Evolutionary Algorithms and Neural Network-Based Fitness Functions for
Extractive Text Summarization: A Comparative Study with ChatGPT

Anonymous ACL submission

Abstract

Extractive text summarization deals with ex-
tracting a limited number of important sen-
tences from a large document to create a sum-
mary. One novel approach already proposed
in the literature is to model extractive summa-
rization as an optimization problem, where a
Genetic algorithm (GA) has been used for op-
timizing the selection of sentences from a text
to generate the best extractive summary, which
has been found outperforming state-of-the-art
techniques. In this work, we build a similar
model where apart from GA we used several
different evolutionary algorithms (EA) in or-
der to identify the combination that produces
the best result. For this work, we have used
different evolutionary algorithms, namely Dis-
crete Differential Evolution (DDE), Cuckoo
Search, Particle Swarm Optimization, and Fire-
fly Search along with Genetic Algorithm, and
have made comparison of their results with
state-of-the art LLM viz. ChatGPT. The re-
sults are evaluated on the BBC news dataset
using the precision-recall technique metric.

Keywords: Document Summarization, Extrac-
tive Text Summarization, Evolutionary Algo-
rithms, Neural Networks, ChatGPT

1 Introduction

The present work models extractive text summa-
rization as an optimization problem since the search
space for generating an extractive summary grows
exponentially with the length of the input docu-
ment. To this end, we have experimented with
various evolutionary algorithms (EAs) for extrac-
tive text summarization. EAs constitute a class of
nature-inspired optimization techniques, particu-
larly effective in searching for optimal solutions in
extensive solution spaces.

Typically, an evolutionary algorithm works on
optimizing a fitness function, say f. Performance
of the algorithm depends on the definition of the

fitness function. However, obtaining the right fit-
ness function has always been a challenging task
for different EAs. Hence for this work instead of
using any human-defined function we have used a
neural network to define f. Multiple experiments
have been conducted to choose an appropriate f
by varying several metrics, including the number
of training documents from datasets and different
distribution techniques for creating candidate sum-
maries for these training documents. The exper-
iments are run over the widely recognized BBC
dataset, which comprises 2225 single-document
articles from various categories, each accompanied
by its ideal extractive summary. In particular, these
experiments aim to refine and determine the best
fitness function by closely examining the specified
factors. We employed the optimized fitness func-
tion in five distinct EAs for Text Summarization:
Genetic Algorithm (GA), Discrete Differential Evo-
lution (DDE), Firefly Algorithm, Particle Swarm
Optimization (PSO), and Cuckoo Search. Subse-
quently, we conducted a comprehensive compar-
ative study, evaluating their performance against
each other and in comparison to modern-day Large
Language Model-based technologies, namely Chat-
GPT.

2 Relevant Past Works

A wide variety of techniques have been experi-
mented with and used for extractive text summa-
rization, but usage of EAs is still less explored.
In the traditional schemes, frequency-driven ap-
proaches (Nenkova et al., 2011), sentence ranking
(Madhuri and Kumar, 2019), k-nearest neighbor
(Jo, 2017), fuzzy C-means and aggregate scoring
methods (Rahman et al., 2019), centroid-based
summarization (Lwin and Nwet, 2019), Latent
Semantic Analysis (LSA) (K and N, 2015), Ran-
dom Indexing (Chatterjee and Sahoo, 2014) and
Bayesian Topic Models (Chandra et al., 2011)

have been used. Evolutionary algorithms-based
approaches for text summarization include (Karwa
and Chatterjee, 2015) wherein they have used Dis-
crete Differential Evolution (DDE) to summarize
a single document. In 2018, Chatterjee, Jain, and
Bajwa (Chatterjee et al., 2019) worked on single
document text summarization with the help of the
GA and neural networks (NN). They trained the
fitness function with the help of the neural network,
and later genetic algorithm was used to search for
the best optimal solution.

In the present work we enhance text summariza-
tion by employing five different EAs integrating
them with a NN-driven fitness function. Our exper-
iments highlight the effectiveness of this combined
approach in generating improved extractive sum-
maries.

3 Experimental Modelling and Fitness
Function

In the following subsections, we delve into our ap-
proach for document and summary representation,
paving the way to the definition and computation
of the novel neural network-driven fitness function.

3.1 Document Representation

In the proposed model, a document is represented
using a weighted Directed Acyclic Graph (DAG).
Under this framework, each sentence in the doc-
ument serves as a set of vertices, denoted as V,
within the graph. An edge is drawn from sentence
s1 to sentence so only if s; precedes so in the doc-
ument (Shimpikar and Govilkar, 2017). Addition-
ally, each sentence is encoded as a vector for the
purpose of measuring similarity between sentences,
employing the TF-IDF vectorization scheme for
this representation. The similarity between two
sentences is calculated using the cosine similarity
measure between the TF-IDF vector representation
of the sentences s; and s; respectively.

3.2 Summary Representation

For a document comprising N sentences, a
summary of S sentences is captured as an N-
dimensional binary vector. This vector is uniquely
characterized by S occurrences of ‘1’ and N-S oc-
currences of ‘0’, culminating in what we term a
‘summary vector’. Each element in this vector cor-
responds to a sentence in the document, marked as
‘1’ if included in the summary and ‘0’ otherwise.
The mathematical framework guiding the pro-
posed fitness function calculation relies on eight

features (Chatterjee et al., 2019) representing a
summary. These features will be used as inputs
for our fitness function, helping evolutionary algo-
rithms find the best extractive summaries.

