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Abstract
Discourse frameworks have traditionally cen-001
tered on minimal spans of “discourse units” or002
arguments, as defined by annotation schemas003
in frameworks like PDTB or RST. While dis-004
course relations have been understood to not005
be viewed in full isolation, this approach may006
still be limiting, as annotators typically have ac-007
cess to the entire context when labeling spans008
and relations. In this study, we empirically009
evaluate the inclusion of contextual informa-010
tion in discourse modeling. Further, we also011
evaluate the effect of including explicit mod-012
eling of interactions between the spans. Our013
findings reveal that context-inclusive models014
outperform non-contextual baselines in case015
of explicit relations, with the inclusion of con-016
text proving more beneficial than explicit inter-017
argument modeling, but not beneficial in the018
case of implicit relations. We observe average019
improvements of 10.04% for PDTB3-L1, and020
16.25% for L2. This work suggests that dis-021
course units are not as minimal as previously022
assumed and contributes to a more nuanced023
understanding of discourse structure, opening024
new avenues for improving NLP for discourse025
comprehension.026

1 Introduction027

Discourse is typically conceptualized as sequences028

of discrete semantic units, where the larger seman-029

tics is determined based on the relationships estab-030

lished between the units. While the true interplay031

of relationships between pieces of text in the docu-032

ment could be extensive, the frameworks implicitly033

suggest a constrained view – for example, Penn034

Discourse Tree Bank (PDTB) (Prasad et al., 2008;035

Liang et al., 2020) annotates for a relationship be-036

tween a pair of units whereas the Rhetorical Struc-037

ture Theory (RST) (Mann and Thompson, 1988)038

looks at the nested hierarchical structure.The uti-039

lization of discourse units in NLP have mostly been040

limited to just the units themselves or the connec-041

tives if they are explicitly marked, or immediate042

surrounding context. Here, we seek to explore how 043

much contextual information outside the units in- 044

form the discourse relation recognition.

Attorneys cannot provide information about clients who don't wish 
their identities to be known. Many attorneys have returned 
incomplete forms to the IRS , citing attorney-client privilege.

Many attorneys have 
returned incomplete 
forms to the IRS

attorney-client 
privilege

No Context

With Message-level Context

Many attorneys 
have returned 
incomplete 
forms to the IRS

attorney-client 
privilege, citing

Attorneys cannot 
provide information 
about clients who 
don't wish their 
identities to be known.

Implicit connective: despite, because

Relation: Concession? Causal?

Contingency.Cause.Reason (Implicit: , citing the reason of)

Unclear without context

Figure 1: While discourse relations are meant to be
wholly captured by the individual units themselves,
there is a lot of information in the rest of the message
that provides context to distinguish the relations better.
We explore how relevant this context is with respect to
inferring relationship between discourse units.

