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Abstract

We address the task of zero-shot video classification for extremely fine-grained actions (e.g.,
Windmill Dunk in basketball), where no video examples or temporal annotations are avail-
able for unseen classes. While image–language models (e.g., CLIP, SigLIP) show strong
open-set recognition, they lack temporal modeling needed for video understanding. We pro-
pose ActAlign, a truly zero-shot, training-free method that formulates video classification
as a sequence alignment problem, preserving the generalization strength of pretrained im-
age–language models. For each class, a large language model (LLM) generates an ordered
sequence of sub-actions, which we align with video frames using Dynamic Time Warping
(DTW) in a shared embedding space. Without any video–text supervision or fine-tuning,
ActAlign achieves 30.4% accuracy on ActionAtlas—the most diverse benchmark of fine-
grained actions across multiple sports—where human performance is only 61.6%. ActAlign
outperforms billion-parameter video–language models while using →8↑ fewer parame-
ters. Our approach is model-agnostic and domain-general, demonstrating that structured
language priors combined with classical alignment methods can unlock the open-set recog-
nition potential of image–language models for fine-grained video understanding.
Code Link: https://amir-aghdam.github.io/act-align/

1 Introduction

Understanding fine-grained human activities in video—such as distinguishing a hook shot from a layup in
basketball, or recognizing tactical formations in football—requires parsing subtle, temporally ordered visual
cues across frames. These fine-grained actions unfold in structured sequences of sub-actions and are often
nearly indistinguishable from one another in appearance. In contrast to general activities like swimming,
which can often be inferred from a single frame showing a person in water, fine-grained recognition demands
attention to temporally extended object interactions, spatial relations, and high-level intent. As such, models
must not only understand what is present in a video but also when and how key sub-actions occur. This
requires accurately aligning the temporal progression of sub-actions with each fine-grained action to ensure
a correct prediction, as shown in Figure 1. While their high-level label is barely recognized by action
recognition models (e.g. such as Roundhouse kick in Kickboxing).

At the same time, contrastive vision–language models such as CLIP Radford et al. (2021) and SigLIP Zhai
et al. (2023) have demonstrated impressive open-set fine-grained recognition in image domains by training
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Figure 1: ActAlign improves zero-shot fine-grained action recognition by modeling them as structured lan-
guage sequences. By aligning sub-action descriptions with video frames (green vs. red paths), we achieve
more accurate predictions without requiring any video-text training data.

on massive image–text pairs. These models learn a shared image–text latent space, which allows both
visual inputs and natural language descriptions to be embedded for direct comparison without task-specific
supervision. This enables zero-shot classification using natural language prompts and has been widely
adopted for downstream recognition tasks. However, extending these capabilities to video understanding
introduces new challenges and requires temporal modeling. Existing methods that adapt CLIP-style models
to video recognition either average frame-level features Rasheed et al. (2023); Zohra et al. (2025)—ignoring
temporal structure—or fine-tune on target datasets Wang et al. (2022); Ni et al. (2022); Kim et al. (2024);
Wang et al. (2024a), sacrificing generalization and open-set recognition. In both cases, the fine-grained
temporal semantics of actions are lost or diluted.

Recent video–language architectures and instruction-tuned LLM-based systems such as Video-LLaMA Zhang
et al. (2023), VideoChat Li et al. (2023) mPLUG-Owl Ye et al. (2023), Qwen2-VL Wang et al. (2024b), and
DeepSeek-JanusPro Chen et al. (2025) enable open-ended, dialog-style video understanding through heavy
instruction tuning, but they are not tailored for fine-grained video recognition.

Meanwhile, textual grounding (image–text alignment) remains a central challenge in interactive video-
language models, especially for open-set and fine-grained video recognition. Dynamic Time Warping
(DTW) Vintsyuk (1968), a classical algorithm for aligning temporally mismatched sequences, has seen re-
newed interest through di!erentiable variants Dogan et al. (2018); Chang et al. (2019) designed for supervised
image–text temporal alignment. Yet, these methods rely either on annotated transcripts or example support
videos or originally proposed for supervised training, making them impractical for zero-shot recognition.
Likewise, approaches using part-level or attribute-level supervision Wu et al. (2023); Zhu et al. (2024) o!er
fine-grained cues but lack the ability to model the temporal structure between language-defined actions and
visual content.

