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A Cross-Domain Method for Customer Lifetime Value Prediction
in Supply Chain Platform

Anonymous Author(s)∗∗

ABSTRACT
Accurate Customer Lifetime Value (LTV) predictions are crucial
for customer relationship management, especially in Supply Chain
Platforms (SCP), which involve effectively managing the service
resources in business decision-making. Previous LTV prediction
methods usually rely on ample historical customer data, which is
not available in the early stages of a customer’s lifecycle. It makes
the modeling of the historical customer data a difficult task due to
the data sparsity. Besides, the long-tail distribution of customer LTV
also brings new challenges to the prediction of LTV. To tackle the
above issues, we propose CDLtvS, a novel Cross Domain method
for customer Lifetime value prediction in SCP. It leverages rich
cross-domain information from upstream platforms to enhance LTV
predictions in downstream platforms. Firstly, CDLtvS pre-trains the
customer representations by an LTV modeling framework named
LtvS in source and target domains separately. Specifically, LtvS
incorporates the Expert Mask Network (ExMN), which not only ef-
fectively models the long-tail distribution of LTV in single-domain
but also resolves cross-domain learning model bias resulting from
this distribution. Then, the various-level alignment mechanism
is introduced to keep the consistency of knowledge transferring
from source to target domains on both sparse and non-sparse data.
Comprehensive experiments on real-world data from JD, one of the
world’s largest supply chain platforms, demonstrate that CDLtvS
achieves a normalized mean average error of 0.3378 in LTV pre-
diction, outperforming 16.3% to the baseline. Additionally, the im-
provements of ≥2.3% across various data sparsity levels (0% – 80%)
provide valuable insights into cross-domain LTV modeling.

CCS CONCEPTS
• Information systems → Information systems applications.
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Figure 1: A typical Supply Chain Platform (SCP) working
flow consists of four steps: 1, the e-commerce platform re-
ceives orders from end users and 2, notifies the customers
to prepare the product accordingly; in Step 3, the customers
order logistics services (e.g., shipment), which are processed
by the logistics service platform in Step 4.

1 INTRODUCTION
In the current era of web-based business and digital economics,
many companies have been leveraging artificial intelligence tech-
nologies for data-driven precision in customer relationship manage-
ment (CRM), thereby effectively enhancing both company revenue
and customer satisfaction [3]. An essential factor in this process
is Customer LifeTime Value (LTV), which plays a significant role
in the assessment and decision-making procedures of CRM [1, 11].
Especially in Supply chain platforms (SCP), accurate prediction of
LTV is crucial for companies to guide the rational allocation of
marketing resources and incentive special customer segments [21].

LTV prediction is a time series forecasting problem that aims
to predict a customer’s future consumption value based on the
historical consumption series. While the recent development of
deep neural networks has significantly improved LTV prediction
performance [5, 16], these models typically require ample historical
customer data, which is impractical, especially in the early stages
of the customer lifecycle. To address the similar data sparsity issue
in recommendation systems, existing work proposes cross-domain
recommendation (CDR) [28], a technique that employs rich domain
information (source domain) to enhance recommendation accuracy
in sparse domains (target domains). In the context of SCP, char-
acterized by significant customer overlap between upstream and
downstream platforms, cross-domain recommendation methods
can be extended to alleviate the data sparsity issue by leveraging
abundant cross-domain information from the upstream platform to
benefit the downstream platform.

This paper focuses on the cross-domain customer LTV predic-
tion problem within the SCP scenario, comprising two linked com-
ponents: the e-commerce platform and the logistic platform. The
e-commerce platform is basically for online shopping involving
interactions between users and customers (i.e., online shops), while
the logistic platform is for logistic service transactions between

1
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customers and service providers (e.g., logistic companies). We note
that the customers on the e-commerce platform also serve as the
"users" on the logistics service platform. Subsequently, end users
order products on e-commerce platforms, where the customers 1

prepare the products, which are further fed into the logistic platform
for shipment, following SCP working flow, as depicted in Figure 1.
The SCP customers’ logistic demand is influenced by the business
generated on the e-commerce platform. Leveraging cross-domain
information from the e-commerce platform (source domain) can
help mine more customer information and enhance LTV prediction
on the logistics service platform (target domain).

However, LTV prediction in SCP remains a challenging task due
to several factors: (1) The long-tail distribution of LTV is challenging
to model. Figure 2 illustrates that the LTV distributions in both
the source and target domains are imbalanced. In stochastic gra-
dient optimization, the large gradient vectors generated by high
LTV samples potentially impact model convergence and stability.
(2) Long-tail data lead to biased cross-domain information transfer.
The prevalence of head samples can hinder the adequate modeling
of high-value customers in cross-domain knowledge learning. (3)
Learning effective source domain knowledge transfer patterns is a chal-
lenge, particularly when building upon limited non-sparse customer
samples to improve predictions for sparse customers. Straightfor-
ward cross-domain presentation aggregation with inherently noisy
doesn’t effectively refine the migration of cross-domain informa-
tion. Current methods mainly focus on LTV problems related to
customer representation learning [26, 29] or addressing long-tail
data distribution modeling [16, 25]. However, these methods rely on
the assumption of having ample historical customer data within a
single domain. Although many efforts have been made to solve the
data sparsity problem in cross-domain recommendation [17, 32],
the long tail distribution of LTV is still an open issue hard to solve.

