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ABSTRACT

We propose to improve multi-concept prompt fidelity in text-to-image diffusion
models. We begin with common failure cases—prompts like “a cat and a clock”
that sometimes yields images where one concept is missing, faint, or colliding
awkwardly with another. We hypothesize that this happens when the diffusion
model drifts into mixed modes that over-emphasize a single concept it learned
strongly during training. Instead of re-training, we introduce a corrective sampling
strategy that steers away from regions where the joint prompt behavior overlaps
too strongly with any single concept in the prompt. The goal is to steer towards
“pure” joint modes where all concepts can coexist with balanced visual presence.
We further show that existing multi-concept guidance schemes can operate in un-
stable weight regimes that amplify imbalance; we characterize favorable regions
and adapt sampling to remain within them. Our approach, CO3, is plug-and-play,
requires no model tuning, and complements standard classifier-free guidance. Ex-
periments on diverse multi-concept prompts indicate improvements in concept
coverage, balance and robustness, with fewer dropped or distorted concepts com-
pared to standard baselines and prior compositional methods. Results suggest that
lightweight corrective guidance can substantially mitigate brittle semantic align-
ment behavior in modern diffusion systems.

1 INTRODUCTION

Recent diffusion models (Ho et al.,2020; [Ramesh et al.,|2022a; [Rombach et al., 2022) have ushered
significant breakthroughs in Text-to-Image (T2I) synthesis, producing high-fidelity images from
textual descriptions. However, ensuring the generated images faithfully adhere to the prompt, a
challenge known as semantic alignment (Chefer et al.,[2023} tathang Hu et al., 2024} |Liu et al.,|2023),
remains a problem. Concretely, for a given prompt C, T2I models like StableDiffusion (Rombach
et al.,[2022)) sample from the modes (or high probability regions) of the learned distribution, p(x|C').
While such models can produce high resolution images in general, every so often, the results are
surprisingly misaligned even for very simple prompts containing few concepts, e.g., C="a cat and a
dog”. Diagnosing exactly why this behavior emerges periodically is difficult. It is conceivable that
the complex training process in high dimensions, especially in conjunction with text embeddings,
creates some problematic modes in p(z|C').

We hypothesize that problematic modes in p(x|C) arise when they overlap with modes of individ-
ual concept distribution p(z|c;). Such an overlap biases the generation toward a single concept ¢;,
reducing the prominence of others. For instance, across images of ¢; = “cat” in the training dataset,
a few may have an inconspicuous or partial co = “dog” in the background. This image may still
fall under the mode of p(x|C'). We attribute this to training instabilities and relatively less coverage
of multi-concept prompts C', which cause the model to assign high probability even to weakly con-
forming images. Said differently, an image of a big cat and an inconspicuous dog can get assigned
high probabilities under p(z|C'), causing semantic misalignment.

Preventing such problematic modes warrants strict and specialized training paradigms; a difficult
task for such large models. However, “curing” them after their occurrence is a more viable approach
Assuming our hypothesis is true, we propose a cure for problematic modes. Our intuitive idea is
to go away from problematic modes and move towards modes under which none of the individual
concepts are strong. To realize this, we propose to design a corrector that generates samples from
the following distribution:

p(z] C)
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Figure 1: The figure illustrates our hypothesis on mode overlap using a simple 2D toy ex-
ample. (a) Two modes of the distribution p;(x|”a cat and a dog”) (in green contour) has
significant overlap with the modes of the individual concept distributions p;(x|”a cat”) (in
red contour) and p¢(z|”a dog”) (in contour). (b) The proposed corrector distribution
pi(x|"a cat and a dog")/(p:(x|”a cat”)pi(x|”a dog”)) suppresses these overlaps, steering
the generation away from problematic modes. The arrows indicate the denoising directions.

Figure|l|illustrates the intuition behind our proposal. Our corrector distribution p(z|C') assigns low
probability to regions where p(z|C') overlaps with individual p(x|c;); we deem them as degenerate
modes dominated by a single concept. By suppressing these overlaps, the corrector emphasizes pure
p(z|C) modes where all concepts coexist without one overwhelming the others. From a probabilis-
tic perspective, this acts as a corrective factor: while p(x|C') may assign high probability to weakly
conforming images due to training noise or limited multi-concept data, dividing by the marginals re-
moves this bias and sharpens the distribution toward genuine multi-concept samples. As a result, the
modes we target are more semantically aligned and less prone to concept suppression or distortion.

Correction sampling from p(z|C') can be achieved by composing scores from constituent component
distributions V, logp(z|C), {V, logp(z|c;)}; (Liu et al}, 2022). While there are many ways to
compose, we analyse and show that composition through weighted sum of Tweedie-means—in the
Tweedie denoised space—offers a more general framework that subsumes existing approaches.

In particular, we show that two classes of correction sampling—noise-resampling and latent correc-
tion (Bao et al., 2024} Rassin et al., 2023} [taihang Hu et al.| [2024; Kwon & Yel 2025)—become
special cases of Tweedie-mean composition under different weighting schemes. This allows us to
design a hybrid composition framework that serves the purpose of resampling at time 7', and then
toggles to latent correction at later steps. By latent, we mean that the correction steps are accom-
plished in between each DDIM time step, allowing CO3 to be a plug-and-play, model-agnostic and
gradient-free approach for T2I models. Comparison of CO3 against SOTA baselines shows stronger
semantic alignment to prompts (measured using multiple metrics), giving empirical evidence of our
hypothesis.

