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Abstract

Discourse frameworks have traditionally cen-
tered on minimal spans of “discourse units” or
arguments, as defined by annotation schemas
in frameworks like PDTB or RST. While dis-
course relations have been understood to not
be viewed in full isolation, this approach may
still be limiting, as annotators typically have ac-
cess to the entire context when labeling spans
and relations. In this study, we empirically
evaluate the inclusion of contextual informa-
tion in discourse modeling. Further, we also
evaluate the effect of including explicit mod-
eling of interactions between the spans. Our
findings reveal that context-inclusive models
outperform non-contextual baselines in case
of explicit relations, with the inclusion of con-
text proving more beneficial than explicit inter-
argument modeling, but not beneficial in the
case of implicit relations. We observe average
improvements of 10.04% for PDTB3-L1, and
16.25% for L2. This work suggests that dis-
course units are not as minimal as previously
assumed and contributes to a more nuanced
understanding of discourse structure, opening
new avenues for improving NLP for discourse
comprehension.

1 Introduction

Discourse is typically conceptualized as sequences
of discrete semantic units, where the larger seman-
tics is determined based on the relationships estab-
lished between the units. While the true interplay
of relationships between pieces of text in the docu-
ment could be extensive, the frameworks implicitly
suggest a constrained view — for example, Penn
Discourse Tree Bank (PDTB) (Prasad et al., 2008;
Liang et al., 2020) annotates for a relationship be-
tween a pair of units whereas the Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988)
looks at the nested hierarchical structure.The uti-
lization of discourse units in NLP have mostly been
limited to just the units themselves or the connec-
tives if they are explicitly marked, or immediate

surrounding context. Here, we seek to explore how
much contextual information outside the units in-
form the discourse relation recognition.

Attorneys cannot provide information about clients who don't wish
their identities to be known. Many attorneys have returned
incomplete forms to the IRS , citing attorney-client privilege.
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Figure 1: While discourse relations are meant to be
wholly captured by the individual units themselves,
there is a lot of information in the rest of the message
that provides context to distinguish the relations better.
We explore how relevant this context is with respect to
inferring relationship between discourse units.

Our results reveal several key insights about dis-
course relations and context in language models.
Our main findings are: (1) That the importance
of discourse context is not universal, with implicit
relations and dissonance performing better without
extensive context, highlighting their independence
from connective elements; (2) Both explicit and im-
plicit discourse relations exhibit attention patterns
extending to distant tokens, particularly 500-1000
tokens ahead in the sequence, challenging conven-
tional assumptions about local context dependen-
cies; (3) Our straightforward sliding window ap-
proach proves more effective than models trained
on larger contexts in discourse relation recognition
tasks; and finally, (4) Despite the inherent hier-
archical structure of transformers, explicit cross-
attention mechanisms enhance the model’s ability
to capture discourse-level interactions, suggesting
that direct modeling of these relationships still pro-
vides tangible benefits.



2 Related Work

Discourse relations have been extensively stud-
ied as logical or structural connections between
segments of discourse, typically describing how
two segments are related to one another in the
context of their surrounding (Knott et al., 2002;
Taboada, 2006; Lin et al., 2009). The Penn Dis-
course Tree Bank (PDTB) (Prasad et al., 2017) and
Rhetorical Structure Theory (Mann and Thomp-
son, 1988) define a framework for these relation-
ships.While the hierarchical nature of transformers
seem to capture deeper semantic roles and rela-
tionships, newer perspectives of discourse frame-
works have revealed some fundamental drawbacks
in transformer-based LLMs, where inducing struc-
ture might help (Chernyavskiy et al., 2021; Mileti¢

and Walde, 2024).
Some works explored have emphasized role of

context within the discourse units themselves to im-
prove implicit relation recognition (Qin et al., 2016;
Zhang et al., 2021; Atwell et al., 2021), with some
in the context of social media as well (Varadarajan
etal., 2023). Some have explored modeling explicit
connectives, or removing them to learn implicit re-
lations (Liu et al., 2024; Son et al., 2022). Since the
absence of explicit connectives is known to make
the relation recognition problem more difficult (Xi-
ang and Wang, 2023), most of the recent efforts
have focused on improving implicit relation recog-
nition (Kim et al., 2020; Kishimoto et al., 2020; Liu
et al., 2021). Prior research on leveraging broader
contextual information in discourse analysis has
been limited. While Zhou et al. (2020) explored
the use of global context to enhance implicit rela-
tion recognition, the impact of extended context on
explicit discourse relations and connective disam-
biguation remains largely unexplored. Our research
extends beyond this by systematically investigat-
ing how distant contextual elements influence the
overall process of discourse relation recognition,
including both implicit and explicit relations.