045
Our results reveal several key insights about dis- 046

course relations and context in language models. 047

Our main findings are: (1) That the importance 048

of discourse context is not universal, with implicit 049

relations and dissonance performing better without 050

extensive context, highlighting their independence 051

from connective elements; (2) Both explicit and im- 052

plicit discourse relations exhibit attention patterns 053

extending to distant tokens, particularly 500-1000 054

tokens ahead in the sequence, challenging conven- 055

tional assumptions about local context dependen- 056

cies; (3) Our straightforward sliding window ap- 057

proach proves more effective than models trained 058

on larger contexts in discourse relation recognition 059

tasks; and finally, (4) Despite the inherent hier- 060

archical structure of transformers, explicit cross- 061

attention mechanisms enhance the model’s ability 062

to capture discourse-level interactions, suggesting 063

that direct modeling of these relationships still pro- 064

vides tangible benefits. 065

1



2 Related Work066

Discourse relations have been extensively stud-067

ied as logical or structural connections between068

segments of discourse, typically describing how069

two segments are related to one another in the070

context of their surrounding (Knott et al., 2002;071

Taboada, 2006; Lin et al., 2009). The Penn Dis-072

course Tree Bank (PDTB) (Prasad et al., 2017) and073

Rhetorical Structure Theory (Mann and Thomp-074

son, 1988) define a framework for these relation-075

ships.While the hierarchical nature of transformers076

seem to capture deeper semantic roles and rela-077

tionships, newer perspectives of discourse frame-078

works have revealed some fundamental drawbacks079

in transformer-based LLMs, where inducing struc-080

ture might help (Chernyavskiy et al., 2021; Miletić081

and Walde, 2024).082
Some works explored have emphasized role of083

context within the discourse units themselves to im-084

prove implicit relation recognition (Qin et al., 2016;085

Zhang et al., 2021; Atwell et al., 2021), with some086

in the context of social media as well (Varadarajan087

et al., 2023). Some have explored modeling explicit088

connectives, or removing them to learn implicit re-089

lations (Liu et al., 2024; Son et al., 2022). Since the090

absence of explicit connectives is known to make091

the relation recognition problem more difficult (Xi-092

ang and Wang, 2023), most of the recent efforts093

have focused on improving implicit relation recog-094

nition (Kim et al., 2020; Kishimoto et al., 2020; Liu095

et al., 2021). Prior research on leveraging broader096

contextual information in discourse analysis has097

been limited. While Zhou et al. (2020) explored098

the use of global context to enhance implicit rela-099

tion recognition, the impact of extended context on100

explicit discourse relations and connective disam-101

biguation remains largely unexplored. Our research102

extends beyond this by systematically investigat-103

ing how distant contextual elements influence the104

overall process of discourse relation recognition,105

including both implicit and explicit relations.106

3 Experiment107

We describe the experimental setup to examine the108

effect of inclusion of context of discourse beyond109

explicit markers and adjacent or in-between tokens.110

3.1 Data111

PDTB3 dataset The PDTB3 dataset (Webber112

et al., 2019) represents a recent discourse frame-113

work annotated on Wall Street Journal articles,114

which improves upon PDTB2 (Prasad et al., 2008)115

in adding more implicit, intersentential relations 116

which were missed previously. Traditional ap- 117

proaches examine discourse unit pairs and their 118

immediate sentential context, primarily focusing 119

on text between or adjacent to discourse units. In- 120

stead, our approach incorporates all tokens from 121

the source WSJ articles. We process articles as 122

complete sequences of discourse units, derive pairs 123

of units from each article that have been annotated 124

in the PDTB3 dataset. The final dataset consists of 125

2024 articles, each consisting of 362.5 words on 126

an average (min: 5, max: 3135 words), with each 127

article containing an average of ∼10 discourse unit 128

pairs as input (not every discourse unit is annotated 129

as part of a pair). 130

Twitter Dissonance dataset The Twitter Dis- 131

sonance dataset introduces consonance and disso- 132

nance as two relations between phrases that state 133

beliefs (Varadarajan et al., 2023). Both of these 134

relations are implicit in nature. They are annotated 135

on noisy social media posts on Twitter, with an 136

average message length of 35 words (max: 91, 137

min:5). This dataset is meant to challenge the 138

model’s ability to improve upon relation recogni- 139

tion given shorter context.

Figure 2: Description for Context Inclusion Architec-
tures. DU stands for discourse unit.

140

3.2 Context Inclusion 141

The entire article or message that the discourse 142

units (DUs) belong to, serves as context to those 143

discourse units. As shown in Figure 2, each mes- 144

sage could consist of multiple discourse unit pairs, 145

which are fed into an encoder with separator tokens 146

in between adjacent discourse units. The separa- 147

tor tokens indicate the start and end of adjacent 148

discourse units. 149
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Model Aggregator Precision Recall F1 per class AUC F1

(macro) (macro) Comparison Contingency Expansion Temporal (avg.) (wei.)

