
Evolutionary Algorithms and Neural Network-Based Fitness Functions for
Extractive Text Summarization: A Comparative Study with ChatGPT

Anonymous ACL submission

Abstract

Extractive text summarization deals with ex-001
tracting a limited number of important sen-002
tences from a large document to create a sum-003
mary. One novel approach already proposed004
in the literature is to model extractive summa-005
rization as an optimization problem, where a006
Genetic algorithm (GA) has been used for op-007
timizing the selection of sentences from a text008
to generate the best extractive summary, which009
has been found outperforming state-of-the-art010
techniques. In this work, we build a similar011
model where apart from GA we used several012
different evolutionary algorithms (EA) in or-013
der to identify the combination that produces014
the best result. For this work, we have used015
different evolutionary algorithms, namely Dis-016
crete Differential Evolution (DDE), Cuckoo017
Search, Particle Swarm Optimization, and Fire-018
fly Search along with Genetic Algorithm, and019
have made comparison of their results with020
state-of-the art LLM viz. ChatGPT. The re-021
sults are evaluated on the BBC news dataset022
using the precision-recall technique metric.023

Keywords: Document Summarization, Extrac-024
tive Text Summarization, Evolutionary Algo-025
rithms, Neural Networks, ChatGPT026

1 Introduction027

The present work models extractive text summa-028

rization as an optimization problem since the search029

space for generating an extractive summary grows030

exponentially with the length of the input docu-031

ment. To this end, we have experimented with032

various evolutionary algorithms (EAs) for extrac-033

tive text summarization. EAs constitute a class of034

nature-inspired optimization techniques, particu-035

larly effective in searching for optimal solutions in036

extensive solution spaces.037

Typically, an evolutionary algorithm works on038

optimizing a fitness function, say f. Performance039

of the algorithm depends on the definition of the040

fitness function. However, obtaining the right fit- 041

ness function has always been a challenging task 042

for different EAs. Hence for this work instead of 043

using any human-defined function we have used a 044

neural network to define f. Multiple experiments 045

have been conducted to choose an appropriate f 046

by varying several metrics, including the number 047

of training documents from datasets and different 048

distribution techniques for creating candidate sum- 049

maries for these training documents. The exper- 050

iments are run over the widely recognized BBC 051

dataset, which comprises 2225 single-document 052

articles from various categories, each accompanied 053

by its ideal extractive summary. In particular, these 054

experiments aim to refine and determine the best 055

fitness function by closely examining the specified 056

factors. We employed the optimized fitness func- 057

tion in five distinct EAs for Text Summarization: 058

Genetic Algorithm (GA), Discrete Differential Evo- 059

lution (DDE), Firefly Algorithm, Particle Swarm 060

Optimization (PSO), and Cuckoo Search. Subse- 061

quently, we conducted a comprehensive compar- 062

ative study, evaluating their performance against 063

each other and in comparison to modern-day Large 064

Language Model-based technologies, namely Chat- 065

GPT. 066

2 Relevant Past Works 067

A wide variety of techniques have been experi- 068

mented with and used for extractive text summa- 069

rization, but usage of EAs is still less explored. 070

In the traditional schemes, frequency-driven ap- 071

proaches (Nenkova et al., 2011), sentence ranking 072

(Madhuri and Kumar, 2019), k-nearest neighbor 073

(Jo, 2017), fuzzy C-means and aggregate scoring 074

methods (Rahman et al., 2019), centroid-based 075

summarization (Lwin and Nwet, 2019), Latent 076

Semantic Analysis (LSA) (K and N, 2015), Ran- 077

dom Indexing (Chatterjee and Sahoo, 2014) and 078

Bayesian Topic Models (Chandra et al., 2011) 079

1

have been used. Evolutionary algorithms-based080

approaches for text summarization include (Karwa081

and Chatterjee, 2015) wherein they have used Dis-082

crete Differential Evolution (DDE) to summarize083

a single document. In 2018, Chatterjee, Jain, and084

Bajwa (Chatterjee et al., 2019) worked on single085

document text summarization with the help of the086

GA and neural networks (NN). They trained the087

fitness function with the help of the neural network,088