2 BACKGROUND

B Conditional generation using Classifier-Free Guidance (CFG). In diffusion-based Text-to-
Image (T2I) generation (Rombach et al.| 2022} Saharia et al.| [2022a; Ramesh et al., |2022b)), given
the noisy latent x, at timestep ¢, a denoised estimate can be derived using Tweedie’s formula:

B = Tt — \/1 — Qi ee(xt,c,t)
0= =

VO ’
where eg denotes the predicted noise conditioned on the text prompt ¢, and &, is the cumulative
product of the noising schedule. This step corresponds to the denoising stage, recovering an estimate

of the clean signal x(. In the DDIM sampler (Song et al.,[2021), under the noise-free condition, the
subsequent step deterministically evolves g to x;_; without introducing additional stochasticity:

-1 = Va1 &0+ /1= Gy e, 0, 1). ©)

Here, the same predicted noise €g is reused, eliminating the renoisification step present in stochastic
samplers such as DDPM(Ho et al., [2020). This perspective highlights how the Tweedie decompo-
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sition denoising via Z(, followed by deterministic reconstruction of z;_1, is naturally aligned with
DDIM sampling.

In practice, most T2I models adopt classifier-free guidance (CFG) (Ho & Salimans| 2022)), where
predictions from both the conditional and unconditional models are combined:

¢ = Neg(zs, e, t) + (1= N eg(we, 2, 1) @)
where A > 1 controls the guidance strength. e;\’c is the composed noise prediction under CFG. Then
the denoising and DDIM steps proceed as before, but using ei"c in place of €g(x¢, ¢, ).

Tweedie View with CFG. Substituting ei“'c into the Tweedie denoising and DDIM update yields:

— A\
j;,\,c_act—\/l—atet o 1 3 J
0o - — - — tweedie
v/ Ot v O
VOi—1
—F— Ttweedie
Vv
where Ztyeedie [e;\’c} =xy—/1— ef"c is the Tweedie mean from the CFG noise at ¢. Thus, CFG

in the Tweedie framework can be interpreted as modifying the denoised estimate Z to 558"6 before
the deterministic step to x;—1 (Chung et al.| [2024; [Kwon & Yel 2023).

€], 5)

T = [+ /T — a1 " (6)

B Correction-based approaches for conditional generation. A number of recent works have ad-
dressed the challenge of compositional text-to-image generation using correction-based approaches
(Chefer et al.} [2023; |Liu et al., [2023} [Bao et al., [2024; |Rassin et al., [2023} {tathang Hu et al., |2024)).
During sampling with classifier-free guidance, these methods iteratively correct the latent variable
by applying gradient updates of the form

ol =k sV, L(zy,c), k=1,2,...,M —1. (7)
and then use the final refined latent 2}/ to predict the next DDIM step z;_1, using Egs. [5|and @
Here L(x¢, ¢) is a task-specific loss function that enforces better alignment with the target condition
¢, and s is a step size. This iterative update can be interpreted as correcting the diffusion guidance
process using a corrector distribution of the form:

Pe(x, ) exp(fﬁ(xt,c)), (8)

which refines the generative process at each timestep. In the special case where the step size s = o7

= 1 — &y (the noise scale at timestep t), the update rule becomes equivalent to iterative Tweedie-
mean correction (see Eq.|5|above), where zf“ is reinterpreted as the next estimated Tweedie mean

given z¥ for the distribution p; (¢, c).

B Composable-diffusion. Generating samples that satisfy multiple conditions {cy, ..., cx } can be
formulated as sampling from the joint distribution

K
oo | c1,...ex) o< [ polao | cx). ©)
k=1

To achieve this, Liu et al.| (2022)) proposed composable diffusion, which directly composes the output
scores (predicted noises) from different conditional diffusion models using CFG during sampling.

Specifically, in the text-to-image setting, if the prompt C' can be decomposed into constituent con-
cepts {c1, ca, ..., cx }, the outputs of the corresponding diffusion chains can be combined as

& = M€ =€) F (e =€)+ Ak (e —€) (10)
where ef denotes the unconditional score, and )\, controls the guidance strength for concept ci. The
next sample is then predicted via the Tweedie formulation:

V-1 \,C —— \,C

—F— Ltweedie |:€t ’ ] + 1- Q1 € . (11)
V Qi

Although this approach is model-agnostic and conceptually simple, its performance is often poor,

since the above linear composition of scores is incorrect or doesn’t correspond to the score of the

diffusion forward distribution p;(x | c1, ..., cx) at any timestep ¢ > 0 (Du et al.|, 2024).

Tt—1 =

In summary, both the correction-based approach and the composable diffusion idea can be inter-
. . . . ~ A,c .
preted as different ways of approximating Tweedie-means Z¢ycedic|€; ] at time .
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3 CO3: CONTRASTING CONCEPTS TO COMPOSE

We aim to combine the strengths of correction-based approaches and composable diffusion. On one
hand, correction-based methods are powerful and explicitly improve compositional alignment, but
they are subject to the complex gradient of the base model. On the other hand, composable diffusion
is fully model-agnostic, but suffers from poor performance because linear score composition is not
consistent with the diffusion forward process.

To take advantage of both, assume that prompt C' can be decomposed into constituent concepts
{c1,ca,...,cx}. We propose an explicit Concept Contrasting corrector distribution based on our
hypothesis on mode overlap discussed in Sec. [T} Specifically, we define the corrector distribution at
each timestep ¢ as:

. pe(xy | C)Po
pt(xtuc) X Kt( ¢ | ) ) (12)
[Tk et [ )
where {wp, w1, ..., wk } are composition weights. As discussed in Sec. [1] this corrector steers the

generation toward regions where the distribution p;(z; | C) is high, while simultaneously avoiding
regions of overlap with the individual concept distributions {p;(x; | ¢x)}r. Observe that this en-
courages the model to generate samples that satisfy all concepts in C' without over-emphasizing any
single concept. We present the CO3 corrector pseudo code in Algorithm

To sample from the unnormalized probability distribution in Eq. an well-known approach is to
compose the concept distributions {p;(x; | cx )}« in the space of score functions (Liu et al., 2022; Du
et al.| 2024). We break-away from this approach and compose the distribution in the Tweedie mean
space; we show how this offers a more general framework for composition. In Tweedie-denoised
space we define composition as:

~ A AC A A,c Py A CK
Ttweedie — WO Ttweedie [et ] + W1 Trweedie [et 1] + ... + wg xtweedie[et ]7 (13)
where wg > Oand wy,...,wxg < 0 are

concept weights. Note: i‘tweediek? is Algorithm 1 DDIM with CO3 Corrector

the Tweedie mean corresponding to the CFG Require: z7, number of DDIM steps 7', timestep
threshold 7., prompt C, set of concepts {c }

1: fort =1 downto 1 do
2: if t > T, then

7Ck}

composed noise prediction e;\’ck for concept
cr, with guidance weight \.

