Lemma 1 b) shows that when the weights sum to zero, denoted as resampler, composed Tweedie
mean is independent of the current sample xt and is only a function of the concept noises. Instead of
correcting the current sample xt, it replaces xt with a weighted combination of the concept noises.
In other words, when

∑
k wk = 0, the composition is sampling from noise, and only valid at t = T

where xT ∼ N (0, 1).

To further characterize the behavior of the composition under the two conditions
∑

k wk = 1 and∑
k wk = 0, we evaluate the performance of different weighting strategies across timesteps t of the

diffusion chain. Figure 2 reveals complementary dynamics between the resampler and the corrector.
Specifically, the resampler (

∑
k wk = 0) is effective at high t values near T , but its effectiveness

diminishes as the denoising process progresses toward lower t. Although resampling is not theoreti-
cally valid for t < T , we observe practical improvements until approximately t ≈ 0.9T . In contrast,
the corrector (

∑
k wk = 1) exhibits gradual improvement with increasing timesteps and saturates

around t ≈ 0.75T . These findings invite a hybrid strategy into CO3: apply resampling during early
timesteps (t > TR), followed by correction until a threshold (TC < t < TR), beyond which further
gains are marginal.

The pseudocode for the zero-sum-weight resampler (CO3-resampler) and the unit-sum-weight
(CO3-corrector) corrector is provided in Algorithm 2 and Algorithm 3, respectively. Importantly,
the same diffusion denoiser model can be reused to compute the individual concept scores under
different input conditions ck, thereby eliminating the need for any costly backward passes to obtain
gradients. Furthermore, the framework operates without reliance on model-specific architectural
details, making it fully model-agnostic and gradient-free.

981 941 901 861 821 781 741
timesteps

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag
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ew
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d

Composition w/ wi = 0
Composition w/ wi = 1

Figure 2: Characterization of Resampler and
Corrector steps. Resampling is more powerful at
high t while the Corrector improves slowly with
more timesteps and saturates.

Closeness-Aware Concept Weight Modulation:
To make the CO3 corrector more adaptive, we an-
chor the weight w0 (w0=1.0 in Algo. 2 and w0 =
2.0 in Algo. 3), and assign weights to each con-
cept based on how close the current noise predic-
tion ϵC is, to the noise corresponding to that concept,
ϵck . Intuitively, if a sample looks closer to concept
ck than to all others, we want to penalize ck more
strongly (i.e., give it a larger negative weight), while
reducing the strength of the other concepts. This en-
courages the sampler to move away from the near-
est mode, preventing collapse toward one dominant
concept. Formally, let dk = ∥ϵC − ϵck∥ denote the
distance between the current sample and the mode
of concept ck. We convert distances {dk}Kk=1 into
affinity scores using an exponential kernel:

ak = exp(−β dk), β > 0 (14)

so that concepts closer to the current sample (smaller dk) receive higher affinity. These affinity
scores are then normalized to define the weights:

wk = − ak∑K
j=1 aj

, (15)

which ensures each weight is negative and the total sum satisfies
∑K

k=1 wk = −1. As a result, con-
cepts that are closer to the current sample receive stronger negative weights, while farther concepts
are down-weighted in proportion to their distance. This weight modulation scheme samples from
the whole hyper-plane

∑K
k=0 wk = 1 (for CO3-correction) or

∑K
k=0 wk = 0 (for CO3-resampling)

instead of a fixed weights for the entire course of generation.

5
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Algorithm 2 CO3-resampler (
∑
wk = 0)

Require: xt, denoiser ψ, ᾱt, w0:K , guidance λ
1: for p = 1 to P do
2: ϵc0 = ψ(xt, C), ϵck = ψ(xt, ck),
3: k = 1, . . . ,K

4: x̂tweedie[ϵ
λ,ck
t ] = xt −

√
1− ᾱtϵ

λ,ck
t

5: ˜̂xtweedie = −λ
√
1− ᾱt

∑K
k=0 wkϵ

ck

▷ Projection onto noise space

6: x
(2)
t = ˜̂xtweedie +

√
1− ᾱt ϵ

ϕ
t

▷ Uncond. manifold correction

7: xt ← x
(2)
t

8: end for
9: return xt

Algorithm 3 CO3-corrector (
∑
wk = 1)

Require: xt, denoiser ψ, ᾱt, w0:K , guidance λ
1: for p = 1 to P do
2: ϵc0 = ψ(xt, C), ϵck = ψ(xt, ck),
3: k = 1, . . . ,K