In this work, we introduce ActAlign, a novel framework that brings the open-set generalization power of
image–text models to video classification of extremely fine-grained actions through language-guided sub-
action alignment in a truly zero-shot setting. Rather than tuning a model for a specific domain or collapsing
the video into a static representation, ActAlign operates in a training-free setting: for each unseen action
class, we use a large language model (LLM) to generate a structured sequence of temporal sub-actions that
semantically define the class. Then, using the pretrained SigLIP model Zhai et al. (2023) to extract frame-
wise visual and sub-action features, we align the frame sequence with the LLM-generated sub-action script
via Dynamic Time Warping (DTW) (see Figure 1). This allows us to compute a soft alignment score between
di!erent action classes that respects both content and temporal ordering, enabling fine-grained classification
in a truly zero-shot manner.

2



Published in Transactions on Machine Learning Research (10/2025)

Our contributions are as follows:

• We introduce a novel approach for zero-shot fine-grained video recognition that models each action
as a general, structured temporal sequence of sub-actions derived solely from action names—without
access to videos or transcripts.

• We propose ActAlign, a domain-general, model-agnostic and zero-shot framework that applies the
open-set generalization strength of image–text models to the challenging task of fine-grained and
zero-shot video classification by reformulating the task to sequence matching without requiring
any video–text supervision.

• We demonstrate that ActAlign surpasses zero-shot and CLIP-based model baselines, outperforming
even billion-parameter video–language models on the most challenging and diverse benchmark to
our knowledge, ActionAtlas—where human-level accuracy caps at 61.64%.

2 Related Work

2.1 Action Recognition

Action recognition has been extensively studied, with early work leveraging hand-crafted features and classic
classifiers Dalal & Triggs (2005); Jain et al. (2013); Wang & Schmid (2013). The field has since evolved to deep
learning approaches Carreira & Zisserman (2017); Simonyan & Zisserman (2014); Tran et al. (2018); Wang
et al. (2016), including CNNs, RNNs, and more recently, Transformer-based models Arnab et al. (2021);
Bertasius et al. (2021); Kim et al. (2025); Yoshida et al. (2025), which model spatio-temporal dynamics
more e!ectively. Fine-grained action recognition remains challenging due to subtle inter-class variations over
time. Recent methods tackle this under supervised Leong et al. (2022); Sun et al. (2022), semi-supervised Li
et al. (2022c); Dave et al. (2025), and few-shot Tang et al. (2023); Hong et al. (2021); Wang et al. (2021a)
settings to mitigate annotation costs. Yet, they remain reliant on some level of fine-grained labeling and are
constrained to specific domains.

2.2 Vision-Language Models

2.2.1 Image–Language Models

Foundational image–language models such as CLIP Radford et al. (2021), SigLIP Zhai et al. (2023), and
ALIGN Jia et al. (2021) learn joint image–text embeddings from large-scale image–caption pairs. Such
modeling enables strong open-set recognition without task-specific supervision. These models are widely
adopted as pretrained backbones for downstream tasks, including visual question answering Li et al. (2021);
Tsimpoukelli et al. (2021); Li et al. (2022b); Steiner et al. (2024), image captioning and generation Mokady
et al. (2021); Wang et al. (2021b), and few-/zero-shot classification Zhou et al. (2021); Khattak et al. (2025).
However, they lack temporal modeling, which limits their open-set recognition capability to video inputs.