3 Experiment

We describe the experimental setup to examine the
effect of inclusion of context of discourse beyond
explicit markers and adjacent or in-between tokens.

3.1 Data
PDTB3 dataset The PDTB3 dataset (Webber
et al., 2019) represents a recent discourse frame-

work annotated on Wall Street Journal articles,
which improves upon PDTB2 (Prasad et al., 2008)

in adding more implicit, intersentential relations
which were missed previously. Traditional ap-
proaches examine discourse unit pairs and their
immediate sentential context, primarily focusing
on text between or adjacent to discourse units. In-
stead, our approach incorporates all tokens from
the source WSJ articles. We process articles as
complete sequences of discourse units, derive pairs
of units from each article that have been annotated
in the PDTB3 dataset. The final dataset consists of
2024 articles, each consisting of 362.5 words on
an average (min: 5, max: 3135 words), with each
article containing an average of ~10 discourse unit
pairs as input (not every discourse unit is annotated
as part of a pair).

Twitter Dissonance dataset The Twitter Dis-
sonance dataset introduces consonance and disso-
nance as two relations between phrases that state
beliefs (Varadarajan et al., 2023). Both of these
relations are implicit in nature. They are annotated
on noisy social media posts on Twitter, with an
average message length of 35 words (max: 91,
min:5). This dataset is meant to challenge the
model’s ability to improve upon relation recogni-
tion given shorter context.
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Figure 2: Description for Context Inclusion Architec-
tures. DU stands for discourse unit.

3.2 Context Inclusion

The entire article or message that the discourse
units (DUs) belong to, serves as context to those
discourse units. As shown in Figure 2, each mes-
sage could consist of multiple discourse unit pairs,
which are fed into an encoder with separator tokens
in between adjacent discourse units. The separa-
tor tokens indicate the start and end of adjacent
discourse units.



Model Aggregator  Precision  Recall F1 per class AUC F1
(macro) (macro) Comparison Contingency Expansion Temporal (avg.) (wei.)
Non-contextual Baselines
Roberta-b mean 0.667 0.647 0.662 0.637 0.742 0.581 0.869 0.681
Roberta-b cross-attn 0.667 0.649 0.663 0.637 0.743 0.582 0.870 0.682
Context Inclusion Models
Longformer mean 0.728 0.701 0.729 0.644 0.759 0.716 0.889 0.718
nomic mean 0.728 0.688 0.723 0.633 0.758 0.704 0.885 0.713
nomic cross-attn 0.712 0.630 0.686 0.594 0.731 0.623 0.857 0.674
Roberta-b mean 0.743 0.731 0.784 0.692 0.786 0.682 0.909 0.749
Roberta-b cross-attn 0.749 0.731 0.783 0.693 0.791 0.687 0912 0.752

Table 1: Effect of context inclusion on L1 relation recognition for PDTB3. While we find that inclusion of context
improves relation recognition by 10% on an average. across the board, we further find that a cross attention
mechanism across the contextualized representations of two discourse units under consideration can further improve

modeling of the relationship between them.

Sliding Window Since articles in WSJ often ex-
ceed 512 tokens that contain multiple discourse
unit pairs, we adopt a sliding window approach
with a stride of 256 tokens to generate embeddings
for all tokens. Token embeddings from overlapping
strides are averaged to ensure all tokens are con-
textualized in the paragraph while allowing each
token to cross-attend with more contextual tokens
than usual. The two discourse units are aggregated
before passing them to a linear layer for the clas-
sification task: we explore two methods as shown
in Figure 2: mean-based aggregation and cross-
attention-based aggregation.

Mean-aggregated model In mean-aggregated
model, token representations of each discourse unit
are averaged to a single discourse unit representa-
tion, and are concatenated before passing them to
a linear layer.