How should composition weights be cho- 3. ¥ « CO3(2,,Coen,. .., cr)

sen? We analyze the effect of different > Proposed correction

weight assignments to Eq. [I3] in particular, 4 e 2?

how the constraint on the concept weights w; 5 end i;' ¢

influences both the theoretical interpretation 6 2 + DDIM._step(z) 5 Inverse DDIM
and the empirical behavior of the composi- 7 end for -

tional Tweedie mean.

A valid compositional Tweedie mean Zy.eeqie in Bq. [13] must be one that can be expressed in the
definition given in equation[5]as DDIM goes through a series of Tweedie means for image generation
as described in section [2] Lemma [l shows that this is guaranteed only when the weights satisfy the
normalization condition ), w; = 1.
Lemma 1. Let :%tweedie[ei"c] = T — Oy ei"c be the tweedie mean from CFG composed noise
e}A = ef—i—)\(etc —ef ) for some \. Let, Ztyeedic be the composed tweedie-mean defined as Ztyeedie =
. A,
Zk wkztweedie[et Ck} Then,
a) CO3-corrector: ZTyypeedie can be expressed in the form of a tweedie-mean at time t, i.e.
:%tweedie = —o0; €i"’c if and only zfzk wg = 1. Here A\ = )\ and CFG composed noise
\,C .
& = &+ AT, et — ).

b) CO3-resampler: Z1ypeedic = —\ 04 >k We is weighted noise if and only if 3, wy, = 0.

Remarks: 0 See Appendix section for proof. Lemma [1| a) shows that when >, w;, = 1,
denoted as CO3-corrector, the composed Tweedie-mean corresponds to the CFG composed noise

A = f 4 MDD, wie™ — €?) with the same guidance scale \. This preserves the relative guidance
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strength between unconditional and conditional scores as proposed by classifier-free guidance (CFG)
(see Eq. . This is in contrast to composable diffusion methods (Liu et al., 2022; Du et al., [2024)
which use arbitrary guidance weights {\;} for composing different concepts (see Eq. ; hence this
does not preserve the CFG form. We believe this explains, at least partly, why composable diffusion
often produces out of manifold samples. See Sec. [A.5]in Appendix for more discussion.

(2] Lemmab) shows that when the weights sum to zero, denoted as resampler, composed Tweedie
mean is independent of the current sample z; and is only a function of the concept noises. Instead of
correcting the current sample z;, it replaces x; with a weighted combination of the concept noises.
In other words, when ", w;, = 0, the composition is sampling from noise, and only valid at ¢t = T'
where z7 ~ N (0,1).

To further characterize the behavior of the composition under the two conditions ), wy = 1 and
> Wk = 0, we evaluate the performance of different weighting strategies across timesteps ¢ of the
diffusion chain. Figure 2]reveals complementary dynamics between the resampler and the corrector.
Specifically, the resampler (3, wy, = 0) is effective at high ¢ values near 7', but its effectiveness
diminishes as the denoising process progresses toward lower ¢. Although resampling is not theoreti-
cally valid for ¢ < T', we observe practical improvements until approximately ¢ ~ 0.97". In contrast,
the corrector (), wy = 1) exhibits gradual improvement with increasing timesteps and saturates
around ¢ ~ 0.757". These findings invite a hybrid strategy into CO3: apply resampling during early
timesteps (t > T'r), followed by correction until a threshold (T < ¢t < Tr), beyond which further
gains are marginal.

The pseudocode for the zero-sum-weight resampler (CO3-resampler) and the unit-sum-weight
(CO3-corrector) corrector is provided in Algorithm [2| and Algorithm [3] respectively. Importantly,
the same diffusion denoiser model can be reused to compute the individual concept scores under
different input conditions cy, thereby eliminating the need for any costly backward passes to obtain
gradients. Furthermore, the framework operates without reliance on model-specific architectural
details, making it fully model-agnostic and gradient-free.

Closeness-Aware Concept Weight Modulation: -
To make the CO3 corrector more adaptive, we an- o~
chor the weight wo (wo=1.0 in Algo. 2] and wy = 1o
2.0 in Algo. 3), and assign weights to each con-
cept based on how close the current noise predic-
tion € is, to the noise corresponding to that concept,
€°*. Intuitively, if a sample looks closer to concept 05| —a— Composition w/ Sw; = 0

ci, than to all others, we want to penalize c; more Composition w/ Swi = 1 \/‘\.
strongly (i.e., give it a larger negative weight), while -0

reducing the strength of the other concepts. This en- T timesteps "
courages the sampler to move away from the near-
est mode, preventing collapse toward one dominant
concept. Formally, let di, = ||¢ — €°*|| denote the
distance between the current sample and the mode
of concept c;. We convert distances {dy}+_; into
affinity scores using an exponential kernel:

ImageReward

Figure 2: Characterization of Resampler and
Corrector steps. Resampling is more powerful at
high ¢ while the Corrector improves slowly with
more timesteps and saturates.

