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ABSTRACT

High-resolution structure determination by cryo-electron microscopy (cryo-EM)
requires the accurate fitting of an atomic model into an experimental density
map. Traditional refinement pipelines like Phenix.real space refine and Rosetta
are computationally expensive, demand extensive manual tuning, and present a
significant bottleneck for researchers. We present CryoNet.Refine, an end-to-
end, deep learning framework that automates and accelerates molecular struc-
ture refinement. Our approach utilizes a one-step diffusion model that integrates
a density-aware loss function with robust stereochemical restraints, enabling it
to rapidly optimize a structure against the experimental data. CryoNet.Refine
stands as a unified and versatile solution capable of refining not only protein com-
plexes but also DNA/RNA-protein complexes. In benchmarks against Phenix.
real space refine, CryoNet.Refine consistently yields substantial improvements in
both model–map correlation and overall model geometric metrics. By offering a
scalable, automated, and powerful alternative, CryoNet.Refine is poised to become
an essential tool for next-generation cryo-EM structure refinement.

1 INTRODUCTION

Cryo-electron microscopy (cryo-EM) has emerged as a revolutionary technique in structural biol-
ogy, enabling the determination of macromolecular structures, including numerous crucial biologi-
cal complexes, at unprecedented resolution (Kühlbrandt, 2014; Nogales & Eva, 2016). The typical
cryo-EM workflow involves several sequential stages: sample preparation, electron micrograph ac-
quisition, particle picking, three-dimensional (3D) reconstruction, atomic model building, and final
structure refinement. Despite these advancements, a persistent challenge in cryo-EM remains the
inherent low signal-to-noise ratio (SNR) and the pervasive conformational dynamics of biological
samples. These factors often lead to low-resolution cryo-EM density maps from 3D reconstruc-
tion, and even high-resolution maps frequently exhibit low-resolution densities at peripheral and/or
flexible regions. Such limitations severely compromise the effectiveness of atomic model building
tools, including traditional approaches like Phenix.map to model (Afonine et al., 2018a), A2-Net
(Xu et al., 2019), DeepTracer(Pfab et al., 2021), CryoNet(https://cryonet.ai), and even
more recent breakthroughs like ModelAngelo(Jamali et al., 2024). This can result in fragmented or
incomplete structures, incorrect identification of amino acid or nucleic acid types, and in extreme
cases, the inability to complete atomic model building, often necessitating integration with orthogo-
nal data sources like RNA-seq for structure discovery(Wang et al., 2024; 2025).

Due to the limitations mentioned above, atomic model refinement becomes a crucial step to follow
once an initial atomic model is built. This phase meticulously adjusts the atomic coordinates of
each amino acid or nucleic acid within the model, typically employing both automated and manual
interactive tools. Automated tools, exemplified by Phenix.real space refine (Afonine et al., 2018b),
are highly versatile, capable of refining not only protein structures but also DNA and RNA. It in-
corporates a comprehensive library of structural restraints, including secondary structure, rotamer,
and Ramachandran plot. By iteratively optimizing the stucture through simulated annealing and
sampling from vast conformational spaces, it seeks a subset of models that best fit the cryo-EM
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density map, ultimately yielding a structure with excellent geometric metrics and high model-map
correlation coefficients. Concurrently, interactive tools like Coot(Emsley & Cowtan, 2004) provide
structural biologists with user-friendly interfaces to visualize poor geometry for convenient manual
adjustments. Coot further allows users to dynamically adjust the weights of local density regions
with unbalanced quality, offering effective real-time constraints during manual refinement. While
highly effective, both automated and manual methods often require “case-by-case” parameter tuning
by experts. The process of cryo-EM refinement is in urgent need of a flexible, robust and fully auto-
mated method . Leveraging the powerful capabilities of modern AI approaches thus holds immense
prospect for developing superior cryo-EM refinement tools.

The landscape of AI in structural biology has been dramatically reshaped by recent advancements
in generative models, particularly diffusion models, which excel in protein generation, design, and
structure prediction. Breakthroughs like AlphaFold3(Abramson et al., 2024), RFDiffusion(Watson
et al., 2023), and Chroma(Ingraham et al., 2023) exemplify their exceptional ability to generate
diverse and high-quality structures for various biomolecules, including proteins, DNA, and RNA
complexes. Beyond single-chain protein prediction, where models like AlphaFold2(Jumper et al.,
2021), RoseTTAFold (Baek et al., 2021), and ESMFold(Lin et al., 2023) have achieved remark-
able accuracy, diffusion-based methods are extending to protein-protein interactions, protein-small
molecule complexes, and RNA/DNA complexes (Baek et al., 2021; 2023; Wohlwend et al., 2025;
Passaro et al., 2025). Notably, AlphaFold3 has moved beyond predefined fixed bond lengths and
angles from AlphaFold2, by learning these geometric constraints directly from PDB data using dif-
fusion models. This includes accurately capturing geometry features like the planarity of benzene
rings in amino acids. However, a significant limitation of these generative methods is that while
they produce geometrically plausible structures, they often exhibit suboptimal performance on var-
ious detailed geometric metrics and, crucially, do not natively support refinement under the direct
restraints of experimental data, such as cryo-EM density maps. Applying the robust generative abil-
ity of diffusion models to cryo-EM data-restraints refinement thus offers a transformative pathway
to substantially improve structure quality and overcome the reliance on laborious, parameter-heavy
traditional or manual refinement workflows.
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Cryo-EM map
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Re�ned
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Figure 1: (a) Workflow of CryoNet.Refine. Atomic models are colored by model–map correlation
coefficients (CC), with blue indicating high CC and red indicating low CC. (b) The input atomic
model, refined atomic model within cryo-EM density map.