and later genetic algorithm was used to search for089

the best optimal solution.090

In the present work we enhance text summariza-091

tion by employing five different EAs integrating092

them with a NN-driven fitness function. Our exper-093

iments highlight the effectiveness of this combined094

approach in generating improved extractive sum-095

maries.096

3 Experimental Modelling and Fitness097

Function098

In the following subsections, we delve into our ap-099

proach for document and summary representation,100

paving the way to the definition and computation101

of the novel neural network-driven fitness function.102

3.1 Document Representation103

In the proposed model, a document is represented104

using a weighted Directed Acyclic Graph (DAG).105

Under this framework, each sentence in the doc-106

ument serves as a set of vertices, denoted as V,107

within the graph. An edge is drawn from sentence108

s1 to sentence s2 only if s1 precedes s2 in the doc-109

ument (Shimpikar and Govilkar, 2017). Addition-110

ally, each sentence is encoded as a vector for the111

purpose of measuring similarity between sentences,112

employing the TF-IDF vectorization scheme for113

this representation. The similarity between two114

sentences is calculated using the cosine similarity115

measure between the TF-IDF vector representation116

of the sentences si and sj respectively.117

3.2 Summary Representation118

For a document comprising N sentences, a119

summary of S sentences is captured as an N-120

dimensional binary vector. This vector is uniquely121

characterized by S occurrences of ‘1’ and N-S oc-122

currences of ‘0’, culminating in what we term a123

‘summary vector’. Each element in this vector cor-124

responds to a sentence in the document, marked as125

‘1’ if included in the summary and ‘0’ otherwise.126

The mathematical framework guiding the pro-127

posed fitness function calculation relies on eight128

features (Chatterjee et al., 2019) representing a 129

summary. These features will be used as inputs 130

for our fitness function, helping evolutionary algo- 131

rithms find the best extractive summaries. 132

Radial and Angular Theme Similarity: The Ra- 133

dial Theme Similarity and Angular Theme Similar- 134

ity are defined as follows: 135

RTSSummary = ∥TN −TSumm∥2 136

ATSSummary = TN ·TSumm 137

Here TN denotes the central theme of the Doc- 138

ument, and TSumm denotes the central theme of 139

Summary defined as: 140

TN=

∑
si∈Document wsi

|Document|
, TSumm=

∑
si∈Summary wsi

|Summary|
141

Where, ∥.∥2 denotes the Euclidean Distance, and 142

|.| denotes the cardinality of the set. 143

144

Sentiment Factor: Online AFINN-111 (Nielsen, 145

2011) dictionary has been used for this purpose. 146

The sentiment factor is calculated as: 147

sentiment(si) =
∑

wordj∈si

sentiment_score(wordj) 148

SentiSummary =
∑

si∈Summary

sentiment(si) 149

150

Sentiment Factor: SFSummary = 151

SentiSummary

max∀ {summary:|summary|=S}(Sentisummary)
152

Cohesion Factor: This feature considers all the 153

pairwise similarities of sentences in the summary 154

and based on that gives Cohesion Factor score of a 155

summary as follows: 156

CSummary =

∑
si,sj ∈ summary subgraph sim(si, sj)

Ns
157

where Ns = S(S−1)
2 is the number of edges in a 158

summary subgraph with S nodes. This formulae is 159

used to normalize the value of CF of a summary: 160

CFSummary =
log(9 · CSummary + 1)

log(9 ·M + 1)
161

where M is max ∀i,j≤N sim(si, sj). Clearly, 162

CSummary ≤M and CFSummary ≤ 1 163

2

164

Readability Factor: A summary should be165

readable, i.e. the sentence should be similar to166

the preceding sentence in the summary(Qazvinian167

et al., 2008). Readability factor is given by:168

RFSummary =

∑
1≤i<S sim(si, si+1)

max∀i sim(si, si+1)
169

Aggregate Similarity: The aggregate score of170

a sentence (sentaggregate(si)) is the sum of edges171

incident onto it in the graph. This factor is de-172

termined by summing the maximum S aggregate173

scores among N sentences, where S and N denote174

the number of sentences in summary and document.175

Aggregate similarity (ASSummary) is given as:176

AggregateSent(si) =

N∑
j=1

sim(si, sj)177

ASSummary =

∑
si∈Summary AggregateSent(si)∑S
i=1maxj(AggregateSent(sj))

178

Sentence Position: Sentences are assessed based179

on their position within the text, and the cumulative180

scores assigned to them result in a sentence position181

score for the summary(Shimpikar and Govilkar,182

2017).183

SPi =
2(N − i)

