Evaluating LLMs’ Multilingual Capabilities for Bengali:
Benchmark Creation and Performance Analysis

Anonymous ACL submission

Abstract

Bengali is an underrepresented language
in NLP research. However, it remains a
challenge due to its unique linguistic struc-
ture and computational constraints. In
this work, we systematically investigate
the challenges that hinder Bengali NLP
performance by focusing on the absence of
standardized evaluation benchmarks. We
then evaluated 10 recent open source Large
Language Models (LLMs) in 8 of the trans-
lated datasets and performed a compre-
hensive error analysis to pinpoint their
primary failure modes. Our findings re-
veal consistent performance gaps for Ben-
gali compared to English, particularly for
smaller models and specific model families
like Mistral. We also identified promising
robustness in certain architectures, such
as DeepSeek, that maintain more stable
performance across languages. We find
that excessive tokenization per row often
introduces noise and degrades model accu-
racy, while concise per word tokenization
improves score outcomes. These findings
highlight critical areas where current mod-
els fall short and underscore the need for
improved dataset quality and evaluation
methodologies tailored to multilingual con-
texts. This work will catalyze further re-
search on NLP for underrepresented lan-
guages, helping to democratize access to
advanced language technologies worldwide.

1 Introduction

Large Language Models (LLMs) have transformed
text generation enabling applications in machine
translation, text summarization and conversa-
tional agents. These models such as GPT-2 and
GPT-3 leverage vast amounts of data and deep
neural architectures to generate human-like text
with fluency (Witteveen and Andrews, 2019). Con-
trolled text generation approaches have also been
explored to refine outputs and guide language mod-
els toward desirable properties (Yu et al., 2021).
Although these research developments have been

substantial, text generation in under-resourced lan-
guages like Bengali remains a challenge.

Recent efforts have sought to extend LLM capa-
bilities to Bengali, a language spoken by over 230
million people. While general-purpose LLMs per-
form well in high-resource languages like English
and Chinese, Bengali NLP faces limitations due to
its linguistic complexity and scarcity of large-scale
datasets (Kabir et al., 2023). To address this, ded-
icated Bengali LLMs such as BanglaBERT (Bhat-
tacharjee et al., 2021), BanglaGPT (Salim et al.,
2023) have been developed. More recent Bengali-
focused models like TituLLM (Nahin et al., 2025)
and TigerLLM (Raihan and Zampieri, 2025) have
also emerged, demonstrating promising results in
various Bengali NLP tasks. These models aim to
enhance performance in Bengali NLP tasks such as
text classification, sentiment analysis and machine
translation.

However, the development of robust Bengali
LLMs is still faced by different challenges. First,
the lack of large-scale, high-quality Bengali text
corpora limits pretraining and fine-tuning efforts
(Shahriar and Barbosa, 2024). While resources
like the Sangraha corpus (Khan et al., 2024) de-
veloped by Al4Bharat offer numerous data across
22 Indian languages including Bengali, the qual-
ity and quantity of Bengali tokens remain limited
compared to high-resource languages like English.
The Sangraha corpus consists of about 251 billion
tokens across all languages, but Bengali’s alloca-
tion is significantly smaller at about 30 billion to-
kens. In contrast, English has access to around
2 trillion tokens in large-scale multilingual cor-
pora such as the Common Corpus (Langlais et al.,
2025). This huge difference in token availability
poses a major challenge in achieving comparable
model performance in Bengali NLP. Second, the
Bengali language’s rich morphology and complex
writing system introduce significant tokenization
challenges. Unlike English, which uses the Latin
script with largely independent characters, Bengali
employs an alphasyllabary script where base char-
acters are frequently modified by diacritics and con-
junct forms that alter pronunciation and meaning
(Alam et al., 2021). These modifications can oc-
cur on either side of a base character, forming in-
tricate multi-character grapheme clusters that do



not align well with standard tokenization schemes
used in LLMs. As a result, traditional subword
tokenization methods such as Byte Pair Encoding
(BPE) or WordPiece struggle to segment Bengali
text effectively, leading to highly fragmented or
inconsistent tokens (Shahriar and Barbosa, 2024).
This increased token complexity means that mod-
els require more training data to learn meaning-
ful inter-token relationships in Bengali than in En-
glish. Failure to capture these linguistic nuances
not only increases computational overhead but also
degrades model performance on downstream tasks.
Third, Bengali NLP research suffers from the ab-
sence of standardized evaluation datasets, making
it difficult to benchmark model performance effec-
tively (Kabir et al., 2023).