To address these limitations, we introduce CryoNet.Refine, a novel one-step diffusion model de-
signed for cryo-EM atomic model refinement Figure 1.(a). CryoNet.Refine pioneers the integration
of advanced atomic generation principles, inspired by the capabilities seen in AlphaFold3, into a
comprehensive refinement framework. Taking a cryo-EM density map and an atomic structure as
input, Atom encoder first extracts intricate features from the structure to be refined. Concurrently,
Sequence embedder encodes atomic type information derived from the input molecular sequence.
These encoded representations are then fed into our one-step diffusion module, which iteratively
generates the refined atomic structure. The refinement process is guided by novel designed density
loss and a set of geometry losses, facilitating iterative optimization of the atomic model. CryoNet.
Refine achieves the first successful atomic structure refinement under the direct constraints of exper-
imental cryo-EM density maps and the guidance of standard geometry metrics within a neural net-
work framework (Figure 1.(b)). Experimental benchmarkds demonstrates significant improvements
over Phenix.real space refine on both protein-protein and DNA/RNA-protein complexes, showcas-
ing its exceptional performance and broad applicability. Our work presents four main contributions:

(1) We propose the first AI-based method for cryo-EM atomic model refinement, leveraging a deep
neural network-based one-step diffusion module.

(2) We develop a novel parameter-free and differentiable density generator that can produce simu-
lated density maps from the generated atomic model. This innovation enables us to design an
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effective density loss, marking the first time that density map correlation can be directly utilized
as a loss function to guide neural network training.

(3) We introduce a set of differentiable geometry loss functions specifically tailored for guiding
the generation of geometrically plausible macromolecular structures, which also offer valuable
guidance for protein design and protein structure prediction models.

(4) We conduct extensive evaluation of CryoNet.Refine against Phenix.real space refine on cryo-
EM datasets, showing a marked improvement in structural quality across various metrics.

2 RELATED WORK

In this section, we review the state-of-the-art methods in cryo-EM atomic model refinement and
structure modeling, highlighting both traditional and emerging AI-driven approaches.

Cryo-EM atomic model refinement. Cryo-electron microscopy (cryo-EM) has revolutionized
structural biology, enabling the determination of macromolecular structures at near-atomic reso-
lution. However, the initial cryo-EM density maps often require subsequent atomic model refine-
ment to achieve biologically meaningful and geometrically accurate structures. Traditionally, atomic
model refinement methods can be broadly categorized into automated and manual approaches. Au-
tomated tools, such as Phenix.real space refine(Afonine et al., 2018b), Rosetta(Wang et al., 2016),
and ISOLDE(Croll, 2018), leverage various geometric restraints (e.g., bond lengths, angles, dihe-
dral angles) and force fields to drive atomic models to fit to density while maintaining stereochem-
ical integrity. While these methods can be powerful and yield highly refined structures and, with
expert “case-by-case” parameter tuning, their extensive parameter sets and specialized workflows
often present a steep learning curve for non-expert users. In parallel, manual refinement tools
like Coot(Emsley & Cowtan, 2004)offer powerful interactive visualization capabilities, allowing
researchers to meticulously adjust individual amino acid residues or local regions directly within
the density map. These tools provide unparalleled control and flexibility, enabling highly precise
adjustments. Nevertheless, manual refinement is notoriously labor-intensive, time-consuming, and
similarly demands significant expert knowledge, making it a bottleneck for high-throughput struc-
ture determination.

Protein Structure Refinement. More recently, the field has seen a surge of interest in artificial
intelligence (AI)-driven methods for Protein Structure Refinement. Approaches such as DeepAcc-
Net(Hiranuma et al., 2021), GNNRefine(Jing & Xu, 2021), and AtomRefine(Wu et al., 2023) employ
neural networks, typically 3D convolution neural networks and Graph Neural Networks (GNNs),
to learn intricate geometric features of protein backbones and side-chains. These methods aim to
predict corrections or refine atomic positions based on learned structural patterns. A key characteris-
tic of these existing AI-based refinement techniques is their primary reliance on structural learning,
often from large databases of known protein structures. Consequently, the refined structures are
fundamentally predictions of geometrically plausible conformations. A critical limitation, however,
is the general absence of direct integration with experimental cryo-EM density maps during the dif-
ferentiable optimization process. This disconnect means that the final predicted structures, while
potentially ideal in terms of stereochemical geometry, frequently do not optimally match experi-
mental data. Currently, there is a notable gap in the literature for neural network-based methods that
support differentiable refinement under the direct constraint of cryo-EM experimental data.

Diffusion models for structural generation. The advent of diffusion models has marked a signifi-
cant paradigm shift in generative AI, demonstrating remarkable capabilities in complex data gener-
ation, including protein structure prediction and design. Diffusion models, exemplified by architec-
tures like RFDiffusion(Watson et al., 2023) for de novo protein design and AlphaFold3(Abramson
et al., 2024) for biomolecular interaction structure prediction and, excel at learning atom distribu-
tions and generating diverse, high-quality biomolecular structures. Their success in protein structure
generation is largely attributed to their ability to capture global and local structural features, implic-
itly enforcing geometric characteristics like bond lengths and angles, thus generating models with
high stereochemical quality. These models have shown exceptional proficiency in maintaining geo-
metric fidelity in generated structures. Leveraging the strong structural priors and generative capa-
bilities of diffusion models could offer a novel avenue for cryo-EM structure refinement, particularly
if their powerful learning frameworks could be adapted to integrate and be driven by experimental
cryo-EM density information in a differentiable manner.
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Figure 2: (a) Overview of the CryoNet.Refine framework. The CryoNet.Refine Network consists of
four modules: Atom encoder, Sequence embedder, Diffusion module, and Density generator. The in-
put atomic model is first processed by the encoders, and the resulting features are fed into a one-step
diffusion module to generate an initial refined atomic model. Subsequently, the Density generator
creates a synthetic density map, which is used to compute density loss against the input density map
and geometry loss based on geometry restraints. These losses are then backpropagated to optimize
the diffusion module, while the atomic model is further refined through multiple recycle steps until
convergence. (b) Model-map correlation coefficient trajectory over 234 recycling CryoNet.Refine
iterations on the structure of the human concentrative nucleoside transporter CNT3((Bank)). The
input density map is EMD-0775, the input atomic model is predicted by AlphaFold3.