4: ˜̂xtweedie =
∑K

k=0 wkx̂tweedie[ϵ
λ,ck
t ]

▷ Tweedie mean composition

5: r =
∥x̂c0

tweedie∥2

∥˜̂xtweedie∥2
▷ mean normalization

6: ˜̂xtweedie ← ˜̂xtweedie ∗ r

7: x
(2)
t = ˜̂xtweedie +

√
1− ᾱt ϵ

ϕ
t

8: xt ← x
(2)
t

9: end for
10: return xt4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details: We implement our method on SDXL (Podell et al., 2023) using a 50-step
DDIM sampler with guidance scale λ = 5.0. CO3 is applied during the first 20% of denoising
steps (Tc = 0.8T ), with the initial three steps reserved for resampling. For weight modulation, we
set β = 0.8. All experiments are performed on a single NVIDIA A6000 GPU (48GB). Additional
hyperparameter details are provided in the Appendix section A.3.

Evaluation benchmark and metrics: We evaluate our method on the benchmark dataset from
Chefer et al. (2023), which includes three categories of prompts: Animal–Animal, Animal–Object,
and Object–Object. While the benchmark is limited to these cases, CO3 naturally extends to
more complex prompts involving arbitrary numbers of concepts. For evaluation, we adopt BLIP-
VQA (Huang et al., 2023) and ImageReward (Xu et al., 2023), both widely used in recent works (tai-
hang Hu et al., 2024; Hu et al., 2024) to measure the faithfulness of generated images to input
prompts. Notably, ImageReward is a learned reward model trained on human preferences, capturing
aspects such as prompt adherence, aesthetics, and overall quality. For both metrics, higher scores
indicate better alignment.

Comparison methods: We compare CO3 against state-of-the-art approaches, including
optimization-based correction methods (Attend-and-Excite (Chefer et al., 2023), SynGen (Rassin
et al., 2023), Divide-and-Bind (Liu et al., 2023), ToME (taihang Hu et al., 2024)), the compos-
able generation method Composable Diffusion (Liu et al., 2022), and the noise-optimization method
InitNO (Guo et al., 2024). All optimization-based approaches are architecture-dependent and require
gradient computations at inference, with InitNO being model-agnostic but still incurring costly back-
propagation. In contrast, only Composable Diffusion and our proposed CO3 are purely sampling-
based, model-agnostic, and completely gradient-free.

4.2 EXPERIMENTAL RESULTS

Quantitative Comparison:

Table 1 demonstrates the extent to which CO3, despite being model-agnostic and optimization-
free, competes or outperforms optimization-based and model-agnostic baselines on ImageReward.
Gains are substantive in the Animal–Animal and Animal–Object categories. On BLIP-VQA, CO3
delivers the best performance in these two categories and improves over the base SDXL on the
Object category, which contains prompts of the form: “a [color1] [object1] and a [color2] [object2].”

Unlike methods such as ToMe taihang Hu et al. (2024), SynGen (Rassin et al., 2023), Attend-and-
Excite (Chefer et al., 2023), and Divide-and-Bind Liu et al. (2023), which rely on model-specific

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Properties BLIP-VQA ImageReward

training-
free

gradient-
free

model-
agnostic

animals animals-objects objects animals animals-objects objects

SD1.5(Rombach et al., 2022) ✓ ✓ - 0.3239 0.5958 0.2730 -0.2733 0.4262 -0.5521
Attend-excite(Chefer et al., 2023) ✓ ✗ ✗ 0.6980 0.7865 0.5155 0.8244 1.2380 0.8741
SynGenRassin et al. (2023) ✓ ✗ ✗ 0.3348 0.7689 0.6595 -0.2445 0.9838 0.7315
Divide & Bind ✓ ✗ ✗ 0.7201 0.8399 0.5887 0.8499 1.2516 0.8134
InitNO(Guo et al., 2024) ✓ ✗ ✓ 0.7264 0.7998 0.5406 1.0082 1.3927 1.1383