Radial and Angular Theme Similarity: The Ra-
dial Theme Similarity and Angular Theme Similar-
ity are defined as follows:

RTSSummary = HTN - TSumm||2
ATSSummary =TxN - Tsumm

Here T denotes the central theme of the Doc-
ument, and T's,,,, denotes the central theme of
Summary defined as:

Zsi €Summary Ws;
|Summary|

, W,
K

Zs €Document “Si
|Document|

TN: s Summ™

Where, ||.||2 denotes the Euclidean Distance, and
|.| denotes the cardinality of the set.

Sentiment Factor: Online AFINN-111 (Nielsen,
2011) dictionary has been used for this purpose.
The sentiment factor is calculated as:

sentiment(s;) = E sentiment_score(word,)
word; €s;

Sentigymmary = E sentiment(s;)
s;ESummary

Sentiment Factor: SFsymmary =

Sentig ummary

mMax vy { suymmary:|summary|=S} (Sentlsummary)

Cohesion Factor: This feature considers all the
pairwise similarities of sentences in the summary
and based on that gives Cohesion Factor score of a
summary as follows:

Z 83,85 € summary subgraph Slm(siﬂ Sj)
CSummary = N
s

where N, = 5(5271) is the number of edges in a

summary subgraph with S nodes. This formulae is
used to normalize the value of CF of a summary:

10g(9 . CSummary + 1)
log(9- M + 1)

CFSummary =

where M is maxv; j<n sim(s;, s;).
CSummary < M and CFSummary <1

Clearly,

Readability Factor: A summary should be
readable, i.e. the sentence should be similar to
the preceding sentence in the summary(Qazvinian
et al., 2008). Readability factor is given by:

Z1§¢<s sim(s;, $i+1)
maxy; sim(s;, 8i+1)

RF Summary —

Aggregate Similarity: The aggregate score of
a sentence (seNtyggregare(S;)) is the sum of edges
incident onto it in the graph. This factor is de-
termined by summing the maximum S aggregate
scores among N sentences, where S and N denote
the number of sentences in summary and document.
Aggregate similarity (ASsummary) 1S given as:

N
Aggregateg. (si) = Z sim(s;, 55)
j=1

ZsiGSummary AggregateSent(si)
Z?:l max; (AggregateSent (Sj))

ASSummary =

Sentence Position: Sentences are assessed based
on their position within the text, and the cumulative
scores assigned to them result in a sentence position
score for the summary(Shimpikar and Govilkar,
2017).

2(N —1)

S Ti ey

where SP; is the Sentence position score of ™
sentence in the document. The overall Sentence
Position score of a summary is calculated as:

> sp,

s; ESummary

SP. Summary —

k by N Ratio: It is the ratio of the number of
sentences in the summary to the total number of
sentences in the document.

3.3 Fitness Function Configuration

Since the goal of the Evolutionary Algorithms is
to construct a summary that maximizes the fitness
function f learned by the neural network. This
function takes the summary represented as set of
the eight features as input (X), and its output (Y)
is either precision or F1-Score. Ideal extractive
summaries, represented as binary vectors, offer a
benchmark for precision values, indicating prox-
imity to the ideal. In order to model this a neural

Radial Theme Similarity 4.0\\
Angular Theme s\muamy——o\

Sentiment Factor

Cohesion Factor ~
s — 0 Precision/F 1-Score
>0 — between 0 and 1
Readability Factor -
Aggregate Similarity

Sentence Position

Figure 1: Architecture of Neural Network

network is trained to generate an effective fitness
function. Each entry in the dataset comprises a
feature vector of size eight representing the sum-
mary as the input for the neural network along with
associated precision/F1-Score value (Y).

The neural network employed for computing the
proposed fitness function f comprises three layers,
each designed to capture distinct aspects of sum-
marization effectiveness:

(1) Input Layer: The initial layer is composed of
eight neurons, each receiving input from the eight
features described above representing summary.
(i1) Hidden Layer: Three neurons for learning intri-
cate patterns within the feature space.

(iii) Output Layer: A single neuron estimating pre-
cision or F1-Score based on experimental config-
uration. The activation function is the sigmoid
function across all layers.

3.4 Training Fitness Function

To achieve robust extractive text summarization, we
created a diverse set of training examples, which
helps our neural network understand not only the
perfect summary but also different imperfect sum-
maries. This diversity allows us to explore how
variations impact precision and F1-Scores.
Training of Fitness over Precision and F1 Score:
Recognizing the nuanced evaluation offered by F1-
Score, which incorporates both precision and re-
call, we extended our experiments beyond preci-
sion alone and ran experiments for both precision
and F1-Score as the output label for the proposed
neural network facilitating computation of f.
Generating Training Dataset: For a specific docu-
ment we start with an ideal summary represented as
a series of Os and 1s. Variations are brought in the
represented summary using a method we termed
as Flip-Distribution. This process systematically
switches an equal number of ‘0’s to ‘1’s and vice
versa, creating a diverse set of ideal summary varia-

tions. Additionally, we include randomly generated
summaries where each sentence in the document
has an equal chance (probability of 0.5) of being
included in the summary. Different candidate sum-
maries are built this way to ensure that the neu-
ral network encounters a wide range of potential
summaries during training, improving its ability to
generalize and generate effective extractive sum-
maries. Precision and F1-Score are computed for
each candidate summary, serving as labels in the
two experiments.