N(N + 1)
184

where SPi is the Sentence position score of ith185

sentence in the document. The overall Sentence186

Position score of a summary is calculated as:187

SPSummary =
∑

si∈Summary

SPsi188

k by N Ratio: It is the ratio of the number of189

sentences in the summary to the total number of190

sentences in the document.191

3.3 Fitness Function Configuration192

Since the goal of the Evolutionary Algorithms is193

to construct a summary that maximizes the fitness194

function f learned by the neural network. This195

function takes the summary represented as set of196

the eight features as input (X), and its output (Y)197

is either precision or F1-Score. Ideal extractive198

summaries, represented as binary vectors, offer a199

benchmark for precision values, indicating prox-200

imity to the ideal. In order to model this a neural201

Figure 1: Architecture of Neural Network

network is trained to generate an effective fitness 202

function. Each entry in the dataset comprises a 203

feature vector of size eight representing the sum- 204

mary as the input for the neural network along with 205

associated precision/F1-Score value (Y). 206

The neural network employed for computing the 207

proposed fitness function f comprises three layers, 208

each designed to capture distinct aspects of sum- 209

marization effectiveness: 210

(i) Input Layer: The initial layer is composed of 211

eight neurons, each receiving input from the eight 212

features described above representing summary. 213

(ii) Hidden Layer: Three neurons for learning intri- 214

cate patterns within the feature space. 215

(iii) Output Layer: A single neuron estimating pre- 216

cision or F1-Score based on experimental config- 217

uration. The activation function is the sigmoid 218

function across all layers. 219

3.4 Training Fitness Function 220

To achieve robust extractive text summarization, we 221

created a diverse set of training examples, which 222

helps our neural network understand not only the 223

perfect summary but also different imperfect sum- 224

maries. This diversity allows us to explore how 225

variations impact precision and F1-Scores. 226

Training of Fitness over Precision and F1 Score: 227

Recognizing the nuanced evaluation offered by F1- 228

Score, which incorporates both precision and re- 229

call, we extended our experiments beyond preci- 230

sion alone and ran experiments for both precision 231

and F1-Score as the output label for the proposed 232

neural network facilitating computation of f. 233

Generating Training Dataset: For a specific docu- 234

ment we start with an ideal summary represented as 235

a series of 0s and 1s. Variations are brought in the 236

represented summary using a method we termed 237

as Flip-Distribution. This process systematically 238

switches an equal number of ‘0’s to ‘1’s and vice 239

versa, creating a diverse set of ideal summary varia- 240

3

tions. Additionally, we include randomly generated241

summaries where each sentence in the document242

has an equal chance (probability of 0.5) of being243

included in the summary. Different candidate sum-244

maries are built this way to ensure that the neu-245

ral network encounters a wide range of potential246

summaries during training, improving its ability to247

generalize and generate effective extractive sum-248

maries. Precision and F1-Score are computed for249

each candidate summary, serving as labels in the250

two experiments.251

Flip-Distribution: In constructing the Flip-252

Distribution for candidate summary generation, a253

deliberate focus is placed on producing a higher254

number of 1-flip summaries, minimizing variation255

from the ideal summary. This strategic choice en-256

sures the neural network encounters a substantial257

proportion of examples with minimal deviation dur-258

ing training, and the dataset leans towards preserv-259

ing the structure and content of the ideal summary,260

enhancing the model’s ability to generate accurate261

extractive summaries.262

Consider a document considering of N = 6 sen-263

tences, with the desired summary represented as264

"001011"(indicating S = 3). To build a dataset of265

10 candidate summaries for each document, we266

employ the Flip-Distribution method, resulting in267

the following distribution:268

Flip-Distribution = {3 random, 3 1-flip, 2 2-flips,269

1 3-flips, 1 ideal}270

(i) 3 random : A summary of length 6 is gener-271

ated where each bit can be 1 with a probability of272

0.5. Total 62 (26 − 2, excluding null summary -273

000000 and complete document - 111111) possibil-274

ities, such as “111001”, “010101”, “100001” and275

“101100”. Choose three such summaries.276

(ii) 3 1-flip : Randomly select a bit in ideal sum-277

mary and flip its parity. Total
(
6
1

)
i.e. 6 possibil-278

ities, such as “101011”, “011011”, 000011, and279

“001001”. Choose three such summaries.280

(iii) 2 2-flips : Randomly select two bits in ideal281

summary and flip their parity. Total
(
6
2

)
i.e. 15 pos-282

sibilities, such as “111011”, “001000”, “011001”283

and “000111”. Choose two such summaries.284

(iv) 1 3-flips : Randomly select three bits in ideal285

summary and flip their parity. Total
(
6
3

)
i.e. 20 pos-286

sibilities, such as “000101”, “011000”, “010111”287

and “100001”. Choose one such summary.288

(v) 1 ideal : Include the ideal summary itself.289

For the given document, consider the following290

candidate summary Summ: 291

Summ = “101000" 292

Ideal_Summary = “001011" 293

With one common sentence out of two in the candi- 294

date summary and three in the ideal summary, the 295

performance metrics are: 296

(Precision, Recall, F1-Score) =
(
1

2
,
1

3
,
2

5

)
297

3.5 Generating a Sample Dataset from BBC 298

Documents 299

To train the neural network, a dataset was cre- 300

ated using a sample of 100 documents from BBC 301

dataset. Five summaries were generated for each 302

document using Flip-Distribution, comprising four 303

bit-flipped summaries and one ideal summary. This 304

resulted in a total dataset size of 500. 305

For each candidate summary, eight features and 306

precision (later, F1-Score labels in subsequent ex- 307

periments) were calculated by comparing it with 308

the original document and its ideal extractive sum- 309

mary, represented as a binary string. The first col- 310

umn (#S), indicates the row entry in the created 311

dataset. The second column (#D), represents the 312

ordered document number. These documents are 313

manually selected from the BBC dataset. Given 314

that five candidate summaries were generated per 315

document, there are five rows corresponding to 316

each document number. A representative subset of 317

10 values is provided in Table 1. 318

After training the neural network on this dataset, 319

it serves as the fitness function for the evolution- 320

ary algorithms. Multiple experiments were con- 321

ducted, exploring various dataset sizes and Flip- 322

Distribution configurations to ensure a robust fit- 323

ness function. Results are presented in Section 6. 324

4 Evolutionary Algorithms 325

Evolutionary algorithms represent a heuristic- 326

based approach for addressing optimization prob- 327

lems. Successive iterations tend to yield improved 328

solution sets. Although certain evolutionary algo- 329

rithms were initially developed for continuous solu- 330

tion spaces, for the present work we have adapted 331

them to accommodate the discrete nature of text 332

summaries. In this section, we discuss the basics of 333

the evolutionary algorithms used in our work. We 334

cover Firefly, PSO, and Cuckoo algorithms. For 335

Genetic (Chatterjee et al., 2019) and DDE (Karwa 336

4

#S #D CandidateSummary RTS ATS SF CF RF AS SP k_by_N Precision
1 1 10100011001010000000 1.699 2.927 0.593 0.223 0.323 0.33 0.366 0.3 1
2 1 00010000010110110000 1.802 2.85 0.593 0.223 0.086 0.22 0.238 0.3 0.167
3 1 11100111000000000000 1.762 2.472 0.468 0.223 0.148 0.385 0.442 0.3 0.667
4 1 00001111000001001000 1.764 2.883 0.5 0.223 0.02 0.298 0.3 0.3 0.334
5 1 10000101101010000000 1.69 3.018 0.5 0.223 0.094 0.259 0.342 0.3 0.667
...