3 METHODS

3.1 CRYONET.REFINE FRAMEWORK

CryoNet.Refine is an end-to-end deep learning framework designed for the atomic model refinement
of macromolecules directly against experimental cryo-EM density maps Figure 2.(a). The refine-
ment process begins by taking an experimental cryo-EM density map (d0) and an initial atomic
structure (x0) as input. Atom encoder first processes the input structure to extract pairwise features
(z) for each atom. Concurrently, Sequence embedder encodes atomic type information (s) derived
from the input molecular sequence. These encoded representations (z,s) along with the initial atomic
structure (x0) are then fed into our one-step Diffusion Module to generate a refined atomic structure
(d1). Subsequently, the density generator takes the refined structure (x1) as input to produce a simu-
lated density map (d1). A designed density loss (Lden) is then calculated by comparing this simulated
map (d1) with the input map (d0). Simultaneously, a Geometry loss (Lgeo) is computed based on the
refined structure (x1). These two losses are then weighted and summed to form the total loss (Ltotal),
which is backpropagated to update the parameters of the diffusion module. This process constitutes
one refinement cycle. The refined structure from this cycle (x1) is then used as the input for the next
recycle step to generate x2. After n such cycles, the final refined atomic model, xn, is obtained.
Our network was first initialized with the pre-trained parameters of Boltz2(Passaro et al., 2025), a
PyTorch implementation of AlphaFold3, followed by training with a composite loss function includ-
ing two components: one measuring experimental data fidelity and the other introducing geometric
restraints. The network was trained until convergence, yielding the generated atomic structures that
are in high agreement with the experimental data while satisfying geometric constraints.

One-step diffusion module. The atomic structure generator is designed as a one-step diffusion
model. Unlike the diffusion module in AlphaFold3 that requires hundreds of sampling steps, one-
step diffusion models represent a major development in generative AI, leveraging techniques like
Knowledge Distillation(Meng et al., 2022) and Consistency Models(Song et al., 2023) (as explored
in (Wu et al., 2025)) to compress the generation process and reduce computational bottlenecks. We
have observed that the one-step diffusion module possesses a key advantage: it can easily incor-
porate features from experimental data and geometric restriants, into the generation process. This
one-step design effectively and efficiently respects the given guidance, generating accurate results
that align tightly with the restraints. Figure 2.(b) shows the refining atomic model trajectory colored
with model-map correlation coefficients.
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Concretely, the refining process is performed by training the network under a preconditioned pa-
rameterization following (Karras et al., 2022), and finally producing the refined coordinates x̂ as:

x̂ = cskip(σ)x0 + cout(σ)Fθ
(
cin(σ)x0, cnoise(σ), C

)
, (1)

where cskip,cout and cout denote coefficients in the preconditioned forward module(Appendix C) and
Fθ is a parameterized neural network in it. C denotes conditioned features derived from encoded
structural features s and z. This preconditioned update ensures that the one-step refinement pre-
serves the theoretical properties of multi-step diffusion while collapsing the stochastic process into
a deterministic, single-step prediction.
Restraints of density map and structure geometry. CryoNet.Refine employs a density generator
and two types of loss functions to leverage these restraints. The first type of loss is a density loss,
derived by compute the correlation between the experimental cryo-EM maps and the synthetic maps
generated from refined atomic model by the density generator (Section 3.2.1). Another one is a set of
geometry loss terms imposes stereochemical restraints—such as those derived from Ramachandran
plot, rotamer, and bond angle distributions—to ensure standard structure geometry (Section 3.2.2).
Thus the network is trained using a recycling strategy that reuses refined outputs as inputs for sub-
sequent passes, progressively optimizing the two loss functions for density map agreement and
geometry metrics. Together, these novel design choices enable CryoNet.Refine to achieve rapid,
generalizable, and experimentally consistent refinement by fully respecting the restraints derived
from both the cryo-EM density map and the structure geometry.

3.2 LOSS FUNCTIONS

The loss function of CryoNet.Refine consists of density loss and geometry loss, defined as follows:

L = γden · Lden + Lgeo,

Lgeo = γrama · Lrama + γrot · Lrot + γangle · Langle + γCβ
· LCβ

+ γviol · Lviol,
(2)

where γ is the weight of each loss. See the detailed definition of these functions in Section 3.2.1,
Section 3.2.2, and Appendix D. To the best of our knowledge, CryoNet.Refine is the first to for-
mulate a differentiable implementation to compute density loss, ramachandran loss, rotamer loss
and Cβ loss. Although these biological implications have been well-established and recognized as
indispensable for protein structure prediction and atomic model building, prior methodologies have
not integrated similar constraints into their nerual network based refinement processes.