Cross-attention model In the cross-attention-
based model, the token representations of each
discourse unit are singled out for performing cross-
attention between the tokens of DU1 and DU2.
Specifically, The embeddings of the tokens in DU1
are used as the Query (Q). The embeddings of the
tokens in DU2 are used as the Key (K) and Value
(V). This cross-attention mechanism enables in-
teraction between the tokens of the two discourse
units. The objective is to evaluate whether model-
ing interactions between the contextualized tokens
improves classification performance.

Pretrained Models We employ strong encoder
models to test context inclusion. To this end,
we explore RoBERTa-base (Liu et al., 2019) and
nomic — embed — text — v1.5 which is a newer
BERT-based model optimized for large-context en-
coding representations that can handle upto 8192

Aggregator Prec. Rec. AUC F1
(macro) (macro) (avg.) (wei.)
Non-contextual Baselines
mean 0.472 0.418 0.894  0.563
cross-attn 0.492 0.437 0.890 0.569
Context Inclusion
mean 0.585 0.534 0.930 0.659
cross-attn 0.563 0.539 0930 0.657

Table 2: Effect of context inclusion on L2 relation recog-
nition for PDTB3 for ROBERTA-base encoder. Context
outperforms non-contextual baselines, with mean aggre-
gation performing on par with the cross-attention model.
Contextual models show an average improvement of
16.25% over non-contextual models.

tokens (Nussbaum et al., 2024). Further, since the
sliding window approach is similar to the Long-
former (Beltagy et al., 2020) implementation of
global and local attention for large context, we
also include a comparison to Longformer — 4096.
The results are shown in Table 1.

F1 (macro)) AUC
Aggregator Dissonance Consonance (macro)
Context Inclusion
cross-attn 0.363 0.757 0.759
mean 0.307 0.667 0.718
Non-contextual

cross-attn 0.252 0.759 0.719
mean 0.286 0.779 0.774

Table 3: Performance Comparison for Dissonance Clas-
sification. Dissonance is a rare class — occurring only in
~ 10% of the dataset. Inclusion of context and improves
dissonance classification, but this comes at the cost of
overall performance. This further bolsters our finding
that context plays a tricky role in implicit relations, even
in short, social media context.



3.3 Non Contextual Baselines

In the non-contextual approach, we discard the rest
of context and focus only on the two discourse units
as inputs concatenated together with a separator
token between them. The rest of the architecture
is the same as Figure 2. We explore both mean-
aggregated and cross-attention models for the non-
contextual setting as well.

Training The models are trained to classify Level
1 and Level 2 discourse relations of the PDTB3
dataset. For Level 1 (L1), we consider all four
classes, while for Level 2 (L2), we focus on the
18 classes with the most data points. All the ar-
chitectures were hyperparameter-tuned for each
configuration. Following the previous works (Kim
et al., 2020), we employ 12-fold cross validation
across the 25 sections, considering 2 sections as de-
velopment set, 2 sections as test set, and the rest 21
sections as train set such that there are no overlap-
ping test sets. We report the performance metrics
on the aggregated test sets on all folds.

4 Results

Effect of context As seen in Table 1 and 2, the
context-included cross-attention architecture with
RoBERTA-base performs the best with L1, and ties
with mean-aggregated model for L2. We find that
adding context to the models indeed helps in im-
proving the classification performance. However,
the context in our setting could include explicit
markers of discourse relations (aka connectives) as
well, where markers can indicate the relationship
between two units despite not being a part of them.

Effect of token distance We examine if the
model attends to tokens far away from the discourse
units themselves, we capture attention weights for
all the tokens in the model for the cross-attention
context-inclusion model (Figure 3).

Category Context Intrasentential Intersentential

F1 Prec Rec F1 Prec Rec
(wei.) (macro) (macro) (wei.) (macro) (macro)
Explicit yes 0.836  0.822 0.824  0.872 0.843 0.854
no 0.681  0.660 0.648  0.685  0.667 0.649
Implicit yes 0.624  0.593 0542  0.648  0.575 0.557
no 0.683  0.669 0.655 0.679  0.664 0.648

Table 4: Performance Comparison for Explicit and Im-
plicit Categories for the cross attention model.