Flip-Distribution: In constructing the Flip-
Distribution for candidate summary generation, a
deliberate focus is placed on producing a higher
number of 1-flip summaries, minimizing variation
from the ideal summary. This strategic choice en-
sures the neural network encounters a substantial
proportion of examples with minimal deviation dur-
ing training, and the dataset leans towards preserv-
ing the structure and content of the ideal summary,
enhancing the model’s ability to generate accurate
extractive summaries.

Consider a document considering of N = 6 sen-
tences, with the desired summary represented as
"001011"(indicating S = 3). To build a dataset of
10 candidate summaries for each document, we
employ the Flip-Distribution method, resulting in
the following distribution:

Flip-Distribution = {3 random, 3 1-flip, 2 2-flips,
1 3-flips, 1 ideal}

(1) 3 random : A summary of length 6 is gener-
ated where each bit can be 1 with a probability of
0.5. Total 62 (26 — 2, excluding null summary -
000000 and complete document - 111111) possibil-
ities, such as “111001”, “010101”, “100001” and
“101100”. Choose three such summaries.

(i1) 3 /-flip : Randomly select a bit in ideal sum-
mary and flip its parity. Total ((15) i.e. 6 possibil-
ities, such as “101011”, “011011”, 000011, and
“001001”. Choose three such summaries.

(iii) 2 2-flips : Randomly select two bits in ideal
summary and flip their parity. Total (g) i.e. 15 pos-
sibilities, such as “111011”, “001000”, “011001”
and “000111”. Choose two such summaries.

@iv) 1 3-flips : Randomly select three bits in ideal
summary and flip their parity. Total (3) i.e. 20 pos-
sibilities, such as “000101”, “011000”, “010111”
and “100001. Choose one such summary.

(v) 1 ideal : Include the ideal summary itself.

For the given document, consider the following

candidate summary Summ:

Summ = “101000"
Ideal_Summary = “001011"

With one common sentence out of two in the candi-
date summary and three in the ideal summary, the
performance metrics are:

112
Precision, Recall, F1-S =|{=,=, =
(Precision, Reca core) <2 3 5>
3.5 Generating a Sample Dataset from BBC
Documents

To train the neural network, a dataset was cre-
ated using a sample of 100 documents from BBC
dataset. Five summaries were generated for each
document using Flip-Distribution, comprising four
bit-flipped summaries and one ideal summary. This
resulted in a total dataset size of 500.

For each candidate summary, eight features and
precision (later, F1-Score labels in subsequent ex-
periments) were calculated by comparing it with
the original document and its ideal extractive sum-
mary, represented as a binary string. The first col-
umn (#.5), indicates the row entry in the created
dataset. The second column (#D), represents the
ordered document number. These documents are
manually selected from the BBC dataset. Given
that five candidate summaries were generated per
document, there are five rows corresponding to
each document number. A representative subset of
10 values is provided in Table 1.

After training the neural network on this dataset,
it serves as the fitness function for the evolution-
ary algorithms. Multiple experiments were con-
ducted, exploring various dataset sizes and Flip-
Distribution configurations to ensure a robust fit-
ness function. Results are presented in Section 6.

4 Evolutionary Algorithms

Evolutionary algorithms represent a heuristic-
based approach for addressing optimization prob-
lems. Successive iterations tend to yield improved
solution sets. Although certain evolutionary algo-
rithms were initially developed for continuous solu-
tion spaces, for the present work we have adapted
them to accommodate the discrete nature of text
summaries. In this section, we discuss the basics of
the evolutionary algorithms used in our work. We
cover Firefly, PSO, and Cuckoo algorithms. For
Genetic (Chatterjee et al., 2019) and DDE (Karwa

#S #D CandidateSummary RTS ATS SF CF RF AS SP k_by_N Precision
1 1 10100011001010000000 1.699 2.927 0.593 0.223 0.323 0.33 0.366 0.3 1
2 1 00010000010110110000 1.802 2.85 0.593 0.223 0.086 0.22 0.238 0.3 0.167
3 1 11100111000000000000 1.762 2.472 0.468 0.223 0.148 0.385 0.442 0.3 0.667
4 1 00001111000001001000 1.764 2.883 0.5 0.223 0.02 0.298 0.3 0.3 0.334
5 1 10000101101010000000 1.69 3.018 0.5 0.223 0.094 0.259 0.342 0.3 0.667
496 100 10000001100011010000000 1.8 2.85 0.4 0.122 0.127 0.396 0.278 0.26 1
497 100 10101001010000010000000 1.851 3.698 0.2 0.122 0.087 0.212 0.344 0.26 0.5
498 100 10101000000100101000000 1.853 3.151 0 0.122 0.12 0.287 0.307 0.26 0.167
499 100 10111101000000000000000 1.905 3.708 0.35 0.122 0.1 0.221 0.402 0.26 0.334
500 100 11000111100000000000000 1.918 3.474 0.55 0.122 0.097 0.235 0.38 0.26 0.5

Table 1: Representative Dataset

and Chatterjee, 2014) algorithms, we adopt im-
plementations from existing studies to compare
their performance with our adapted evolutionary
approaches.

4.1 Firefly Algorithm

Firefly Algorithm (Tomer and Kumar, 2021) draws
inspiration from the behavior of fireflies, where
each firefly tend to move towards the ones emitting
higher light intensity. In the context of text sum-
marization task, each firefly represents a potential
solution i.e a summary vector. The light intensity
of that firefly corresponds to the fitness function.
The algorithm is described below.