SDXLPodell et al. (2023) ✓ ✓ - 0.6950 0.8654 0.4926 0.7820 1.5574 0.6789
SynGen(SDXL)Rassin et al. (2023) ✓ ✗ ✗ 0.6816 0.8578 0.4652 0.6998 1.5622 0.6441
ToMe(taihang Hu et al., 2024) ✓ ✗ ✗ 0.6257 0.8808 0.6440 0.3895 1.5736 1.0118
Compose-diffusion(Liu et al., 2022) ✓ ✓ ✓ 0.2846 0.5656 0.4529 -1.1399 -0.2068 -0.0955
CO3(Ours) ✓ ✓ ✓ 0.7441 0.8878 0.5146 1.2342 1.6744 1.0158

Table 1: Quantitative comparison of different methods on compositional generation tasks. We eval-
uate the generated images using two metrics: BLIP-VQA and ImageReward. Top performing model
is highlighted in Black and 2nd best in Blue. Higher the score the better.

architectures or explicit attention-based binding losses, CO3 is architecture-independent, sampling-
based, and free of explicit subject–attribute binding. Interestingly, by simply targeting “pure” modes
under p(x | C), CO3 discovers layouts that better capture multi-object relations (Animals–Animals,
Animal–Objects) and finds high-probability regions that preserve subject–attribute bindings (Ob-
jects). This performance gain empirically validates our hypothesis on mode overlap and also high-
lights CO3’s effectiveness in correcting the compositional limitations of SDXL.

Qualitative Comparison: Figure 3 compares CO3 with several baselines. Columns 1–2 show re-
sults from Divide-Bind (Liu et al., 2023) and Attend-and-Excite (Chefer et al., 2023) (based on
SDv1.5 (Rombach et al., 2022)), while the remaining columns compare against Composable Dif-
fusion (Liu et al., 2022), SynGen (Rassin et al., 2023), and ToMe (taihang Hu et al., 2024). We
illustrate common issues in compositional alignment—concept missing, attribute mixing, and ob-
ject binding—across all categories. Divide-Bind and Attend-and-Excite enhance the attention layer
of the base model, but often yield cropped or incomplete concepts (rows 1, 3). Composable Dif-
fusion suffers from missing or merged concepts (rows 2, 3). SynGen and ToMe perform well on
Object prompts of the form “a [color1] [object1] and a [color2] [object2],” but still exhibit overlap-
ping or mixed concepts (rows 2, 3; columns 5, 6). In contrast, CO3 achieves stronger object binding
in the Animals and Animal–Objects categories while also improving results on Objects.

Figure 3: Qualitative comparison of different methods on simpler prompts.

Figure 4 extends qualitative results to complex prompts from the Complex category of Huang et al.
(2023), comparing CO3 with the top-performing SDXL models (Table 1). The first row shows
prompts involving spatial relations (e.g., “on,” “to the left of”), while the second row depicts more
descriptive prompts with multiple interacting concepts. SynGen and ToMe successfully bind con-
cepts to their subjects but often miss concepts or relations. By mitigating dominant-concept bias,
CO3 remains effective even for complex prompts with multiple relations.

Ablations Studies are preformed on the key components of CO3, starting from the base SDXL
model (Table 2). Adding resampling in the first three DDIM steps substantially improves aver-
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Figure 4: Qualitative comparison of CO3 with competing methods on complex prompts.

age performance, particularly for the Animals and Animal–Objects categories. Since image layout
is largely determined in the early timesteps, CO3-resampler iteratively explores better initial noise
configurations that align with the prompt. Incorporating CO3-corrector over the next seven steps fur-
ther improves prompts requiring fine-grained details such as color or texture, boosting performance
on the Objects category in both ImageReward and BLIP-VQA. Additional gains come from the
Closeness-Aware Concept Weight Modulation strategy, which consistently benefits all categories.
We hypothesize that as the diffusion trajectory evolves, the latent state often drifts closer to one
concept mode ci; the modulation mechanism assigns ci a more negative weight, repelling the latent
and mitigating concept dominance (Tunanyan et al., 2023) commonly observed in stable-diffusion.

BLIP-VQA ImageReward

Methods animals animals-objects objects animals animals-objects objects Avg.

SDXL 0.6951 0.8654 0.4926 0.7820 1.5474 0.6789 0.8435
+ resampling 0.7351 0.8666 0.4528 1.0881 1.6755 0.8263 0.9407
+ Corrector 0.7177 0.8794 0.4796 1.0630 1.6429 0.8949 0.9463
+ weight-modulation 0.7441 0.8878 0.5146 1.2342 1.6744 1.0158 1.0118

Table 2: Ablations study conducted on the CO3 method. Starting with the base-model SDXL we progressively
add different components.

