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Abstract

Inference-time computation is a critical yet challenging paradigm for enhancing the
reasoning performance of large language models (LLMs). While existing strategies
improve reasoning stability and consistency, they suffer from notable limitations:
self-correction often reinforces the model’s initial biases, and Multi-Agent Collab-
oration (MAC) often fails due to the lack of efficient coordination mechanisms,
leading to collective errors. Although high-performing verifiers can detect reason-
ing errors, making them reliable requires substantial training. To address these
challenges, we introduce a novel inference-time framework - Adaptive Coopeti-
tion (AdCo) - in which LLM agents utilize an adaptive, UCB-based ‘coopetition’
mechanism. At each round, agents leverage coarse verifier signals to determine
whether to collaborate or compete, further iteratively refine their reasoning based on
peer feedback. Without relying on high-performance verifiers, our adaptive strategy
achieves significant performance gains on mathematical reasoning benchmarks,
yielding a 20% relative improvement over baselines on the more challenging
dataset. Our approach remains robust and consistent in terms of accuracy under
different sample sizes and configurations. This adaptive, signal-guided ‘coopetition’
framework enhances reasoning robustness by leveraging both model knowledge
diversity and reasoning trace measure, while also promoting uncertainty-driven
exploration, especially when participants have comparable capabilities. From this
perspective, our work offers a fresh lens on inference-time computation and paves
the way for more resilient multi-agent LLM systems. Our code is available at
https://github.com/AdCo-Research/adaptive-coopetition.

1 Introduction

Nowadays, LLMs exhibit strong reasoning capabilities but remain limited in certain scenarios due to
inherent pre-trained knowledge scope [14, 23]. Although model scaling and self-correction techniques
further extend their capabilities, these approaches are either computationally expensive or prone
to self-bias. To address these limitations, multi-agent frameworks emerge to facilitate collective
intelligence among LLM agents through coordinated orchestration. A good case in point is the
use of debate-based systems [4, 11] and autonomous orchestration frameworks [22]. However, this
line of work often suffers from reasoning collapse, stemming from rigid strategies and reasoning
contamination from low-quality peer feedback. To mitigate this, many methods were proposed:
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leveraging strong verifiers to evaluate outputs [12, 21], and optimizing multi-agent architecture
and reasoning processes [26, 10, 20, 17]. Unfortunately, these methods often lack inference-time
adaptability and either require extensive training or assume a symmetric role for each agent, limiting
their practicality for deployment at inference time.

To overcome these challenges, we propose Adaptive Coopetition - a lightweight inference-time, multi-
round multi-agent framework that enhances collective reasoning through adaptive decision-making
guided by coarse verifier signals. Specifically, after one step of reasoning, each agent employs a
coarse verifier to evaluate the current reasoning trace from multiple perspectives, producing what
we term "verifier signals". Using these signals, AdCo applies a revised Upper Confidence Bound
(UCB) algorithm [1] to let each agent decide whether to collaborate (absorb a peer’s reasoning
trace) or compete (invite peer criticism). With the strategy determined, agents engage in peer-to-peer
(P2P) interactions and asynchronously refine their reasoning based on peer feedback. This design
deliberately isolates low-quality reasoning traces [24, 18] and iteratively improves the reasoning
before integrating it into the cluster, thereby enhancing reasoning quality and mitigating reasoning
collapse [15].

Experiments on mathematical datasets, particularly the more challenging DeepMath-103K [6] in
terms of model capacity, demonstrate the effectiveness of our approach. The best-performing
heterogeneous AdCo cluster outperforms both the State-of-the-Art (SOTA) LLMs and conventional
multi-agent frameworks by approximately 20% in accuracy, while maintaining consistently strong
performance across different data scales. Further ablation studies underscore the necessity of key
components in AdCo, reinforcing our belief that AdCo offers a practical and effective solution that
enhances collective reasoning.