This lack of evaluation datasets motivates the
need for well-defined benchmark datasets for Ben-
gali LLMs. Without standardized datasets, it is
hard to compare models or track improvements in
NLP research. While some efforts have been made
to curate evaluation datasets (Shafayat et al., 2024)
progress is still slow due to the extensive annota-
tion and validation required.

Efforts to develop LLMs for underrepresented
languages have explored various methodologies.
The Khayyam Challenge (Ghahroodi et al., 2024)
curated a large-scale Persian dataset using original
non-translated content ensuring language-specific
nuances are preserved. Similarly, Cohere’s Aya
model (Ustiin et al., 2024) employed instruction
tuning across multiple low-resource languages to
enhance linguistic adaptability. AI4Bharat’s San-
graha dataset tackled data scarcity by aggregat-
ing and refining multilingual corpora . In contrast,
Turkish LLM research (Acikgoz et al., 2024) exper-
imented with two approaches: adapting English-
trained models via transfer learning and pretrain-
ing from scratch. While these efforts have proven
effective their applicability to Bengali remains un-
certain due to unique linguistic characteristics and
uniqueness in Bengali.

Although substantial progress has been made
in developing NLP resources for Bengali, there
remain opportunities to accelerate advancement
further. Typically, when creating initial bench-
marks for lower-resourced languages, researchers
bootstrap by translating existing English datasets
into the target language, as demonstrated in prior
works for Persian and Turkish. However, this ini-
tial step has not yet been widely adopted for Ben-
gali, largely due to practical constraints, including
the substantial manual validation effort required
to correct machine translation errors, associated
time investments, and overall costs. Because cur-
rent machine translation systems often introduce
inaccuracies and lose linguistic nuance, manual in-
tervention becomes necessary to refine and validate
the translated data. In this study, we directly ad-

dress these challenges by systematically translat-
ing major English benchmark datasets into Bengali
and did a performance analysis on them.

Motivated by these challenges, this research aims
to bridge the existing gaps in Bengali NLP by con-
structing high-quality evaluation datasets. To ad-
dress these limitations, this work contributes in a
few key areas.

e We publicly release a comprehensive suite
of high-quality Bengali benchmark datasets,
along with the accompanying translation
pipeline and codebase to facilitate repro-
ducible research and future advancements in
Bengali NLP evaluation.

e We describe the methodology used to translate
and curate high-quality datasets.

e We conduct inference experiments and analyze
results to assess model effectiveness of open
source multilingual models.

o We analyze tokenization behavior across Ben-
gali and English benchmarks, revealing that
Bengali inputs produce significantly larger to-
ken counts per instance and per word with
dataset remaining consistent across both lan-
guages.

e We identify the impact of tokenization granu-
larity on performance, showing that higher to-
kens per row often correlate with lower model
scores (due to mnoise) while more compact
per-word tokenization tends to improve accu-
racy.

e We examine language-specific encoding effi-
ciencies, demonstrating that English tokens
carry higher average bytes per token com-
pared to Bengali with implications for model
resource requirements.

In Section 2, we describe the datasets that were
translated, outline the translation methodologies,
and explain the rationale behind the choice of
translation models. In Section 3, we detail the ex-
perimental procedures, including the datasets se-
lected for inference, the evaluation metrics used,
and the results obtained. Section 4 presents an
analysis of the results, summarizes key findings,
and outlines directions for future work. Finally, in
Section 5, we discuss the challenges encountered
during translation and highlight the limitations of
our approach.

2 Methodology

The translation pipeline for converting English
NLP benchmarks begins with dataset selection and
blind review using multiple models. GPT-40-mini
was chosen for translation, supported by prompt
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Figure 1: Methodology Overview
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engineering. The post-processing steps addressed
translation errors and formatting issues. The final
output includes 8 cleaned Bengali datasets com-
pleted at a cost of approximately $200.