Non-contextual Baselines
Roberta-b mean 0.667 0.647 0.662 0.637 0.742 0.581 0.869 0.681
Roberta-b cross-attn 0.667 0.649 0.663 0.637 0.743 0.582 0.870 0.682

Context Inclusion Models
Longformer mean 0.728 0.701 0.729 0.644 0.759 0.716 0.889 0.718
nomic mean 0.728 0.688 0.723 0.633 0.758 0.704 0.885 0.713
nomic cross-attn 0.712 0.630 0.686 0.594 0.731 0.623 0.857 0.674
Roberta-b mean 0.743 0.731 0.784 0.692 0.786 0.682 0.909 0.749
Roberta-b cross-attn 0.749 0.731 0.783 0.693 0.791 0.687 0.912 0.752

Table 1: Effect of context inclusion on L1 relation recognition for PDTB3. While we find that inclusion of context
improves relation recognition by 10% on an average. across the board, we further find that a cross attention
mechanism across the contextualized representations of two discourse units under consideration can further improve
modeling of the relationship between them.

Sliding Window Since articles in WSJ often ex-150

ceed 512 tokens that contain multiple discourse151

unit pairs, we adopt a sliding window approach152

with a stride of 256 tokens to generate embeddings153

for all tokens. Token embeddings from overlapping154

strides are averaged to ensure all tokens are con-155

textualized in the paragraph while allowing each156

token to cross-attend with more contextual tokens157

than usual. The two discourse units are aggregated158

before passing them to a linear layer for the clas-159

sification task: we explore two methods as shown160

in Figure 2: mean-based aggregation and cross-161

attention-based aggregation.162

Mean-aggregated model In mean-aggregated163

model, token representations of each discourse unit164

are averaged to a single discourse unit representa-165

tion, and are concatenated before passing them to166

a linear layer.167

Cross-attention model In the cross-attention-168

based model, the token representations of each169

discourse unit are singled out for performing cross-170

attention between the tokens of DU1 and DU2.171

Specifically, The embeddings of the tokens in DU1172

are used as the Query (Q). The embeddings of the173

tokens in DU2 are used as the Key (K) and Value174

(V). This cross-attention mechanism enables in-175

teraction between the tokens of the two discourse176

units. The objective is to evaluate whether model-177

ing interactions between the contextualized tokens178

improves classification performance.179

Pretrained Models We employ strong encoder180

models to test context inclusion. To this end,181

we explore RoBERTa-base (Liu et al., 2019) and182

nomic− embed− text− v1.5 which is a newer183

BERT-based model optimized for large-context en-184

coding representations that can handle upto 8192185

Aggregator Prec. Rec. AUC F1
(macro) (macro) (avg.) (wei.)

Non-contextual Baselines
mean 0.472 0.418 0.894 0.563
cross-attn 0.492 0.437 0.890 0.569

Context Inclusion
mean 0.585 0.534 0.930 0.659
cross-attn 0.563 0.539 0.930 0.657

Table 2: Effect of context inclusion on L2 relation recog-
nition for PDTB3 for RoBERTA-base encoder. Context
outperforms non-contextual baselines, with mean aggre-
gation performing on par with the cross-attention model.
Contextual models show an average improvement of
16.25% over non-contextual models.

tokens (Nussbaum et al., 2024). Further, since the 186

sliding window approach is similar to the Long- 187

former (Beltagy et al., 2020) implementation of 188

global and local attention for large context, we 189

also include a comparison to Longformer− 4096. 190

The results are shown in Table 1. 191

F1 (macro)) AUC

Aggregator Dissonance Consonance (macro)

Context Inclusion
cross-attn 0.363 0.757 0.759

mean 0.307 0.667 0.718

Non-contextual
cross-attn 0.252 0.759 0.719

mean 0.286 0.779 0.774

Table 3: Performance Comparison for Dissonance Clas-
sification. Dissonance is a rare class – occurring only in
∼ 10% of the dataset. Inclusion of context and improves
dissonance classification, but this comes at the cost of
overall performance. This further bolsters our finding
that context plays a tricky role in implicit relations, even
in short, social media context.
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3.3 Non Contextual Baselines192