Initialization: A population of size equal to
popSize fireflies is generated randomly. Each fire-
fly in the population represents a possible solution
(candidate summaries), i.e N length binary string
with m number of 1. The light intensity is calcu-
lated for each firefly using the fitness function. To
calculate the distance between two fireflies, Ham-
ming distance function is used. The larger is the
unmatched number of bits the more distinct are the
summaries. The Hamming Distance is defined as
follows:

N
xi —xj]| = 25(332‘,1,%,1)
=1

07 ifxi,l = LUj’l

where 0(x;,x:;) =
(@0, 23) L, ifag # x5

x;; represents the [* bit of the i'" firefly, z,; rep-
resents the " bit of the j*" firefly.

Updating of firefly positions: In this step each fire-
fly adjusts its position seeking proximity to brighter
fireflies within the population. The update involves
calculating the movement of a firefly towards an-
other based on their respective brightness and the
distance between them. The movement in a partic-
ular iteration is the cumulative effect of all move-
ments towards fireflies brighter than the current

one. The update formula for a firefly z; towards a
brighter firefly x; in one iteration is given by:

f(zi)
T+y-[[x —x; [

otherwise

Zjl, if rig <

L] =
L1y

where 7; ; is a randomly chosen number from range
[0, 1] for each bit, v a hyper parameter is used to
adjust the distance between two fireflies and f(x;)
represent the fitness value for z;. The fireflies’
positions are replaced with the newly generated
ones following the update rule.

Bit Re-Balancing: After completing a iteration bit
re-balancing is done for each firefly to maintain a
constant summary length m. If a firefly’s summary
contains more 1’s than the desired length, specified
number of randomly selected 1’s are flipped to O,
and vice versa.

Mutation: To avoid local maxima, the top fireflies
undergo mutation using a conventional bit-flipping
technique. Pairs of bits, a ‘0’ and a ‘1’, are selected
and their values are flipped, maintaining a constant
count of 1’s in candidate summaries. This iterative
process continues until the specified stopping con-
dition is reached, such as reaching the maximum
number of iterations.The detailed pseudo-code for
the algorithm is given in Appendix.

4.2 Particle Swarm Optimization

In this method, several particles are initiated, each
aiming to discover the best value for a given fit-
ness function by navigating through the solution
space, attempting to converge on a global optimum
(Asgari et al., 2014). The particles not only move
towards their individual best solutions, but also
gravitate towards the best overall position identi-
fied till now. This prevents the algorithm from
getting stuck in a local optimum.

Initialization: A swarm of particles is generated
randomly, akin to GA. Each particle in the pop-
ulation represents a possible solution i.e. a ran-

dom binary string of size /N with m number of 1’s.
The value of a position is calculated using the fit-
ness function. The goal is to optimize the fitness
function by identifying the optimal combination of
binary values embodied in the particles.

Updating of particle position:Each swarm, in or-
der to find its target makes a move towards the
best possible direction in which the target could be
found. For this it moves towards the global best
location found till now along with the local best
found by itself. A simple probabilistic way to up-
date the particle position is chosen. Two movement
probabilities are calculated for each bit per particle.

1. Movement towards Local Best: This is cal-
culated by multiplying a randomly calculated prob-
ability with an hyper parameter signifying acceler-
ation towards local best solution for that particle
found so far.

2. Movement towards Global Best: This is
calculated by multiplying a randomly calculated
probability with an hyper parameter signifying ac-
celeration towards global best solution.

The combined effect of two probabilities determine
whether the bit would be flipped or not. Exact
formulae and the corresponding pseudo-code can
be found in the Appendix.

Mutation: The traditional technique of bit alter-
ation i.e. selecting a pair of bit, a 0 and a 1, and
flipping its value is followed. This keeps the num-
ber of 1’s constant in the candidate summaries.

4.3 Cuckoo Search

Cuckoo Search (CS) is an optimization algorithm
inspired by cuckoos’ brood parasitism behavior.
Cuckoos deposit eggs strategically, selecting host
bird nests’ with recent eggs and replacing exist-
ing ones with theirs’. Some host birds counteract
this parasitic behavior by rejecting foreign eggs.
The CS algorithm (Cuevas and Reyna Orta, 2014)
simplifies this natural process into three rules for
computational modeling:

1. Artificial cuckoos lay eggs one at a time in a
nest and each egg represents a solution.

2. Cuckoos seek optimal nests to maximize egg
survival, employing an elitist selection strat-
egy favoring high-quality eggs.

3. The fixed population of host nests may discard
alien eggs with a certain probability. Mature
eggs progress to the next generation, select-
ing nests via Levy flights around current best
solutions.

The original CS algorithm (Cuevas and Reyna Orta,
2014) has been adapted for our discrete task of text
summarization and has the following steps:

A. Initialization: Here too the aim is to con-
struct a summary of size m sentences is required
for a document containing N sentences. The
population E' is initialized with popSize eggs,
each egg representing a candidate summary. The
population is evolved over maxGen generations.
EF (e’f, 615 - represents the population
at k*" generation, where ef is a binary vector of
length N where each dimension is equal to ‘1" or
'0’ depending on if the corresponding sentence is
included in the summary or not. Initially randomly
m chosen dimensions among N are initialized as
’1” and rest are '0’.