2.2.2 Video–Language Models

Early e!orts in video modeling focused on self-supervised pretraining. Models like ActBERT Zhu & Yang
(2020) and VideoBERT Sun et al. (2019) applied masked language modeling to video frames. This enabled
better transfer to video–language tasks through finetuning on paired video–text data Miech et al. (2020);
Lei et al. (2021); Xu et al. (2021); Feichtenhofer et al. (2022); Li et al. (2022a). Recent progress in LLM
reasoning has driven their integration with visual encoders, enabling open-ended video understanding via
user prompts. These models Ye et al. (2023); Li et al. (2023); Zhang et al. (2024); Wang et al. (2024b),
such as Video-LLaMA Zhang et al. (2023), combine pretrained visual backbones with chat-centric LLMs
to generate spatio-temporal reasoning in conversational settings. While these models excel at open-ended
question answering, they require extensive instruction tuning and are not optimized for fine-grained video
recognition.
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2.3 Sequence Alignment

Sequence alignment is a long-standing problem in fields such as biology and signal processing. A widely used
technique for aligning temporally misaligned signals is Dynamic Time Warping (DTW)Berndt & Cli!ord
(1994); Keogh & Pazzani (2000); Rath & Manmatha (2003), which computes the optimal warping path
between two ordered sequences. Early work extended DTW to video tasksHuang et al. (2016); Richard
et al. (2018). For instance, a seminal approach Bojanowski et al. (2015) proposed aligning videos to ordered
scripts by enforcing the temporal order of events. With the rise of deep learning, DTW has been adapted
into di!erentiable forms Dogan et al. (2018); Chang et al. (2019), enabling greater flexibility and improved
learning capacity. A notable example is OTAM Cao et al. (2020), which leverages DTW for representation
learning in few-shot video classification by aligning each video to its support set. However, these methods
often assume access to ground-truth transcripts for each video or rely on task-specific supervision, such as
paired video–text exemplars.

Our Work In contrast to prior methods that discard temporal structure, rely on task-specific supervision,
or require support data for alignment, ActAlign introduces a language-guided sequence alignment framework
for zero-shot fine-grained video classification.

3 Method

3.1 Problem Definition

Let D = (Vi, yi)N

i=1 denote a dataset of N videos, where each video Vi is associated with a ground-truth
fine-grained class label yi drawn from a set of M candidate classes Y = c1, . . . , cM . Each video Vi consists
of a sequence of Ti frames as defined in Eq. 1:

Vi = {vt

i
}

Ti
t=1, vt

i
↓ RH→W →3

, (1)

where H and W denote the frame height and width. In our zero-shot setting, no video examples of the
target classes Y are used for training or tuning; only high-level action names cj are provided. The goal is
to construct a function f : V ↑ Y ↔ R that e!ectively maps the sequence of video frames into their correct
action class y. The predicted class label ŷi for a video Vi is given by Eq. 2:

ŷi = arg max
cm↑Y

f(Vi, cm). (2)

To leverage semantic priors from LLMs, we automatically decompose each class label cm into an ordered,
variable-length sequence of Km textual sub-actions, as defined in Eq. 3:

Sm = [sm,1, sm,2, . . . , sm,km ], (3)

where sm,k is a concise natural-language description of the k-th step in executing action m.

3.2 Our Method

We define f(Vi, cm) as the alignment score between the visual frame embeddings {vt

i
} and the sub-action

sequence Sm, computed via Dynamic Time Warping (DTW). This alignment is performed in the image–text
embedding space, without requiring any fine-tuning or video examples from the target label set. Figure 2
illustrates the pipeline of our proposed approach.

3.3 Preliminary Sub-action Generation by LLM

In domains requiring fine-grained distinctions—such as di!erentiating tactical plays in sports—the high-
level action class name cm often lacks su"cient discriminatory power. To address this, we define a mapping
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1. Subaction Generation 2. Method Overview 3. Class Prediction
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Figure 2: Our ActAlign Method Overview. (1) Sub-action Generation: Given fine-grained actions (e.g.
Basketball Tactics), we prompt an LLM to decompose each action (e.g. Hookshot, JumpShot, Dunk) into a
temporal sequence of sub-actions. (2) Temporal Alignment: Video frames are encoded by a frozen pretrained
vision encoder and smoothed via a moving-average filter. Simultaneously, each sub-action is encoded by the
text encoder. We compute a cosine-similarity matrix between frame and sub-action embeddings, then apply
Dynamic Time Warping (DTW) to find the optimal alignment path and normalized alignment score. (3)
Class Prediction: We repeat this process for each candidate action m, compare normalized alignment scores
ω̂video,m, and select the action sequence with the highest score as the final prediction.