In the non-contextual approach, we discard the rest193

of context and focus only on the two discourse units194

as inputs concatenated together with a separator195

token between them. The rest of the architecture196

is the same as Figure 2. We explore both mean-197

aggregated and cross-attention models for the non-198

contextual setting as well.199

Training The models are trained to classify Level200

1 and Level 2 discourse relations of the PDTB3201

dataset. For Level 1 (L1), we consider all four202

classes, while for Level 2 (L2), we focus on the203

18 classes with the most data points. All the ar-204

chitectures were hyperparameter-tuned for each205

configuration. Following the previous works (Kim206

et al., 2020), we employ 12-fold cross validation207

across the 25 sections, considering 2 sections as de-208

velopment set, 2 sections as test set, and the rest 21209

sections as train set such that there are no overlap-210

ping test sets. We report the performance metrics211

on the aggregated test sets on all folds.212

4 Results213

Effect of context As seen in Table 1 and 2, the214

context-included cross-attention architecture with215

RoBERTA-base performs the best with L1, and ties216

with mean-aggregated model for L2. We find that217

adding context to the models indeed helps in im-218

proving the classification performance. However,219

the context in our setting could include explicit220

markers of discourse relations (aka connectives) as221

well, where markers can indicate the relationship222

between two units despite not being a part of them.223

Effect of token distance We examine if the224

model attends to tokens far away from the discourse225

units themselves, we capture attention weights for226

all the tokens in the model for the cross-attention227

context-inclusion model (Figure 3).228

Category Context Intrasentential Intersentential
F1 Prec Rec F1 Prec Rec

(wei.) (macro) (macro) (wei.) (macro) (macro)

Explicit yes 0.836 0.822 0.824 0.872 0.843 0.854
no 0.681 0.660 0.648 0.685 0.667 0.649

Implicit yes 0.624 0.593 0.542 0.648 0.575 0.557
no 0.683 0.669 0.655 0.679 0.664 0.648

Table 4: Performance Comparison for Explicit and Im-
plicit Categories for the cross attention model.

Explicit and Implicit relations We observe bet-229

ter performance for the Explicit case in models230

that include context, likely since connectives are231

Distance from leftmost DU’s first token

Attention Score Trend

Distance from rightmost DU’s last token

DU1, DU2 and in-between tokens

~ 1000 tokens

Figure 3: Plot of token attention against distance from
the nearest token in discourse unit pair. All the tokens
in between two discourse units, if any, are considered to
be at a distance of 0. We find that the attention weights
> 500-1000 tokens away still get comparable attention
to that of the discourse units themselves, signaling that
larger context other than connectives can be very helpful
for discourse relation recognition.

often located around discourse units – however, 232

we also find evidence for contextual information 233

from distant tokens (Fig 3). Conversely, for the 234

Implicit case, we find that the inclusion of context 235

doesn’t significantly contribute to performance. In- 236

terestingly, the Non-Contextual model outperforms 237

contextual models for the Implicit case, indicating 238

that context doesn’t provide meaningful benefits in 239

this scenario (see §A2 for more details). This is 240

observed across the board with PDTB3-L1, L2 and 241

the Twitter Dissonance dataset (Tables 1, 2, 3). 242
For classwise, and intersentential error analysis 243

of the contextual model, see Appendix§A.5, A.3. 244

5 Conclusions 245

We found that the inclusion of context does not 246

universally enhance discourse relation classifica- 247

tion, but most of the time there is a lot to gain 248

from inclusion of distant context, suggesting that 249

future approaches to this task can benefit from in- 250

corporating contextual information when necessary. 251

Additionally, cross attention at the discourse-level 252

despite using transformer-based LMs for incorpo- 253

rating contextual information improves the model 254

further, suggesting that higher order semantic in- 255

teractions might be present that a standard word- 256

context transformer cannot capture. This approach 257

may also be applicable to other tasks, such as identi- 258

fying dissonance. Our experiments indicate that de- 259

veloping a more effective method to model context 260

could yield better results, and designing improved 261

fine-tuning objectives for encoders with context 262

could further discourse comprehension in NLP. 263
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6 Limitations264