To address the above challenges, we introduce CDLtvS, a Cross-
Domain method for customer Lifetime value prediction in Supply
chain platform. CDLtvS firstly pre-trains the personalized customer
representations in the source and target domains separately with a
single-domainmodelingmethod LtvS, then jointly leverages the pre-
trained representations to enhance the cross-domain LTV features
for future value prediction. Specifically, (1), an Expert Mask Network
(ExMN) is designed to segregate head and tail value data into dis-
tinct feature spaces using unique vector masks, addressing the long-
tail distribution data modeling challenge. (2), ExMN also mitigates
the issue of biased cross-domain knowledge transfer by utilizing
pre-trained single-domain representations enriched with distribu-
tion information. (3), we introduce cross-domain knowledge align-
ment at various levels to finely tune the transfer of cross-domain
information. Overall, the contributions of this paper include:

• We propose CDLtvS, a novel method that tackles data spar-
sity issues in LTV prediction by leveraging cross-domain
information in the SCP. To the best of our knowledge, we
are the first to address cross-domain LTV prediction in SCP.

• To effectively model the long-tail LTV distribution, CDLtvS
introduces an Expert Mask Network in single-domain repre-
sentation modeling. ExMN’s design also adeptly addresses
the model bias problem in cross-domain learning.

1In this paper, we refer to business customers as customers for short.
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Figure 2: The long-tail LTV distribution in the upstream and
downstream industry platforms of this SCP.

• CDLtvS further enhances cross-domain knowledge transfer
for both sparse and non-sparse data through a various-level
alignment mechanism.

• Extensive experiments are conducted using a real-world
dataset, including 5,000 customers collected from JD.com,
one of the world’s largest supply chain platforms. The re-
sults outperform the baseline methods by 2.3%, 11.5%, 16.3%,
and 14.4% in normalized mean average error under various
data sparsity levels (0% to 80%), showing the effectiveness
of our CDLtvS approach for LTV prediction.

2 RELATEDWORK
2.1 LTV Prediction
LTV prediction has evolved over time, driven by the growing recog-
nition of its significance in marketing and customer relationship
management. In the early stages, LTV prediction methods were
constrained by data limitations and relied on probabilistic statis-
tical models [7–9], such as the BTYD model and Pareto/NBD [8].
Recently, the emergence of large-scale e-commerce platforms ac-
cumulating vast amounts of data has facilitated the adoption of
machine learning and deep neural network methods [5, 27], leading
to more accurate LTV prediction. For example, Drachen et al. [6]
utilizes a two-stage XGBoost to identify high-value customers and
predict their monetary value from the social features. Xing et al.
[26] focus on jointly learning temporal and structural customer rep-
resentations based on historical customer behavior. Piao et al. [23]
leverage social network graphs as auxiliary customer information to
enhance the learning of structural customer representations. Wang
et al. [25] and Li et al. [16] concentrate on modeling the long-tailed
distributions of LTV. Wang et al. [25] assume that LTV follows a
zero-inflated lognormal (ZILN) distribution with limitations in its
applications, whereas Li et al. [16] propose a decomposition ap-
proach relying on prior knowledge of LTV distribution to address
the issue of imbalanced sample distributions.

However, all the aforementioned methods utilize one-domain
data, relying on the availability of abundant historical customer data
for training, which is a limiting assumption in real-world scenarios.
Customer historical information is often sparse in the early stages
of the customer life cycle, and making LTV predictions at this stage
is crucial for aiding companies in managing customer relationships.

2.2 Cross-domain Recommendation
Similar to LTV prediction, recommendation systems are faced
with the data sparsity problem, which promote the emergence

2
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and development of Cross-Domain Recommendation (CDR) [14, 17–
19, 24, 32]. The core idea of CDR is to leverage information collected
from other domains to alleviate the data sparsity problem in one
domain [28].

One popular paradigm is to customize a mapping bridge func-
tion whose optimization objective is that the transformed user
representation in the source domain generalizes well in the target
domain, like EMCDR [20], PTUPCDR [32], and so on. The efficiency
of this paradigm is damaged when applied to non-sparse data be-
cause of the loss of target domain information. Another group of
CDR methods utilizes information from both the target domain
and the source domain by introducing transfer learning techniques
to transfer knowledge between domains. CoNet [13] enables dual
knowledge transfer across domains by using cross-connections
between feed-forward neural networks. DASL [17] takes into ac-
count sequential information during the recommendation process
and designs dual-attention learning mechanism to transfer the
knowledge contained in the history sequences. however, the lack
of cross-domain alignment and the rough combination way limit
their performance.

Our approach aligns with the second paradigm. We transfer the
source domain knowledge and fuse cross-domain information with
cross-domain alignment at different levels. However, to the best of
our knowledge, no prior research has applied CDR techniques to
the domain of LTV prediction.

3 PROBLEM DEFINITION
This paper studies the task of predicting the future Lifetime Value
(LTV) of customers in the Supply Chain Platform (SCP). In SCP, we
have an upstream industry platform, serving as the source domain,
and a downstream industry platform, serving as the target domain.
The customer of SCP is defined as the entity overlapping both ser-
vice providers in the upstream industry platform and service users
in the downstream industry platform. We represent the customer
set of SCP as C. This set contains two customer types, one is C𝑎
possessing ample historical information in both source and target
domains, while the other is C𝑛𝑎 with sparse historical information
in the target domain. We denote the customer historical consump-
tion series and the customer portrait features of the source domain
as 𝐻𝑠,𝑙 (𝐻𝑠,𝑙 = [ℎ𝑠,𝑙0 , ℎ

𝑠,𝑙
1 , ..., ℎ

𝑠,𝑙
𝑁
], 𝑁 is the length of 𝐻𝑠,𝑙 ) and ℎ𝑠,𝑝 ,

and similarly 𝐻𝑡,𝑙 and ℎ𝑡,𝑝 for the target domain.
Given the above notation, for a customer 𝑐 (𝑐 ∈ {C𝑎, C𝑛𝑎}), along

with their historical consumption series 𝐻𝑠,𝑙 , 𝐻𝑡,𝑙 , and portrait
features ℎ𝑠,𝑝 , ℎ𝑡,𝑝 , our objective is to forecast the cumulative LTV
for the future 𝑛 days starting from the (𝑁 + 1)-th day in the target
domain, denoted as 𝑣𝑐 =

∑𝑁+Λ𝑁+1
𝑖=𝑁+1 ℎ

𝑠,𝑙
𝑐,𝑖
.