P : Y ↔ S, where S denotes the space of ordered sub-action scripts. For each class cm ↓ Y, we generate a
sequence Sm = [sm,1, . . . , sm,Km ] = P(cm), where each sm,k describes a trackable and temporally ordered
sub-action.

We instantiate P using GPT-4o via carefully constructed natural language prompts. Given a set of candidate
classes {c1, . . . , cM }, the LLM is instructed to:

1. Decompose each cm into a variable- or fixed-length sequence of semantically coherent sub-actions.

2. Return the list [sm,1, . . . , sm,Km ] in a consistent, structured format.

By leveraging the LLM’s extensive prior knowledge, we obtain sub-action sequences without any manual
labels or video supervision. These sequences serve as semantic reference signals for temporal alignment.

Importance of Context in Sub-Actions. Terse descriptions (e.g., “drive forward”) are often ambiguous
and may refer to multiple sports, which hampers DTW alignment due to poor textual grounding. In contrast,
context-rich prompts (e.g., “player drives forward to the rim”) produce more discriminative sub-actions that
are reliably grounded with visual evidence.

Context Augmentation We enrich each sub-action by embedding it into a contextualized template: This

is a video of doing <action name> in <sport domain> with <sub-action>. This substantially im-
proves semantic clarity and further disambiguates sub-actions. The sport domain is automatically provided
in the ActionAtlas metadata (and could also be inferred from the action name itself).

3.4 Visual and Semantic Feature Encoding

Once each class label cm is decomposed into its sub-action sequence Sm, we project both video frames and
sub-actions into a shared d-dimensional embedding space using the pre-trained SigLIP image–text model,
which is recognized for its strong zero-shot recognition performance.
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Visual Embeddings Let εv : RH→W →3
↔ Rd denote the vision encoder. For video Vi = {vi

t
}

Ti
t=1, we

compute frame-level embeddings:

zt

i
= εv(vt

i
) ↓ Rd

, t = 1, . . . , Ti. (4)

Stacking yields Zi = [z1
i
, . . . , zTi

i
] ↓ Rd→Ti .

Semantic Embeddings Let εt : T ↔ Rd be the text encoder. For each class cm and its sub-action
sequence Sm, we embed each step:

um,k = εt(sm,k) ↓ Rd
, k = 1, . . . , Km, (5)

stitching into Um = [um,1, . . . , um,Km ] ↓ Rd→Km .

Shared Latent Space We normalize all embeddings so that the similarity

sim(zt

i
, um,k) = zt

i
↗um,k

|zt

i
| · |um,k|

(6)

is a cosine similarity measure between frame vt

i
and sub-action sm,k of class cm (see Eq. 6). This cross-

modality similarity forms the basis for alignment in the next step.

3.5 Dynamic Time Warping

After feature encoding, each video yields a visual embedding sequence Zi and ordered sequences of sub-action
embeddings Um for each class cm. We treat Um as the reference semantic signal and Z̃i as the query visual
signal. The Um could also be viewed as a prototype sequence for class cm.

Signal Smoothing Real-world footage often contains abrupt scene changes or irrelevant frames (e.g.,
replays, advertisements) that introduce noise into Zi. To mitigate this, we apply a simple, parameter-free
1D moving-average filter of width w across the temporal dimension:

z̃t

i
= 1

w

t+↓w/2↔∑

ω=t↗↓w/2↔

zω

i
, (7)

with boundary conditions handled via zero padding. The kernel width w controls the trade-o! between
noise reduction and temporal resolution. The smoothing e!ectively aggregates short-term temporal context,
dampening isolated spikes while preserving the overall action dynamics. As it introduces no learnable
parameters or additional training, it remains lightweight and fully compatible with the training-free setting.