3.2.1 DENSITY LOSS

We compute the density loss within two steps: (i) genarate a synthetic density map for the refined
atomic model; (ii) compute the overlap region between the input density and the synthetic density.
Both these two steps must be implemented to be fully differentiable.
A density map d can be discretized as a group of 4-dimensional vectors [λ, µ, ν, ρ], where m⃗ =
[λ, µ, ν] specifies a position and ρ is the density value at this point, with the origin of coordinates
nearest to m⃗min and farthest to m⃗max. For computation of the overlapped region, we first locate this
region ∀m⃗o ∈ So between the input density map d0 and the synthetic density map di through the
coordinate system:

m⃗omin = max(m⃗0min , m⃗imin) m⃗omax = min(m⃗0max , m⃗imax)

After locating So, we can select all the density values within it from d0 and di and get their subsets
d0

⋂
o and di⋂ o. Thus, the density loss will be defined as:

Lden = 1−
ρ0

⋂
o · ρi

⋂
o

||ρ0
⋂

o||2 · ||ρi
⋂

o||2
(3)

For the implementation of synthetic density map generation, we follow the molmap algorithm in
ChimeraX(Pettersen et al., 2021), utilizing the all-atom coordinates of the refined atomic model
at the i recycle x⃗i = [x0

i ,x
1
i ,x

2
i ] and output a box-shaped density map di = (m⃗i,ρi), where

x⃗i ∈ R3×Natom and m⃗i ∈ R3×Natom×L, noting that the parameter L stands for the number of grid
points for each atom per axis, and its value is obtained by:

rG = res/(π · v), sG = 4 · rG , L = 2 · sG

5
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The key idea here is to construct a Gaussian sphere for each atom, with rG and sG respectively
meaning Gaussian radius and the radius of a Gaussian sphere. We expect that m⃗i turns out to be
a box as small as possible with all-atom coordinates x⃗i inside it as well as a margin of Gaussian
sphere around it, so:

m⃗imin = [⌊min(x0
i )⌋, ⌊min(x1

i )⌋, ⌊min(x2
i )⌋], m⃗imax = [⌈max(x0

i )⌉, ⌈max(x1
i )⌉, ⌈max(x2

i )⌉]
m⃗i size = ⌈(m⃗imax − m⃗imin)/v + 2 · sG + 1⌉, m⃗icenter = (m⃗imin + m⃗imax)/(2 · v)

m⃗imin = ⌊(m⃗icenter − m⃗i size)/2⌋, m⃗imax = ⌊(m⃗icenter + m⃗i size)/2⌋

For each atom per axis(for example the x-axis), we can get L density values around the original
atom coordinate by applying Gaussian distribution:

for n ∈ (1, 2, ..., Natom) ρnλ = wn · exp(−
(x0i )

n + l

2
), l = [−sG , ..., 0,−sG ], (4)

where wn signifies the atomic weight of the corresponding atom. To combine density values on all
directions, each atom will end up with L3 density values:

ρ⃗n = ρnλ × ρnµ
⊤ × ρnµ

⊤ (5)

3.2.2 GEOMETRY LOSS

Geometry loss functions are employed to guarantee the stereochemical accuracy and structural va-
lidity of predicted proteins by enforcing conformity with established biological restraints. However,
previous work has failed to incorporate geometry-related losses such as those for Ramachandran
plot, rotamer, and C-beta deviation. Therefore, we innovatively implemented these differentiable
geometry loss functions (ramachandran loss Lrama, rotamer loss Lrot, Cβ deviation loss) in this work.

Ramachandran loss intends to exert ramachandran plot restraints on the predicted protein struc-
tures. When computing the Ramachandran loss, all the backbone dihedral angles ϕ and ψ will be
calculated and evaluated against the Ramachandran criteria retrieved from the Top8000 dataset used
by MolProbity(Hintze et al., 2016):

Lrama =

Nres∑
i=1

Fϕ,ψ(x⃗i−1, x⃗i, x⃗i+1, ai−1, ai, ai+1), (6)

where ai denotes the ith residue’s amino acid type and Fϕ,ψ is an indicator function (Appendix
D.1) that evaluates whether the backbone tripeptide dihedral angles ϕi and ψi will fall into the
outlier region of the Ramachandran plot.
Rotamer loss intends to introduce side-chain rotamer-specific restraints:

Lrot =

Nres∑
i=1

Fχ(χi, ai), (7)

where ai denotes the ith residue’s amino acid type and Fχ is an indicator function (Appendix D.1)
that evaluates whether the side-chain structure of the ith residue (determined by the torsion angles
χi ∈ (−π, π]4) is an outlier compared to idealized protein secondary-structure fragments from the
Top8000 dataset.
The necessity to introduce Cβ deviation loss stems from the importance of Cβ atoms, which are
side-chain carbon atoms bonded to Cα atoms in each amino acid (except glycine). Cβ atoms are
crucial for describing side-chain orientations, indicating potential incompatibility between protein
backbones and side-chains. When the actual position of Cβ atom diverges from the ideal position
by over 0.25Å, it is thus considered as a deviation:

LCβ
=

Nres∑
i=1

1(|x⃗cβ − x⃗′
cβ
| > 0.25), (8)

where xcβ ∈ R3 is the coordinates of predicted Cβ atoms while x′
cβ
∈ R3 is the idealized Cβ

position computed from positions of other 3 atoms on the same amino acid, i.e. Cα, backbone C
and backbone N .

6
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4 EXPERIMENTS

4.1 BENCHMARK

We curated a benchmark of 63 complexes (53 protein, 10 DNA/RNA–protein) with cryo-EM den-
sity map resolutions ranging from 2.0 Åto 4.5 Å. For each case, initial atomic models were pre-
dicted by AlphaFold3 and subsequently refined against the experimental density map by Phenix.
real space refine and CryoNet.Refine. Dataset statistics are provided in Figure 9 and Appendix B.

4.2 REFINEMENT OF PROTEIN COMPLEXES

We benchmarked CryoNet.Refine against the conventional Phenix.real space refine. As summarized
in Table 1, CryoNet.Refine consistently achieves superior scores in both model–map correlation
coefficients (CC) and model geometric metrics.

Table 1: Performance on protein complex (↑: higher is better, ↓: lower is better).