4 PROPOSED METHOD
We propose a Cross Domain method for customer Lifetime value
prediction in Supply chain platform, named CDLtvS. The primary
design objective is to solve the data sparse problem in LTV predic-
tion and address the challenges posed by long-tail LTV data and
cross-domain learning.

CDLtvS begins by designing a single-domain modeling method,
named LtvS, which incorporates an Expert Mask Network referred
to as ExMN with the pattern segmentation constraints to train the

domain representation in long-tail data. Furthermore, we intro-
duce an effective source domain knowledge transfer method that
incorporates cross-domain alignment, enabling cross-domain LTV
prediction for both sparse and non-sparse data.

4.1 Overview of CDLtvS Framework
The CDLtvS framework, illustrated in Figure 3, comprises three
modules designed to predict customer lifetime value in the supply
chain platform:

• Target Domain Representation (TDR). This module utilizes
customer portrait features and consumption series in the target
domain. It first encodes these two types of data separately and
then combines the resulting embeddings using the ExMN net-
work we propose. This process yields the hidden representation,
denoted as 𝑒𝑡 , for the customers in the target domain.

• Source Domain Representation (SDR). Following the same
structure as the TDR module, this module obtains the hidden
representation of customers in the source domain, denoted as 𝑒𝑠 .

• Cross-domain LTV prediction (CDP). In this module, we
transfer the source domain representation, 𝑒𝑠 , into the vector
𝑒𝑚 through knowledge transferring. Subsequently, we fuse the
vectors 𝑒𝑚 and 𝑒𝑡 with a low-dimensional alignment process to
accomplish cross-domain LTV prediction.

The CDLtvS framework follows a two-stage training method.
In Stage 1, we pre-train the TDR and SDR modules. This can be
viewed as two single-domain LTV predictions for two domains
independently, serving as our single-domain modeling method
named LtvS. In Stage 2, we use the pre-trained parameters from
Stage 1 and jointly train the cross-domain LTV prediction module
along with the representation modules of the two domains.

We provide a detailed explanation of the single-domain modeling
method LtvS in TDR and SDR in the following section 4.2, as well
as the training method in CDP in section 4.3.

4.2 LtvS: Single-Domain Modeling
In this section, we take the pre-training process stage 1 in the source
domain as an example to illustrate how LtvS optimizes the customer
representations within a single domain, which is denoted as 𝑒𝑠 for
the source domain and 𝑒𝑡 for the target domain.

4.2.1 Feature Encoder. In our single-domain pre-trainingmethod,
LtvS, we employ DeepFM[10] to encode customer portrait features
ℎ𝑠,𝑝 due to its capability to capture complex feature interactions,
resulting in vector 𝑒𝑠,𝑝 ∈ Rℎ (where ℎ is the hidden size of em-
beddings). For consumption series 𝐻𝑠,𝑙 , we apply the Temporal
Convolutional Network (TCN) [2] generating vector 𝑒𝑠,𝑙 ∈ Rℎ due
to its capability to model temporal patterns at various scales. The
combination of DeepFM and TCN enhances the richness of infor-
mation extracted from both types of data.

4.2.2 ExMN Network. We design a novel network called ExMN
(ExpertMask Network) to address the long-tail LTV distribution
problem, aiming to distinguish customers of varying value levels.
The fundamental concept behind ExMN involves the utilization
of an expert router to assign distinct vector masks for data in the
head and tail segments. It encourages the model to map the distinct

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’24, MAY 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

ℎ𝐵0

ℎ𝐵0

Source Domain Representation

ℎ𝐵0ℎ0
𝑠,𝑙

𝑁
ℎ
s,𝑝

𝑣s

𝑒𝑠

Consumption

Series

Portrait

Features

Target Domain Representation

Cross Domain LTV Prediction

In
p

u
t

E
n
co

d
er

O
u

tp
u

t

TCN

C

LtvS
CDLtvS

Knowledge Transferring 

C

𝑒𝑡

FM

DeepFM

MLP

Embeddings

𝑣

TCN

ℎ𝐵0ℎ0
𝑡,𝑙

𝑁

ℎ
𝑡,𝑝

𝑒𝑡,𝑙

𝑒
t,𝑝

𝑣𝑡

FM

DeepFM

MLP

Embeddings

C

Fusion Layer

Expert

Router

𝑒𝑠

Stage 1. 

Pre training in single-domain

Stage 2. 

Training in cross-domain

MultiplyConcat Addition

C

Output Layer

masked

𝑣s

Alignment

𝑒𝑡,𝑜 of 𝑐𝑛𝑎

𝑒𝑡,𝑜 of 𝑐𝑎

𝑒𝑚,𝑜

Paired data

Expert 

Mask 

Network

MLP

𝑒𝑚

𝑒𝑠,𝑙𝑒
𝑠,𝑝

Expert Mask 

Network

ExMN

Figure 3: The overall framework of CDLtvS. Initially, we acquire the hidden representations 𝑒𝑡 and 𝑒𝑠 from the pre-trained
target domain and source domain representation modules using the single-domain modeling method LtvS. Subsequently, we
employ these representations within both the target and source domains to facilitate cross-domain LTV prediction.

feature segments within a high-level embedding space to several
different sub-spaces to enhance a more balanced data distribution.