496 100 10000001100011010000000 1.8 2.85 0.4 0.122 0.127 0.396 0.278 0.26 1
497 100 10101001010000010000000 1.851 3.698 0.2 0.122 0.087 0.212 0.344 0.26 0.5
498 100 10101000000100101000000 1.853 3.151 0 0.122 0.12 0.287 0.307 0.26 0.167
499 100 10111101000000000000000 1.905 3.708 0.35 0.122 0.1 0.221 0.402 0.26 0.334
500 100 11000111100000000000000 1.918 3.474 0.55 0.122 0.097 0.235 0.38 0.26 0.5

Table 1: Representative Dataset

and Chatterjee, 2014) algorithms, we adopt im-337

plementations from existing studies to compare338

their performance with our adapted evolutionary339

approaches.340

4.1 Firefly Algorithm341

Firefly Algorithm (Tomer and Kumar, 2021) draws342

inspiration from the behavior of fireflies, where343

each firefly tend to move towards the ones emitting344

higher light intensity. In the context of text sum-345

marization task, each firefly represents a potential346

solution i.e a summary vector. The light intensity347

of that firefly corresponds to the fitness function.348

The algorithm is described below.349

Initialization: A population of size equal to350

popSize fireflies is generated randomly. Each fire-351

fly in the population represents a possible solution352

(candidate summaries), i.e N length binary string353

with m number of 1. The light intensity is calcu-354

lated for each firefly using the fitness function. To355

calculate the distance between two fireflies, Ham-356

ming distance function is used. The larger is the357

unmatched number of bits the more distinct are the358

summaries. The Hamming Distance is defined as359

follows:360

∥xi − xj∥ =
N∑
l=1

δ(xi,l, xj,l)