Category Metrics AlphaFold3 Phenix.real space refine CryoNet.Refine

Model-map
Correlation
Coefficients

CCmask ↑ 0.44 0.61 0.65
CCbox ↑ 0.45 0.58 0.60
CCmc ↑ 0.45 0.62 0.65
CCsc ↑ 0.43 0.60 0.63
CCpeaks ↑ 0.31 0.48 0.52
CCvolume ↑ 0.47 0.61 0.65

Model
Geometric

Metrics

Angle RMSD (degree)↓ 1.56 0.71 0.48
Cβ deviations↓ 0.05 0.00 0.00
Ramachandran favored (%)↑ 95.34 96.19 98.82
Ramachandran outlier (%)↓ 0.89 0.03 0.07
Rotamer favored (%)↑ 97.08 83.26 98.65
Rotamer outlier (%)↓ 1.05 1.38 0.48

Figure 3 and Figure 4 show the performance of CryoNet.Refine across six model-map correlation
coefficients (CC) and model geometric metrics, respectively. Notably, the largest gains in CCmask

and CCmc suggest the refined atomic model more accurate main-chain placement within the den-
sity map. Regarding geometry, our method consistently achieves superior stereochemistry, virtually
eliminating Cβ deviations, raising ramachandran favored to nearly 99%, and reducing rotamer out-
liers by over 55% compared to Phenix.real space refine. Furthermore, angle RMSD is drastically
reduced from 1.56° to 0.48°. These results emphatically highlight that CryoNet.Refine simultane-
ously improve the stereochemical geometry and the agreement to the cryo-EM density map.

Figure 3: Model–map correlation coefficients on protein complex benchmark.

Figure 4: Model geometric metrics. (Color gradient: blue for better, red for worse)

Figure 5 shows that CryoNet.Refine outperforms both AlphaFold3 and Phenix.real space refine in
model-map correlation coefficients and model geometric metrics.

7
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AlphaFold3
퐶퐶푚푎�� = 0.05; 퐶퐶푏�� = 0.10;

 퐶퐶푚�= 0.05 ; 퐶퐶�� = 0.05;
Angle RMSD = 1.54; 퐶� dev.= 0.00; 

Rama fav.= 93.17%; Rama out.= 0.00%;
Rot fav.= 99.38%; Rot out. = 0.00%

PDB-7oj5
EMD-22692

Resolution = 2.40 Å
#24 chains

 #4968 residues
#38328 atoms

Phenix.real_space_refine
퐶퐶푚푎�� = 0.38; 퐶퐶푏�� = 0.37;
 퐶퐶푚� = 0.37 ; 퐶퐶�� = 0.35;

Angle RMSD = 0.68; 퐶� dev.= 0.00;
Rama fav.= 96.32%; Rama out.= 0.00%;

Rot fav.= 90.47%; Rot out.= 0.38%

CryoNet.Refine
퐶퐶푚푎�� = 0.74; 퐶퐶푏�� = 0.67;
 퐶퐶푚� = 0.75 ; 퐶퐶�� = 0.69;

Angle RMSD = 0.31; 퐶� dev.= 0.00;
Rama fav.= 99.03%; Rama out.= 0.00%;

Rot fav.= 99.81%; Rot out.= 0.00%

AlphaFold3
퐶퐶푚푎�� = 0.32; 퐶퐶푏�� = 0.34;
 퐶퐶푚� = 0.33 ; 퐶퐶�� = 0.32;

Angle RMSD = 1.48; 퐶� dev.= 0.00;
Rama fav.= 97.99%; Rama out.= 0.11%;

Rot fav.= 95.14%; Rot out.= 1.68%

CryoNet.Refine
퐶퐶푚푎�� = 0.69; 퐶퐶푏�� = 0.58;
 퐶퐶푚� = 0.70 ; 퐶퐶�� = 0.66;

Angle RMSD = 0.30; 퐶� dev.= 0.00;
Rama fav.= 99.79%; Rama out.= 0.00%;

Rot fav.= 94.64%; Rot out.= 1.56%

PDB-6ksw
EMD-0775

Resolution = 3.60 Å
#3 chains

 #1896 residues
#14868 atoms

Phenix.real_space_refine
퐶퐶푚푎�� = 0.60; 퐶퐶푏�� = 0.52;
 퐶퐶푚� = 0.60 ; 퐶퐶�� = 0.58;

Angle RMSD = 0.97; 퐶� dev.= 0.00;
Rama fav.= 96.46%; Rama out.= 0.00%;

Rot fav.=  82.06%; Rot out.= 1.43%

Figure 5: The input atomic models from AlphaFold3, the refined atomic model from Phenix.
real space refine and CryoNet.Refine on the Medicago truncatula HISN5 protein (PDB-7oj5; EMD-
22692) and the human concentrative nucleoside transporter CNT3 (PDB-6ksw, EMD-0775) com-
plex. Inserts in the right panel show that the main-chains and side-chains generated from CryoNet.
Refine model align well with the density map.

4.3 REFINEMENT ON DNA/RNA–PROTEIN COMPLEXES

We next evaluated CryoNet.Refine on DNA/RNA–protein complex. As our current implementa-
tion doesn’t incorporate nucleic acid–specific stereochemical restraints, the assessment exclusively
focused on model–map correlation coefficients (CC) as shown in Table 2. Across all metrics, Cry-
oNet.Refine consistently outperforms both AlphaFold3 and Phenix.real space refine, demonstrating
substantially improved agreement with experimental densities.

Table 2: Performance on DNA/RNA–protein complexes.