The structure of the ExMN Network is depicted on the left of Fig-
ure 3. Initially, the encoded feature embeddings are fused through
a fusion layer to obtain the initial single-domain representation ¤𝑒𝑠 ,
given by the equation:

¤𝑒𝑠 = 𝑅𝑒𝐿𝑈 (𝐹𝐹𝑁𝑓 ( [𝑒𝑠,𝑝 , 𝑒𝑠,𝑙 ])) . (1)

Here, 𝐹𝐹𝑁𝑓 contains a fully connected (FC) layer, and ReLU serves
as the activation function.

To allocate distinct vector masks for different data, we employ an
expert router network consisting of two FC layers, 𝐹𝐹𝑁𝑠𝑚𝑎𝑥 and
𝐹𝐹𝑁𝑔 , to calculate the routing probability ¤𝑔𝑠 ∈ R𝐾 . 𝐾 represents
the number of experts, and each expert points to an independent
non-mask location. The following show equations:

𝑔𝑠 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (T (𝐹𝐹𝑁𝑠𝑚𝑎𝑥 ( ¤𝑔𝑠 ), 1)) (2)

¤𝑔𝑠 = 𝑅𝑒𝐿𝑈 (𝐹𝐹𝑁𝑔 ( ¥𝑒𝑠 )) (3)

T (𝑥, 𝑎) =
{
𝑥𝑖 if 𝑥𝑖 is in the top 𝑎 elements of 𝑣,
−∞ otherwise. (4)

where T (𝑥, 𝑎) represents the top-𝑎 selection function, and in our
work, we set 𝑎 = 1 to assign a unique expert to each sample. This
results in one element in ¤𝑔 being equal to 1, and the rest equal to 0.
It should be noted that this method can be extended to values of 𝑎
greater than 1, which allows mask combinations generated by the
mixture of experts.

Next, we create𝑚 = ℎ ÷ 𝑘 copies of each element in the vector
¤𝑔𝑠 ∈ R𝑘 to obtain the masking vector 𝑔𝑠 ∈ Rℎ=𝑘×𝑚 . It’s important
to note that ℎ must be divisible by 𝑘 . By dot product 𝑔𝑠 and ¤𝑒𝑠 , we

mask certain elements in ¤𝑒𝑠 , resulting in the new single-domain rep-
resentation 𝑒𝑠 . The process of masking helps create feature spaces
for 𝑒𝑠 that are tailored to its expert routing. Furthermore, when 𝑒𝑠
serves as an input to the subsequent FC layers, it encourages the
model to focus on different features for data with varying routing.

Finally, we feed 𝑒𝑠 to the output layer 𝐹𝑁𝑁𝑜 and get the final
LTV prediction output, which can be expressed as:

𝑣𝑠 = 𝑅𝑒𝐿𝑈 (𝐹𝑁𝑁𝑜 (𝑒𝑠 )) . (5)

4.2.3 Optimization. As discussed in Section 4.2.2, our aim is
to achieve a more balanced data distribution for specific feature
learning by utilizing the expert router to allocate distinct vector
masks for customers of different value levels. To accomplish this, we
associate expert routing with LTV distribution information through
the following constraints:

L𝐸𝑥𝑀𝑁 = 𝜆1 · L𝐸𝐶 + 𝜆2 · L𝐸𝑂 (6)

where L𝐸𝐶 is the Expert Classification cross-entropy loss, and
L𝐸𝑂 is the Expert Ordinal regression loss. 𝜆1 and 𝜆2 determine the
contribution of each Expert loss.

The expert classification cross-entropy loss L𝐸𝐶 evaluates the
model’s capability to correctly categorize customer samples into
their respective LTV levels or, in otherwords, how correctly they are
assigned to routing experts. This assessment is made by penalizing
the discrepancy between the predicted probability 𝑝𝐸𝐶 , and the
actual LTV level label 𝑝𝐸𝐶 . To obtain the actual label 𝑝𝐸𝐶 , the
customer samples in a batch B are divided into 𝑘 customer groups
based on their real LTV label 𝑣𝑠 . And for the LTV level prediction
𝑝𝐸𝐶 , we compute it by employing the FC layer 𝐹𝑁𝑁𝑠𝑚𝑎𝑥 of the
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router network with the middle vector ¤𝑔𝑠 as input.

L𝐸𝐶 = − 1
|B|

1
𝑘

∑︁
𝑐𝑖 ∈B

𝑘−1∑︁
𝑗=0

𝑝
𝑖, 𝑗

𝐸𝐶
· 𝑙𝑜𝑔(𝑝𝑖, 𝑗

𝐸𝐶
) (7)

𝑝𝐸𝐶 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐹𝐹𝑁𝑠𝑚𝑎𝑥 ( ¤𝑔𝑠 )) (8)
The expert ordinal Regression loss L𝐸𝐶 establishes the relative

order relationship among routing experts, enhancing the accuracy
of classification and ranking.