Comparison with Optimization-Free Approaches: To further demonstrate CO3’s model-agnostic
nature and generalization to other base models, we evaluate it on PixArt-Σ (Chen et al., 2024).
We compare against both the base model and the sampling-based, optimization-free Composable
Diffusion (Liu et al., 2022). Unlike Composable Diffusion, which composes diffusion chains within
the DDIM prediction step, CO3 applies composition as a corrector. As shown in Fig. 5, Composable
Diffusion suffers from missing or mixing concepts, while CO3 consistently preserves all concepts
with correct bindings in the output.

Figure 5: Model Agnostic behavior: Qualitative comparison of generation from PixART-Σ(Chen
et al., 2024) base diffusion model, PixART-Σ + CO3, and PixART-Σ + Composable Diffusion.
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5 RELATED WORK

Optimization-based correction approaches: (1) Text-embedding optimization works like T2I-
Zero variants (Tunanyan et al., 2023), and style or prompt inversion (Li et al., 2023a), improve
semantic alignment by optimizing or restructuring the text representation during inference. These
methods tweak or invert token embeddings so that the denoising trajectory better reflects entity–
attribute bindings or multi-concept prompts.
(2) Attention-map optimization works (Zhang et al., 2024; Meral et al., 2024; Tumanyan et al.,
2023; Hertz et al., 2022) directly manipulate the cross- and self-attention maps during sampling.
These methods typically inject constraints or losses that (i) boost token–region correspondence for
each entity, (ii) reduce overlap between different concepts, or (iii) preserve early layout information
across timesteps. Attend-and-Excite (Chefer et al., 2023) increases the activation of object tokens.
Divide-and-Bind (Liu et al., 2023) maximizes total variation to elicit distinct excitations for multiple
objects and aligns attribute–entity attention maps, while A-STAR (Agarwal et al., 2023) further
reduces cross-token overlap and preserves early attention signals. SynGen (Rassin et al., 2023)
leverages syntactic parses to penalize mismatched attention overlaps, ensuring linguistic binding
between entities and modifiers. InitNO (Guo et al., 2024) optimizes the initial noise so that sampling
begins in more favorable regions that yield stronger, less-conflicted attention.

Composable generation works: view conditional diffusion models as energy/score functions, en-
abling algebraic composition. Composed-Diffusion (Liu et al., 2022) frames score-composition
under CFG and demonstrates test-time generalization, but suffers from concept mixing and missing.
Follow-ups propose training-free and model-agnostic methods like energy-parameterized diffusion
and Metropolis/MCMC-corrected samplers that markedly improve multi-condition generation (Du
et al., 2024), but their performance is often poor (Chefer et al., 2023; Feng et al., 2022). Kwon &
Ye (2025) uses a composition similar to our resampler but not in the context of a corrector. Instead
they use multiple DDIM forward-backward steps to sample initial noise.

Layout augmentation image generation: (1) Layout-to-image methods: (Xie et al., 2023; Phung
et al., 2024; Kim et al., 2023; Zhao et al., 2023) use a strategy with explicit spatial priors—-boxes,
masks, or region texts to bridge text and image: training-free controllers steer attention so objects
materialize in designated regions. Other works add instance-level handles, for fine-grained place-
ment and attributes across multiple entities (Wang et al., 2024). In parallel, fine-tuning approaches
inject layout channels into the backbone (Li et al., 2023b; Mou et al., 2023; Zhang et al., 2023).
(2) LLM-augmented methods: Collectively, these works leverage LLM reasoning/representations to
better bridge linguistic structure and the denoising trajectory by (i) decomposing complex prompts
into regional sub-tasks (Yang et al., 2024; Hu et al., 2024) (ii) infer layouts from text (Qu et al.,
2023), and (iii) act as stronger text encoders or timestep-aware adapters (Saharia et al., 2022b).

6 CONCLUSION & FUTURE WORK

We propose a gradient-free, model-agnostic image composition method that switches between noise-
resampling and correction. Our Concept Contrasting corrector is based on the hypothesis that com-
position is degraded by “problematic” modes—those that overlap with individual concept modes,
resulting in strong alignment with particular concepts while suppressing others. Our corrector em-
ploys a Closeness-Aware Weight Modulation scheme that emphasizes “pure” modes where all con-
cepts coexist without any dominating ones. Crucially, we attribute shortcomings of past composition
methods to the choice of composition weights and show that only when the weights sum to 1, the
interpretation of Tweedie-mean correction and the CFG guidance strength are preserved. Results
demonstrate that CO3 outperforms baseline approaches for several diffusion model choices and
serves as a plug-and-play module offering improved compositional generation performance.