Category Metrics AlphaFold3 Phenix.real space refine CryoNet.Refine

Model–map
Correlation
Coefficients

CCmask ↑ 0.40 0.57 0.65
CCbox ↑ 0.49 0.61 0.67
CCmc ↑ 0.45 0.62 0.61
CCsc ↑ 0.42 0.58 0.67
CCpeaks ↑ 0.35 0.51 0.60
CCvolume ↑ 0.48 0.61 0.69

For DNA/RNA–protein complex, we show model–map correlation coefficients in Figure 6. It can
be observed that CryoNet.Refine achieved substantial improvements in both CCmask and CCsc ,
strongly indicating superior performance refinement in both main-chain and side-chain. A repre-
sentative case study is shown in Figure 7, where AlphaFold3 and Phenix.real space refine achieve
moderate density fitting (CCmask = 0.18 and 0.36, respectively), whereas CryoNet.Refine attains a
markedly higher CCmask = 0.72, along with consistent gains across all other CC metrics.

Figure 6: Model–map correlation coefficients on DNA/RNA-protein complex.
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AlphaFold3
퐶퐶푚푎�� = 0.48; 퐶퐶푏�� = 0.59;
 퐶퐶푚� = 0.49 ; 퐶퐶�� = 0.48; 

PDB-6w5c; EMD-21541
Resolution = 2.90 Å

#5 chains; #1206 residues; #11216 atoms

Phenix.real_space_refine
퐶퐶푚푎�� = 0.66; 퐶퐶푏�� = 0.72;
 퐶퐶푚� = 0.68 ; 퐶퐶�� = 0.65;

CryoNet.Refine
퐶퐶푚푎�� = 0.71; 퐶퐶푏�� = 0.76;
 퐶퐶푚� = 0.70;  퐶퐶�� = 0.71;

AlphaFold3
퐶퐶푚푎�� = 0.18; 퐶퐶푏�� = 0.35;
 퐶퐶푚� = 0.21 ; 퐶퐶�� = 0.18;

Phenix.real_space_refine
퐶퐶푚푎�� = 0.36; 퐶퐶푏�� = 0.49;
 퐶퐶푚� = 0.43 ; 퐶퐶�� = 0.35;

CryoNet.Refine
퐶퐶푚푎�� = 0.72; 퐶퐶푏�� = 0.75;
 퐶퐶푚� = 0.73 ; 퐶퐶�� = 0.72;

PDB-7k6q; EMD-22692
Resolution =3.10 Å

#12 chains; 1554 residues; #16048 atoms 

Figure 7: The input atomic models from AlphaFold3, the refined atomic models from Phenix.
real space refine and CryoNet.Refine are shown on the Cas12i(E894A)–crRNA–dsDNA (PDB-
6W5C, EMD-21541) and the active-state Dot1 bound to the H4K16ac nucleosome (PDB-7K6Q,
EMD-22692) complex. Inserts in the right panel show that the main-chains and side-chains gener-
ated by CryoNet.Refine align well with the density map.

5 ABLATION STUDY

Results of the ablation study can be found in Appendix E.3. The full CryoNet.Refine configuration
achieves the best balance between model–map correlation coefficients and model geometric metrics.
Removing individual loss terms leads to distinct degradations in correlation metrics or geometric
metrics, confirming the complementary roles of density and geometry loss.

5.1 RUNTIME PERFORMANCE
Runtime (s)

Phenix.real_space_refine

C
ry

oN
et

.R
ef

in
e

Protein
DNA/RNA-Protein

Figure 8: Runtime comparison.

We benchmarked the runtime of CryoNet.Refine against
Phenix.real space refine. Leveraging GPU parallelization, Cry-
oNet.Refine consistently achieves highly efficient performance,
whereas Phenix.real space refineś CPU-only support incurs
higher computational costs, particularly for large complexes.

Across 63 complexes, CryoNet.Refine ran faster than
Phenix.real space refine in 40 cases (63%). These results
underscore that our method combines superior accuracy with
high efficiency, making it ideal for large-scale, high-throughput
cryo-EM refinement.

6 CONCLUSION

In this work, we present CryoNet.Refine, a pioneering one-step diffusion module for cryo-EM atomic
model refinement. It critically featuring a novel differentiable density loss and a comprehensive ge-
ometry metric loss, not only achieves unparalleled refinement but also opens new avenues: the
density loss can be broadly applied to AI-based atomic model building , while the geometry loss of-
fers a powerful guidance of standard geometry for protein structure prediction. CryoNet.Refine thus
marks a significant advance for the cryo-EM field. Looking ahead, we aim to extend the specialized
geometry loss for DNA/RNA structures, while further enriching the geometry loss family by incor-
porating a steric clash loss, and demonstrate superior performance on challenging low-resolution
density maps, ultimately contributing more profoundly to the entire cryo-EM community.
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A NOTATION

Framework

d0 Input cryo-EM density map

x0 All-atom coordinates of input structure

s Sequence Embedding

z Pairwise Representation

xi(i = 1, · · · , n) Refined atomic model after the i recycle

di(i = 1, · · · , n) Synthetic density map of refined atomic model xi
γt Weight for a loss function term Lt

Diffusion Module

ξ0, ξmin Noise scaling hyperparameter

σ Noise scale parameter in diffusion refinement

σdata Data-dependent scale constant (fixed to 16), estimated from
training distribution

cskip(σ) Skip coefficient in preconditioning

cout(σ) Output scaling coefficient in preconditioning

cin(σ) Input scaling coefficient in preconditioning

cnoise(σ) Noise embedding term in preconditioning,

C Auxiliary conditioning features derived from s, z, and en-
coded structural features

Density Loss

w Atomic weight

res Resolution of the input density map

v Voxel size of the input density map

rG Gaussian radius

sG Radius of the virtual Gaussian sphere

L Number of grid points for each atom per axis

x⃗ = [x0, x1, x2] All-atom coordinates of refined atomic models

d = [m⃗, ρ] Synthetic density map

m⃗ = [λ, µ, ν] Coordinates to locate inside density maps

ρ density values

Geometry Loss

a Amino acid type

Nres, Natom, Nbond Number of residues, atoms and bonds in a structure

θ Bond angles

χ Torsion angles
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B DATASET

Figure 9 summarizes the dataset statistics. The two panels respectively show the number of chains
and the number of residues with respect to map resolution. Protein-only complexes display broader
diversity in both chain counts and residue numbers, whereas DNA/RNA–protein assemblies tend to
be smaller but fall within comparable resolution ranges.