2 Adaptive coopetition

Figure 1 illustrates how AdCo Worker Cluster solves problems through multi-round optimization. At
each round, worker agents advance reasoning by one step and determine their strategy—collaboration
or competition—via a UCB-based algorithm guided by verifier signals. Formally, we estimate coarse
verifier signals by different reasoning trace measures: reasoning progress (via process reward [25]),
the diversity of reasoning trace (via semantic similarity of reasoning trace [5]), their weighted
combination. Then, the chosen measure is used in the revised UCB algorithm to decide the strategy
for the current round, prompting agents to exchange feedback with peers selectively and refine the
original reasoning. This process repeats until a final solution is reached through a majority-vote
algorithm [2]. The following sections detail our core components.
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Figure 1: Overview of adaptive coopetition

Coarse verifier signals: Coarse verifier signals refer to verifier outputs of moderate precision
in estimating reasoning progress and reasoning trace diversity at inference time. High-precision
verifiers often require substantial resources to train, and obtaining a sufficiently accurate verifier can
be infeasible. Interestingly, our empirical results show that even mediocre-quality signals from coarse
verifiers can still serve the intended purpose under AdCo: filter out bad or inconsistent feedback
while amplifying good and consistent ones in the reasoning process.

Model Diversity: Model diversity is introduced in AdCo through worker cluster configurations,
aiming to reduce the risk of static debate dynamics, wherein the debate procedure directly converges
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to the majority opinion [5]. AdCo supports two model configurations: homogeneous (the same
LLM model is used across all agents) and heterogeneous (different LLM models are used within the
cluster). The heterogeneous configuration promotes diversity by incorporating distinct LLM models
and resulting in broader pre-trained knowledge, as further evidenced by our experiments.

Low-quality feedback isolation: We use a customized filter mechanism and peer-to-peer communi-
cation to prevent reasoning collapse caused by the dissemination of unqualified information [24, 18].
In the collaborative strategy, agents choose the highest-scoring feedback to merge with to avoid
regressing in solution quality. In the competitive strategy, agents isolate low-quality critique by
requesting feedback only from the highest-scoring peer agents.

Iterative adaptive coopetition: AdCo models each agent’s problem-solving process as a Markov
decision process. At the round t, state st is the current agent’s reasoning trace. Our action space is
defined as A ≡ {c0, c1}, where c0 is to collaborate and c1 is to compete. Given the chosen action
at at round t, state transition is deterministic: T (st+1|st, at) ≡ 1. Reward r(st, at) ∈ [−1, 1] is
measured by the change in the estimation value of coarse verifier signals.

Essentially, our revised UCB algorithm serves as the action policy π(st), formulated as a variant of
the multi-armed bandit problem [1] in which rewards are assumed to be independent and identically
distributed according to an unknown distribution with unknown expectation µt. Inspired by UCT
[9], we replace the state-independent exploitation term in UCB with a heuristic approximation that
includes st. Specifically, the chosen action at is the candidate action a that maximizes:

UCB′(st, a) = Q(st, a) + C ×

√
lnN

N(a)
, a ∈ A (1)

where Q(st, a) is the estimated payoff of action candidate a at state st, N is the total number of
executed actions, and N(a) is the number of times that action candidate a has been executed so far.
We then measure Q(st, a) by the average verifier signal value changes caused by action candidate a:

Q(st, a) =

∑
i<t ∆V (si, a)

N(a)
, a ∈ A (2)

where ∆V (si, a) is the change of verifier signal estimation at state si where the chosen action is a.
More algorithm details refer to A.1.

3 Experiments

We evaluate AdCo’s performance on GSM8K [3], GSM8K-Symbolic [14] and DeepMath-103K[6].
Preliminary tests for the chosen models reveal a clear performance saturation of AdCo on the former
two, as shown in A.2. Consequently, we focused on the more challenging DeepMath-103K dataset,
exploring multiple data scales and assessing (1) the effectiveness of the iterative adaptive coopetition
strategy; (2) the effect of low-quality feedback isolation using coarse verifier signals; and (3) the
impacts of model diversity. Further details are provided in A.3.

Using the Microsoft AutoGen framework [22], we set up a heterogeneous Agent Worker Cluster using
three LLMs: DeepSeek/DeepSeek-v3-0324 [13], Google/Gemma-3-27b-it [19], and GPT-4o [8]. We
employ reasoning progress as the verifier signal. Qwen2.5-Math-PRM-7B [25] is used as the verifier
model, and its output Process Reward (PR) serves as the verifier signal value. In Equation 1, we
empirically choose C =

√
1.5 = 1.22. Algorithmic details are given in A.1 and A.5.

We compared AdCo against two baseline categories using the same LLMs: (1) individual LLMs with
self-correction mechanisms and (2) a plain multi-agent debate approach representing multi-agent
collaboration: either collaborate or compete with appropriate peers. We also evaluated AdCo in both
homogeneous and heterogeneous settings to assess the impact of model diversity. See A.4 for details.