ar = exp(—Bdx), >0 (14)

so that concepts closer to the current sample (smaller dj) receive higher affinity. These affinity
scores are then normalized to define the weights:

ag
Wy = ——— (15)
Zj:l aj
which ensures each weight is negative and the total sum satisfies Zle wy = —1. As aresult, con-

cepts that are closer to the current sample receive stronger negative weights, while farther concepts
are down-weighted in proportion to their distance. This weight modulation scheme samples from
the whole hyper-plane Zf:o wy, = 1 (for CO3-correction) or ZkK:o wy, = 0 (for CO3-resampling)
instead of a fixed weights for the entire course of generation.
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Algorithm 2 CO3-resampler (> wy = 0) Algorithm 3 CO3-corrector (3w = 1)
Require: z;, denoiser v, &, wo.x, guidance A  Require: x;, denoiser v, &y, wy. i, guidance A

1: forp=1to P do 1: forp=1to Pdo
2: 600 = w(‘rh C)’ 6(3k: = 'L/}(.’Eh Ck)’ 2: 600 = w(xh O)» 6(3k = 1/1(5%, Ck?)?
3: k=1,....K 3: k=1,....K

N X, —
4: Ttweedie [Et Ck] =Ty — 1- Q€ o - K A

. = — ) sCk

5 4: Ttweedie = Zk:() wkxtweedie[et ]
5: Trweedie = —M/1 — oy Zszo Wy €k > Tweedie mean composition

> Projection onto noise space

.
G 5: r= M > mean normalization
X — tweedie |[2

6 2" = Frwcedic + VI — Gt € 6| 2 - -

> Uncond. manifold correction : tweedie tweedie

2 2 =
7: Ty — xEZ) 7 .TE ) = Ttweedie T V1 — Q4 Ef
8: end for
9: return x; 8: Ty < .%'EQ)
9: end for

10: return
4 EXPERIMENTS urn o

4.1 EXPERIMENTAL SETUP

Implementation details: We implement our method on SDXL (Podell et al., 2023) using a 50-step
DDIM sampler with guidance scale A = 5.0. CO3 is applied during the first 20% of denoising
steps (T, = 0.8T), with the initial three steps reserved for resampling. For weight modulation, we
set 8 = 0.8. All experiments are performed on a single NVIDIA A6000 GPU (48GB). Additional
hyperparameter details are provided in the Appendix section[A.3]

Evaluation benchmark and metrics: We evaluate our method on the benchmark dataset from
Chefer et al.| (2023), which includes three categories of prompts: Animal-Animal, Animal-Object,
and Object—Object. While the benchmark is limited to these cases, CO3 naturally extends to
more complex prompts involving arbitrary numbers of concepts. For evaluation, we adopt BLIP-
VQA (Huang et al.,2023) and ImageReward (Xu et al., 2023)), both widely used in recent works (tai-
hang Hu et al.l 2024; Hu et al., [2024) to measure the faithfulness of generated images to input
prompts. Notably, ImageReward is a learned reward model trained on human preferences, capturing
aspects such as prompt adherence, aesthetics, and overall quality. For both metrics, higher scores
indicate better alignment.

Comparison methods: We compare CO3 against state-of-the-art approaches, including
optimization-based correction methods (Attend-and-Excite (Chefer et al.l 2023), SynGen (Rassin
et al} [2023), Divide-and-Bind (Liu et al.,, [2023), ToME (taihang Hu et al.l 2024)), the compos-
able generation method Composable Diffusion (Liu et al.,2022), and the noise-optimization method
InitNO (Guo et al.,|2024). All optimization-based approaches are architecture-dependent and require
gradient computations at inference, with InitNO being model-agnostic but still incurring costly back-
propagation. In contrast, only Composable Diffusion and our proposed CO3 are purely sampling-
based, model-agnostic, and completely gradient-free.

4.2 EXPERIMENTAL RESULTS

Quantitative Comparison:

Table [I] demonstrates the extent to which CO3, despite being model-agnostic and optimization-
free, competes or outperforms optimization-based and model-agnostic baselines on ImageReward.
Gains are substantive in the Animal-Animal and Animal-Object categories. On BLIP-VQA, CO3
delivers the best performance in these two categories and improves over the base SDXL on the
Object category, which contains prompts of the form: “a [color1] [object1] and a [color2] [object2].”

Unlike methods such as ToMe [tathang Hu et al.[|(2024), SynGen (Rassin et al.|, 2023), Attend-and-
Excite (Chefer et al., 2023), and Divide-and-Bind |Liu et al.| (2023)), which rely on model-specific
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Properties BLIP-VQA ImageReward

training- gradient- model-  animals animals-objects objects animals animals-objects objects

free free agnostic
SD1.5(Rombach et al.}[2022) v v 0.3239 0.5958 0.2730 -0.2733 0.4262 -0.5521
Attend-excite(Chefer et al] v X X 0.6980 0.7865 0.5155  0.8244 1.2380 0.8741
SynGerfRassin et al|(20 v X X 03348 0.7689 0.6595  -0.2445 0.9838 07315
Divide & Bind v X X 0.7201 0.8399 0.5887 0.8499 1.2516 0.8134
InitNO(Guo et al.l 2024) v X v 0.7264 0.7998 0.5406 1.0082 1.3927 1.1383
SDXIPodell et v v - 0.6950 0.8654 0.4926 0.7820 1.5574 0.6789
SynGen(SDXL )R v X X 0.6816 0.8578 0.4652 0.6998 1.5622 0.6441
ToMelaihzmg u et al.}|2024) _/_ _ _X_ _ 1 _ _09251 _ _0§80_8 _ _0 6L449 _ 23%95_ _ 15136_ _ 10118_
Compose-diﬁusionqLiu et al‘l 2022p v v v 0.2846 0.5656 0.4529 -1.1399 -0.2068 -0.0955
CO3(Ours) v v v 0.7441 0.8878 0.5146 1.2342 1.6744 1.0158

Table 1: Quantitative comparison of different methods on compositional generation tasks. We eval-
uate the generated images using two metrics: BLIP-VQA and ImageReward. Top performing model
is highlighted in Black and 2nd best in Blue. Higher the score the better.

architectures or explicit attention-based binding losses, CO3 is architecture-independent, sampling-
based, and free of explicit subject—attribute binding. Interestingly, by simply targeting “pure” modes
under p(z | C'), CO3 discovers layouts that better capture multi-object relations (Animals—Animals,
Animal-Objects) and finds high-probability regions that preserve subject—attribute bindings (Ob-
jects). This performance gain empirically validates our hypothesis on mode overlap and also high-
lights CO3’s effectiveness in correcting the compositional limitations of SDXL.