B. Levy Flight: In Cuckoo search, Levy flights
generate new candidate summaries (eggs) through
the following process:

k
’ epopSize)

Pt =y fori=1,2, .., popSize

7
Here, c¢; denotes a random step, reflecting a change
in position within the original summary/egg. It is
computed as:

Ci:(l'Si@(e?_@beSt)

In this equation, « is a hyperparameter (set as 0.01),
ebest represents the best summary/egg observed
thus far, and s; is generated by a symmetric Levy
distribution using Mantegna’s algorithm (Cuevas
and Reyna Orta, 2014).

C. Replacement of some eggs: Each individual, ef
Vi€ [1,2,..,popSize], can be selected with a proba-
bility of p, and then replaced with a new solution.
This operation is analogous to the mutation step in
Genetic Algorithm which introduces diversity and
explore new regions of the solution space.

! ek with prob 1 — p,

)

L { e¥ +rand - (621 — 622) with prob p,

where rand is a random number normally dis-
tributed, whereas d1 and d2 are distinct random
integers from 1 to popSize.

D. Elitist selection: After generating the solution
ef“, it competes with its predecessor ef based
on fitness, and the fitter one advances to the next
generation.

em_{eﬁ“ if fef™) < (el
[k

e; otherwise

= Cuckoo Search = FireflyAlgortihm == PSO = DDE = GA

(

#BBC DOCUMENT

Figure 2: Comparison and Correlation between Evolu-
tionary Algorithms

E. Squishification: After generating the new solu-
tion efH via Levy flights and replacement step we
obtain a N — dimensional vector with real values.
Since our problem of text summarization of being
discrete nature we pass it through a squishification
function as follows:

if < threshold

1
1+ exp(—ei;rl)

0 otherwise

Vi € [1,2,..,popSize] and Vj € [1,2,..,N],
where threshold a real value in the range [0, 1].
Where eﬁ}“l represents the j*" dimension of 7"
egg in (k + 1) generation.

Summary length adjustment: After squishifica-
tion, if the count of ‘1’s in the new solution ¢!
is not equal to the desired summary length m, ran-
dom bit flips are introduced at specific indices to
maintain consistency. The detailed pseudo-code is

given in appendix.

5 Results

We implemented and experimented with five differ-
ent Evolutionary algorithms namely Genetic, Dis-
crete differential evolution, Firefly, Particle swarm
optimization and Cuckoo Search over BBC news
articles data-set which consists of around 2250 doc-
uments with the available ideal summaries in five
different classes namely business, entertainment,
sports, politics, and tech. The dataset was created
from BBC Documents by generating variations for
each document, such as random changes, flip-based
alterations, and maintaining an ideal summary for
comparison, thereby forming a diverse dataset for
experiments.

Since all the algorithms are a part of randomized
algorithms, the experiments were run 15 times per

algorithm per document and average precision/F1-
Score value is considered. The test data-set con-
sisted of 16 documents randomly sampled from the
complepte corpus. A total of 10 experiments were
conducted, with 4 focusing on precision and 6 on
using F1-Score as the label. Table 2 and 3 summa-
rizes the results across various experiments, where
#Epochs value indicates the number of epochs for
which the neural network has been trained, #Doc-
uments is the number of documents taken to gen-
erate the training data-set and [G, D, F, P, C] corre-
sponds to [GA, DDE, Firefly, PSO, Cuckoo].

Inferring from the result tables, the best Results
are corresponding to Experiment 4 from Table
2 where neural network is trained over 750 doc-
uments with precision as the label. Table 4 il-
lustrates the expanded results of Experiment 4 in
comparision to ChatGPT.

6 Conclusions and Discussions

In this study, we explored the application of evolu-
tionary algorithms to the task of text summarization
and compared their performance with a state-of-the-
art language model, ChatGPT. The evaluation was
conducted on a dataset of 16 documents, and F1-
Score values were used as the performance metric.

Our results revealed that EAs exhibited promis-
ing performance in the context of text summariza-
tion. These EAs achieved competitive F1-Scores,
with an average F1-Score of 0.4947 across all doc-
uments. Notably, on 4 out of the 16 documents
(highlighted rows in Table 4), EAs outperformed
ChatGPT, indicating their efficacy in generating
concise and informative text summaries.

It’s worth highlighting that ChatGPT, a language
model, has been trained on an extensive corpus of
text from various domains, while our model was
trained on a comparatively smaller dataset. Despite
this disparity, EAs demonstrated their potential as
viable alternatives for text summarization tasks.

Furthermore, our analysis unveiled an interesting
trend (Fig. 2). The performance of different EAs
demonstrated a high degree of correlation. When
the F1-Score increased for one EA, it generally
increased for others as well, and vice versa. This
suggests that these EAs share common strengths
and weaknesses when applied to text summariza-
tion tasks.