Our experiments were limited to PDTB3 and Twit-265

ter Dissonance datasets alone, both of which are266

based on the PDTB framework of annotating dis-267

course segments and relations. Both of these268

datasets rely on high annotator agreement for deter-269

mining ground truth values, where some of these270

relations can be largely subjective. Further, there271

might be other datasets where these results might272

not be observed, either due to the different concep-273

tualizations of discourse or domain differences. To274

some extent, we have addressed this by exploring275

discourse relations of two distinct domains.276
We run all of our experiments on an NVIDIA-277

RTX-A6000 with 50 GB of memory in an internal278

server, on open-sourced models from HuggingFace279

and wrote our code with PyTorch. The experiments280

took about 150 hours to run.281
Our work is also limited to the English docu-282

ments, and these results might not be reproducible283

in a different languages, especially ones with low284

resources.285
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A Appendix 418

A.1 Effect of Cross-Attention 419

We look to explore how the model performs when 420

we focus on two discourse units using a cross at- 421

tention layer. From Table A1 and 4 we find that 422

Cross attention with Context models are the best 423

performing models in both the L1 and L2 case. 424

Even when all the encoder layers are frozen, in 425

the L1 Case cross-attention model does better than 426

the rest of the models even without the context. In 427

the L2 case cross attention does the best with the 428

context. When unfrozen, cross attention model fur- 429

ther does better consistently. Cross attention model 430

only performs slightly better than the mean models. 431

While it helps in improved performance but not a 432

significant improvement. 433

A.2 Ablation of frozen models 434

We train these models with a frozen encoder to 435

evaluate the performance of pretrained models and 436

compare it to fine-tuning the encoder. When the 437

encoder is unfrozen, the model consistently out- 438

performs the frozen case, clearly indicating that 439

fine-tuning the encoder specifically for discourse 440

classification is beneficial. A t-test further confirms 441

that unfreezing the layers leads to significant(**) 442

improvements under all conditions. The results are 443

shown in Table A1. 444

A.3 Intrasential and intersentential relations 445

PDTB3 introduces ∼ 300 intersentential discourse 446

units (Prasad et al., 2008), which are considered 447

harder to classify as compared to the intrasenten- 448

tial relationsWe analyse how the best-perfoming 449

model does on cases where the discourse Units are 450

Intrasentential where two discourse units are part 451

of the same sentence and intrasentential where two 452

discourse units are part of the different sentence. 453

The model performance in both the cases remains 454

almost similar, as seen in the Table 4 455

A.4 Explicit and Implicit Attention scores 456

Figure A2 shows the attention score trend for the 457

Contextual Cross-Attention model trained on L1 458

classes. Averaged over the PDTB3 dataset, the 459

trend highlights that in the Explicit case, the model 460

assigns higher attention to distant tokens, likely 461

connectives. Notably, the Explicit trend shows 462

higher average attention scores at a distance com- 463

pared to the Implicit case, underscoring the greater 464

importance of context in the Explicit case. 465
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A.5 Class-level analysis466

As observed in Figure A1,In the L2 case, we467

observe that the model confuses certain classes468

with others, and this confusion appears to be469

intuitive due to the inherently ambiguous na-470

ture of the data. For instance, the model often471

confuses Cause+Belief with Cause and Condi-472

tion+SpeechAct with Condition. This confusion473

predominantly occurs in cases where the num-474

ber of data points is very limited. Specifically,475

Cause+Belief has only 223 data points in the476

dataset, while Condition+SpeechAct has just 71.477
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Asynchronous 0.62 0.04 0.17 0.00 0.00 0.01 0.03 0.00 0.00 0.06 0.00 0.01 0.00 0.00 0.01 0.03 0.01 0.00    1233

Synchronous 0.06 0.62 0.12 0.00 0.00 0.00 0.02 0.01 0.00 0.06 0.00 0.04 0.00 0.00 0.01 0.03 0.03 0.00    2234