Qualitative Comparison: Figure [3]compares CO3 with several baselines. Columns 1-2 show re-
sults from Divide-Bind and Attend-and-Excite (Chefer et al. [2023) (based on
SDv1.5 (Rombach et all, 2022))), while the remaining columns compare against Composable Dif-
fusion (Liu et al., 2022), SynGen (Rassin et al., 2023), and ToMe (taihang Hu et al., 2024). We
illustrate common issues in compositional alignment—concept missing, attribute mixing, and ob-
ject binding—across all categories. Divide-Bind and Attend-and-Excite enhance the attention layer
of the base model, but often yield cropped or incomplete concepts (rows 1, 3). Composable Dif-
fusion suffers from missing or merged concepts (rows 2, 3). SynGen and ToMe perform well on
Object prompts of the form “a [color1] [objectl] and a [color2] [object2],” but still exhibit overlap-
ping or mixed concepts (rows 2, 3; columns 5, 6). In contrast, CO3 achieves stronger object binding
in the Animals and Animal-Objects categories while also improving results on Objects.

Divide-Bind Attend-Excite

Co3(ours)

a turtle
and a mouse

a elephant
with a bow

v
3
co
%u
g
&=
o=
5o
=]
rl3::
©

Figure f] extends qualitative results to complex prompts from the Complex category of
(2023), comparing CO3 with the top-performing SDXL models (Table [I). The first row shows
prompts involving spatial relations (e.g., “on,” “to the left of”’), while the second row depicts more
descriptive prompts with multiple interacting concepts. SynGen and ToMe successfully bind con-
cepts to their subjects but often miss concepts or relations. By mitigating dominant-concept bias,

CO3 remains effective even for complex prompts with multiple relations.

Ablations Studies are preformed on the key components of CO3, starting from the base SDXL
model (Table ). Adding resampling in the first three DDIM steps substantially improves aver-
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Figure 4: Qualitative comparison of CO3 with competing methods on complex prompts.

age performance, particularly for the Animals and Animal-Objects categories. Since image layout
is largely determined in the early timesteps, CO3-resampler iteratively explores better initial noise
configurations that align with the prompt. Incorporating CO3-corrector over the next seven steps fur-
ther improves prompts requiring fine-grained details such as color or texture, boosting performance
on the Objects category in both ImageReward and BLIP-VQA. Additional gains come from the
Closeness-Aware Concept Weight Modulation strategy, which consistently benefits all categories.
We hypothesize that as the diffusion trajectory evolves, the latent state often drifts closer to one
concept mode c¢;; the modulation mechanism assigns c¢; a more negative weight, repelling the latent
and mitigating concept dominance (Tunanyan et al., 2023) commonly observed in stable-diffusion.

BLIP-VQA ImageReward
Methods animals animals-objects objects animals animals-objects objects Avg.
SDXL 0.6951 0.8654 0.4926 0.7820 1.5474 0.6789 0.8435
+ resampling 0.7351 0.8666 0.4528 1.0881 1.6755 0.8263 0.9407
+ Corrector 0.7177 0.8794 0.4796 1.0630 1.6429 0.8949 0.9463
+ weight-modulation 0.7441 0.8878 0.5146 1.2342 1.6744 1.0158 1.0118

Table 2: Ablations study conducted on the CO3 method. Starting with the base-model SDXL we progressively
add different components.

Comparison with Optimization-Free Approaches: To further demonstrate CO3’s model-agnostic
nature and generalization to other base models, we evaluate it on PixArt-3 (Chen et al. 2024).
We compare against both the base model and the sampling-based, optimization-free Composable
Diffusion 2022). Unlike Composable Diffusion, which composes diffusion chains within
the DDIM prediction step, CO3 applies composition as a corrector. As shown in Fig.[5] Composable
Diffusion suffers from missing or mixing concepts, while CO3 consistently preserves all concepts
with correct bindings in the output.

Co3(ours) Composable Diffusion Co3(ours)

a horse
and a monkey

a turtle and

a bird
and a turtle
a blue balloon
and a blue bow

a lion and
a yellow clock
a white balloon
and a white apple

|

Figure 5: Model Agnostic behavior: Qualitative comparison of generation from PixART-X(Chen|
2024) base diffusion model, PixART-X + CO3, and PixART-X. + Composable Diffusion.
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5 RELATED WORK

Optimization-based correction approaches: (1) Text-embedding optimization works like T2I-
Zero variants (Tunanyan et al., 2023), and style or prompt inversion (Li et al.| 2023a), improve
semantic alignment by optimizing or restructuring the text representation during inference. These
methods tweak or invert token embeddings so that the denoising trajectory better reflects entity—
attribute bindings or multi-concept prompts.

(2) Attention-map optimization works (Zhang et al., [2024; Meral et al. [2024; Tumanyan et al.,
2023} [Hertz et al.l 2022)) directly manipulate the cross- and self-attention maps during sampling.
These methods typically inject constraints or losses that (i) boost token—region correspondence for
each entity, (ii) reduce overlap between different concepts, or (iii) preserve early layout information
across timesteps. Attend-and-Excite (Chefer et al., 2023) increases the activation of object tokens.
Divide-and-Bind (Liu et al., 2023) maximizes total variation to elicit distinct excitations for multiple
objects and aligns attribute—entity attention maps, while A-STAR (Agarwal et al.| 2023) further
reduces cross-token overlap and preserves early attention signals. SynGen (Rassin et al., 2023)
leverages syntactic parses to penalize mismatched attention overlaps, ensuring linguistic binding
between entities and modifiers. InitNO (Guo et al.,|2024) optimizes the initial noise so that sampling
begins in more favorable regions that yield stronger, less-conflicted attention.