L𝐸𝑂 = − 1
|B|

1
𝑘

∑︁
𝑐𝑖 ∈B

(
𝑚∑︁
𝑗=0

𝑙𝑜𝑔(𝑝𝑖, 𝑗
𝐸𝑂

) +
𝑘−1∑︁
𝑗=𝑚+1

(1 − 𝑙𝑜𝑔(𝑝𝑖, 𝑗
𝐸𝑂

)) (9)

𝑝𝐸𝑂 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐹𝐹𝑁𝑠𝑚𝑜𝑖𝑑 ( ¤𝑔𝑠 )) (10)
where𝑚 represents the real label of the customer’s LTV level ID,
and 𝑝 𝑗

𝐸𝑂
indicates the probability that the LTV level is higher than

expert 𝑗 . We calculate this probability using an FC layer 𝐹𝑁𝑁𝑠𝑚𝑜𝑖𝑑
based on the intermediate vector ¤𝑔𝑠 .

Finally, we use Mean Average Error (MAE) as the LTV loss func-
tion, defined as:

L𝐿𝑇𝑉 = − 1
|B|

∑︁
𝑐𝑖 ∈B

|𝑣𝑖 − 𝑣𝑖 |. (11)

The total loss for the source domain pre-training in stage 1 is a
combination of L𝐿𝑇𝑉 and L𝐸𝑥𝑀𝑁 :

L𝑠 = L𝑠𝐿𝑇𝑉 + L𝑠𝐸𝑥𝑀𝑁 . (12)

4.2.4 Discussion. (1) ExMN benefits long-tail distribution data
modeling in single-domain. With the structure of ExMN and the
constraints imposed by the ExMN loss, our approach effectively
addresses the challenge posed by the long-tail distribution in single-
domain LTV modeling. It encourages the embedding vectors of
customers with different LTV levels to be masked into different
feature spaces, emphasizing different features for different LTV-
level customers. This approach allows the model to be well-versed
within different feature spaces corresponding to various LTV levels.

(2) ExMN mitigates the issue of biased cross-domain information
transfer in the subsequent cross-domain LTV prediction stage with
the distribution information brought by the pre-trained embedding
vectors. The masked vectors create areas that highlight the tail of
the distribution, which provides the model with more opportunities
to learn and generalize effectively from these tail data, thereby
mitigating the issue of model bias.

4.3 Cross-Domain LTV Prediction
In this section, we present the training process for cross-domain
LTV prediction in the second stage. We begin by using a knowledge
transferring module to transfer the source domain representation
𝑒𝑠 to a transferring knowledge embedding, denoted as 𝑒𝑚 . Subse-
quently, we combine this transferring knowledge with the target
domain representation, 𝑒𝑡 , using a multi-layer perceptron (MLP) to
yield cross-domain LTV predictions, as expressed by the following
equations:

𝑒𝑚 = 𝑅𝑒𝐿𝑈 (𝐹𝐹𝑁𝑡𝑟𝑎𝑛𝑠 (𝑒𝑠 ) (13)
𝑣𝑠 = 𝑀𝐿𝑃 ( [𝑒𝑚, 𝑒𝑡 ]) (14)

where 𝐹𝐹𝑁𝑡𝑟𝑎𝑛𝑠 represents the fully connected layer of the knowl-
edge transfer module. The𝑀𝐿𝑃 , composed of two fully connected

layers with ReLU activation functions, combines knowledge from
both domains to facilitate LTV prediction.

4.3.1 Alignments at Various Levels. To enhance cross-domain
knowledge transfer for both sparse and non-sparse data, we intro-
duce two alignment methods in a lower-dimensional space.

Initially, to ensure partial alignment of source domain trans-
ferring knowledge information with target domain information
while preserving individual domain-specific details, we project the
vectors requiring alignment into a lower-dimensional space. This
projection is achieved using two matrices, denoted as 𝑊𝑚 and
𝑊 𝑡 , both having dimensions of Rℎ×𝑑 . We apply these matrices
to transform the transferring knowledge representation 𝑒𝑚 and
the target domain representation 𝑒𝑡 , both initially in Rℎ , into a
lower-dimensional space. This transformation results in 𝑒𝑚,𝑜 and
𝑒𝑡,𝑜 , which are now in R𝑑 . Importantly, this new embedding size 𝑑
is smaller than the original embedding size ℎ.

Then, we propose alignment methods for paired non-sparse data.
Our assumption is that the embedding 𝑒𝑚 , learned through the
transferring knowledge module, should resemble the target domain
knowledge 𝑒𝑠 containing substantial information. Thus, we intend
to mainly utilize transferring knowledge 𝑒𝑚 for LTV prediction
when the customer’s target domain information is insufficient. To
achieve this, we introduce an alignment loss, denoted as L𝐴𝑃 , for
paired non-sparse data C𝑎 . Following [30], we employ a contrastive
learning approach InfoNCE [22], to enhance the similarity between
the 𝑒𝑚,𝑜 and 𝑒𝑡,𝑜 vectors of the same customer which are treated
as paired data. The loss is expressed as follows:

L𝐴𝑃 = −
∑︁

𝑐𝑖 ∈B∩C𝑎
log

exp(𝑠𝑖𝑚(𝑒𝑚,𝑜
𝑖

, 𝑒
𝑡,𝑜
𝑖

)∑
𝑐 𝑗 ∈𝑆𝑐𝑖 exp(𝑠𝑖𝑚(𝑒𝑚,𝑜

𝑖
, 𝑒
𝑡,𝑜
𝑗
))

(15)

where 𝑆𝑐𝑖 represents the negative samples for customer 𝑐𝑖 in the
batch B. 𝑠𝑖𝑚(·, ·) measures the cosine similarity between vectors.