While our corrector’s closeness-aware weight modulation suppresses the concept mode overlap, the
noise/score landscape is strongly biased by the training paradigms of diffusion models, i.e., the quan-
tity and quality of the multi-concept bindings in the training set. This problem also manifests when
presented with more unrealistic prompts, resulting in poor text/concept alignment. As shown in
Fig. 7, while our work offers a significant boost to multi-concept compositional generation, clearly,
there are failure cases that are not yet addressed. However, we believe that more advanced energy-
based compositional samplers—that explicitly take into account the probabilities of the landscape
during sampling—can further help in avoiding such cases. We hope to investigate these special cases
in the future. We also hope to explore applications beyond composition using the CO3 corrector.
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7 REPRODUCIBILITY STATEMENT

All method implementations, inference pipelines are included in the supplementary material.
This includes instructions for environment setup, dependencies, and reproducible random seeds.
The datasets used in our experiments are publicly available. We provide detailed descrip-
tions of the dataset in Sec. 4. Hyperparameters, inference schedules, and evaluation pipelines
are described in Sec. 4, with further details in the Appendix A.3. Our project website is
available at https://anomxyz26.github.io/co3-anom-web/ and implementation code is available at
https://github.com/anomxyz26/co3-anom
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A APPENDIX

A.1 BROADER IMPACTS

CO3 improves compositional text-to-image generation by adjusting the sampling distribution of
diffusion models. At the same time, it introduces certain risks. The method could be misused to
create deceptive or misleading visuals, contributing to the spread of misinformation. When applied
to depictions of public figures, it may compromise personal privacy. Moreover, the automatically
produced content can raise concerns around copyright and intellectual property.

A.2 COMPOSITION IN TWEEDIE-DENOISED SPACE FOR A VALID CFG

Classifier free guidance: In CFG, to sample from p(x|c), we compose the conditonal and uncondi-
tonal predicted noise at each time step t as:

ϵλ,ct = ϵϕt + λ(ϵct − ϵ
ϕ
t ) (16)

where ϵct is the noise predicted for the distribution pt(xt|c) at time t, i.e., ∇xt
log pt(xt|c) =

− ϵct√
1−ᾱt

. Then we use this composed noise to sample the next step as,

x̂λ,ct,0 =
xt −

√
1− ᾱtϵ

λ,c
t

ᾱt
, xt−1 =

√
ᾱt−1x̂

λ,c
t,0 +

√
1− ᾱt−1ϵ

λ,c
t (17)

Let, x̂λ,ctweedie := xt −
√
1− ᾱtϵ

λ,c
t be the tweedie mean from CFG composed noise at time t. Then

we can rewrite the above equation as,

xt−1 =

√
ᾱt−1√
ᾱt

x̂λ,ctweedie +
√

1− ᾱt−1ϵ
λ,c
t (18)

Composition of CFG scores: (Liu et al., 2022) introduced the idea composable-diffusion where
they compose scores from different diffusion models or conditional distributions to generate im-
ages from the composed distribution. They assume that, p(x0|C) =

∏
p(x0|ci) and proposed the

modified CFG composition for each t as,

ϵ̃λ,Ct = ϵϕt + λi(
∑
i

ϵcit − ϵ
ϕ
t ) (19)

The issue with above composition is that for arbitrary λi, the composed CFG noise doesn’t satisfy
the CFG equation in equation 16, i.e., ϵ̃λ,Ct ̸= ϵλ,Ct for any λ in equation equation 16 where ϵλ,Ct is
the noise predicted for the distribution pt(xt|C) at time t.

To conretize this, we state the following simple result.
Lemma 2. Let’s define CFG as a function at time t as, fCFG(ϵ;λ) = ϵϕ + λ(ϵ− ϵϕ). Then for any
λ and K > 1,

∑
k wkfCFG = fCFG(

∑
k wkϵ

k) only if
∑

k wk = 1.