3.1 Performance evaluation

Accuracy & stability: We measured accuracy using the percentage of correct final answers and
stability using the standard deviation across runs. As shown in Figure 2 and Figure 3, AdCo improved
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the accuracy from 37%–44% (across individual and plain multi-agent baselines) to 54%. Moreover,
the standard deviation remained low (<1%) across various dataset sizes, indicating consistently robust
performance.
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Figure 2: AdCo shows clear improvement over
baselines.
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Figure 3: AdCo shows stability (STDEV < 1%)
from 600-4000 data points.

Model diversity: AdCo also performs better under the heterogeneous configuration than homoge-
neous ones, highlighting the positive impact of model diversity. In contrast, the observed accuracies of
homogeneous setups were: 52% with 3× DeepSeek-V3-0324, 51% with 3× Gemma-3-27B-IT, and
42% with 3× GPT-4o—all falling short of 54% accuracy achieved by the heterogeneous counterpart.

Efficiency: We measured efficiency using the number of successful switches from incorrect to
correct answers using each strategy. In AdCo, agents are more likely to switch from incorrect to
correct answers than vice versa, showing its effectiveness in guiding agents toward meaningful
progress. For instance, under collaborative strategies, at 2,000 samples, agents made 1,016 switches
from incorrect to correct answers, compared to only 102 switches from correct to incorrect.

3.2 Ablation study

Revised UCB-based action policy: Replacing the revised UCB with a simple flipping rule—where
agents collaborate only when the PR exceeds 0.5 and compete otherwise—led them to make nearly
three times as many corrections from incorrect to correct decisions (1,401 vs. 509 under UCB’ at
1,000 samples) while yielding lower accuracy (54.08% vs. 55.70%). These results confirm that UCB
effectively leverages verifier signals to guide agents toward better decisions. See Table 2 for details.

Impact of agent capability: We tested AdCo with stronger models to assess whether it improves the
accuracy beyond the already high accuracy of the baselines. Using 3× Qwen/QWQ-32B (standalone
accuracy: 74.75%), AdCo improved accuracy to 80.5%, showing that even high-accuracy models
benefit from AdCo. Replacing Gemma-3-27B-IT with Qwen/QWQ-32B in our current configuration
yielded no significant gain (52.25%), likely because majority voting diluted its influence. These
findings suggest AdCo achieves the best relative performance improvement when agents have
comparable capabilities and diverse reasoning styles.

4 Limitations & future improvements

Despite promising preliminary results, we plan to introduce the following improvements in the future:

Cost-Benefit trade-off Despite the observed accuracy improvements, the accompanying costs—in
terms of token consumption, latency, and redundant API calls—are non-trivial. Therefore, more
sophisticated mechanisms should be developed to mitigate unnecessary computational overhead,
particularly when only marginal performance gains are expected. We anticipate that such considera-
tions will naturally manifest in the agent’s inter-communication strategies and in the determination of
appropriate stop conditions.
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State-aware exploration While modifying the UCB-1 exploitation term provides a reasonable
heuristic approximation, the algorithm doesn’t fully capture state-dependent exploration dynamics.
We will enhance state-aware exploration by incorporating the agent’s reasoning state and history.
This would enable the evaluation of the benefit of exploring alternative reasoning paths under the
current context. This approach is capable of more effectively balancing exploration and exploitation
based on the trajectory of reasoning, potentially leading to more accurate and efficient outcomes.
Last but not least, we would like to bring in further theoretical analysis for our UCB-1 variation to
strengthen the case of our adapted heuristics.

Weighted result aggregation The majority voting mechanism diminished the impact of stronger
agents in heterogeneous settings, as evidenced when a weaker model is replaced by a compa-
rably stronger one. This indicates that our current aggregation strategy may under-utilize high-
performing agents. We plan to explore alternatives to majority voting, such as confidence-weighted or
performance-based aggregation, which may better leverage the strengths of high-performing agents.

Strategy-specific parameter tuning Currently, each LLM client is configured with its default
hyperparameters due to practical constraints of the AutoGen framework on the non-OpenAI models.
This limitation prevents us from adapting parameters such as temperature and sampling rate to better
optimize reasoning performance. In future work, we plan to conduct additional trials to enable
parameter tuning across models, to improve reasoning performance and efficiency.