Candidate Fitness Value Taken Averaﬁz F1-Scor:3
EXP | # Documents | Summaries Flip_Distribution # Epochs over’oz tesc:‘.c;a;?:n s
per document Precision [G, D, F, P, C]
1 100 20 Randomly Generated Precision 100 [0.3,0.4, 0.4, 0.44, 0.47]
2 1900 10 Randomly Generated Precision 1000 [0.33, 0.3, 0.35, 0.28, 0.33]
15 Randomly Generated
5 1-flip
3 750 30 4 2lip Precisi 2000 0.35,0.36,0.3,0.29,0.3
3 3-flip recision [0.35, 0.36, 0.3, 0.29, 0.3]
2 4-flip
1 Ideal Summary
15 1-flip
10 2-flip -
4 750 30 4 3-flip Precision 1000 [0.49, 0.47, 0.46, 0.48, 0.45]
1 Ideal Summary

Table 2: Experimentation results across Precision models

Average F1-Score

Candidate Fitness Value Taken
EXP | # Documents | Summaries Flip_Distribution #Epochs ove;ra‘lledsotc:ant'l:nts
per document F1-Score [G,D,F,P,C]
15 1-flip
1 750 30 P F1Score 1000 | [0.36,031,02,03 027]
1 Ideal Summary
15 1-flip
2 750 36 1; gg:g Pracision 2000 [0.30.36,0.35 0.4, 0.35]
1 Ideal Summary
15 1-flip
12 2-flip
3 500 40 8 3lip F1Score 800 [0.37, 0.27, 0.36, 0.47, 0.43]
4 4-flips
1 Ideal Summary
15 1-flip
4 1000 36 1220 F1Score 1000 <02
-] |p
1 Ideal Summary
15 1-flip
12 2-flip
5 1500 40 § 3-flip F15core 800 =02
4 4-flips
1 Ideal Summary
13 1lip
6 150 30 el F1Score 100 [0.35,0.36.02, 0.1,028]
1 Ideal Summary
Table 3: Experimentation results across F1-Score models
Document No. Cuckoo Firefly PSO DDE GA ChatGPT
1 0.3333 0.3496 0.3958 0.4058 0.4333 0.5454
2 0.6000 0.4987 0.5612 0.5073 0.5571 0.6777
3 0.4600 0.4987 0.3481 0.3865 0.4600 0.4600
4 0.4800 0.4086 0.4577 0.3516 0.5200 0.5454
5 0.5000 0.4585 0.4846 0.4250 0.4500 0.7693
6 0.5660 0.5510 0.6233 0.5544 0.6800 0.7693
7 0.4500 0.3576 0.4507 0.5023 0.4500 0.5455
8 0.4000 0.5382 0.6110 0.5470 0.4250 0.7261
9 0.7800 0.5923 0.6244 0.4656 1.0000 0.4444
10 0.3900 0.4473 0.5209 0.5364 0.4800 0.5555
11 0.4375 0.4608 0.5114 0.5541 0.3125 0.6301
12 0.3900 0.4772 0.4711 0.5567 0.5100 0.5130
13 0.3000 0.4772 0.3520 0.3611 0.4250 0.5815
14 0.4250 0.5021 0.4854 0.5458 0.4083 0.3294
15 0.4250 0.4630 0.3395 0.4132 0.3294 0.4962
16 0.4000 0.4125 0.4731 0.4500 0.4750 0.7578
Average 0.4586 0.4683 0.4818 0.4727 0.4947 0.5635

Table 4: F1-Score values for each of the five algorithms corresponding to the model trained in experiment 4 (Table
2) in comparison with ChatGPT

Limitations and Future Work

The major limitations include:

(1) Limited Exploration: While we have experi-
mented with several evolutionary algorithms, there
are various others that we did not explore.

(2) Data Set Constraints: Our experiments were
conducted on a restricted set of data. Future plans
involve testing with more diverse and relevant
datasets.

(3) Extractive Focus: Currently, our work is cen-
tered on extractive summarization. We aim to
extend our approach to generate abstractive sum-
maries, requiring the development of new fitness
functions and features.

Our future work will delve deeper into understand-
ing the factors influencing the performance of evo-
lutionary algorithms. We also plan to explore hy-
brid approaches that combine the strengths of both
evolutionary algorithms and language models for
enhanced text summarization.

Ethics Statement

This research adheres to the ACL Ethics Policy, and
in compliance with ACL 2024 guidelines, we pro-
vide the following ethics statement. We explicitly
consider the broader impact of our work and ad-
dress relevant ethical considerations. We followed
the Responsible NLP Research checklist and ACL
code of ethics for this work.

Acknowledgements

The authors gratefully acknowledge the dataset
provider, BBC Documents and Summary Dataset,
for granting access to their valuable data, a critical
component in the completion of this research.

References

Hamed Asgari, Behrooz Masoumi, and Omid Sojoodi
Sheijani. 2014. Automatic text summarization based
on multi-agent particle swarm optimization. In 2014
Iranian Conference on Intelligent Systems (ICIS),
pages 1-5.

Munehs Chandra, Vikrant Gupta, and Santosh Kr. Paul.
2011. A statistical approach for automatic text sum-
marization by extraction. 2011 International Confer-
ence on Communication Systems and Network Tech-
nologies, pages 268-271.

Niladri Chatterjee, Gautam Jain, and Gurkirat Singh
Bajwa. 2019. Single document extractive text sum-
marization using neural networks and genetic algo-
rithm. In Intelligent Computing, pages 338-358,
Cham. Springer International Publishing.

Niladri Chatterjee and Pramod Sahoo. 2014. Random
indexing and modified random indexing based ap-
proach for extractive text summarization. Computer
Speech Language, 29.

Erik Cuevas and Adolfo Reyna Orta. 2014. A cuckoo
search algorithm for multimodal optimization. The
Scientific World Journal, 2014:27.

Taeho Jo. 2017. K nearest neighbor for text summariza-
tion using feature similarity. In 2017 International
Conference on Communication, Control, Computing
and Electronics Engineering (ICCCCEE), pages 1-5.