Composable generation works: view conditional diffusion models as energy/score functions, en-
abling algebraic composition. Composed-Diffusion (Liu et al.| 2022) frames score-composition
under CFG and demonstrates test-time generalization, but suffers from concept mixing and missing.
Follow-ups propose training-free and model-agnostic methods like energy-parameterized diffusion
and Metropolis/MCMC-corrected samplers that markedly improve multi-condition generation (Du
et al.| [2024)), but their performance is often poor (Chefer et al., 2023} |[Feng et al., 2022). |[Kwon &
Ye| (2025)) uses a composition similar to our resampler but not in the context of a corrector. Instead
they use multiple DDIM forward-backward steps to sample initial noise.

Layout augmentation image generation: (1) Layout-to-image methods: (Xie et al.,[2023; Phung
et al |2024; Kim et al.| 2023} |[Zhao et al.| 2023)) use a strategy with explicit spatial priors—-boxes,
masks, or region texts to bridge text and image: training-free controllers steer attention so objects
materialize in designated regions. Other works add instance-level handles, for fine-grained place-
ment and attributes across multiple entities (Wang et al.| 2024)). In parallel, fine-tuning approaches
inject layout channels into the backbone (Li et al., [2023b; Mou et al., 2023 [Zhang et al., 2023).

(2) LLM-augmented methods: Collectively, these works leverage LLM reasoning/representations to
better bridge linguistic structure and the denoising trajectory by (i) decomposing complex prompts
into regional sub-tasks (Yang et al., [2024; |[Hu et al., 2024) (ii) infer layouts from text (Qu et al.,
2023)), and (iii) act as stronger text encoders or timestep-aware adapters (Saharia et al.| [2022b)).

6 CONCLUSION & FUTURE WORK

We propose a gradient-free, model-agnostic image composition method that switches between noise-
resampling and correction. Our Concept Contrasting corrector is based on the hypothesis that com-
position is degraded by “problematic” modes—those that overlap with individual concept modes,
resulting in strong alignment with particular concepts while suppressing others. Our corrector em-
ploys a Closeness-Aware Weight Modulation scheme that emphasizes “pure” modes where all con-
cepts coexist without any dominating ones. Crucially, we attribute shortcomings of past composition
methods to the choice of composition weights and show that only when the weights sum to 1, the
interpretation of Tweedie-mean correction and the CFG guidance strength are preserved. Results
demonstrate that CO3 outperforms baseline approaches for several diffusion model choices and
serves as a plug-and-play module offering improved compositional generation performance.

While our corrector’s closeness-aware weight modulation suppresses the concept mode overlap, the
noise/score landscape is strongly biased by the training paradigms of diffusion models, i.e., the quan-
tity and quality of the multi-concept bindings in the training set. This problem also manifests when
presented with more unrealistic prompts, resulting in poor text/concept alignment. As shown in
Fig.[7] while our work offers a significant boost to multi-concept compositional generation, clearly,
there are failure cases that are not yet addressed. However, we believe that more advanced energy-
based compositional samplers—that explicitly take into account the probabilities of the landscape
during sampling—can further help in avoiding such cases. We hope to investigate these special cases
in the future. We also hope to explore applications beyond composition using the CO3 corrector.
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7 REPRODUCIBILITY STATEMENT

All method implementations, inference pipelines are included in the supplementary material.
This includes instructions for environment setup, dependencies, and reproducible random seeds.
The datasets used in our experiments are publicly available. We provide detailed descrip-
tions of the dataset in Sec. 4. Hyperparameters, inference schedules, and evaluation pipelines
are described in Sec. 4, with further details in the Appendix Our project website is
available at https://anomxyz26.github.i0/co3-anom-web/| and implementation code is available at
https://github.com/anomxyz26/co3-anom
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A APPENDIX

A.1 BROADER IMPACTS

CO3 improves compositional text-to-image generation by adjusting the sampling distribution of
diffusion models. At the same time, it introduces certain risks. The method could be misused to
create deceptive or misleading visuals, contributing to the spread of misinformation. When applied
to depictions of public figures, it may compromise personal privacy. Moreover, the automatically
produced content can raise concerns around copyright and intellectual property.

A.2 COMPOSITION IN TWEEDIE-DENOISED SPACE FOR A VALID CFG

Classifier free guidance: In CFG, to sample from p(z|c), we compose the conditonal and uncondi-
tonal predicted noise at each time step ¢ as:

e;\’c = ef—l—)\(ef—ef) (16)

where ¢ is the noise predicted for the distribution p;(x|c) at time ¢, i.e., Vy, logpi(zi]c) =

€y . .
e Then we use this composed noise to sample the next step as,

A,c
PO W Tt — 1- Oéth _ = sAC 1 — A,c 17
iy = a s Tl = 1Ty /1€ (17)
t
~AC

Let, 2}, .. die = Tt — V1— Oztet © be the tweedie mean from CFG composed noise at time ¢. Then

we can rewrite the above equation as,

VOt—1 A, —

Ti_q = A 1= ae (18)

\/CTt Liweedie
Composition of CFG scores: (Liu et al., 2022)) introduced the idea composable-diffusion where
they compose scores from different diffusion models or conditional distributions to generate im-
ages from the composed distribution. They assume that, p(z|C) = [] p(zo|c;) and proposed the
modified CFG composition for each ¢ as,

§C=+ N0 e —¢) (19)

The issue with above composition is that for arbitrary );, the composed CFG noise doesn’t satisfy

the CFG equation in equatlon Li.e., €;\ © #* 6;\,0 for any ) in equation equation |16|where 62\,0 is

the noise predicted for the distribution pt(x4|C) at time ¢.