Extended experiments As tool-augmented and structure-aware methods have demonstrated
strong effectiveness in agentic applications, we are planning to incorporate tool-use agents and
search/planning variants into our baselines to examine whether the performance gains follow a
consistent trend. Meanwhile, considering PRM’s role in the proposal, it is necessary to discuss how
the performance changes when PRM accuracy is intentionally degraded or adversarially perturbed.

Lightweight architectures & expansion to broader domain Furthermore, we will explore the
adoption of lightweight-trained or distilled agent models to make the framework more accessible
in resource-constrained environments. We also plan to extend the framework to other reasoning-
intensive domains beyond mathematics, such as scientific discovery and legal analysis, to evaluate its
versatility and robustness.

5 Conclusion and future works

In this paper, we introduced Adaptive Coopetition, a lightweight inference-time multi-round, multi-
agent framework that enhances LLM multi-step reasoning through self-evolution with peer feedback
from adaptive collaboration and competition. AdCo adopts a reinforcement learning-based reflection
for adaptive strategic selection, using a modified two-armed UCB-1 algorithm guided by coarse veri-
fier signals. Experiments demonstrate that AdCo significantly outperforms self-correction standalone
LLM and conventional multi-agent baselines in reasoning accuracy, stability, and strategy efficiency.
Future improvements include state-aware exploration along reasoning trajectories, weighted result
aggregation, strategy-specific parameter tuning, lightweight architectures for resource-limited settings,
and expansion to broader domains (see 4). Overall, we expect AdCo to enhance inference-time
reasoning via adaptive strategy selection, while producing diverse reasoning traces with the verifier
signals to inform future training and extend its impact to broader reasoning domains.
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A Appendix and supplemental materials

A.1 Algorithm derivation

As shown in Equation 1, determining the next action strategy of a worker agent – to compete or
collaborate with appropriate peers – is equivalent to maximizing its chosen reasoning trace measure.
This setting resembles a traditional multi-armed bandit problem, where the Upper Confidence Bound
(UCB) algorithm [1] selects an arm a to maximize the accumulated reward according to

UCB(a) = X̄a + c

√
lnN

na
(3)

where X̄a is the mean reward of arm a, na is the number of times arm a has been pulled, N is the
total number of pulls, and c is a exploration hyperparameter. The first exploitation term encourages
exploiting actions with high observed rewards, while the second exploration term incentivizes
exploring less frequently used actions.

Here, the key distinction between the traditional UCB algorithm and our problem framing is: the
reward in our case – defined as the change in the verifier signal value after executing an action –
is state-dependent. This motivates drawing inspiration from a UCB variation applied to the tree
search space (UCT) [9], which extends it to sequential decision processes over structured state spaces.
Correspondingly, the action selection in UCT at each state s is given by

UCT (s, a) = Q(s, a) + c

√
lnN(s)

N(s, a)
(4)

where Q(s, a) denotes the estimated action-value at state s, N(s) is the visit count of state s, and
N(s, a) is the count of selecting action a from s. According to Equation 4, the stateful nature of
UCT is evident: both the exploitation and exploration terms depend on the current state s.

To adapt UCB for AdCo, we revised the original algorithm by replacing its state-independent ex-
ploitation term with the state-dependent term Q(st, a) in Equation 1, and leaving the state-dependent
exploration term as future work (See 4).

To measure Q(st, a), our hypotheses are as follows:

• The estimated payoff of action candidate a at state st is proportional to the average of mea-
surable reasoning progress and information diversity increases, which reflects on Q(st, a):

Q(st, a) ∝
∑

i<t ∆Progress(si, a)
N(a)

, Q(st, a) ∝
∑

i<t ∆Diversity(si, a)
N(a)

(5)

• The estimated payoff of action candidate a at state st grows proportionally with the weighted
combination of reasoning progress and the degree of information diversity gains:

Q(st, a) ∝
∑

i<t ∆Progress(si, a)⊙∆Diversity(si, a)
N(a)

(6)

where ∆Progress(si, a) measures the reasoning progress at state si when the chosen action
is a, and ∆Diversity(si, a) captures the resulting increase in information diversity when the
chosen action is a, ⊙ is the weighted combination operator.