Conjunction 0.03 0.02 0.77 0.00 0.00 0.01 0.03 0.00 0.00 0.07 0.00 0.01 0.00 0.00 0.01 0.03 0.01 0.00   12329

Disjunction 0.02 0.01 0.15 0.74 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.03 0.00 0.00 0.01 0.01 0.00 0.00     353

Equivalence 0.00 0.01 0.13 0.01 0.14 0.02 0.28 0.01 0.01 0.33 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.00    1729

Instantiation 0.01 0.01 0.08 0.00 0.00 0.60 0.19 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00    3312

Level-of-detail 0.02 0.02 0.14 0.00 0.01 0.08 0.49 0.01 0.01 0.16 0.00 0.00 0.00 0.00 0.01 0.04 0.01 0.00     494

Manner 0.01 0.03 0.12 0.00 0.00 0.01 0.08 0.45 0.01 0.08 0.00 0.04 0.00 0.00 0.12 0.04 0.00 0.00     562

Substitution 0.01 0.01 0.11 0.01 0.02 0.01 0.06 0.01 0.57 0.08 0.00 0.01 0.00 0.00 0.02 0.06 0.03 0.00     318

Cause 0.02 0.03 0.15 0.00 0.01 0.02 0.08 0.01 0.01 0.61 0.00 0.01 0.00 0.00 0.01 0.05 0.01 0.00    7306

Cause+Belief 0.01 0.01 0.20 0.00 0.01 0.07 0.19 0.02 0.02 0.42 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00     223

Condition 0.03 0.05 0.04 0.01 0.00 0.00 0.01 0.01 0.00 0.03 0.00 0.77 0.00 0.00 0.03 0.02 0.00 0.00    1500

Condition
+SpeechAct

0.01 0.04 0.04 0.00 0.01 0.01 0.01 0.00 0.01 0.03 0.00 0.58 0.07 0.00 0.00 0.11 0.06 0.00      71

Negative-
condition

0.01 0.00 0.02 0.05 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.80 0.01 0.03 0.00 0.00     119

Purpose 0.02 0.02 0.08 0.00 0.00 0.00 0.01 0.04 0.00 0.02 0.00 0.03 0.00 0.00 0.77 0.01 0.00 0.00    1680

Concession 0.02 0.01 0.06 0.00 0.00 0.00 0.02 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.75 0.06 0.00    5935

Contrast 0.02 0.06 0.14 0.00 0.00 0.01 0.02 0.00 0.02 0.05 0.00 0.01 0.00 0.00 0.00 0.26 0.43 0.00    1863

Similarity 0.02 0.05 0.24 0.01 0.02 0.01 0.02 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.02 0.02 0.54     127
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Figure A1: Confusion matrix for classification L2 – each cell represents the recall rate of that class
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Aggregator Context Level Frozen Unfrozen

F1 Prec Rec F1 Prec Rec
(wei.) (macro) (macro) (wei.) (macro) (macro)

mean no L1 0.538 0.524 0.478 0.681 0.665 0.648
cross-attn no L1 0.613 0.594 0.576 0.682 0.664 0.649

mean yes L1 0.588 0.580 0.535 0.749 0.742 0.731
cross-attn yes L1 0.603 0.589 0.560 0.752 0.748 0.731

mean no L2 0.394 0.291 0.198 0.556 0.472 0.419
cross-attn no L2 0.480 0.405 0.299 0.569 0.490 0.435

mean yes L2 0.450 0.352 0.237 0.659 0.589 0.533
cross-attn yes L2 0.511 0.475 0.333 0.657 0.577 0.540

Table A1: Performance comparison of frozen and unfrozen models for different contexts and levels. Unfreezing the
layers lead to significant ** improvement under all conditions.

Figure A2: In the Explicit case, we observe higher
attention scores at a distance from the DUs compared to
the Implicit case. The model has learned to pay attention
to connectives farther away from the DUs.
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