2.1 Dataset Selection

To select appropriate datasets, we refer to the
methodology used in the white paper by LLaMA,
identifying commonly used datasets that align with
our research objectives. This approach allowed us
to ensure the inclusion of high-quality, diverse and
representative text corpora for Bengali language
modeling. A summary of the dataset statistics is
attached.

2.2 Translation

For the translation process, we utilized OpenATI’s
gpt-40-mini-2024-07-18 model to translate the se-
lected datasets from English to Bengali while
preserving linguistic accuracy and contextual in-
tegrity.

The model was instructed through comprehen-
sive prompting to properly translate the dataset
and not change the underlying meaning of the orig-
inal text. Special attention was given to preserving
the integrity of ground truth values to prevent any
corruption. Temperature values ranging from 0.0
to 1.0 were used to control the translation quality
and creativity. As the model sometimes responds
with elaborate and redundant answers, special care
for that was taken during the prompting process.
An example of the prompting template is shown in
Table 2.

2.3 Translation Decisions

In our study, we performed a blind review of
translations generated by three different services:
Google Translate, Azure’s Translation Endpoint
and OpenAl’s gpt-40-mini-2024-07-18. Each trans-
lation was assessed by human reviewers without
revealing its source. Based on the reviewers’ feed-
back, we determined that gpt-40-mini-2024-07-18
produced the most accurate and coherent transla-
tions among the three.

Category
== commonsense
= science
== math
= multidomain

Figure 2: Dataset Distribution

2.4 Translation Challenges

During the translation process, we encountered sev-
eral issues:

¢ Repetitive Translations: Some words were
being repeated excessively, leading to unnat-
ural sentence structures. To mitigate this,
we increased the temperature parameter to
1 while keeping other parameters constant,
which helped introduce variability and im-
prove translation quality.

e Missing Entries Due to Multithreading:
Some dataset entries were skipped due to par-
allel processing errors. We resolved this issue
by analyzing logs and re-processing the miss-
ing translations to ensure dataset complete-
ness.

e Decoding Errors: Some dataset entries had
decoding errors due to the JSON not being
parsed properly . These errors include miss-
ing comma(,)delimiters, unclosed quotation
marks(“”), mismatched key-value pairs, miss-
ing “bangla translation” tags, unescaped json
quotes etc. This was resolved by updating
the corresponding regex and escaping response
strings as necessary.

e Incomplete Translations: Some trans-
lated dataset entries contained incomplete sen-
tences, missing answer-key values and missing
options. Such sentences had to be retranslated
to fix the issue.



Dataset Name Train  Dev.  Test Task Type Dataset Type

OpenbookQA 4957 500 500 MCQ Multi-step reasoning, commonsense
ARC 3370 869 3548  MCQ Grade-school science
BigBenchHard - - Var. MCQ Logical reasoning

Alpaca Eval - - 10465 Instruction Benchmark

Anthropic 86372 - 35006 - Safety, helpfulness

Apps 5000 - 5000 - Coding

BFCL - - 250 - Function calling

BoolQ 9427 3270 Reading comprehension

CommonSenseQA 9741 1221 1140 MCQ

Commonsense reasoning

Dolly - - 7295  Instruction Varied NLP tasks
GSM8k 7473 - 1319  Numbers Grade-school math
Hellaswag 39905 10042 10003 - Commonsense reasoning
HumanEval - - 164 - Code generation

MATH 8599 - 4999  Exact Match Math reasoning

MMLU 98487 1528 13869 MCQ College-level reasoning
MMLU-Pro - 70 12032 - College-level reasoning
MR-GSM8k - - 12024 Exact Match Math reasoning

PIQA 16113 - 3084  MCQ Commonsense reasoning
SIQA 33410 1954 - MCQ Social IQ

Truthful QA - - 1634 MCQ Truthfulness assessment
Winogrande 19482 1267 1767 MCQ Pronoun resolution

Table 1: Summary of Dataset Statistics

2.5 Translation Results

Twenty major LLM benchmark datasets were
translated into Bengali. From these, eight datasets
were selected, spanning the Commonsense, Science,
Math, and Multidomain categories. The total cost
of translation amounted to approximately $200.