Since we focus on reasoning progress and assume that PRM offers a rough estimate of reasoning
progress, the revised UCB can be simplified as follows:

UCB′(st, a) =

∑
i<t ∆PR(si, a)

N(a)
+ C ×

√
lnN

N(a)
, a ∈ {c0, c1} (7)
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A.2 GSM8K and GSM8K-Symbolic

GSM8K [3] is a dataset of 8.5K high-quality, grade-school–level math problems. It features high
linguistic diversity while relying on relatively simple mathematical concepts. Each problem requires
between 2 and 8 steps to solve, typically involving a sequence of elementary calculations with basic
arithmetic operations (+, −, ×, ÷). The dataset is carefully curated, with fewer than 2% of problems
containing critical errors, and each problem is designed to be relatively unique, ensuring both quality
and diversity.

GSM8K-Symbolic [14] is characterized by its templated problem structure based on the GSM8k
dataset, and enables the systematic generation of different problems from a single template by
varying numerical values. This mitigates the risk of pattern matching or memorization, which can
inflate performance metrics on benchmarks with a limited number of fixed examples. Consequently,
this dataset can provide a more reliable measure of an LLM’s mathematical reasoning capabilities,
compared to the original GSM8k dataset.

To evaluate whether the GSM8K and GSM8K-Symbolic datasets are suitable for our experiment, we
assessed the performance of the following models on these datasets: DeepSeek/DeepSeek-v3-0324,
Google/Gemma-3-27b-it, and GPT-4o, as well as AdCo in a heterogeneous setup using these three
models. The results on GSM8K-Symbolic (with similar results observed for GSM8K) are summarized
in below Table 1:

200 1000 5000
gemma-3-27b-it 86.25%± 0.4% 85.25%± 0.5% 86.35%± 0.1%
gpt-4o 91.5%± 0.5% 92.50%± 0.3% 91.94%± 0.4%
deepseek-v3-0324 89.00%± 2.1% 91.10%± 0.7% 91.26%± 0.1%
AdCo 89.75%± 1.1% 92.58%± 0.1% 91.84%± 0.3%

Table 1: Performance evaluation on GSM8K Symbolic dataset

As shown in the above table, each base model already achieves ∼ 90% accuracy for the GSM8K
Symbolic dataset. This suggests that the underlying patterns of the GSM8K series are largely
captured by the chosen models. Therefore, they leave little room to push the capability boundary
of the underlying LLM with these datasets, which drives us to choose a more challenging dataset
without such performance saturation.

A.3 DeepMath-103K

DeepMath-103K [6] is a large-scale mathematical reasoning dataset released in April 2025, due to its
distinctive characteristics:

• Unique Data Acquisition: Unlike many open-source math datasets that predominantly
repackage well-known, pre-formatted problems from standardized sources such as
AIME[16] and AMC[7], DeepMath-103K curates problems from more diverse and less-
structured origins. For example, it extracts and reformulates problems from community-
driven platforms like Math StackExchange into a clean, well-structured question–answer
format. This results in a broader and more original problem distribution, significantly
reducing overlap with prior datasets and encouraging generalizable reasoning.

• Verifiable Answers: Each problem includes a final, rule-verifiable answer that facilitates
automated correctness checks, making the dataset well-suited for evaluating the accuracy
and stability of our AdCo across multiple baselines.

• Rigorous Decontamination: The dataset underwent a comprehensive decontamination pro-
cess to remove any overlap with established math benchmarks such as MATH, Minerva,
AIME, and OlympiadBench, making it a trustworthy resource for evaluating true generaliza-
tion.

Preliminary tests of the chosen models achieved only 36.7%–44.0% accuracy, highlighting their
limited pre-trained knowledge and the substantial performance gap that AdCo can address. To
ensure unbiased evaluations, we randomly sampled a scaled-size 200, 400, 600, 1,000, 2,000, and
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4,000 problems with numeric answers from the DeepMath-103K. All samples were selected through
uniform random sampling without replacement to avoid selection bias.

A.4 Baseline configurations

We evaluate Heterogeneous AdCo against two categories of baselines, as well as its Homogeneous
counterpart:

• Individual LLMs with Self-Correction: Each model operates independently with iterative
self-refinement (DeepSeek-v3, Gemma-3, GPT-4o).

• Plain Multi-Agent (AutoGen):

– Collaborative-only setting: All agents collaborate based on peers’ partial solutions to
refine their reasoning without AdCo.

– Competitive-only setting: All agents critique peers’ partial solutions to refine their
reasoning without AdCo.

• Homogeneous AdCo: 3 identical LLM agents (e.g., 3× DeepSeek) applying AdCo under
the same model type used in the corresponding heterogeneous setting.