To conretize this, we state the following simple result.

Lemma 2. Let’s define CFG as a function at time t as, fcrg(€;\) = € + Xe — €?). Then for any
Aand K > 1, Zk wkaFG = fCFG(Zk wkek) only lek wg = 1.

Proof. Let, & =3, wy fora. Then,

& = Zwk(e‘f’ + (e —e?))

ZW A e = 3 e
:€¢Zwk+)‘ Zwke _6¢Zwk
:€¢+A2wke —e?) ifzwkzl
fcm(zk]zwkek) if zk:wkk:l

Ika wy, # 1, then gi‘ =+ fCFG(Zk wkek). L]
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Remark: One immediate implication of this lemma is that, whenever we sample from a composed
distribution with the CFG composed score of the form é* = w;eM +wqoeM2+- - - 4w eME | then &
corresponds to the CFG noise for the distribution p(z|C) =[], p(x | ¢;)™* only when ), w; = 1.

Lemma 3. Let ftweedze[Gi\ =z — oy €t ¢ be the tweedie mean from CFG composed noise
e} =€ —|—)\(et —et ) for some \. Let, xtweedw be the composed tweedie-mean defined as Tyyeedic =
Dok wk;vtweed,p[et k). Then,
a) C03 corrector: xtweed,e can be expressed in the form of a tweedie-mean at time t, i.e.
ztweed,e =x— 0y et lfand only lfzk wg = 1. Here A\ = )\ and CFG composed noise
5? €= et + A, wrert — ef)
b) CO3-resampler: Z1peedic = —\ 04 >k WEe is weighted noise if and only if 3, wy, = 0.

Proof. a) The proof can be obtained by simplifying the &}, ", = expression and using direct appli-

cation of Lemma[2} We have,

A\, Cl
xtweedze = wkxtweedie
— § wk — 0 Gt 761‘-,)
2 2w
= Tt Wl — Ot W€y
=1 g Wy — Ot g fora(ef®) (from Lemmal2))
= Tt — Ot fCFG E wkec" if E WE = 1

So, we have -%tweedie~: zy — oy ¢ where MY = fora (O, wre) = et + A0, wrer® — ef)
If Zk wy, # 1, then T4 yeedie cannot be expressed in the form z; — oy ef‘ for any A and €; MO
b) From the 4-th equality of part a)

= Xc

Ttweedie = Lt Z Wg — Ot Z W€ Ck

k k
K
= —o )\ Z wkef (from Lemmal[2))
k=1
O

A.3 MORE IMPLEMENTATION DETAILS
A.3.1 CO3 IMPLEMENTATION DETAILS

For the results in Table [I] we use 7. = 10(number of time-steps to correct), 7, = 3(number of
resampling steps) and P = 5(number of corrector iteration). For concept aware weight modulation,
we use exponential kernel with 8 = 0.8 while anchoring wy at 1.0 for CO3-resampler and 2.0 for
CO3-corrector.

We use Stanza (Q1 et al.,2020) to parse the prompts. We parse the prompts to extract different noun

chunks and filter each of them to remove articles and adjectives. The remaining proper noun is used

as concept in CO3. For example, if C'is "a black cat and a brown dog”, we consider ¢; ="cat” and
:”d0g77.

A.3.2 BASELINE METHODS

Attend-Excite (Chefer et al.| [2023), Divide-Bind (Liu et al., [2023), InitNo (Guo et al., [2024), Syn-
Gen (Rassin et al.,2023) and Composable Diffusion (Liu et al.,[2022) are methods based on SD1.5.
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We run experiments on these models using their publicly available code. ToMe (taithang Hu et al.|
2024)) is SDXL based we use their publicly available code-base implementation. We also adapted
Composable Diffusion and SynGen to SDXL.

A.4 TIME COMPLEXITY ANALYSIS

We conduct an experiment to analyze the time-complexity of each SDXL based methods. The
Table [3] indicates the average time (in secs) taken by the model per sample. The experiments are
conducted on NVIDIA A100 gpu.

Method Inference Steps  Time Cost (sec) Animals  Animals-Objects  Objects
SDXL 50 7.20 0.6950 0.8654 0.4926
Composable Diffusion 50 9.80 0.2846 0.5656 0.4529
SynGen(SDXL) 50 11.48 0.6816 0.8578 0.4652
ToMe 50 16.58 0.6257 0.8808 0.6440
CO3(ours) 50 19.9 0.7441 0.8878 0.5146

Table 3: Comparison of different methods across efficiency and compositionality metrics.

A.5 COMPARISON OF COMPOSITIONS IN SCORE SPACE

In this section we compare our composition framework with Composable-Diffusion. As already
described in section [3] we propose composition in Tweedie-denoised space as

Frweedie = Wo Frweediel€r "] + W1 Erweedieler”™] + v+ WK Frweedieler ] (20)
(21)
which leads to
Ttweedie = T — Ot gi\,c iff Z Wiy =1 22)
where Etj"c = ef + )\(Z wrer — ef) (23)
k

Contrast this with the Composable-Diffusion’s noise/score composition:
g?;impdiff = 6? + /\1(5? - ff) + X2 (652 - 5?) +-t )\K(GEK - 6?) (24)

For arbitrary weights Ay, this cannot be expressed in the from equation This proves that

’\’C((’:mp 4ir ¢ doesn’t lead to a valid Tweedie-mean.

Et’

A.6 MORE VISUALIZATIONS

A.6.1 CO3 FAILURE CASES

Despite correcting for the “problematic” modes, there still remain open challenges in image com-
position as shown in Figure[/| The score and, hence, the correction landscape is heavily influenced
by the training schemes employed in diffusion model training, i.e., the quantity and quality of the
multi-concept bindings in the training set. In addition, the usage of unrealistic prompts perhaps not
encountered in training also results in poor text/concept alignment. We leave this investigation for
the future.