3 Experimental Details

We selected eight benchmark datasets spanning
four high-level categories for our evaluations.
In the Commonsense category, we included
HELLASWAG, WINOGRANDE, COMMONSENSEQA,
BoorLQ and OPENBOOKQA. For Science, we
used ARC. In the Math category, we chose
GSM8K-MAIN and for Multidomain, we se-
lected MMLU. Each dataset was translated into
Bengali according to our methodology and our ex-
periments measure model performance on these
translated versions.

3.1 Chosen Models

For our research, we selected all available open-
source multilingual LLaMA models to ensure
broad generalization and comprehensive evalua-
tion. The specific models used in our experiments
include:

3.2 Evaluation Metrics

The evaluation process was done without finetun-
ing the Llama family of models and running infer-
ence on the corresponding datasets. To assess the
performance of the models, the following evalua-
tion metrics were employed:

e Accuracy: Measures the proportion of cor-

rectly answered questions out of the total num-
ber of questions. Formally,

> W (response; = answer;)
n

where J(+) is the indicator function (1 if the
condition is true, and 0 otherwise).

Accuracy =

Response Error Rate (RER) and Re-
sponse Adherence Rate (RAR). The Re-
sponse Error Rate (RER) measures the frac-
tion of model-generated responses that fail to
conform to any of the valid answer formats
specified for a given input. More precisely,
it captures the rate at which the model’s re-
sponse does not begin with any of the accept-
able prefixes. The complement of this metric,
Response Adherence Rate (RAR), represents
the proportion of responses that correctly be-
gin with a valid option. These metrics are
particularly useful for structured or categori-
cal tasks where responses are expected to ad-
here to a predefined format, such as “yes” or
“no” in binary classification tasks.

Formally, let n be the total number of exam-
ples, resp,; denote the model’s response for ex-
ample i, and P; be the set of valid prefixes
(e.g., class labels or canonical answer forms)
for that example. Define an indicator variable:

e; =W (Vp € P, : = (resp; starts with p)),

where J(+) is the indicator function, which re-
turns 1 if the condition is true and 0 otherwise.



Role Content

System You are a professional translator
tasked with accurately translating
text from English to Bengali. Your
primary goal is to provide precise
and culturally appropriate transla-
tions, regardless of the content’s na-
ture.

User Translate the following English
text into Bengali and ensure the
output is valid JSON with all strings
enclosed in double quotes:
<english__text>

{{ 7input”: {input}, "target”: {tar-
get} }}

</english_text>

Guidelines:

1. Translate accurately, maintaining
meaning, tone, and context.

2. Handle idiomatic expressions
appropriately.

3. Preserve specialized terminology
or proper nouns.

4. Translate sensitive content accu-
rately without censorship.

5. Do not translate JSON keys, only
values.

6. Ensure valid JSON output with
double-quoted strings.
Output

<bangla_ translation> tags.
in <translator_notes> tags.

within
Notes

Table 2: Prompting Structure for English to Ben-
gali Translation

Model Family = Size Multilingual ~Bengali in Pretraining Reference

LLaMA 3.1 8B Limited  X(Token overlap only) (Grattafiori et al., 2024)
LLaMA 3.1 70B Limited X(Token overlap only) (Grattafiori et al., 2024)
LLaMA 3.2 3B Limited X (Grattafiori et al., 2024)
LLaMA 3.3 70B Limited X (Grattafiori et al., 2024)
Qwen 2.5 B Yes v (Qwen et al., 2025)
Qwen 2.5 728 Yes v (Qwen ct al., 2025)
Mistral B No X (Jiang et al., 2023)
Mistral Small ~ 24B No X (Mistral AT Team, 2025)
DeepSeck-R1  14B Yes v (Guo et al., 2025)
DeepSeek-R1 ~ 70B Yes v (Guo et al., 2025)

Table 3: Benchmark models evaluated on Bengali
data. We used chat or instruct-tuned version of
each model. Bengali coverage is based on available
documentation or token overlap estimates.