Proof. Let, ϵ̃λt =
∑

k wkfCFG. Then,

ϵ̃λt =
∑
k

wk(ϵ
ϕ + λ(ϵk − ϵϕ))

=
∑
k

wkϵ
ϕ + λ(

∑
k

wkϵ
k −

∑
k

wkϵ
ϕ)

= ϵϕ
∑
k

wk + λ(
∑
k

wkϵ
k − ϵϕ

∑
k

wk)

= ϵϕ + λ(
∑
k

wkϵ
k − ϵϕ) if

∑
k

wk = 1

= fCFG(
∑
k

wkϵ
k) if

∑
k

wk = 1

If
∑

k wk ̸= 1, then ϵ̃λt ̸= fCFG(
∑

k wkϵ
k).
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Remark: One immediate implication of this lemma is that, whenever we sample from a composed
distribution with the CFG composed score of the form ϵ̃λ = w1ϵ

λ,1+w2ϵ
λ,2+· · ·+wKϵ

λ,K , then ϵ̃λ
corresponds to the CFG noise for the distribution p(x|C) =

∏
i p(x | ci)wi only when

∑
i wi = 1.

Lemma 3. Let x̂tweedie[ϵ
λ,c
t ] := xt − σt ϵ

λ,c
t be the tweedie mean from CFG composed noise

ϵ̃t
λ = ϵϕt +λ(ϵ

C
t −ϵ

ϕ
t ) for some λ. Let, ˜̂xtweedie be the composed tweedie-mean defined as ˜̂xtweedie =∑

k wkx̂tweedie[ϵ
λ,ck
t ]. Then,

a) CO3-corrector: ˜̂xtweedie can be expressed in the form of a tweedie-mean at time t, i.e.
˜̂xtweedie = x − σt ϵ̃λ̃,Ct if and only if

∑
k wk = 1. Here λ̃ = λ and CFG composed noise

ϵ̃λ̃,Ct = ϵϕt + λ(
∑

k wkϵ
ck
t − ϵ

ϕ
t ).

b) CO3-resampler: ˜̂xtweedie = −λ σt
∑

k wkϵ
ck is weighted noise if and only if

∑
k wk = 0.

Proof. a) The proof can be obtained by simplifying the x̂comp
tweedie expression and using direct appli-

cation of Lemma 2. We have,

˜̂xtweedie =
∑
k

wkx̂
λ,ck
tweedie

=
∑
k

wk(xt − σt ϵλ,ckt )

= xt
∑
k

wk − σt
∑
k

wkϵ
λ,ck
t

= xt
∑
k

wk − σt
∑
k

fCFG(ϵ
ck
t ) ( from Lemma 2)

= xt − σt fCFG(
∑
k

wkϵ
ck) if

∑
k

wk = 1

So, we have ˜̂xtweedie = xt−σt ϵ̃tλ,C where ϵ̃tλ,C = fCFG(
∑

k wkϵ
ck
t ) = ϵϕt +λ(

∑
k wkϵ

ck
t − ϵ

ϕ
t ).

If
∑

k wk ̸= 1, then ˜̂xtweedie cannot be expressed in the form xt − σt ϵ̃tλ,C for any λ and ϵ̃tλ,C .

b) From the 4-th equality of part a)

˜̂xtweedie = xt
∑
k

wk − σt
∑
k

wkϵ
λ,ck
t

= −σtλ
K∑

k=1

wkϵ
k
t (from Lemma 2)

A.3 MORE IMPLEMENTATION DETAILS

A.3.1 CO3 IMPLEMENTATION DETAILS

For the results in Table 1 we use Tc = 10(number of time-steps to correct), Tr = 3(number of
resampling steps) and P = 5(number of corrector iteration). For concept aware weight modulation,
we use exponential kernel with β = 0.8 while anchoring w0 at 1.0 for CO3-resampler and 2.0 for
CO3-corrector.

We use Stanza (Qi et al., 2020) to parse the prompts. We parse the prompts to extract different noun
chunks and filter each of them to remove articles and adjectives. The remaining proper noun is used
as concept in CO3. For example, if C is ”a black cat and a brown dog”, we consider c1 =”cat” and
c2 =”dog”.

A.3.2 BASELINE METHODS

Attend-Excite (Chefer et al., 2023), Divide-Bind (Liu et al., 2023), InitNo (Guo et al., 2024), Syn-
Gen (Rassin et al., 2023) and Composable Diffusion (Liu et al., 2022) are methods based on SD1.5.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We run experiments on these models using their publicly available code. ToMe (taihang Hu et al.,
2024) is SDXL based we use their publicly available code-base implementation. We also adapted
Composable Diffusion and SynGen to SDXL.