Furthermore, we propose the alignment for data of the same
type. We categorize customers into two types: C𝑎 with ample his-
torical information and C𝑛𝑎 with limited historical information,
which corresponds to non-sparse and sparse data, respectively. We
apply positive alignment for sparse data and negative alignment for
non-sparse data to distinguish these data types within the spatial
representation. This approach allows the model to distinguish non-
sparse and sparse data when learning knowledge fusion modes.
The alignment loss L𝐴𝑇 for data of the same type is defined as:

L𝐴𝑇 =
1

|B ∩ C𝑛𝑎 |
∑︁

𝑐𝑖 ∈B∩C𝑛𝑎
𝑚𝑎𝑥 (0, 𝑠𝑖𝑚(𝑒𝑚,𝑜

𝑖
, 𝑒
𝑡,𝑜
𝑖

) − 𝜂)

+ 1
|B ∩ C𝑎 |

∑︁
𝑐𝑖 ∈B∩C𝑎

(1 − 𝑠𝑖𝑚(𝑒𝑚,𝑜
𝑖

, 𝑒
𝑡,𝑜
𝑖

))
(16)

where 𝜂 is the similarity margin of sparse data.

4.3.2 Optimization. In summary, the loss function L𝑐 for our
CDLtvS model in stage 2 is defined as follows.

L𝑐 = L𝐿𝑇𝑉 + 𝜆3 · L𝐴𝑃 + 𝜆4 · L𝐴𝑇 (17)

where the strength of the alignment loss for paired non-sparse data
is controlled by 𝜆3 and the strength of the alignment loss for data
of the same type is controlled by 𝜆4.
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5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. There is no publicly available dataset in LTV pre-
diction for SCP. To validate our model’s effectiveness, we gathered
data from a real-world JD application, an SCP comprising (1) an
E-commerce platform as the source domain, containing customer
order number sequences and e-commerce portrait features, and (2) a
logistics service platform as the target domain, containing customer
waybill number sequences and logistic portrait features. In the JD
dataset, we randomly sampled 5,000 customers in Guangzhou from
August 10, 2020, to October 24, 2022. We segmented the customer
historical sequence data into 30-day intervals, resulting in 88,577
samples for experiments on the future 30-day LTV prediction. For
evaluation purposes, we divided the JD dataset into training, vali-
dation, and test sets in a ratio of 7:2:1.

5.1.2 Evaluation Metrics. In this paper, we evaluate the proposed
framework using key metrics, including the Normalized Mean Aver-
age Error (NMAE), Normalized Rooted Mean Square Error (NRMSE)
[6], and normalized Gini [25], within the target domain. The nor-
malized Gini is computed as the ratio of the Gini coefficient of
LTV prediction to the Gini coefficient of LTV labels. This metric
evaluates the model’s capacity to distinguish high-consumption
consumers from the entire consumer base. Lower quantitative val-
ues for NMAE and NRMSE, along with higher quantitative values
for normalized Gini, signify a stronger predictive performance of
the LTV prediction model.

5.1.3 Baselines. We compare our model with the following three
categories of baselines.
(1) Time Series Forecasting (TSF) Methods:

• ARIMA [4] is one of the most popular linear models for
time series forecasting. It has nice statistical properties and
great flexibility.

• LSTM [12] is a deep learning model that belongs to a re-
current neural network, which is widely applied in many
scenarios for its capable of capturing complex non-linear
patterns in time series data.

• Informer [31] is a variant of the conventional Transformer
architecture. It mitigates quadratic time complexity and
memory usage challenges by introducing probSparse self-
attention and distillation operations.

• TCN [2] is a type of convolutional neural network (CNN)
designed for sequence modeling. It employs convolutional
layers with dilated convolution to capture temporal pat-
terns at different scales.

(2) LTV Prediction Methods:
• Two stage Xgboost [6] involves the classification of cus-

tomer types followed by the prediction of monetary rev-
enue targeting valuable customers. XGBoost is employed
to model both of these essential tasks.

• TSUR [26] proposes a temporal-structural user represen-
tation model for LTV prediction, enhancing both tempo-
ral and structural encoding. Additionally, it introduces a
novel cluster-alignment regularization method to harmo-
nize these two representation types.

(3) CDR Methods:
• DASL [17] investigates domain-specific knowledge extracted

from historical sequences and employs a dual learning
mechanism to facilitate knowledge transfer between di-
verse domains.

• PTUPCDR [32] utilizes personalized bridge functions, in-
formed by users’ characteristic embeddings, to enable the
personalized transfer of knowledge learned from sequences
in the source domain.

5.1.4 Experiment Settings. We implement our framework and the
baselines using PyTorch. For each task and method, we use Adam
[15] as the optimizer and set the initial learning rate as 0.001. Regard-
ing model parameters, we have chosen an embedding size of 128 for
the hidden layer and 80 for the alignment space, while the number
of experts 𝑘 is set to 4. We set {𝜆1 = 10, 𝜆2 = 20, 𝜆3 = 2, 𝜆4 = 1}
as the initial loss factor, and they will drop to 0.01 times after 20
epochs to avoid interfering with the prediction training process.
The batch size for all methods is empirically set to 256. We tune all
model parameters by fitting them to the validation set and apply
an early-stop strategy with a patience of 7 epochs.

Following [20], we evaluate the performance of CDLtvS in cross-
domain LTV prediction by randomly excluding historical consump-
tion data in the target domain for a subset of customers, resulting in
a group denoted as C𝑛𝑎 with limited historical information, during
the training, validation, and testing phases. The remaining group,
endowed with ample data, is represented as C𝑎 . Specifically, in our
experiments, we vary the proportions of C𝑛𝑎 , represented by 𝑃 ,
at levels of 0%, 20%, 50%, and 80% of the total customer base. The
greater the value of 𝑃 , the higher the proportion of sparse data,
which implies more challenging tasks. For the experiments in sec-
tion 5.3, we assess the model’s performance on C𝑛𝑎 with sparse
historical data and C𝑎 with ample historical information.