The RER is then given by:
1 n
RER = — > e
i=1

Accordingly, the RAR is defined as:

ln
RAR RER n§( ei)

i=1

In the case of the BoolQ dataset, which is a
binary question answering task with “yes” or
“no” as valid answers, we evaluate RER by
checking whether each model response exactly
matches one of these expected labels. To en-
sure consistency, responses are first normal-
ized through a label mapping function (e.g.,
mapping “Yes” to “yes”) and converted to low-
ercase. The error condition is met if the re-

(ST TlSvie NDMLU | OBQA_CSQA ARCE ARCC Boold GSVRROT Win

GhqA_Csqn_ARCE ARCT @

Table 4: Accuracy performance comparison of
models across datasets for English (EN) and Ben-
gali (BN).

sponse does not match any of the valid la-
bels associated with the input. The final
RER is computed as the proportion of such
mismatches across all examples, and RAR is
derived as its complement. This evaluation
framework ensures that the model not only
answers correctly but also adheres strictly to
the expected response format.

Table 5: RER performance comparison of models
across datasets for English (EN) and Bengali (BN).

e LLM-Judge Uses a separate LLM-
based “judge” system to determine whether a
model’s answer conveys the same meaning as
the correct ground truth, even if the wording
differs. We define this as the fraction of an-
swers for which the judge returns a “Correct”
verdict:

Yo W (verdict; = "Correct”)
" .

LLM-Judge =

The judge is implemented via a few-shot learn-
ing approach with GPT models to provide con-
sistent, human-like assessments.

GhqA_CsqA_ARCE ARCT %= DU | OBQA_CSOA_ARCE ARCC B

Table 6: LLM Judge performance comparison of
models across datasets for English (EN) and Ben-
gali (BN).

These metrics provide a comprehensive overview
of the model’s effectiveness in understanding and
responding to commonsense questions across both
English and Bengali languages.

3.3 Result Analysis

In Fig. 3a, we present the average scores grouped
by dataset and language. As expected, perfor-
mance in Bengali is generally lower than in English.

Fig. 3b shows how Accuracy, LLM-Judge, and
RAR metrics vary with model size. Smaller mod-
els tend to underperform, especially in Bengali,
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a) Average of Accuracy,
LLM Judge, and RAR
scores across datasets
grouped by language.

(b) Variation of metric
scores across model sizes
in different languages.

Figure 3: Language-wise score trends and the effect
of model size.

Figure 4: The models sorted by average of the score
difference observed between English and Bengali
across datasets.

with noticeable drops in accuracy and LLM-Judge
scores.

In Fig. 5a, we observe the distribution of scores
across various model families. Mistral models con-
sistently underperform across both languages.

Fig. 5b illustrates the standard deviation of av-
erage scores across languages. A lower deviation
indicates greater robustness. In particular, the
DeepSeek model family demonstrates high robust-
ness across languages.

Fig. 4 illustrates the sorted score differences
between English and Bengali prompts. Earlier
LLaMA models show greater performance drops,
likely due to limited Bengali representation in their
pretraining data. Interestingly, the Qwen 72B
model also appears among the lower-performing
group, alongside smaller models (3B—-8B). The
language gap is most pronounced in tasks in-
volving math (GSM-8K) and commonsense rea-
soning (Hellaswag, OpenbookQA). In contrast,
larger models tend to show more consistent per-
formance across both languages. Moreover, in se-
lect scenarios—particularly on DeepSeek and Mis-
tral architectures—Bengali prompts unexpectedly
outperform English ones; this may stem from
the more structured and context-rich translations,
which better align with the models’ tokenization
and leverage additional semantic cues present in
the Bengali prompts.

3.4 Tokenization

We now proceed to evaluate and compare various
tokenizers on our translated Bengali datasets. We

,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

(a) LLM-Judge score dis- (b) Standard deviation of
tributions across differ- average scores across lan-
ent model architecture guages for each model fam-
families. ily.

Figure 5: Architecture-wise performance and ro-
bustness across languages.

report the computed values of the metrics for each
tokenizer under consideration. These results high-
light the tradeoffs between encoding granularity
and byte-efficiency in the context of Bengali text.
Finally, we analyze how these differences in tok-
enization affect downstream model performance.

To simplify notation, we use the following ab-
breviations for tokenization metrics: average to-
kens per row (ATPR), average tokens per word
(ATPW), average bytes per token (ABPT) (Da-
gan et al., 2024), and average normalized sequence
length (ANSL) (Dagan et al., 2024).