A.4 TIME COMPLEXITY ANALYSIS

We conduct an experiment to analyze the time-complexity of each SDXL based methods. The
Table 3 indicates the average time (in secs) taken by the model per sample. The experiments are
conducted on NVIDIA A100 gpu.

Method Inference Steps Time Cost (sec) Animals Animals-Objects Objects

SDXL 50 7.20 0.6950 0.8654 0.4926
Composable Diffusion 50 9.80 0.2846 0.5656 0.4529
SynGen(SDXL) 50 11.48 0.6816 0.8578 0.4652
ToMe 50 16.58 0.6257 0.8808 0.6440
CO3(ours) 50 19.9 0.7441 0.8878 0.5146

Table 3: Comparison of different methods across efficiency and compositionality metrics.

A.5 COMPARISON OF COMPOSITIONS IN SCORE SPACE

In this section we compare our composition framework with Composable-Diffusion. As already
described in section 3, we propose composition in Tweedie-denoised space as

x̃tweedie = w0 x̂tweedie[ϵ
λ,C
t ] + w1 x̂tweedie[ϵ

λ,c1
t ] + . . . + wK x̂tweedie[ϵ

λ,cK
t ] (20)

(21)

which leads to

x̃tweedie = x− σt ϵ̃λ̃,Ct iff
∑

wK
k=0 = 1 (22)

where ϵ̃λ̃,Ct = ϵϕt + λ(
∑
k

wkϵ
ck
t − ϵ

ϕ
t ) (23)

Contrast this with the Composable-Diffusion’s noise/score composition:

ϵ̃λ,Ct,compdiff = ϵϕt + λ1
(
ϵc1t − ϵ

ϕ
t

)
+ λ2

(
ϵc2t − ϵ

ϕ
t

)
+ · · ·+ λK

(
ϵcKt − ϵ

ϕ
t

)
(24)

For arbitrary weights λk, this cannot be expressed in the from equation 23. This proves that
ϵ̃λ,Ct,compdiff doesn’t lead to a valid Tweedie-mean.

A.6 MORE VISUALIZATIONS

A.6.1 CO3 FAILURE CASES

Despite correcting for the “problematic” modes, there still remain open challenges in image com-
position as shown in Figure 7. The score and, hence, the correction landscape is heavily influenced
by the training schemes employed in diffusion model training, i.e., the quantity and quality of the
multi-concept bindings in the training set. In addition, the usage of unrealistic prompts perhaps not
encountered in training also results in poor text/concept alignment. We leave this investigation for
the future.

A.7 ABLATIONS ON HYPERPARAMETERS

In this section, we analyze the contribution of the following five factors to the performance of our
CO3 corrector.

Notation recap: β is the exponential decay factor in the affinity scores; λ scales the composed score
for CFG; num resampling is the number of resampling steps at the start of diffusion; num ts is
the number of early timesteps where the corrector is used; num steps is the number of iterations
per corrector application.
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Figure 6: Qualitative results of SDXL base diffusion model, and SDXL + CO3 for animal-
animal,animal-object, and object-object prompt categories
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Figure 7: Failure scenarios of PixART-Σ base diffusion model, PixART-Σ + CO3, and PixART-Σ +
Composable Diffusion.
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A.7.1 NUMBER OF RESAMPLING STEPS

Table 4 shows results for different resampling steps. We observe that using more resampling steps
can blur concept separation early in the diffusion process rather than helping to disentangle concepts.

Table 4: num resampling sweep. Within each group, only num resampling changes; all
other settings are identical.

Frozen settings num resampling ImageReward (↑) BLIP-VQA (↑)

Animals Animals Objects Objects Animals Animals Objects Objects

β = 0.8, num ts=7, λ = 0.8, num steps=5 3 1.2218 1.7020 0.9405 0.7375 0.8811 0.4782
4 1.1705 1.7031 0.9512 0.7259 0.8828 0.4696

β = 0.3, num ts=7, λ = 0.8, num steps=5 3 1.1484 1.6915 0.9005 0.7240 0.8810 0.4691
4 1.1297 1.6948 0.8996 0.7145 0.8774 0.4697

β = 1.1, num ts=7, λ = 0.8, num steps=5 3 1.2566 1.7062 0.9916 0.7422 0.8813 0.4834
4 1.1927 1.7164 0.9934 0.7292 0.8835 0.4811

A.7.2 CORRECTOR APPLICATION TIMESTEPS

In CO3, the corrector is applied during the first num ts diffusion steps. Table 5 shows that larger
num ts generally yields better results, especially for animals and objects. This indicates the cor-
rector remains beneficial beyond only the earliest timesteps.