5.2 Performance Comparison
This section presents the results of all the baselines and our model
on four LTV prediction tasks under different values of 𝑃 in Table
1, the best and the second best results are marked in bold and
underline. From the experimental results, we have several findings:
• Our results demonstrate superior performance compared to base-

line methods. Our method decreases the normalized mean aver-
age error by 2.3%, 11.5%, 16.3%, and 14.4%, the normalized rooted
mean square error by 6.5%, 12.6%, 10.9%, and 13.2%, while main-
taining a high GINI value not less than 0.9442 under various data
sparsity levels (0% to 80%).

• Time series forecasting (TSF) methods only use the historical
consumption series, and its performance is not satisfactory, espe-
cially in tasks with a large 𝑃 value. Compared with TSF methods,
LTVmethodsmake use of customer portrait features, thus achiev-
ing better results in sparse data scenes (𝑃=80%). Therefore, cus-
tomer portrait feature data can supplement certain information
to enhance the LTV prediction when the historical consumption
data of customers is sparse.

• Cross-Domain Recommendation (CDR) methods use the auxil-
iary data by combining the data from different domains into a
single domain and achieve the best performance on the base-
line in the scenario of sparse customers. We adapt DASL and
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Table 1: Performance comparison of four LTV prediction tasks. Best and the second best results are marked in bold and
underline.

P 0% 20% 50% 80%
Metric NMAE NRMSE GINI NMAE NRMSE GINI NMAE NRMSE GINI NMAE NRMSE GINI

TSF

ARIMA 0.3044 2.1839 0.9680 0.4518 2.9219 0.6356 0.6491 3.5338 0.3529 0.8642 4.2030 0.1427
LSTM 0.3375 2.5407 0.9768 0.4528 2.8585 0.8255 0.6621 3.7185 0.6343 0.9829 4.6217 0.1439
Informer 0.3461 2.6967 0.9766 0.4090 2.5038 0.8411 0.6234 3.3494 0.5203 0.8524 4.3021 0.2955
TCN 0.2604 1.4437 0.9781 0.3913 2.0741 0.8310 0.6215 3.2897 0.5177 0.8262 4.0043 0.3014

LTV Xgboost 0.2754 1.4069 0.9751 0.4783 2.0518 0.9173 0.6257 2.5386 0.8933 0.7079 2.8017 0.8760
TSUR 0.3068 1.5763 0.9721 0.4254 2.1288 0.8615 0.6207 3.2052 0.7432 0.7948 3.8653 0.6240

CDR DASL 0.2639 1.4749 0.9783 0.3287 1.6103 0.9646 0.4038 1.8039 0.9424 0.4898 2.0181 0.9273
PTUPCDR 0.2594 1.4707 0.9782 0.3897 2.0781 0.8350 0.5973 3.2035 0.5529 0.4143 1.8081 0.8828

Ours LtvS 0.2547 1.4011 0.9775 0.3779 1.9766 0.8681 0.5987 3.1966 0.7081 0.7813 3.8034 0.5527
CDLtvS 0.2534 1.3492 0.9762 0.2908 1.4061 0.9621 0.3378 1.6063 0.9535 0.3544 1.5692 0.9442

PTUPRCDR, two typical algorithms in CDR tasks, to LTV tasks,
using the same encoding methods of sequence features and por-
trait features as our model, and their cross-domain learning
framework. Compared with DASL, which can distinguish sparse
data samples from non-sparse samples by dual learning, the per-
formance of PTUPCDR is seriously degraded in tasks P equals
20% and 50%. This shows that the knowledge transferred from the
target domain can not be well utilized, in the case of confusing
sparse data and non-sparse data.

• Among all single-domain methods, our method LtvS achieves
the best performance in most tasks. Among all the cross-domain
methods, our cross-domain method CDLtvS achieves the best
performance inmostmetrics. This demonstrates that ourmodel is
effective in LTV prediction in a variety of scenarios with different
proportions of sparse data.

5.3 Sparse and Non-sparse Data Experiments

20% 50% 80%
P
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M

SE

CDLtvS in a

CDLtvS in na

PTUPCDR in a

PTUPCDR in na

DASL in a

DASL in na

Figure 4: Comparison of NMAE and NRMSE in sparse and
non-sparse data experiments for CDLtvS, PTUPCDR, and
DASL at varied sparse data proportions 𝑃 .

In this section, we distinguish and analyze the performance of
cross-domain methods on sparse data sets C𝑛𝑎 and non-sparse data
sets C𝑎 in different tasks. From the results shown in Figure 4, we
have the following observations:

• Our CDLtvS model consistently outperforms baseline models on
both sparse and non-sparse datasets, providing strong evidence
of its broad applicability.

• Regardless of the proportion 𝑃 of sparse data, all models exhibit
superior NMAE performance when dealing with non-sparse data
C𝑎 compared to sparse data C𝑛𝑎 . This observation underscores
the beneficial impact of ample target domain information on
LTV prediction.

• However, in terms of NRMSE performance, the sparse dataset
C𝑛𝑎 outperforms C𝑎 in certain tasks (i.e., 𝑃 = 20%), indicating
potential underfitting of C𝑛𝑎 in these instances. As the value
of 𝑃 increases, and the proportion of C𝑛𝑎 within the dataset
grows, the model tends to prioritize C𝑛𝑎 over C𝑎 . This results in
a relative increase in NRMSE of C𝑛𝑎 , as observed in the results
for CDLtvS and DASL when 𝑃 = 80%.