For all targets, input sequences were retrieved from the RCSB Protein Data Bank (PDB). Since Al-
phaFold3 imposes a practical sequence length limit of≤5000 amino acids, we adopted a chain-wise
strategy: sequences were segmented at the chain level and truncated if necessary, ensuring that the
combined length per case did not exceed 5000 residues. This preprocessing step guarantees com-
patibility with AlphaFold3 while preserving the completeness of structural contexts across chains.

For residues with backbone correlation coefficients below 0.1, we applied the ADP-EM local refine-
ment tool (Garzon et al., 2007) to pre-process the models and improve rigid-body docking.

Protein
DNA/RNA-Protein
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Figure 9: Dataset statistics of density map resolution, number of chains, and number of residues.

C ONE-STEP DIFFUSION MODULE

Classical diffusion models define a forward noising process and a multi-step reverse denoising chain
(Ho et al., 2020; Song et al., 2021). While powerful, such iterative schemes incur substantial compu-
tational cost. Inspired by accelerated sampling approaches such as consistency models (Song et al.,
2023) and diffusion distillation

Unlike conventional diffusion that begins from Gaussian noise, we initialize directly from the the
starting structure x0.

Refinement is then performed through a preconditioned forward module(Karras et al., 2022):

xi+1 = cskip(σ)xi + cout(σ)Fθ
(
cin(σ)xi, cnoise(σ), C

)
, (9)

with auxiliary conditioning C. Fθ is a neural network responsible for the scoring mechanism. The
other coefficients include:

cskip(σ) =
σ2

data

σ2 + σ2
data

, cout(σ) =
σ σdata√
σ2 + σ2

data

, (10)

cin(σ) =
1√

σ2 + σ2
data

, cnoise(σ) =
1
4 log

(
σ
σdata

)
. (11)

The refined structure after the ith recycle is obtained in a single deterministic step:

xi+1 = xi. (12)
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Algorithm 1 One-step deterministic refinement in CryoNet.Refine

1: ξ0, ξmin, σ : hyperparameter
2: n: number of recycles
3: Input: all-atom coordinates x0, conditioning C
4: for i in (1, · · · , n)
5: ξ ← ξ0 if σ > ξmin else 0
6: t̂← σ(1 + ξ)
7: xi+1 ← preconditionedForward(xi, t̂, C) (see Eq. 9)
8: return {xn}

Compared with AlphaFold3, which employs multi-step stochastic denoising from Gaussian initial-
ization (Abramson et al., 2024), our formulation collapses the diffusion chain into a single deter-
ministic refinement. This yields (i) efficiency by eliminating iterative sampling, (ii) stability via
input–output preconditioning, and (iii) broad applicability to proteins, DNA/RNAs and complexes.

D LOSS FUNCTIONS

After collective parameter tuning, the weight values for each component of our loss function are
listed in Table 3 .

Table 3: Loss function weights

Loss Functions Weight Value
Density loss (Lden) γden 20.0
Ramachandran loss (Lrama) γrama 500
Rotation loss (Lrot) γrot 500
Angle loss (Langle) γangle 2
Cβ loss (LCβ

) γCβ
50

Violation loss (Lviol) γviol 1000

D.1 RAMACHANDRAN AND ROTAMER LOSS

The Ramachandran plot (Goodman et al., 1970) is a 2D graph with ϕ angles and ψ angles as x- and
y-axis. By plotting the combination of these torsion angles of all residues, it provides insights into
whether the conformation is sterically favored, allowed or outliered.
In order to obtain more updated and more representative protein structures for reference, MolPro-
bity(Hintze et al., 2016), the widely used validation program for protein structures, curated the
Top8000 dataset by filtering and deduplicating high-quality protein structures from the PDB Bank.
The release of the Top8000 dataset came with their 3-dimensional Ramachandran grids plotting the
ideal distribution for different kinds of amino acids,1.The z-axis values act as density scores mea-
suring the frequency for a certain combination of Ramachandran angles.
Through interpolation of the nearest grid values, we can get the density score for any combination
of arbitrary Ramachandran scores and classify them as falling within favored, allowed, or outlier
regions, as shown in Algorithm 2
As for Fχ of rotamer loss, the procedure is highly similar to Algorithm 2 except that it requires χ
angles instead of ϕ, ψ angles, and it performs 4-dimensional interpolation (since each density value
corresponds to the combination of four χ angles)from the rotamer distribution library of Top8000
dataset.

D.2 BOND ANGLE LOSS

Bond angle loss applies geometry restraints on chemical bonds and forces them to approach the
target values specified by the ideal geometry library. In our implementation, Langle is essentially

1In fact, there are 6 distinct types of Ramachandran plots for different amino acids, including Gly, Val/Ile,
pre-Pro, trans-Pro, cis-Pro and Ala. How to differentiate them and the rationale behind this categorization are
beyond the scope of this paper.
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Algorithm 2 Classification of Ramachandran Angle Outliers

x⃗i: The i-th residue coordinates
ai: The amino acid type of the i-th residue
Nres: total number of residues
Srama type = {Gly, Val/Ile, pre-Pro, trans-Pro, cis-Pro, Ala}
ri ∈ Srama type: categorization Ramachandran angles between ni−1, ni, ni+1,
τr: density value threshold for Ramachandran category r
o: count of Ramachandran outliers
Input x⃗ = [x⃗1, x⃗2, · · · , x⃗Nres ], [a1, a2, · · · , aNres ]
Function getDensity(ϕ, ψ, ri):
R← Ramachandran distribution grids for ri
density score← 2DInterpolate(R(⌊ϕ⌋, ⌊ψ⌋),R(⌈ϕ⌉⌈ψ⌉))

return density score
for i = 2 to Nres − 1
ϕi, ψi ← calculateDihedrals(x⃗i−1, x⃗i, x⃗i+1)
ri ← RamaType(ai−1, ai, ai+1)
density scorei← getDensity(ϕi, ψi, ri)
if density scorei < τr then o←o+1
return o/Nres