where δ(xi,l, xj,l) =

{
0, if xi,l = xj,l

1, if xi,l ̸= xj,l

361

xi,l represents the lth bit of the ith firefly, xj,l rep-362

resents the lth bit of the jth firefly.363

Updating of firefly positions: In this step each fire-364

fly adjusts its position seeking proximity to brighter365

fireflies within the population. The update involves366

calculating the movement of a firefly towards an-367

other based on their respective brightness and the368

distance between them. The movement in a partic-369

ular iteration is the cumulative effect of all move-370

ments towards fireflies brighter than the current371

one. The update formula for a firefly xi towards a 372

brighter firefly xj in one iteration is given by: 373

xi,l =

{
xj,l, if ri,l <

f(xi)
1+γ·∥xi−xj∥2

xi,l, otherwise
374

where ri,l is a randomly chosen number from range 375

[0, 1] for each bit, γ a hyper parameter is used to 376

adjust the distance between two fireflies and f(xi) 377

represent the fitness value for xi. The fireflies’ 378

positions are replaced with the newly generated 379

ones following the update rule. 380

Bit Re-Balancing:After completing a iteration bit 381

re-balancing is done for each firefly to maintain a 382

constant summary length m. If a firefly’s summary 383

contains more 1’s than the desired length, specified 384

number of randomly selected 1’s are flipped to 0, 385

and vice versa. 386

Mutation: To avoid local maxima, the top fireflies 387

undergo mutation using a conventional bit-flipping 388

technique. Pairs of bits, a ‘0’ and a ‘1’, are selected 389

and their values are flipped, maintaining a constant 390

count of 1’s in candidate summaries. This iterative 391

process continues until the specified stopping con- 392

dition is reached, such as reaching the maximum 393

number of iterations.The detailed pseudo-code for 394

the algorithm is given in Appendix. 395

4.2 Particle Swarm Optimization 396

In this method, several particles are initiated, each 397

aiming to discover the best value for a given fit- 398

ness function by navigating through the solution 399

space, attempting to converge on a global optimum 400

(Asgari et al., 2014). The particles not only move 401

towards their individual best solutions, but also 402

gravitate towards the best overall position identi- 403

fied till now. This prevents the algorithm from 404

getting stuck in a local optimum. 405

Initialization: A swarm of particles is generated 406

randomly, akin to GA. Each particle in the pop- 407

ulation represents a possible solution i.e. a ran- 408

5

dom binary string of size N with m number of 1’s.409

The value of a position is calculated using the fit-410

ness function. The goal is to optimize the fitness411

function by identifying the optimal combination of412

binary values embodied in the particles.413

Updating of particle position:Each swarm, in or-414

der to find its target makes a move towards the415

best possible direction in which the target could be416

found. For this it moves towards the global best417

location found till now along with the local best418

found by itself. A simple probabilistic way to up-419

date the particle position is chosen. Two movement420

probabilities are calculated for each bit per particle.421

1. Movement towards Local Best: This is cal-422

culated by multiplying a randomly calculated prob-423

ability with an hyper parameter signifying acceler-424

ation towards local best solution for that particle425

found so far.426

2. Movement towards Global Best: This is427

calculated by multiplying a randomly calculated428

probability with an hyper parameter signifying ac-429

celeration towards global best solution.430

The combined effect of two probabilities determine431

whether the bit would be flipped or not. Exact432

formulae and the corresponding pseudo-code can433

be found in the Appendix.434

Mutation: The traditional technique of bit alter-435

ation i.e. selecting a pair of bit, a 0 and a 1, and436

flipping its value is followed. This keeps the num-437

ber of 1’s constant in the candidate summaries.438

4.3 Cuckoo Search439

Cuckoo Search (CS) is an optimization algorithm440

inspired by cuckoos’ brood parasitism behavior.441

Cuckoos deposit eggs strategically, selecting host442

bird nests’ with recent eggs and replacing exist-443

ing ones with theirs’. Some host birds counteract444

this parasitic behavior by rejecting foreign eggs.445

The CS algorithm (Cuevas and Reyna Orta, 2014)446

simplifies this natural process into three rules for447

computational modeling:448

1. Artificial cuckoos lay eggs one at a time in a449

nest and each egg represents a solution.450

2. Cuckoos seek optimal nests to maximize egg451

survival, employing an elitist selection strat-452

egy favoring high-quality eggs.453

3. The fixed population of host nests may discard454

alien eggs with a certain probability. Mature455

eggs progress to the next generation, select-456

ing nests via Levy flights around current best457

solutions.458

The original CS algorithm (Cuevas and Reyna Orta, 459

2014) has been adapted for our discrete task of text 460

summarization and has the following steps: 461

A. Initialization: Here too the aim is to con- 462

struct a summary of size m sentences is required 463

for a document containing N sentences. The 464

population E is initialized with popSize eggs, 465

each egg representing a candidate summary. The 466

population is evolved over maxGen generations. 467

Ek (ek1, e
k
2, .., e

k
popSize) represents the population 468

at kth generation, where eki is a binary vector of 469

length N where each dimension is equal to ′1′ or 470
′0′ depending on if the corresponding sentence is 471

included in the summary or not. Initially randomly 472

m chosen dimensions among N are initialized as 473
′1′ and rest are ′0′. 474

B. Levy Flight: In Cuckoo search, Levy flights 475

generate new candidate summaries (eggs) through 476

the following process: 477

ek+1
i = eki + ci for i = 1, 2, ..., popSize 478

Here, ci denotes a random step, reflecting a change 479

in position within the original summary/egg. It is 480

computed as: 481

ci = α · si ⊙ (eki − ebest) 482

In this equation, α is a hyperparameter (set as 0.01), 483

ebest represents the best summary/egg observed 484

thus far, and si is generated by a symmetric Levy 485

distribution using Mantegna’s algorithm (Cuevas 486

and Reyna Orta, 2014). 487

C. Replacement of some eggs: Each individual, eki 488

∀ i ∈ [1,2,..,popSize], can be selected with a proba- 489

bility of pa and then replaced with a new solution. 490

This operation is analogous to the mutation step in 491

Genetic Algorithm which introduces diversity and 492

explore new regions of the solution space. 493

ek+1
i =

{
eki + rand · (ekd1 − ekd2) with prob pa

eki with prob 1− pa
494

where rand is a random number normally dis- 495

tributed, whereas d1 and d2 are distinct random 496

integers from 1 to popSize. 497

D. Elitist selection: After generating the solution 498

ek+1
i , it competes with its predecessor eki based 499

on fitness, and the fitter one advances to the next 500

generation. 501

ek+1
i =

{
ek+1
i if f(ek+1

i) < f(eki)

eki otherwise
502

6

Figure 2: Comparison and Correlation between Evolu-
tionary Algorithms

E. Squishification: After generating the new solu-503

tion ek+1
i via Levy flights and replacement step we504

obtain a N −dimensional vector with real values.505

Since our problem of text summarization of being506

discrete nature we pass it through a squishification507

function as follows:508

ek+1
i,j =


1 if

1

1 + exp(−ek+1
i,j)