A!nity Matrix Construction Let the smoothed visual embeddings for video Vi be Z̃i = [z̃1
i
, . . . , z̃Ti

i
]

and the sub-action sequence embeddings for class cm be Um = [um,1, . . . , um,Km ]. We first compute the raw
cosine similarity matrix:

A
(m,i)
k,t

=
〈
um,k, z̃t

i

〉
, A

(m,i)
↓ RKm→Ti (8)

where each ↘·, ·≃ is the inner product of L2-normalized vectors, yielding values in [⇐1, 1]. Following the
SigLIP prediction approach, we then apply a sigmoid function ϑ(·) to transform these values into a"nity
scores in [0, 1]:

Â
(m,i)
k,t

= ϑ
(
ϖ A

(m,i)
k,t

+ ϱ
)
, (9)

where ϖ, ϱ are pre-learned scaling parameters as part of SigLIP’s pretraining recipe. The resulting Â
(i,m) is

used as the input a"nity matrix for DTW alignment.
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DTW Alignment and Scoring Given the a"nity matrix Â
(m,i) for class cm and video Vi (defined in

Eq. 9), we seek a warping path W
(m,i) = {(k1, t1), . . . , (kL, tL)} that maximizes cumulative similarity under

monotonicity and continuity constraints:

W
(m,i) = arg max

W

∑

(k,t)↑W

Â
(m,i)
k,t

,

s.t. W is a valid warping path between [1, Km] and [1, Ti]. (10)

We solve this using dynamic programming by selecting the path with highest alignment (i.e. similarity value)
at each step:

Dk,t = Â
(m,i)
k,t

+ max{Dk,t↗1, Dk↗1,t, Dk↗1,t↗1}, (11)

with the base case D0,↘ = D↘,0 = ⇐⇒. The final alignment score is maxk,t Dk,t, and backtracking recovers
the optimal warping path W

(m,i) for sub-action sequence of class cm and video Vi.

Prediction We compute the raw alignment score, as defined in Eq. 12, as the sum of the similarity values
of the optimal warping path W

(m,i) obtained in Eq. 10.

ωi,m =
∑

(k,t)↑W (m,i)

Â
(m,i)
k,t

, (12)

Â
(m,i) is the a"nity matrix introduced in Eq. 9. To mitigate the bias toward longer warping paths (which

can accumulate higher raw scores), we normalize ωi,m by the path length, resulting in the average alignment
score:

ω̂i,m = 1
|W (m,i)|

ωi,m, (13)

where |W
(m,i)

| is the number of matched frame–sub-action pairs. Since the similarity values in Â
(i,m) lie in

[0, 1] (due to the sigmoid in Eq. 9), the normalized alignment score ω̂i,m also lies in the range [0, 1].

Finally, we predict the class whose sub-action sequence best aligns—on average—with the observed video
frames. This is done by selecting the class with the highest normalized alignment score:

ŷi = arg max
cm↑Y

ω̂i,m. (14)

4 Experiment

4.1 Experimental Setup

Dataset Our approach is dataset- and domain-agnostic, as it relies solely on language-driven sub-action
generation from LLMs and cross-modal alignment without task-specific supervision. To rigorously evaluate
its generality, we adopt ActionAtlas Salehi et al. (2024)—to our knowledge, the most diverse and challenging
benchmark for fine-grained action recognition across various domains. For each video Vi, we retain its
multiple-choice candidate set {ci,1, . . . , ci,Mi}, and replace each class label with an LLM-generated sub-action
sequence. (Dataset statistics is provided in the Appendix.)