Figure 10: Visualization of Ramachandran distributions

equivalent to the structure’s bond angle RMSD value:

Lanlge =

√√√√ 1

Nbond

Nbond∑
i=1

∆θ2i , (13)

where Nbond counts the number of all chemical bonds inside the whole protein structure, and ∆θi ∈
(−π, π] calculates the minimal angular difference between the predicted angle value θi and the ideal
angle value θ′i:

∆θi = arctan(sin(θi − θ′i)/ cos(θi − θ′i)) (14)
To identify chemical bonds given all-atom coordinates, we follow the algorithm as well as ideal
bond angle values given by phenix.pdb interpretation(Afonine et al., 2012) and rewrite the imple-
mentation using PyTorch.

D.3 VIOLATION LOSS

Violation loss penalizes steric clashes between nonbonded atoms to prevent potential clashes. We
borrow the OpenFold implementation (Ahdritz et al., 2024) and follow the definition of (Jumper
et al., 2021):

Lviol =

Nnbpairs∑
i=1

max(silit − τ − sipred, 0), (15)
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where sipred is the distance of two non-bonded atoms in the predicted structure and silit is the “clash-
ing distance” of these two atoms according to their literature Van der Waals radii. Nnbpairs is the
number of all nonbonded atom pairs in this structure. The tolerance τ is set to 1.5 Å.

E RESULTS

E.1 RECYCLE STRATEGY

Figure 11: Model-map Correlation Coefficients (CC) analysis of protein complexes across different
recycling numbers (We provide a trajectory video over the entire 234 refinement recyclings in sup-
plementary material).

The Recycling strategy of CryoNet.Refine is setting 300 iterations as maximum with an early-stop
mechanism. To demonstrate the rationale behind this, we picked a protein structure from our dataset
(PDB-6ksw) and trace its model-map correlation coefficients (CC) values after each recycle iteration,
as shown in Figure 11.
These 4 CC values basically follow a similar pattern. The early-stop mechanism effectively spots a
good termination where the curves converge after the uphill slope.

E.2 DIFFUSION SAMPLING STEPS

Figure 12: Model-map Correlation Coefficients (CC) analysis of DNA/RNA–protein complex across
different diffusion sampling steps.
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To show that our one-step diffusion module is an improvement over previous diffusion models with
multiple sampling steps, we picked a protein structure (PDB-6ksw) and run it with 200 steps. The
model-map correlation coefficients (CC) values after each step are shown in Figure 12. Each curve
has its optimal value at the beginning step and steadily falls when sampling more steps, which
demonstrates the efficacy of our one-step diffusion module.

E.3 ABLATION STUDY

We performed an ablation study on 27 protein complexes (Table 4). The full CryoNet.Refine con-
figuration achieves the best overall performance between model-map correlation coefficients and
model geometric metrics, underscoring the necessity of integrating density- and geometry-aware
objectives.

Table 4: Ablation study: how loss functions influence model-map correlation coefficients and model
geometric metrics

Category Metrics γden = 0 γrama = 0 γrot = 0 CryoNet.Refine

Model-map
Correlation
Coefficients

CCmask ↑ 0.41 0.65 0.64 0.65
CCbox ↑ 0.42 0.58 0.57 0.58
CCmc ↑ 0.42 0.66 0.65 0.66
CCsc ↑ 0.41 0.64 0.64 0.63
CCpeaks ↑ 0.24 0.48 0.47 0.47
CCvolume ↑ 0.43 0.65 0.64 0.65

Model
Geometric

Metrics

Angle RMSD (◦)↓ 0.45 0.41 0.44 0.54
C-beta deviations↓ 0.00 0.00 0.00 0.00
Ramachandran favored (%)↑ 99.09 90.75 99.22 98.80
Ramachandran outlier (%)↓ 0.06 2.27 0.03 0.10
Rotamer favored (%)↑ 98.67 98.64 94.48 98.58
Rotamer outlier (%)↓ 0.54 2.11 1.38 0.51

Removing the density loss (γden = 0) leads to a pronounced drop across all CC metrics, with
CCmask and CCmc reduced by over 35%, confirming that the density term is indispensable for
guiding accurate model–map fitting. In contrast, omitting the Ramachandran prior (γrama = 0)
preserves correlation coefficients but severely compromises geometry, reducing favored residues
from 98.80% to 90.75% and inflating outliers more than 20-fold. This highlights the critical role of
stereochemical priors in constraining backbone conformations.

The effect of removing the rotamer prior (γrot = 0) is more nuanced: CC values remain competitive,
and Ramachandran statistics are slightly improved, but side-chain packing deteriorates, with favored
rotamers dropping to 94.48%. This indicates that local side-chain restraints complement backbone
priors in ensuring chemically realistic conformations.

Together, these results establish three key principles: (i) density loss is essential for achieving high
model–map correlation, (ii) stereochemical priors, particularly Ramachandran constraints, safeguard
backbone geometry, and (iii) rotamer priors contribute to realistic side-chain packing. The synergy
of these components underpins CryoNet.Refine’s ability to deliver models that are both density-
consistent and stereochemically robust.
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