A.7 ABLATIONS ON HYPERPARAMETERS

In this section, we analyze the contribution of the following five factors to the performance of our
CO3 corrector.

Notation recap: [ is the exponential decay factor in the affinity scores; X scales the composed_score
for CFG; num_resampling is the number of resampling steps at the start of diffusion; num_t s is
the number of early timesteps where the corrector is used; num_steps is the number of iterations
per corrector application.
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Figure 6: Qualitative results of SDXL base diffusion model, and SDXL + CO3 for animal-

animal,animal-object, and object-object prompt categories
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Figure 7: Failure scenarios of PixART-X base diffusion model, PixART-X + CO3, and PixART-X +

Composable Diffusion.
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A.7.1 NUMBER OF RESAMPLING STEPS

Table [4] shows results for different resampling steps. We observe that using more resampling steps
can blur concept separation early in the diffusion process rather than helping to disentangle concepts.

Table 4: num_resampling sweep. Within each group, only num_resampling changes; all
other settings are identical.

Frozen settings num_resampling ImageReward (1) BLIP-VQA (1)

Animals  Animals_Objects Objects Animals  Animals_Objects  Objects
N e T
P P - B S L ]
e N I .

A.7.2 CORRECTOR APPLICATION TIMESTEPS

In CO3, the corrector is applied during the first num_t s diffusion steps. Table|5shows that larger
num_ts generally yields better results, especially for animals and objects. This indicates the cor-
rector remains beneficial beyond only the earliest timesteps.

Table 5: num ts sweep with all other settings fixed: [/ = 1.1, num_resampling=3,
num_steps=5, A = 0.8. (Best values are bold)
— ImageReward (1) BLIP-VQA (1)
Animals  Animals_Objects Objects Animals Animals_Objects Objects
4 1.1862 1.7136 0.8885  0.7430 0.8783 0.4630
6 1.2510 1.7117 0.9750  0.7432 0.8301 0.4312
7 1.2566 1.7062 09916  0.7422 0.8813 0.4834
10 1.3149 1.6816 1.0095  0.7576 0.8832 0.5074

A.7.3 CORRECTOR ITERATIONS

Table[6]reports the effect of increasing the number of corrector iterations. Despite setting num_t s=4,
raising num_steps reduces performance substantially, suggesting that applying the corrector only
at the very beginning is not sufficient; employing it until much later in the diffusion trajectory is
more effective.

Table 6: num_steps. Within each group, only num_steps changes; all other settings are identical.

Fixed settings num-steps ImageReward (1) BLIP-VQA (1)

Animals  Animals_Objects Objects Animals Animals_Objects  Objects
(a) B = 1.1, num_ts=4, 7 1.2622 1.7129 0.9959  0.7542 0.8843 0.4707
num_resampling=2, 10 1.2452 1.6994 0.9753  0.7448 0.8809 0.4706
A=09 15 1.2151 1.6701 0.9437  0.7318 0.8781 0.4556
(b) B = 1.1, num_ts=4, 7 1.2755 1.7049 0.9424  0.7538 0.8762 0.4611
num_resampling=2, 10 1.2503 1.6969 0.9191 0.7446 0.8798 0.4617
A=08 15 1.2480 1.6658 0.9063  0.7356 0.8750 0.4577

A.7.4 EXPONENTIAL DECAY FACTOR [ OF dffinity scores

We vary (3 in equation[I4]from 0.3 to 1.1. Tables[7]and[8|demonstrate that the performance generally
increases with larger /3, with the strongest gains in the animals and objects categories, while a few
settings exhibit minor regressions.
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Table 7: Exponential decay factor 5 with all other settings fixed: num_resampling=3,
num_steps=5, A = 0.8. We report two blocks: num_ts=6 and num_ts=7. (Best values for
each block are bold)

numts B ImageReward (1) BLIP-VQA (1)
Animals  Animals_Objects Objects Animals Animals_Objects  Objects
0.3 1.1458 1.7016 0.8801 0.7262 0.8793 0.4613
0.6 1.1945 1.7069 0.9010  0.7317 0.8786 0.4645
0.7 1.2043 1.7109 09152  0.7310 0.8800 0.4706
6 0.8 1.2157 1.7024 09156  0.7398 0.8776 0.4751
0.9 1.2305 1.7146 0.9511 0.7400 0.8809 0.4766
1.0 1.2282 1.7183 0.9596  0.7350 0.8808 0.4770
1.1 1.2510 1.7117 0.9750  0.7432 0.8801 0.4811
0.3 1.1484 1.6915 0.9005 0.7240 0.8809 0.4691
7 0.8 1.2218 1.7020 0.9405 0.7375 0.8811 0.4782
1.1 1.2566 1.7062 0.9916  0.7422 0.8813 0.4834

Table 8: Exponential decay factor 5 with all other settings fixed: num_resampling=3,
num_steps=5, A = 0.9. We report two blocks: num_ts=6 and num_ts=7. (Best values for
each block are bold.)

— 3 ImageReward (1) BLIP-VQA (1)
Animals  Animals_Objects Objects Animals Animals_Objects  Objects
0.3 1.1437 1.7020 09518  0.7248 0.8816 0.4764
0.7 1.2051 1.7130 0.9860  0.7407 0.8851 0.4788
6 0.8 1.2037 1.7110 0.9916  0.7388 0.8832 0.4894
0.9 1.2003 1.7159 0.9883 0.7416 0.8842 0.4891
1.1 1.2098 1.7180 0.9956  0.7371 0.8841 0.4855
0.3 1.1273 1.6938 0.9490  0.7274 0.8848 0.4796
7 0.8 1.2142 1.7000 0.9937  0.7363 0.8845 0.4952
1.1 1.2331 1.7046 1.0148  0.7496 0.8864 0.4945
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