Geetha J K and Deepamala N. 2015. Kannada text sum-
marization using latent semantic analysis. In 2015
International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages
1508-1512.

Shweta Karwa and Niladri Chatterjee. 2014. Discrete
differential evolution for text summarization. In 2014

International Conference on Information Technology,
pages 129-133.

Shweta Karwa and Niladri Chatterjee. 2015. Discrete
differential evolution for text summarization. Pro-
ceedings - 2014 13th International Conference on
Information Technology, ICIT 2014, pages 129-133.

Soe Soe Lwin and Khin Thandar Nwet. 2019. Extrac-
tive myanmar news summarization using centroid
based word embedding. 2019 International Confer-
ence on Advanced Information Technologies (ICAIT),
pages 200-205.

J. Naga Madhuri and R. Ganesh Kumar. 2019. Ex-
tractive text summarization using sentence ranking.
2019 International Conference on Data Science and
Communication (IconDSC), pages 1-3.

Ani Nenkova, Sameer Maskey, and Yang Liu. 2011. Au-
tomatic summarization. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, page 3, Portland, Ore-
gon. Association for Computational Linguistics.

Finn Arup Nielsen. 2011. A new anew: Evaluation of
a word list for sentiment analysis in microblogs. In
#MSM.

Vahed Qazvinian, Leila Sharif Hassanabadi, and Ramin
Halavati. 2008. Summarising text with a genetic
algorithm-based sentence extraction. International
Journal of Knowledge Management Studies, 2:426.

Alvee Rahman, Fahim Rafiq, Ramkrishna Saha, Ruhit
Rafian, and Hossain Arif. 2019. Bengali text summa-
rization using textrank, fuzzy c-means and aggregate
scoring methods. pages 331-336.

Sheetal Shimpikar and Sharvari Govilkar. 2017. A sur-
vey of text summarization techniques for indian re-
gional languages. International Journal of Computer
Applications, 165(11):29-33.

https://doi.org/10.1109/IranianCIS.2014.6802592
https://doi.org/10.1109/IranianCIS.2014.6802592
https://doi.org/10.1109/IranianCIS.2014.6802592
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1155/2014/497514
https://doi.org/10.1155/2014/497514
https://doi.org/10.1155/2014/497514
https://doi.org/10.1109/ICCCCEE.2017.7866705
https://doi.org/10.1109/ICCCCEE.2017.7866705
https://doi.org/10.1109/ICCCCEE.2017.7866705
https://doi.org/10.1109/ICACCI.2015.7275826
https://doi.org/10.1109/ICACCI.2015.7275826
https://doi.org/10.1109/ICACCI.2015.7275826
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://aclanthology.org/P11-5003
https://aclanthology.org/P11-5003
https://aclanthology.org/P11-5003
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.5120/ijca2017914083
https://doi.org/10.5120/ijca2017914083
https://doi.org/10.5120/ijca2017914083
https://doi.org/10.5120/ijca2017914083
https://doi.org/10.5120/ijca2017914083

Minakshi Tomer and Manoj Kumar. 2021. Multi-
document extractive text summarization based on
firefly algorithm. Journal of King Saud University -
Computer and Information Sciences, 34.

10

https://doi.org/10.1016/j.jksuci.2021.04.004
https://doi.org/10.1016/j.jksuci.2021.04.004
https://doi.org/10.1016/j.jksuci.2021.04.004
https://doi.org/10.1016/j.jksuci.2021.04.004
https://doi.org/10.1016/j.jksuci.2021.04.004

A Algorithms

Algorithm 1 Genetic Algorithm for Text Summarization

Input: Document with N sentences, Summary length m, population size popSize, max. number of
generations to evolve maxGen Stopping criteria

Output: Optimal summary of the document

Hyperparameters: popSize = 25, maxGen = 20

//Population Initialization
parents < empty list
for i < 1 to popSize:
string = randomly generate binary string of length N with m many 1’s
add string to parents
for i < 1 to maxGen :
children < empty set
parents_fitness = fitness_function(parents)
sort(parents_fitness, descending order)
//Elitist selection strategy
add best and second best parent to children

while (size of children < size of parents) :
parentl, parent2 < Choose via Roulette based selection
childl, child2 = per form_crossover(parentl, parent2)
childl = per form_mutation(childl)
child2 = per form_mutation(child2)
add childl, child2 to children

combined_parents_children = concatenate parents and children
new_generation_fitness = fitness_function(combined_parents_children)
sort(new_generation_fitness, descending order)

parents = first n individuals from new_generation_fitness

return select_best_summary(parents)

11

Algorithm 2.1 Discrete Differential Evolution for Text Summarization

Input: Document with n sentences, number of clusters k, population size popSize, crossover rate CR,
maximum number of generations to evolve maxzGen, sclaing factor A
Output: Optimal summary of the document
Hyperparameters: popSize = 25, CR = 0.6, maxGen = 30, A\ = 1
/Mnitialize population
for i < 1to N do
for j < 1to k do
X ; = randInt(1,k)
while (!StoppingCondition) do
for [< 1to N do
Randomly choose i, j, and m from 1 to N such thati # j A1 #m
for r < 1ton do
if rand(0,1) < C'R then
X, = MXip = Xjp) + Xy
X, , = int(abs(X],))
if X, < lorX,, >k then
X l,’r = randInt(1,k)

if fitness(X;) > fitness(X;) then
nextX; =X l/
else
nextX; = X;
X;=nextX
return GetBestSolution(X)