< threshold

0 otherwise
509

∀i ∈ [1, 2, .., popSize] and ∀j ∈ [1, 2, .., N],510

where threshold a real value in the range [0, 1].511

Where ek+1
i,j represents the jth dimension of ith512

egg in (k + 1)th generation.513

Summary length adjustment: After squishifica-514

tion, if the count of ‘1’s in the new solution ek+1
i515

is not equal to the desired summary length m, ran-516

dom bit flips are introduced at specific indices to517

maintain consistency. The detailed pseudo-code is518

given in appendix.519

5 Results520

We implemented and experimented with five differ-521

ent Evolutionary algorithms namely Genetic, Dis-522

crete differential evolution, Firefly, Particle swarm523

optimization and Cuckoo Search over BBC news524

articles data-set which consists of around 2250 doc-525

uments with the available ideal summaries in five526

different classes namely business, entertainment,527

sports, politics, and tech. The dataset was created528

from BBC Documents by generating variations for529

each document, such as random changes, flip-based530

alterations, and maintaining an ideal summary for531

comparison, thereby forming a diverse dataset for532

experiments.533

Since all the algorithms are a part of randomized534

algorithms, the experiments were run 15 times per535

algorithm per document and average precision/F1- 536

Score value is considered. The test data-set con- 537

sisted of 16 documents randomly sampled from the 538

complepte corpus. A total of 10 experiments were 539

conducted, with 4 focusing on precision and 6 on 540

using F1-Score as the label. Table 2 and 3 summa- 541

rizes the results across various experiments, where 542

#Epochs value indicates the number of epochs for 543

which the neural network has been trained, #Doc- 544

uments is the number of documents taken to gen- 545

erate the training data-set and [G, D, F, P, C] corre- 546

sponds to [GA, DDE, Firefly, PSO, Cuckoo]. 547

Inferring from the result tables, the best Results 548

are corresponding to Experiment 4 from Table 549

2 where neural network is trained over 750 doc- 550

uments with precision as the label. Table 4 il- 551

lustrates the expanded results of Experiment 4 in 552

comparision to ChatGPT. 553

6 Conclusions and Discussions 554

In this study, we explored the application of evolu- 555

tionary algorithms to the task of text summarization 556

and compared their performance with a state-of-the- 557

art language model, ChatGPT. The evaluation was 558

conducted on a dataset of 16 documents, and F1- 559

Score values were used as the performance metric. 560

Our results revealed that EAs exhibited promis- 561

ing performance in the context of text summariza- 562

tion. These EAs achieved competitive F1-Scores, 563

with an average F1-Score of 0.4947 across all doc- 564

uments. Notably, on 4 out of the 16 documents 565

(highlighted rows in Table 4), EAs outperformed 566

ChatGPT, indicating their efficacy in generating 567

concise and informative text summaries. 568

It’s worth highlighting that ChatGPT, a language 569

model, has been trained on an extensive corpus of 570

text from various domains, while our model was 571

trained on a comparatively smaller dataset. Despite 572

this disparity, EAs demonstrated their potential as 573

viable alternatives for text summarization tasks. 574

Furthermore, our analysis unveiled an interesting 575

trend (Fig. 2). The performance of different EAs 576

demonstrated a high degree of correlation. When 577

the F1-Score increased for one EA, it generally 578

increased for others as well, and vice versa. This 579

suggests that these EAs share common strengths 580

and weaknesses when applied to text summariza- 581

tion tasks. 582

7

Table 2: Experimentation results across Precision models

Table 3: Experimentation results across F1-Score models

Document No. Cuckoo Firefly PSO DDE GA ChatGPT
1 0.3333 0.3496 0.3958 0.4058 0.4333 0.5454
2 0.6000 0.4987 0.5612 0.5073 0.5571 0.6777
3 0.4600 0.4987 0.3481 0.3865 0.4600 0.4600
4 0.4800 0.4086 0.4577 0.3516 0.5200 0.5454
5 0.5000 0.4585 0.4846 0.4250 0.4500 0.7693
6 0.5660 0.5510 0.6233 0.5544 0.6800 0.7693
7 0.4500 0.3576 0.4507 0.5023 0.4500 0.5455
8 0.4000 0.5382 0.6110 0.5470 0.4250 0.7261
9 0.7800 0.5923 0.6244 0.4656 1.0000 0.4444

10 0.3900 0.4473 0.5209 0.5364 0.4800 0.5555
11 0.4375 0.4608 0.5114 0.5541 0.3125 0.6301
12 0.3900 0.4772 0.4711 0.5567 0.5100 0.5130
13 0.3000 0.4772 0.3520 0.3611 0.4250 0.5815
14 0.4250 0.5021 0.4854 0.5458 0.4083 0.3294
15 0.4250 0.4630 0.3395 0.4132 0.3294 0.4962
16 0.4000 0.4125 0.4731 0.4500 0.4750 0.7578

Average 0.4586 0.4683 0.4818 0.4727 0.4947 0.5635

Table 4: F1-Score values for each of the five algorithms corresponding to the model trained in experiment 4 (Table
2) in comparison with ChatGPT

8

Limitations and Future Work583

The major limitations include:584

(1) Limited Exploration: While we have experi-585

mented with several evolutionary algorithms, there586

are various others that we did not explore.587

(2) Data Set Constraints: Our experiments were588

conducted on a restricted set of data. Future plans589

involve testing with more diverse and relevant590

datasets.591

(3) Extractive Focus: Currently, our work is cen-592

tered on extractive summarization. We aim to593

extend our approach to generate abstractive sum-594

maries, requiring the development of new fitness595

functions and features.596

Our future work will delve deeper into understand-597

ing the factors influencing the performance of evo-598

lutionary algorithms. We also plan to explore hy-599

brid approaches that combine the strengths of both600

evolutionary algorithms and language models for601

enhanced text summarization.602

Ethics Statement603

This research adheres to the ACL Ethics Policy, and604

in compliance with ACL 2024 guidelines, we pro-605

vide the following ethics statement. We explicitly606

consider the broader impact of our work and ad-607

dress relevant ethical considerations. We followed608

the Responsible NLP Research checklist and ACL609

code of ethics for this work.610

Acknowledgements611

The authors gratefully acknowledge the dataset612

provider, BBC Documents and Summary Dataset,613

for granting access to their valuable data, a critical614

component in the completion of this research.615

References616

Hamed Asgari, Behrooz Masoumi, and Omid Sojoodi617
Sheijani. 2014. Automatic text summarization based618
on multi-agent particle swarm optimization. In 2014619
Iranian Conference on Intelligent Systems (ICIS),620
pages 1–5.621

Munehs Chandra, Vikrant Gupta, and Santosh Kr. Paul.622
2011. A statistical approach for automatic text sum-623
marization by extraction. 2011 International Confer-624
ence on Communication Systems and Network Tech-625
nologies, pages 268–271.626

Niladri Chatterjee, Gautam Jain, and Gurkirat Singh627
Bajwa. 2019. Single document extractive text sum-628
marization using neural networks and genetic algo-629
rithm. In Intelligent Computing, pages 338–358,630
Cham. Springer International Publishing.631

Niladri Chatterjee and Pramod Sahoo. 2014. Random 632
indexing and modified random indexing based ap- 633
proach for extractive text summarization. Computer 634
Speech Language, 29. 635

Erik Cuevas and Adolfo Reyna Orta. 2014. A cuckoo 636
search algorithm for multimodal optimization. The 637
Scientific World Journal, 2014:27. 638

Taeho Jo. 2017. K nearest neighbor for text summariza- 639
tion using feature similarity. In 2017 International 640
Conference on Communication, Control, Computing 641
and Electronics Engineering (ICCCCEE), pages 1–5. 642

Geetha J K and Deepamala N. 2015. Kannada text sum- 643
marization using latent semantic analysis. In 2015 644
International Conference on Advances in Computing, 645
Communications and Informatics (ICACCI), pages 646
1508–1512. 647

Shweta Karwa and Niladri Chatterjee. 2014. Discrete 648
differential evolution for text summarization. In 2014 649
International Conference on Information Technology, 650
pages 129–133. 651

Shweta Karwa and Niladri Chatterjee. 2015. Discrete 652
differential evolution for text summarization. Pro- 653
ceedings - 2014 13th International Conference on 654
Information Technology, ICIT 2014, pages 129–133. 655