3.4.1 Average Token Count

In order to compare the efficiency of different tok-
enizers across dataset, we compute the mean num-
ber of tokens generated. Formally, given a dataset
D = {z;}}¥, of N text entries (rows), let T'(x) de-
note the number of tokens assigned to text x by a
given tokenizer. We then define two related met-
rics.

3.4.2 Average Token Count Per Row

1 N
N;T(m).

Here each z; is the full concatenation of “System
Prompt” and “Prompt” from one response CSV
row, and T'(z;) is the length of its tokenized se-
quence.

ATPR =

3.4.3 Average Token Count Per Word

Let Words(z;) be the number
pace-separated words in x;. We define

of whites-

N

ATPW = — —_
w N ; Words(z;)

This normalizes each row’s token count by its word
count, giving a per-word encoding cost.

This metric captures the average amount of raw
text (in bytes) that each token represents. Be-
cause tokens correspond to subword units, a lower
ABPT means each token encodes more of the origi-
nal text, indicating a more byte-efficient tokenizer.



Conversely, a higher value implies finer granularity
more tokens for the same byte length potentially
increasing downstream compute costs.

3.4.4 Bytes Per Token

Let D = {D;}¥, be a corpus of N text examples.
For each D;, let B, = |Dj|pytes denote its UTF-8
byte length, and Ez()‘) = |T5(D;)| its token count
under tokenizer 7). The per-example bytes-per-
token is

w_ Bi
O

i
and the average over the corpus is

1 L B
ABPT(\) = > K(;) .

i=1

This metric reflects the average number of
bytes each token spans. Lower ABPT indicates
coarser, more byte-efficient tokenization, while
higher values suggest finer granularity and poten-
tially greater compute cost.

3.4.5 Average Normalized Sequence
Length

Let EEB) = |Ts(D;)| be the token count under the
baseline tokenizer T3. Define the per-example nor-
malized length

o
i - 8(5)'

n

Its dataset-wide average is
1 o ¢
N

ANSL(\) =

This ratio measures how the tokenizer’s sequence
length compares to that of a fixed baseline. A value
below 1 indicates that T) produces shorter token
sequences than the baseline—reducing model input
length and inference latency—while a value above
1 signals longer, more fragmented encodings that
may increase computational overhead.

The bar plots in Figure 6 illustrate the tokeniza-
tion performance varies across different datasets.
At a glance we can see that the Token counts in
Bengali are significantly larger than English. In
Figure 6a, the average token count per row reveals
that boolq and hellaswag lead with over 1000 to-
kens, suggesting greater complexity or verbosity,
particularly in the Bengali dataset. Their English
counterparts also rank high but show lower and
less varied token counts. The order of datasets
with the highest average token counts remains con-
sistent across both bn and en versions, underscor-
ing a persistent trend in tokenization behavior.
Figure 6b presents the average token count per
word, revealing a more balanced distribution, with

(a) ATPR (b) ATPW

Figure 6: Comparison of tokenization efficiency
metrics across datasets.
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Figure 7: Correlation of token efficiency metrics
with LLM-Judge Score.

bn and lang datasets ranging between 2-7 tokens
per word, while en consistently shows the lowest
counts, suggesting more efficient tokenization for
English. These findings highlight the challenges of
tokenizing Bengali text, potentially due to linguis-
tic complexity, compared to English.

The heatmaps in Figure 7 provide valuable in-
sights into the impact of tokenization on perfor-
mance metrics. Figure 7a suggests that models
with higher token counts per row tend to corre-
late with lower scores, potentially indicating that
capturing more contextual information also intro-
duces more noise. In contrast, Figure 7b reveals
that lower token counts per word are associated
with lower scores, hinting at the advantage of
concise tokenization in maintaining semantic in-
tegrity. These findings underscore the need for
a balanced tokenization approach, tailoring strate-
gies to dataset characteristics to optimize model
performance effectively.