5.4 Ablation Study
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CDLtvS w/o AT

CDLtvS w/o AP

CDLtvS w/o ExMN

Figure 5: Comparison of NMAE and NRMSE in ablation
studies at varied sparse data proportions 𝑃 .

In this section, we further compare CDLtvS with several abla-
tion variants to demonstrate the effectiveness and advancement
of different sub-modules. Three variants of our approach are com-
pared, including (i) CDLtvS w/o L𝐴𝑃 : No align loss L𝐴𝑃 for paired
instance, defined in equation 15. (ii) CDLtvS w/o L𝐴𝑇 : No align
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loss L𝐴𝑇 used to distinguish between sparse and non-sparse data,
defined in equation 16. (iii) CDLtvS w/o L𝐸𝑥𝑀𝑁 : This variant pre-
trains the source and target representation modules without loss
L𝐸𝑥𝑀𝑁 defined in equation 6.

In Figure 5, we can see that the lossL𝐸𝑥𝑀𝑁 contributes the most
to the final performance since it addresses the long-tail distribution
problem in LTV prediction. While loss L𝐸𝑥𝑀𝑁 plays a pivotal role
in the first feature representation stage of both the source and
target domains, its influence persists in the second stage of cross-
domain LTV prediction due to its realization of different feature
space for different LTV levels. Simultaneously, the role of loss L𝐴𝑇
is prominent in tasks 𝑃 > 0%, aligning with our intended design of
the model constraint to differentiate between sparse and non-sparse
data modeling. And loss L𝐴𝑃 calculated on non-sparse data can
be better learned with a large proportion of non-sparse data, thus
bringing more improvements to the model in tasks with small 𝑃 .

5.5 Fine-tune Performance
This section examines the robustness of our model, analyzes the
influence of expert numbers on model performance, and discusses
the model evolution in two stages of training.

1 2 4 8
Expert Number

0.25

0.30

0.35

0.40

0.45

NM
AE

1 2 4 8
Expert Number

1.4

1.6

1.8

NR
M

SE

0% 20% 50% 80%

Figure 6: Comparison of NMAE and NRMSE in experts num-
ber experiments. Each line represents a different value of
sparse data proportions 𝑃 .

5.5.1 The number of experts 𝑘 . Our model adopts an expert mask
network (ExMN) to address the challenge brought by long-tail distri-
bution. The number of experts 𝑘 will affect the model performance.
We vary 𝑘 in the set {1, 2, 4, 8}. It can be observed from Figure 6
that 𝑘 = 4 achieves the best performance for our model.

While utilizing numerous experts to customize feature space
for customers across different value levels can help alleviate the
impact of high losses from high-value customers on low-value
ones, the relationship between the number of experts and model
effectiveness is not always positively correlated. We identify two
key factors. First, when the number of experts becomes excessive,
it results in reduced sample assignments to each expert, leading to
data insufficiency. Second, our approach involves ranking customer
value within a batch, evenly segmenting customer value levels to
assign level labels. Increasing the number of experts within a fixed
batch size can lead to a decrease in the accuracy of customer LTV
level labels obtained through this method.

5.5.2 Two stage discussion. We analyze the predicted LTV against
the actual LTV of customers in the target domain during Stages 1
and 2, an experimental configuration featuring four experts (𝑘 = 4)
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Figure 7: Predicted LTV against actual LTV in Stages 1 and 2.
We employed distinct colors to differentiate samples assigned
to various experts. Within each subgraph, the top and right
density plots illustrate the similarity in the distribution of
predictions and actual LTV within a single expert, displayed
on a logarithmic scale. The central plot demonstrates the
effective distinction made by experts among customers in
different value levels.

and a sparse data proportion of 𝑃 = 0%. As introduced in section
4.2.3, the loss function 𝐿𝐸𝑥𝑀𝑁 only constrains model optimization
in Stage 1, strictly limiting experts to learn customers of varying
value levels, while it doesn’t apply in Stage 2. Figure 7 illustrates the
change in LTV distribution of different experts from Stage 2 to Stage
1, while the experts’ ability to differentiate between customers of
different value levels remains. In Stage 2, Expert 0 and Expert 1
from Stage 1 merge into a single expert, indicating that samples
assigned to Experts 0 and 1 in Stage 1 exhibit little difference in
the original data. The Stage 2 model adaptively combines them to
assign samples to experts in a more logical manner. In summary,
the two-stage training mechanism offers an effective learning path
for the ExMN.

6 CONCLUSION
In conclusion, to the best of our knowledge, we are the first to intro-
duce a cross-domainmethod into customer lifetime value prediction
in the supply chain platform. We propose the framework CDLtvS
to leverage abundant source domain information to overcome data
sparsity issues in customer Lifetime Value prediction. This frame-
work incorporates a well-designed expert mask network module
and a cross-domain knowledge alignment module to tackle several
challenges: 1) modeling the long-tail LTV distribution, 2) mitigating
cross-domain model learning bias stemming from long-tail data,
and 3) facilitating effective knowledge transfer for both sparse and
non-sparse data. Our extensive experiments on a substantial real-
world supply chain platform dataset validate the efficiency of our
approach and offer valuable insights into model interpretability.

In future research, we look forward to exploring the integration
of customer relationship data and enhancing model interpretability.
It is also important to consider scalability, ethical considerations,
and extending the CDLtvS to broader domains for further advance-
ments.
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