Soe Soe Lwin and Khin Thandar Nwet. 2019. Extrac- 656
tive myanmar news summarization using centroid 657
based word embedding. 2019 International Confer- 658
ence on Advanced Information Technologies (ICAIT), 659
pages 200–205. 660

J. Naga Madhuri and R. Ganesh Kumar. 2019. Ex- 661
tractive text summarization using sentence ranking. 662
2019 International Conference on Data Science and 663
Communication (IconDSC), pages 1–3. 664

Ani Nenkova, Sameer Maskey, and Yang Liu. 2011. Au- 665
tomatic summarization. In Proceedings of the 49th 666
Annual Meeting of the Association for Computational 667
Linguistics: Tutorial Abstracts, page 3, Portland, Ore- 668
gon. Association for Computational Linguistics. 669

Finn Årup Nielsen. 2011. A new anew: Evaluation of 670
a word list for sentiment analysis in microblogs. In 671
#MSM. 672

Vahed Qazvinian, Leila Sharif Hassanabadi, and Ramin 673
Halavati. 2008. Summarising text with a genetic 674
algorithm-based sentence extraction. International 675
Journal of Knowledge Management Studies, 2:426. 676

Alvee Rahman, Fahim Rafiq, Ramkrishna Saha, Ruhit 677
Rafian, and Hossain Arif. 2019. Bengali text summa- 678
rization using textrank, fuzzy c-means and aggregate 679
scoring methods. pages 331–336. 680

Sheetal Shimpikar and Sharvari Govilkar. 2017. A sur- 681
vey of text summarization techniques for indian re- 682
gional languages. International Journal of Computer 683
Applications, 165(11):29–33. 684

9

https://doi.org/10.1109/IranianCIS.2014.6802592
https://doi.org/10.1109/IranianCIS.2014.6802592
https://doi.org/10.1109/IranianCIS.2014.6802592
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1016/j.csl.2014.07.001
https://doi.org/10.1155/2014/497514
https://doi.org/10.1155/2014/497514
https://doi.org/10.1155/2014/497514
https://doi.org/10.1109/ICCCCEE.2017.7866705
https://doi.org/10.1109/ICCCCEE.2017.7866705
https://doi.org/10.1109/ICCCCEE.2017.7866705
https://doi.org/10.1109/ICACCI.2015.7275826
https://doi.org/10.1109/ICACCI.2015.7275826
https://doi.org/10.1109/ICACCI.2015.7275826
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://doi.org/10.1109/ICIT.2014.28
https://aclanthology.org/P11-5003
https://aclanthology.org/P11-5003
https://aclanthology.org/P11-5003
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.1109/TENSYMP46218.2019.8971039
https://doi.org/10.5120/ijca2017914083
https://doi.org/10.5120/ijca2017914083
https://doi.org/10.5120/ijca2017914083
https://doi.org/10.5120/ijca2017914083
https://doi.org/10.5120/ijca2017914083

Minakshi Tomer and Manoj Kumar. 2021. Multi-685
document extractive text summarization based on686
firefly algorithm. Journal of King Saud University -687
Computer and Information Sciences, 34.688

10

https://doi.org/10.1016/j.jksuci.2021.04.004
https://doi.org/10.1016/j.jksuci.2021.04.004
https://doi.org/10.1016/j.jksuci.2021.04.004
https://doi.org/10.1016/j.jksuci.2021.04.004
https://doi.org/10.1016/j.jksuci.2021.04.004

A Algorithms 689

Algorithm 1 Genetic Algorithm for Text Summarization

Input: Document with N sentences, Summary length m, population size popSize, max. number of
generations to evolve maxGen Stopping criteria
Output: Optimal summary of the document
Hyperparameters: popSize = 25, maxGen = 20

//Population Initialization
parents← empty list
for i← 1 to popSize :

string = randomly generate binary string of length N with m many 1′s
add string to parents

for i← 1 to maxGen :
children← empty set
parents_fitness = fitness_function(parents)
sort(parents_fitness, descending order)
//Elitist selection strategy
add best and second best parent to children

while (size of children < size of parents) :
parent1, parent2← Choose via Roulette based selection
child1, child2 = perform_crossover(parent1, parent2)
child1 = perform_mutation(child1)
child2 = perform_mutation(child2)
add child1, child2 to children

combined_parents_children = concatenate parents and children
new_generation_fitness = fitness_function(combined_parents_children)
sort(new_generation_fitness, descending order)
parents = first n individuals from new_generation_fitness

return select_best_summary(parents)

11

Algorithm 2.1 Discrete Differential Evolution for Text Summarization
Input: Document with n sentences, number of clusters k, population size popSize, crossover rate CR,
maximum number of generations to evolve maxGen, sclaing factor λ
Output: Optimal summary of the document
Hyperparameters: popSize = 25, CR = 0.6, maxGen = 30, λ = 1
//Initialize population
for i← 1 to N do

for j ← 1 to k do
Xi,j = randInt(1,k)

while (!StoppingCondition) do
for l← 1 to N do

Randomly choose i, j, and m from 1 to N such that i ̸= j ̸= l ̸= m
for r ← 1 to n do

if rand(0, 1) ≤ CR then
X

′
l,r = λ(Xi,r −Xj,r) +Xm,r

X
′
l,r = int(abs(X

′
l,r))

if X ′
l,r < 1 or X

′
l,r > k then

X
′
l,r = randInt(1,k)

if fitness(X ′
l) > fitness(Xl) then

nextXl = X
′
l

else
nextXl = Xl

Xl = nextX

return GetBestSolution(X)