12

Algorithm 2.2 GetBestSolution(X): Generating Summary using DDE Chromosome

Input: DDE chromosome Y, TF-IDF matrix of /V sentences of document W
Output: Summary represented by the DDE chromosome

summary <— empty list clusters < empty dictionary
//Assign sentences to clusters based on chromosome Y
for i, cluster in enumerate(Y):
if cluster not in clusters:
clusters[cluster] =[]
clusters[cluster].append(W [i])

//Generate summary from each cluster
for cluster in clusters:
cluster_sentences = clusters|cluster]

//Calculate the centroid of the cluster

centrotd = average of TF-IDF vectors of all sentences in cluster
max_similarity = —1

representative_sentence = None

//Find the sentence with maximum similarity to the centroid
for sentence in cluster_sentences:
stmalarity = cosine similarity between the sentence and centroid
if similarity >similarity:
max_similarity = similarity
representative_sentence = sentence
summary.append(representative_sentence)
return summary

13

Algorithm 3 Firefly Algorithm for Text Summarization

Input: Document with NV sentences, population size popSize, maximum number of iterations to move
mazlt

Output: Optimal summary of the document

Hyperparameters: popSize = 120, maxIt = 10, v = 0.01

Initialization:
for i < 1 to popSize:
X; < randomly generated binary string of length N

I + f(Xi)
end for
X < list of popSize binary strings [X1, Xo, ..., XpopSize]
I « list of popSize fitness values [I1, I2, . .., IyopSize)

R < matrix of hamming distances between fireflies in X
for ¢ < 1 to popSize do
for j < 1 to popSize do
R[i][j] = lIx: = x4l

Updation:
best_summary < randomly generated binary String of length N
for t < 1 to mazlIt do

for each firefly ¢ do

for cach firefly 5 do
if I[i] < I[j] then
for ! + 1to N do
r; < arandom number ~ Uniform(0, 1)

. I;
ifr;; < T (REG)2 then .

Update position: X;; < X, > Move towards a brighter firefly
else

Update position: X;; < X, > Stay in the current position

Perform bit re-balancing for all fireflies

Mutate the best fireflies // Traditional random bit-flipping Mutation technique
Update I with fitness value of new firefly positions

Update R with hamming distance between new firefly positions
best_summary < X; where i = arg max([)

return best_summary

14

Algorithm 4 PSO Algorithm for Text Summarization

Input: Document with NV sentences, population size popSize, maximum number of iterations to move

maxlt
Output: Optimal summary of the document
Hyperparameters: popSize = 30, maxlt = 5, w = 1, acc_towards_local_best = 1,

acc_towards_global_best = 1.5

Initialize X < the population of particles
Initialize [ocal_best <— array of personal best position for each particle
Initialize global_best < global best position
Initialization:
for each particle in the population do

Generate a random binary string as the initial position

Initialize the personal best position as the initial position

Evaluate the fitness of the initial position

if the fitness is better than the global best fitness then

Update the global best position

Initialize the current iteration count to O
Updation:
while the maximum number of iterations is not reached do
for each particle in the population do
for each dimension d in the document size do
Uij =0
if Xz‘j =1’ then
Vij+ =w
if local_best[¢][j] =" 0’ then
t1 = random.uniform(0, 1)
vij— = t1 X acc_towards_local_best

if global_best[j] =" 0’ then
to = random.uniform(0, 1)

v;j— = t2 X acc_towards_global_best
if Vij < 0 then

X =0
else

X” :/ 1/

else
if local_best[][j] =" 1’ then
t1 = random.uniform(0, 1)
vij+ = t1 X acc_towards_local_best
if global_best[j] =’ 1’ then
to = random.uniform(0, 1)
vij+ = ta X acc_towards_global_best

if v;; > 1 then

Mutate using traditional Mutation technique
Evaluate the fitness of the new position
if the fitness is better than the personal best fitness then
Update the personal best position
if the fitness is better than the global best fitness then
Update the global best position 15

Increment the current iteration count
return Summary with Global Best Position

Algorithm 5 Cuckoo Search for Text Summarization

Input: Document with N sentences, Summary length m, population size popSize, max. number of
generations to evolve maxGen/ Stopping criteria

Output: Optimal summary of the document

Hyperparameters: popSize = 25, p, = 0.35, maxGen = 15, threshold = 0.5

//Population Initialization
E° < popSize number of candidate eggs each of dimension N
while (!Stopping Criteria) :

EF1 < Operator B(EF) //Operator B: Levy Flight
EF1 « OperatorE (Ek“) //Operator E: Squishification
EF1 < Operator D(E*, EF1) //Operator D: Elitist Selection
E**2 « OperatorC (Ek”“l) //Operator C: Replacement
E*2 « Operator E(E**2) //Operator E: Squishification
EF1 « Operator D(E*+!, EF+2) //Operator D: Elitist Selection

return select_best_summary (E f inal_generation)

16

	Introduction
	Relevant Past Works
	Experimental Modelling and Fitness Function
	Document Representation
	Summary Representation
	Fitness Function Configuration
	Training Fitness Function
	Generating a Sample Dataset from BBC Documents

	Evolutionary Algorithms
	Firefly Algorithm
	Particle Swarm Optimization
	Cuckoo Search

	Results
	Conclusions and Discussions
	Algorithms