The scatter plots in Figure 8 provide insights
into the relationship between tokenization metrics
and scores. Figure 8a shows that scores tend to
stabilize or slightly decline as the average token
count per row increases beyond a certain thresh-
old, suggesting a potential saturation point where
additional tokens may not significantly boost per-
formance. Figure 8b indicates that scores are gen-
erally higher with lower average token counts per
word, implying that more efficient tokenization
at the word level could enhance model accuracy.
These findings suggest that an optimal tokeniza-
tion strategy might involve limiting excessive tok-



(a) ATPR

(b) ATPW

Figure 8: Scatter plot of tokenization efficiency
metrics against LLM-Judge Score.
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Figure 9: Comparison of tokenization efficiency
metrics across datasets and languages (Bengali
& English) reflecting variations in encoding effi-
ciency.

enization per row while prioritizing concise word-
level representation to maximize score outcomes.
The bar plot in Figure 9a reveals that En-
glish(en) datasets consistently show higher average
bytes per token, suggesting that English tokeniza-
tion may involve more complex or larger represen-
tations, potentially due to richer vocabulary or en-
coding schemes. In contrast, Bengali(bn) datasets
exhibit lower and more uniform byte counts, indi-
cating a more compact tokenization process, which
could reflect simpler linguistic structures or opti-
mized encoding for these datasets. These findings
imply that tokenization efficiency varies by lan-
guage, with English requiring more storage per to-
ken, possibly impacting model resource demands.

4 Conclusion

In this work, we conducted a systematic evalua-
tion of recent large language models on Bengali, an
underrepresented language in NLP research. By
translating and adapting major LLM benchmark
datasets, we provided a comprehensive assessment
of model performance across multiple metrics, lan-
guages, and dataset categories. Our findings re-
veal consistent performance gaps for Bengali com-
pared to English, particularly for smaller models
and specific model families like Mistral. We also
identified promising robustness in certain architec-
tures, such as DeepSeek, that maintain more stable
performance across languages.

Despite the challenges posed by machine-
translated datasets and variability in model out-
puts, our study highlights critical areas where cur-
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Figure 10: Effect of tokenization efficiency mea-
sured by ABPT on LLM-Judge scores showing how
byte-level tokenization impacts on model evalua-
tion quality.
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Figure 11: Influence of tokenization length normal-
ization, measured by ANSL on LLM-Judge scores
demonstrating how relative sequence length affects
evaluation outcomes.

rent models fall short and underscores the need for
improved dataset quality and evaluation method-
ologies tailored to multilingual contexts. We hope
that by open-sourcing our datasets and code, this
work will catalyze further research on NLP for low-
resource languages, helping to democratize access
to advanced language technologies worldwide.

Moreover, our detailed tokenization analysis
shows that Bengali inputs show substantially
higher token counts per instance and per word com-
pared to English, when datasets are kept consistent
across languages. We find that excessive tokens per
row often introduce noise and degrade model accu-
racy, while concise per-word tokenization improves
score outcomes. Additionally, English tokens carry
higher average bytes per token than Bengali, high-
lighting language-specific resource implications for
model deployment.

Future efforts should focus on addressing the lim-
itations noted here, including manual dataset vali-
dation, more flexible evaluation criteria to accom-
modate diverse model output, and improved auto-
matic judging techniques to ensure reliable and fair
evaluation.

5 Limitations

While our study offers valuable insights into multi-
lingual model performance, it is not without limi-
tations.




First, the Bengali datasets used in our evalua-
tion were translated from English using automatic
machine translation methods. These translations
were not manually validated, which may introduce
linguistic inaccuracies, ambiguities, or cultural mis-
matches that could affect model performance un-
fairly.

Second, model outputs can vary significantly
in formatting and phrasing across different model
families. While we attempt to evaluate correctness
using automated methods such as exact match for
accuracy, these strict rules may penalize valid an-
swers that do not conform to a narrow format, espe-
cially in generative tasks. This limits the reliability
of accuracy-based metrics across diverse models.

Lastly, our use of LLM-as-a-judge assumes that
the judgment provided by a reference LLM is accu-
rate. However, LLMs themselves can make mis-
takes, show bias, or misinterpret nuanced cases.
This introduces an additional layer of uncertainty
in the evaluation pipeline.

We acknowledge these limitations and consider
them important areas for future work, including
manual validation, improved normalization across
outputs, and more robust automatic evaluation
methods.
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