7



Published in Transactions on Machine Learning Research (10/2025)

Method #Param Top-1 (%) ⇑ Top-2 (%) ⇑ Top-3 (%) ⇑

Random (10 Trials) - 20.81 42.04 62.50
Human Evaluation (Oracle) - 61.64 - -
mPLUG-Owl-Video Ye et al. (2023) 7B 19.49 - -
VideoChat2 Li et al. (2023) 7B 21.27 - -
VideoLLaMA Zhang et al. (2023) 8B 22.71 - -
LLaVA-Next-Video Zhang et al. (2024) 7B 22.90 - -
Qwen2–VL Wang et al. (2024b) 7B 30.24 - -
X-CLIP-L/14-16F Ni et al. (2022) 0.6B 16.26 33.74 49.89
SigLIP–so400m Zhai et al. (2023) (mean-pool) 0.9B 22.94 42.20 63.70
+ DTW Alignment (Ours) 0.9B 25.72 45.99 66.26
ActAlign (Ours) 0.9B 30.40 ± 0.11 53.01 70.27

Table 1: Zero-shot classification results on ActionAtlas. Our method achieves state-of-the-art Top-1,
Top-2, and Top-3 accuracy, outperforming all baselines and billion-parameter video–language models without
any video–text supervision. These results highlight the open-set recognition capability of image-text models
and the e!ectiveness of structured sub-action alignment over flat representations such as mean-pooling. We
use context-rich prompting strategy.

Evaluation Metrics Following Chen & Huang (2021); Bosetti et al. (2025), we report Top-k accuracy for
k ↓ {1, 2, 3}:

Top-k = 1
N

N∑

i=1
I
(

ranki(ŷi) ⇓ k

)
,

where I is the indicator function and ranki(ŷi) is the position of the ground-truth label in the descending
list of scores {ω̂i,1, . . . , ω̂i,Mi}. This accounts for typical cases where fine-grained actions are semantically
similar and alignment scores are closely clustered, allowing improvement to be captured within a narrowed
candidate set.

Experimental Detail We use SigLIP–so400m (patch size 14, d = 384, 878M parameters). We apply a
moving-average smoothing with a fixed window size of w = 30 frames (1s @30 fps) to reduce transient noise
and emphasize consistent motion patterns. All experiments run on a single NVIDIA RTX A5000 GPU (25
GB). Inference consists of embedding extraction followed by DTW alignment over N class candidates, each
with M sub-actions, and T video frames—yielding O(NMT ) time. Following the zero-shot protocol, no
example videos or sub-action sequence from these classes are used for any training or tuning. We only use
candidate action class names cm to prompt for sub-action generation.

4.2 Experimental Result

Zero-Shot Comparisons We begin with a random choice baseline and a SigLIP zero-shot baseline using
mean-pooled frame embeddings. Following ViFi-CLIP Rasheed et al. (2023), each video Vi is encoded as
z̄i = 1

Ti

∑
Ti

t=1 zt

i
, where mean-pooled embeddings z̄ is compared via cosine similarity to each name embedding

εt(cj).

We further compare against open-source video–language models, including entries from the ActionAtlas
leaderboard and fine-tuned CLIP variants. Despite using no video–text supervision, our method outperforms
the SigLIP baseline by +7% Top-1 and +11% Top-2 accuracy, surpassing all baselines and billion-parameter
models with →8↑ fewer parameters. These larger models are often optimized for interactive tasks through
extensive instruction tuning, rather than for classifying fine-grained actions. In contrast, image–language
models are trained on large-scale image–text pairs, making them particularly well-suited for open-set recog-
nition when paired with temporal alignment mechanisms.

As shown in Table 1, these gains stem from our subaction-level alignment, which enables more discriminative
and interpretable classification than global frame pooling method.
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Configuration Top-1 (%) ⇑ Top-2 (%) ⇑ Top-3 (%) ⇑

SigLIP Zhai et al. (2023) (mean-pool) 22.94 42.20 63.70
+ DTW Alignment 25.72 45.99 66.26
+ Context Augmentation 30.07 52.67 70.49
+ Signal Smoothing 30.29 53.01 70.27

Table 2: Ablation results of various design under context-rich prompting. DTW alignment introduces
temporal matching, context augmentation reduces sub-action ambiguity, and signal smoothing mitigates
frame-level noise.