Table 5: num ts sweep with all other settings fixed: β = 1.1, num resampling=3,
num steps=5, λ = 0.8. (Best values are bold)

num ts ImageReward (↑) BLIP-VQA (↑)

Animals Animals Objects Objects Animals Animals Objects Objects

4 1.1862 1.7136 0.8885 0.7430 0.8783 0.4630
6 1.2510 1.7117 0.9750 0.7432 0.8801 0.4812
7 1.2566 1.7062 0.9916 0.7422 0.8813 0.4834
10 1.3149 1.6816 1.0095 0.7576 0.8832 0.5074

A.7.3 CORRECTOR ITERATIONS

Table 6 reports the effect of increasing the number of corrector iterations. Despite setting num ts=4,
raising num steps reduces performance substantially, suggesting that applying the corrector only
at the very beginning is not sufficient; employing it until much later in the diffusion trajectory is
more effective.

Table 6: num steps. Within each group, only num steps changes; all other settings are identical.

Fixed settings num steps ImageReward (↑) BLIP-VQA (↑)

Animals Animals Objects Objects Animals Animals Objects Objects

(a) β = 1.1, num ts=4,
num resampling=2,
λ = 0.9

7 1.2622 1.7129 0.9959 0.7542 0.8843 0.4707
10 1.2452 1.6994 0.9753 0.7448 0.8809 0.4706
15 1.2151 1.6701 0.9437 0.7318 0.8781 0.4556

(b) β = 1.1, num ts=4,
num resampling=2,
λ = 0.8

7 1.2755 1.7049 0.9424 0.7538 0.8762 0.4611
10 1.2503 1.6969 0.9191 0.7446 0.8798 0.4617
15 1.2480 1.6658 0.9063 0.7356 0.8750 0.4577

A.7.4 EXPONENTIAL DECAY FACTOR β OF affinity scores

We vary β in equation 14 from 0.3 to 1.1. Tables 7 and 8 demonstrate that the performance generally
increases with larger β, with the strongest gains in the animals and objects categories, while a few
settings exhibit minor regressions.
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Table 7: Exponential decay factor β with all other settings fixed: num resampling=3,
num steps=5, λ = 0.8. We report two blocks: num ts=6 and num ts=7. (Best values for
each block are bold)

num ts β
ImageReward (↑) BLIP-VQA (↑)

Animals Animals Objects Objects Animals Animals Objects Objects

6

0.3 1.1458 1.7016 0.8801 0.7262 0.8793 0.4613
0.6 1.1945 1.7069 0.9010 0.7317 0.8786 0.4645
0.7 1.2043 1.7109 0.9152 0.7310 0.8800 0.4706
0.8 1.2157 1.7024 0.9156 0.7398 0.8776 0.4751
0.9 1.2305 1.7146 0.9511 0.7400 0.8809 0.4766
1.0 1.2282 1.7183 0.9596 0.7350 0.8808 0.4770
1.1 1.2510 1.7117 0.9750 0.7432 0.8801 0.4811

7
0.3 1.1484 1.6915 0.9005 0.7240 0.8809 0.4691
0.8 1.2218 1.7020 0.9405 0.7375 0.8811 0.4782
1.1 1.2566 1.7062 0.9916 0.7422 0.8813 0.4834

Table 8: Exponential decay factor β with all other settings fixed: num resampling=3,
num steps=5, λ = 0.9. We report two blocks: num ts=6 and num ts=7. (Best values for
each block are bold.)

num ts β
ImageReward (↑) BLIP-VQA (↑)

Animals Animals Objects Objects Animals Animals Objects Objects

6

0.3 1.1437 1.7020 0.9518 0.7248 0.8816 0.4764
0.7 1.2051 1.7130 0.9860 0.7407 0.8851 0.4788
0.8 1.2037 1.7110 0.9916 0.7388 0.8832 0.4894
0.9 1.2003 1.7159 0.9883 0.7416 0.8842 0.4891
1.1 1.2098 1.7180 0.9956 0.7371 0.8841 0.4855

7
0.3 1.1273 1.6938 0.9490 0.7274 0.8848 0.4796
0.8 1.2142 1.7000 0.9937 0.7363 0.8845 0.4952
1.1 1.2331 1.7046 1.0148 0.7496 0.8864 0.4945
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