Explicit and Implicit relations We observe bet-
ter performance for the Explicit case in models
that include context, likely since connectives are
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Figure 3: Plot of token attention against distance from
the nearest token in discourse unit pair. All the tokens
in between two discourse units, if any, are considered to
be at a distance of 0. We find that the attention weights
> 500-1000 tokens away still get comparable attention
to that of the discourse units themselves, signaling that
larger context other than connectives can be very helpful
for discourse relation recognition.

often located around discourse units — however,
we also find evidence for contextual information
from distant tokens (Fig 3). Conversely, for the
Implicit case, we find that the inclusion of context
doesn’t significantly contribute to performance. In-
terestingly, the Non-Contextual model outperforms
contextual models for the Implicit case, indicating
that context doesn’t provide meaningful benefits in
this scenario (see §A2 for more details). This is
observed across the board with PDTB3-L1, L2 and

the Twitter Dissonance dataset (Tables 1, 2, 3).
For classwise, and intersentential error analysis

of the contextual model, see Appendix§A.5, A.3.

5 Conclusions

We found that the inclusion of context does not
universally enhance discourse relation classifica-
tion, but most of the time there is a lot to gain
from inclusion of distant context, suggesting that
future approaches to this task can benefit from in-
corporating contextual information when necessary.
Additionally, cross attention at the discourse-level
despite using transformer-based LMs for incorpo-
rating contextual information improves the model
further, suggesting that higher order semantic in-
teractions might be present that a standard word-
context transformer cannot capture. This approach
may also be applicable to other tasks, such as identi-
fying dissonance. Our experiments indicate that de-
veloping a more effective method to model context
could yield better results, and designing improved
fine-tuning objectives for encoders with context
could further discourse comprehension in NLP.



6 Limitations

Our experiments were limited to PDTB3 and Twit-
ter Dissonance datasets alone, both of which are
based on the PDTB framework of annotating dis-
course segments and relations. Both of these
datasets rely on high annotator agreement for deter-
mining ground truth values, where some of these
relations can be largely subjective. Further, there
might be other datasets where these results might
not be observed, either due to the different concep-
tualizations of discourse or domain differences. To
some extent, we have addressed this by exploring

discourse relations of two distinct domains.
We run all of our experiments on an NVIDIA-

RTX-A6000 with 50 GB of memory in an internal
server, on open-sourced models from HuggingFace
and wrote our code with PyTorch. The experiments
took about 150 hours to run.

Our work is also limited to the English docu-
ments, and these results might not be reproducible
in a different languages, especially ones with low
resources.
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A Appendix
A.1 Effect of Cross-Attention

We look to explore how the model performs when
we focus on two discourse units using a cross at-
tention layer. From Table A1 and 4 we find that
Cross attention with Context models are the best
performing models in both the L1 and L2 case.
Even when all the encoder layers are frozen, in
the L1 Case cross-attention model does better than
the rest of the models even without the context. In
the L2 case cross attention does the best with the
context. When unfrozen, cross attention model fur-
ther does better consistently. Cross attention model
only performs slightly better than the mean models.
While it helps in improved performance but not a
significant improvement.

A.2 Ablation of frozen models

We train these models with a frozen encoder to
evaluate the performance of pretrained models and
compare it to fine-tuning the encoder. When the
encoder is unfrozen, the model consistently out-
performs the frozen case, clearly indicating that
fine-tuning the encoder specifically for discourse
classification is beneficial. A t-test further confirms
that unfreezing the layers leads to significant(**)
improvements under all conditions. The results are
shown in Table A1l.

A.3 Intrasential and intersentential relations

PDTB3 introduces ~ 300 intersentential discourse
units (Prasad et al., 2008), which are considered
harder to classify as compared to the intrasenten-
tial relationsWe analyse how the best-perfoming
model does on cases where the discourse Units are
Intrasentential where two discourse units are part
of the same sentence and intrasentential where two
discourse units are part of the different sentence.
The model performance in both the cases remains
almost similar, as seen in the Table 4

A.4 Explicit and Implicit Attention scores

Figure A2 shows the attention score trend for the
Contextual Cross-Attention model trained on L1
classes. Averaged over the PDTB3 dataset, the
trend highlights that in the Explicit case, the model
assigns higher attention to distant tokens, likely
connectives. Notably, the Explicit trend shows
higher average attention scores at a distance com-
pared to the Implicit case, underscoring the greater
importance of context in the Explicit case.
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A.5 Class-level analysis