12

Algorithm 2.2 GetBestSolution(X): Generating Summary using DDE Chromosome

Input: DDE chromosome Y , TF-IDF matrix of N sentences of document W
Output: Summary represented by the DDE chromosome

summary ← empty list clusters← empty dictionary
//Assign sentences to clusters based on chromosome Y
for i, cluster in enumerate(Y):

if cluster not in clusters:
clusters[cluster] = []

clusters[cluster].append(W [i])

//Generate summary from each cluster
for cluster in clusters:

cluster_sentences = clusters[cluster]

//Calculate the centroid of the cluster
centroid = average of TF-IDF vectors of all sentences in cluster
max_similarity = −1
representative_sentence = None

//Find the sentence with maximum similarity to the centroid
for sentence in cluster_sentences:

similarity = cosine similarity between the sentence and centroid
if similarity >similarity:

max_similarity = similarity
representative_sentence = sentence

summary.append(representative_sentence)
return summary

13

Algorithm 3 Firefly Algorithm for Text Summarization

Input: Document with N sentences, population size popSize, maximum number of iterations to move
maxIt
Output: Optimal summary of the document
Hyperparameters: popSize = 120, maxIt = 10, γ = 0.01

Initialization:
for i← 1 to popSize:

Xi ← randomly generated binary string of length N
Ii ← f(Xi)

end for
X ← list of popSize binary strings [X1, X2, . . . , XpopSize]
I ← list of popSize fitness values [I1, I2, . . . , IpopSize]
R← matrix of hamming distances between fireflies in X
for i← 1 to popSize do

for j ← 1 to popSize do
R[i][j]← ∥xi − xj∥

Updation:
best_summary ← randomly generated binary String of length N
for t← 1 to maxIt do

for each firefly i do
for each firefly j do

if I[i] < I[j] then
for l← 1 to N do

ri,l ← a random number ∼ Uniform(0, 1)
if ri,l < Ii

1+γ·(R[i][j])2
then

Update position: Xi,l ← Xj,l ▷ Move towards a brighter firefly
else

Update position: Xi,l ← Xi,l ▷ Stay in the current position

Perform bit re-balancing for all fireflies
Mutate the best fireflies // Traditional random bit-flipping Mutation technique
Update I with fitness value of new firefly positions
Update R with hamming distance between new firefly positions
best_summary ← Xi where i = argmax(I)

return best_summary

14

Algorithm 4 PSO Algorithm for Text Summarization

Input: Document with N sentences, population size popSize, maximum number of iterations to move
maxIt
Output: Optimal summary of the document
Hyperparameters: popSize = 30, maxIt = 5, ω = 1, acc_towards_local_best = 1,
acc_towards_global_best = 1.5

Initialize X ← the population of particles
Initialize local_best← array of personal best position for each particle
Initialize global_best← global best position
Initialization:
for each particle in the population do

Generate a random binary string as the initial position
Initialize the personal best position as the initial position
Evaluate the fitness of the initial position
if the fitness is better than the global best fitness then

Update the global best position
Initialize the current iteration count to 0
Updation:
while the maximum number of iterations is not reached do

for each particle in the population do
for each dimension d in the document size do

vij = 0
if Xij =

′ 1′ then
vij+ = ω
if local_best[i][j] =′ 0′ then

t1 = random.uniform(0, 1)
vij− = t1 × acc_towards_local_best

if global_best[j] =′ 0′ then
t2 = random.uniform(0, 1)
vij− = t2 × acc_towards_global_best

if vij < 0 then
Xij =

′ 0′

else
Xij =

′ 1′

else
if local_best[i][j] =′ 1′ then

t1 = random.uniform(0, 1)
vij+ = t1 × acc_towards_local_best

if global_best[j] =′ 1′ then
t2 = random.uniform(0, 1)
vij+ = t2 × acc_towards_global_best

if vij > 1 then
Xij =

′ 1′

else
Xij =

′ 0′

Mutate using traditional Mutation technique
Evaluate the fitness of the new position
if the fitness is better than the personal best fitness then

Update the personal best position
if the fitness is better than the global best fitness then

Update the global best position
Increment the current iteration count

return Summary with Global Best Position

15

Algorithm 5 Cuckoo Search for Text Summarization
Input: Document with N sentences, Summary length m, population size popSize, max. number of
generations to evolve maxGen/ Stopping criteria
Output: Optimal summary of the document
Hyperparameters: popSize = 25, pa = 0.35, maxGen = 15, threshold = 0.5

//Population Initialization
E0 ← popSize number of candidate eggs each of dimension N
while (!Stopping Criteria) :

Ek+1 ← OperatorB(Ek) //Operator B: Levy Flight
Ek+1 ← OperatorE(Ek+1) //Operator E: Squishification
Ek+1 ← OperatorD(Ek, Ek+1) //Operator D: Elitist Selection
Ek+2 ← OperatorC(Ek+1) //Operator C: Replacement
Ek+2 ← OperatorE(Ek+2) //Operator E: Squishification
Ek+1 ← OperatorD(Ek+1, Ek+2) //Operator D: Elitist Selection

return select_best_summary (E final_generation)

16

	Introduction
	Relevant Past Works
	Experimental Modelling and Fitness Function
	Document Representation
	Summary Representation
	Fitness Function Configuration
	Training Fitness Function
	Generating a Sample Dataset from BBC Documents

	Evolutionary Algorithms
	Firefly Algorithm
	Particle Swarm Optimization
	Cuckoo Search

	Results
	Conclusions and Discussions
	Algorithms