A.5 Implementation details

A.5.1 Verifier model

Qwen2.5-Math-PRM-7B [25] is chosen as our verifier model, because 1) it can evaluate intermediate
reasoning steps and not just the final answer 2) it shows suitable performance identifying errors
in standard benchmarks (such as ProcessBench, etc.) and Best-of-N evaluations. Moreover, we
evaluated its performance on several different datasets, and found that the reported PR accuracy on
the DeepMath dataset is relatively low (<50%), making it a good candidate to act as a coarse signal
provider.

A.5.2 LLM client setting

In the experiment, each LLM client was configured using the default AutoGen hyperparameter settings.
While tuning these parameters for each LLM client would be preferable—and we initially attempted
to do so—we ultimately kept defaults for consistency. For example, under the competitive strategy,
we considered increasing the temperature to encourage exploration of alternative reasoning paths and
raising the sampling rate to identify better and pursue high-confidence candidates. Conversely, under
the collaborative strategy, lower temperatures and reduced sampling would be more appropriate.

However, we were unable to implement further hyperparameter tuning due to the practical constraints
of our chosen framework. Confidence scores are only supported by OpenAI or some self-hosted
models, excluding the other models in our experiments, and the AutoGen framework does not allow
configurable sampling rates without source code modification — forcing sequential exploration that
is prohibitively slow and costly at scale.

A.5.3 Worker agent design

To support efficient self-evolution and filter out low-quality reasoning in the cluster, a general
asynchronous message-driven architecture with selective peer-to-peer communication has been
built on top of the AutoGen framework for AdCo, shown in Figure 4. The following discussion
concentrates on how a typical worker agent — say, Agent A — iteratively self-evolves.

Problem reception and initial reasoning Initially, Agent A subscribes to the problem topic on
the shared Pub/Sub channel and receives the published problem once available. It then invokes the
corresponding LLM to generate its first reasoning step. Next, Agent A queries the Process Reward
Model, obtaining PR(0) (verifier signal) for the current partial solution S(0). Both S(0) and PR(0)
are then published to Agent A’s work status topic on the shared channel. Eventually, the initial
reasoning state S(0), PR(0) is persisted as a cluster-accessible topic, serving as the starting point for
its subsequent reasoning. Unlike future rounds t > 0, the initial reasoning step only generates the
initial PR(0) without involving interactions with other peers in the cluster.
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Figure 4: Worker agent architecture: relying on Pub/sub channel to exchange information within the
worker cluster, each agent individually carries out initial reasoning and continues iterative reasoning
until the cluster consensus is reached via majority voting.

Iterative reasoning After the initial step, Agent A enters a cycle of iterative reasoning: stepping
forward from S(t), PR(t) to S(t + 1), PR(t + 1) until answer convergence. At each round t,
Agent A decides its action strategy using the revised UCB algorithm, which takes the performance
gain ∆PR = PR(t− 1)− PR(t− 2), t > 1 at the previous round as input, and then executes the
chosen action accordingly:

• Competitive: Agent A selects the peer agent with the highest average performance (excluding
itself) to critique the current partial solution. The average performance is defined as the

cumulative PRs up to round t normalized by the number of rounds, i.e.,
∑t−1

i=0 PR(i)

t . Then,
the selected peer interacts directly with Agent A via AutoGen’s peer-to-peer communication
channel: it retrieves Agent A’s partial solution S(t− 1), critiques it using the prompt 7, and
sends the feedback back directly to Agent A. Agent A then integrates this critique feedback
with the prompt 8 to refine its reasoning at round t.

• Collaborative: Agent A retrieves all S(t− 1), PR(t− 1) from other peers via the shared
work status topic, but only incorporates the S(t− 1) with the highest PR(t− 1) from peer
agents into the prompt 6 at the current round t.

After this round, the updated partial solution S(t) and its corresponding PR(t) are published back to
their own worker status topic.

Convergence check At the end of round t, a monitoring daemon reviews the worker status topic to
access outputs from all worker agents and determine whether convergence has been reached. If so,
outputs are aggregated through majority voting to produce the final answer (see A.5.4).

Iterating until convergence If convergence has not been reached, a new round t+ 1 begins, with
the agent’s state updated to S(t), PR(t), following the aforementioned logic. This cycle continues
iteratively until all agents converge on a final answer.