As observed in Figure Al,In the L2 case, we
observe that the model confuses certain classes
with others, and this confusion appears to be
intuitive due to the inherently ambiguous na-
ture of the data. For instance, the model often
confuses Cause+Belief with Cause and Condi-
tion+SpeechAct with Condition. This confusion
predominantly occurs in cases where the num-
ber of data points is very limited. Specifically,
Cause+Belief has only 223 data points in the
dataset, while Condition+SpeechAct has just 71.
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Equivalence [0.00 0.01 [0.13 0.01 0.14 0.02 0.28 0.01 0.01}0.33 0.00 0.01 0.00 0.00 0.00 | 0.03 0.01 0.00 1729
Instantiation [0.01 0.01 | 0.08 0.00 0.00@0.19 0.00 0.00] 0.08 0.00 0.00 0.00 0.00 0.00| 0.02 0.01 0.00 3312
Level-of-detail| 0.02 0.02 | 0.14 0.00 0.01 0.08 0F“EF 0.01 0.01]0.16 0.00 0.00 0.00 0.00 0.01 ]| 0.04 0.01 0.00 494
Manner 0.01 0.03 |0.12 0.00 0.00 0.01 0.08 {i55 0.01] 0.08 0.00 0.04 0.00 0.00 0.12 | 0.04 0.00 0.00 562
Substitution |0.01 0.01 | 0.11 0.01 0.02 0.01 0.06 0.01 0.08 0.00 0.01 0.00 0.00 0.02| 0.06 0.03 0.00 318
Cause 0.02 0.03 10.15 0.00 0.01 0.02 0.08 0.01 0.01 0.00 0.01 0.00 0.00 0.01| 0.05 0.01 0.00 7306
Cause+Belief [0.01 0.01 0.20 0.00 0.01 0.07 0.19 0.02 0.02 0.00 0.00 0.00 0.00 0.00| 0.04 0.00 0.00 223
Condition [0.03 0.05[0.04 0.01 0.00 0.00 0.01 0.01 0.00|0.03 0.00 0.03 ] 0.02 0.00 0.00 1500
Condition
0.01 0.04 |0.04 0.00 0.01 0.01 0.0l 0.00 0.01]0.03 0.00 0.00 | 0.11 0.06 0.00 71
+SpeechAct
Negative-
. 0.01 0.00]0.02 0.05 0.00 0.00 0.00 0.03 0.00]0.03 0.00 0.03 0.00 gexjew 0.01 | 0.03 0.00 0.00 119
condition
Purpose 0.02 0.02 |0.08 0.00 0.00 0.00 0.01 0.04 0.00]0.02 0.00 0.03 0.00 0.00 1680
Concession |0.02 0.01 | 0.06 0.00 0.00 0.00 0.02 0.00 0.00f0.05 0.00 0.01 0.00 0.00 0.06 5935
Contrast 0.02 0.06 | 0.14 0.00 0.00 0.01 0.02 0.00 0.02] 0.05 0.00 0.01 0.00 0.00 0.00 | 0.26 0.00 1863
Similarity [0.02 0.05]0.24 0.01 0.02 0.01 0.02 0.01 0.00| 0.01 0.00 0.02 0.00 0.00 0.01 | 0.02 0.02 sz 127
Temporal Expansion Contingency Comparison N_true

Figure Al: Confusion matrix for classification L2 — each cell represents the recall rate of that class




Aggregator Context Level Frozen Unfrozen

F1 Prec Rec F1 Prec Rec
(wei.) (macro) (macro) (wei.) (macro) (macro)
mean no L1 0.538 0.524 0.478 0.681 0.665 0.648
cross-attn no L1 0.613 0.594 0.576 0.682 0.664 0.649
mean yes L1 0.588 0.580 0.535 0.749 0.742 0.731
cross-attn yes L1 0.603 0.589 0.560 0.752 0.748 0.731
mean no L2 0.394 0.291 0.198 0.556 0.472 0.419
cross-attn no L2 0.480 0.405 0.299 0.569 0.490 0.435
mean yes L2 0.450 0.352 0.237 0.659 0.589 0.533
cross-attn yes L2 0.511 0.475 0.333 0.657 0.577 0.540

Table Al: Performance comparison of frozen and unfrozen models for different contexts and levels. Unfreezing the
layers lead to significant ** improvement under all conditions.
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Figure A2: In the Explicit case, we observe higher
attention scores at a distance from the DUs compared to
the Implicit case. The model has learned to pay attention
to connectives farther away from the DUs.
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