Configuration Top-1 (%) ⇑ Top-2 (%) ⇑ Top-3 (%) ⇑

SigLIP (mean-pool) 22.94 42.20 63.70
SigLIP (mean-pool) w/ Context Augmentation 28.51 50.89 70.38
SigLIP (mean-pool) w/ Bag-of-Words 29.06 51.34 69.49
ActAlign (ours) 30.29 53.01 70.27

Table 3: Comparison with baselines under context-rich prompting. Context augmentation enriches
action names (as opposed to sub-actions in Table 2) with domain names, while bag-of-words mean-pools
sub-action descriptions into a unified representation.

Ablation Studies We ablate each component of ActAlign on ActionAtlas (Table 2), starting from a
mean-pooled SigLIP baseline. Adding DTW alignment introduces temporal structure and yields consistent
gains. Context augmentation—injecting domain context (e.g., “Sprint start” ↔ “Sprint start in basket-
ball”)—produces the largest boost by resolving semantic ambiguity. Signal smoothing o!ers a modest but
complementary improvement by reducing frame-level noise and clarifying action boundaries.

Baseline Comparisons To further evaluate the generalization power of SigLIP without any temporal
information, we evaluate SigLIP performance by the similar context augmentation technique we used in our
framework and with mean-pooling the bag of sub-actions and comparing the mean-pooled representations
with video representation (See Table 3). In all of these baselines, video frame representations are mean-
pooled. We further investigate classification performance under randomized and reversed sub-action orders
at Table 4

Sub-action Baselines To evaluate the impact of sub-actions on alignment, we test DTW alignment
performance under two perturbations: randomizing sub-actions and reversing their order on short-fixed
sub-actions. Results are shown in Table 4.

We observe that the upper bound on performance is closely tied to the specificity and coherence of LLM-
generated sub-action sequences.

Prompt Variations We evaluate two prompt strategies for generating sub-action scripts using GPT-4o,
keeping all other components fixed:

Configuration Top-1 (%) ⇑ Top-2 (%) ⇑ Top-3 (%) ⇑

Reversed Order 26.39 47.66 67.04
Randomized Order (5 Trials) 26.63 ± 0.14 47.05 ± 0.29 67.00 ± 0.25
Normal 27.06 46.88 66.82

Table 4: Comparison with sub-action baselines. We evaluate classification performance by randomizing
and reversing the order of short-fixed sub-actions due to their larger sequence size.
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Prompt Description Top-1 (%) ⇑

Short-fixed 2-word, fixed 10 sub-actions 27.06
Context-rich context-rich, variable-length 30.29

Table 5: Impact of prompt strategy. Context-rich prompting improves zero-shot classification perfor-
mance by producing more specific and informative sub-actions.

w/o Context Augmentation w/ Context Augmentation

Figure 3: t-SNE visualization of sub-action embeddings. Each color corresponds to a sport domain.
Augmenting sub-actions with context yields more discriminative clusters and improves textual grounding.

• Short-Fixed: Prompts GPT-4o to generate exactly 10 terse (2–3 word) sub-actions per class using
a fixed structure.

• Context-Rich: Produces variable-length, context-rich sub-action scripts incorporating domain-
specific cues (e.g., “Wrestler”, “Rider”).

Table 5 shows the performance of each strategy. The context-rich prompt with domain-specific con-
text achieve the highest accuracy. In contrast, short-fixed prompts—lacking su"cient semantic speci-
ficity—perform worst. These results highlight that reducing ambiguity in sub-action descriptions directly
improves alignment quality and classification performance.

Sub-action Embedding Structure Figure 3 shows 2D t-SNE projections of sub-action embeddings with
and without context augmentation under context-rich prompts. Adding domain-specific cues (<sub-action>

in <sport name>) results in tighter, more coherent clusters—indicating better semantic structure and sep-
aration.

Sub-action Sequence Examples Table 6 shows LLM-generated sub-action sequences for two Figure

skating tactics under our context-rich prompting. The scripts highlight ordered, salient steps enabling
precise temporal matching.

Alignment Heatmaps and Paths Figure 4 visualizes the cosine similarity matrix and DTW path for
a correctly classified action (right) and an incorrect candidate (left). The correct sequence yields high-
similarity regions with a monotonic path. In contrast, the incorrect script shows sparse similarity regions,
with the DTW path forced to follow the single most similar alignment trace.