A.5.4 Majority voting and final answer determination

AdCo uses the following criteria to determine whether a final answer has been reached:

• All agents have reached a final answer after at least two rounds; or
• A quorum of agents have converged on the same final answer, and more than 5 rounds have

been completed. (We chose 5 rounds to ensure adequate debate among the three agents
while also keeping costs manageable. As future work, we plan to conduct further testing to
identify the optimal number of debate rounds.); or

• If the number of rounds exceeds 20, the final answer is determined via majority voting
among the agents. We limited the rounds to 20 to manage inference time costs.
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A.6 Worker agent prompts

This section includes the prompts each worker agent uses to 1) perform initial reasoning; 2) refine
reasoning using peer feedback under collaborative strategy; 3) critique a peer’s partial response under
competitive strategy; 4) refine reasoning via peer critique under competitive strategy.

You are assisting with a math reasoning problem by providing the next step in the solution process. Your explanation should be
clear, concise, and generate only one extra step.
#Steps:

1. Analyze the given math problem and the previous steps provided.

2. Create a clear summary of the previous steps and include them in your response.

3. Identify the next logical step to progress the solution.

4. Explain the step clearly, showing how it advances the problem-solving process.

5. If this step leads to the final answer, present it using the format: The answer is #### [numerical answer].

#Output Guidelines:

• Create a clear summary of the previous steps, and include only one additional step in the response.

• Use the final answer format if the solution is complete: The answer is ####[numerical answer]

• Keep your response under 100 words.

#Notes:

• Focus on clarity and logical reasoning.

• Ensure continuity by building directly from previous steps.

Now given the following math problem and previous steps, add the next step.

Problem: {content}\n
Previous steps: {prev_steps}\n

Figure 5: Initial reasoning prompt

You are a math reasoning assistant. Your role is to solve a problem step by step by integrating the best parts of two given partial
solutions.
#Steps:

1. Carefully read and understand the math problem.

2. Review both partial solutions thoroughly.

3. Extract and combine the strongest reasoning from each partial solution to create a unified solution.

4. If the final answer hasn’t been reached, provide only the next logical step.

#Output Format:

• Rewrite the combined solution. If the final answer is still incomplete, provide just one additional step per response.

• Keep your response under 100 words.

• If this step solves the problem, present the answer as: The answer is ####[numerical answer]

Now given the following math problem, two partial solutions, please generate the next step.

Problem: {content}\n
solution_1: {solution_1}\n
solution_2: {solution_2}\n

Figure 6: Collaborative strategy - refine reasoning using peer feedback
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Your task is to review a partial solution to a math problem and identify any errors.
#Steps:

1. **Understand the Problem**: read and comprehend the math reasoning problem.

2. **Review the Partial Solution**: Check for mistakes in logic or calculation.

3. **Critique**: explain any errors found clearly.

#Output Format:

• Provide a concise critique to the partial solution; do not provide the final answer in the response.

• Keep your response under 100 words.

#Notes:

• Focus on accuracy in identifying mistakes.

• Ensure your explanation is clear and to the point.

Now given the following math problem and partial solution, please carefully inspect the solution and point out any mistakes.

Problem: {content}\n
Partial solution: {peer_response}\n

Figure 7: Competitive strategy - provide critique on peer’s partial response

Your task is to review a partial solution and its critique for a math reasoning problem, correct any errors, and provide the next
correct step in the solution.
#Steps:

1. **Understand the problem**: read and interpret the math problem.

2. **Review the partial solution**: identify any mistakes or gaps.

3. **Evaluate the Critique**: assess the critique’s accuracy.

4. **Address the Critique**: replace the partial solution with a corrected solution. If the final answer hasn’t been
reached, provide only the next logical step.

#Output Format:

• Add only one step per response.

• Clearly explain your reasoning.

• If reaching the final answer, use the format: The answer is ####[numerical answer]

• Keep your response under 100 words.

Now given the following math problem, previous steps and critique, please carefully consider the critique and correct any mistakes
as the next step.

Problem: {content}\n
Previous steps: {prev_steps}\n
Critique: {critique}\n

Figure 8: Competitive strategy - refine reasoning using peer critique

A.7 Ablation study - the revised UCB vs. simple flipping rule

200 600 1000
UCB 54.25%± 2.5% 55.92%± 0.1% 55.70%± 0.3%
Flipping 52.00%± 4.2% 54.58%± 0.1% 54.08%± 0.3%

Table 2: Performance comparison of the revised UCB vs. simple flipping
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