Signal Smoothing. Figure 5 compares similarity matrices before and after applying a moving-average
filter. Without smoothing, rapid scene changes introduce noise and scattered peaks. Smoothing yields
cleaner similarity surfaces with clearer action boundaries.
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Sub-action Script

Biellmann Spin

1. Begins upright spin on one foot with arms extended and free leg behind, 2. Gradually pulls free leg
upward behind the back using both hands, 3. Raises the free leg above head level while arching the back
dramatically, 4. Grasps the blade of the free skate with both hands overhead, 5. Extends spinning leg
vertically while maintaining centered spin on skating foot, 6. Maintains high-speed rotation with body in
extreme vertical split position

Flying Camel Spin

1. Skater glides forward with arms extended and knees bent in preparation, 2. Performs a powerful jump
o! the toe pick while swinging free leg upward, 3. Rotates mid-air with body extended horizontally like a
’T’ shape, 4. Lands on one foot directly into a camel spin position with torso parallel to ice, 5. Extends free
leg backward and arms outward while spinning on the skating leg, 6. Maintains fast, centered rotation in
the horizontal camel position

Table 6: LLM-generated sub-action scripts for figure skating tactics. Shown for the Biellmann Spin

and Flying Camel Spin examples in Figure 4, these sequences are generated using context-rich prompting
and provide semantically detailed, temporally ordered steps for alignment in our zero-shot framework.

(a) Video: Performing flying camel spin in figure skating.

(b) Biellmann spin → (c) Flying camel spin ↭
Figure 4: DTW alignment paths for an incorrect prediction (left) versus a correct classification (right).
The correct class exhibits clearer segmentation and higher alignment quality. The sub-action scripts are
provided in Table 6.

Failure Case Analysis We observe two primary failure modes in our framework:

• Ambiguous sub-actions: Vague LLM-generated steps (e.g., “move to position”) result in sparse
similarity matrices, weakening DTW’s ability to discriminate between candidates. As shown in
Figure 6, context-rich prompts produce clearer alignment regions than short-fixed ones.

• Global alignment bias: Vanilla DTW enforces full-sequence alignment, which is suboptimal when
actions start mid-clip or exhibit temporal shifts. Without a local alignment mechanism, early or
trailing sub-actions can introduce noise. Figure 4 shows a temporal shift case that does not a!ect
prediction here but may cause errors in more competitive settings.

These limitations underscore the importance of precise sub-action design and motivate future improvements
in alignment robustness and prototype refinement.
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(a) w/o smoothing (b) w/ smoothing
Figure 5: Signal smoothing reduces high-frequency noise and enhances transition between sub-actions.
Similarity matrices before and after applying a moving-average filter (w = 30).

(a) Video: Varial kickflip underflip body varial in Skateboarding.

(b) Short-fixed (→, ω̂ = 0.35). (c) Context-rich (↭, ω̂ = 0.81).
Figure 6: Failure case due to vague sub-actions for the action Varial kickflip underflip body varial. The
normalized alignment score ω̂ reflects overall sequence similarity. (b) The Short-fixed prompt yields a noisy
similarity map and incorrect prediction. (c) The Context-rich prompt produces clearer alignment and correct
classification. See Appendix for the detailed scripts.

5 Conclusion

We show that contrastive image–language models establish a surprisingly strong baseline for zero-shot fine-
grained video classification, even when used with simple mean-pooling. To fully leverage this capability
in extremely fine-grained settings, we propose ActAlign, a novel zero-shot, domain-general, and model-

agnostic framework that revisits the classic Dynamic Time Warping (DTW) algorithm to cast video classi-
fication as a sequence-alignment problem. By aligning video frames with LLM-generated sub-action scripts,
ActAlign introduces temporal structure into contrastive models without requiring any video–text training
or fine-tuning. Evaluated on the highly challenging and diverse ActionAtlas Salehi et al. (2024) benchmark,
our method achieves state-of-the-art performance, outperforming both CLIP-style baselines and billion-
parameter video–language models.
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