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ABSTRACT

Inferring the causal structure underlying stochastic dynamical systems from obser-
vational data holds great promise in domains ranging from science and health to
finance. Such processes can often be accurately modeled via stochastic differential
equations (SDEs), which naturally imply causal relationships via ‘which variables
enter the differential of which other variables’. In this paper, we develop condi-
tional independence (CI) constraints on coordinate processes over selected intervals
that are Markov with respect to the acyclic dependence graph (allowing self-loops)
induced by a general SDE model. We then provide a sound and complete causal
discovery algorithm, capable of handling both fully and partially observed data,
and uniquely recovering the underlying or induced ancestral graph by exploiting
time directionality assuming a CI oracle. Finally, to make our algorithm practically
usable, we also propose a flexible, consistent signature kernel-based CI test to infer
these constraints from data. We extensively benchmark the CI test in isolation and
as part of our causal discovery algorithms, outperforming existing approaches in
SDE models and beyond.

1 INTRODUCTION

Understanding cause-effect relationships from observational data can help identify causal drivers for
disease progression in longitudinal data and aid the development of new treatments, act upon the
underlying influences of stock prices to support lucrative trading strategies, or speed up scientific
discovery by uncovering interactions in complex biological systems such as gene regulatory pathways.
Causal discovery (or causal structure learning) has received continued attention from the scientific
community for at least two decades (Glymour et al., 2019; Spirtes et al., 2000; Vowels et al., 2022)
with a notable uptick in previous years particularly regarding differentiable score-based methods
(Zheng et al., 2018; Brouillard et al., 2020; Charpentier et al., 2022; Hägele et al., 2023; Lorch et al.,
2021; Annadani et al., 2023; Zheng et al., 2020), building on score matching algorithms (Rolland
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et al., 2022; Montagna et al., 2023b;a), and other deep-learning based approaches (Chen et al., 2022;
Ke et al., 2023; Yu et al., 2019; Ke et al., 2020). Many of these approaches aim at improving the
scalability of causal discovery in the number of variables and observations as well as at incorporating
uncertainty or efficiently making use of interventional data.

However, causal discovery from time series data has received much less attention and been mostly
neglected in these recent advances. At a fundamental level, causal effects in dynamical systems can
only ‘point into the future’, which should make causal discovery in time resolved data intuitively sim-
pler. Nevertheless, except for restricted settings, this promise has not been realized methodologically
and causal discovery in time series, especially for systems evolving in continuous time, remains a
major challenge (Singer, 1992; Runge et al., 2019; Lawrence et al., 2021; Runge et al., 2023).

Data generating process. We assume data to follow a stochastic process X := (X1, . . . , Xd),
with Xk taking values in Rnk (nk ≥ 1), and X satisfying the following system of stationary,
path-dependent SDEs {

dXk
t = µk(X[0,t])dt+ σk(X[0,t])dW

k
t ,

Xk
0 = xk

0 for k ∈ [d] := {1, . . . , d} . (1)

We call this the SDE model. The subscript [0, t] at X means that µk (the ‘drift’) and σk (the
‘diffusion’) are functions of the entire solution up to time t, i.e., they are defined on C([0,+∞),Rn)
(or some suitable subspace thereof), where n := n1 + . . . + nd. Each W k is an mk-dimensional
Brownian motion, and σk maps to nk ×mk-dimensional matrices. The noises W k together with
the (possibly random) initial conditions xk

0 are jointly independent. Therefore, the diffusion σ of
the entire system is block-diagonal (see equation 8). We refer to Rogers & Williams (2000) for
details, Evans (2006) for a concise introduction, and Appendix A.2 for more intuition and discussion
of the assumptions made here. Hence, the SDE together with a distribution over initial conditions
defines our data generating process. Individual observations are paths, which in practice translate
to stochastic, potentially irregularly sampled time series observations for Xk

[0,T ] with a maximum
observation time T , see Figure 1. Appendix A.1 contains an overview table of the notations used.
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Figure 1: Illustration of causal discovery in
the SDE model (A), leveraging conditional
independencies in the observed samples (B)
to infer the dependence graph of the SDE (C).

Induced causal graph. Eq. (1) naturally implies
cause-effect relationships: we call i ∈ [d] a parent
of j ∈ V := [d] (i ∈ paGj ) when either µj or σj

is not constant in the i-th argument. These parental
relationships define a directed graph G = (V,E),
which we call dependence graph of the SDE model.
The goal of causal discovery is to infer the graph G
induced by the SDE model from a sample of observed
solution paths, depicted in Figure 1. Here, we only
consider data generating processes leading to directed
graphs without cycles of length greater than one (i.e.,
only ‘loops’ Xk → Xk are allowed). We still call
these directed acyclic graphs (DAGs) for simplicity.

Limitations and requirements. The key limitation
of our setting is the assumption of acyclicity (ex-
cept for self-loops). We discuss fundamental issues
arising from dropping the acyclicity constraint in Ap-
pendix A.3. Further, we focus on stationary SDE
models, i.e., the coefficients in eq. (1) are not explicitly time-dependent, motivated by the requirement
that causal relationships do not change over time. Despite these limitations, our setting is the first
to simultaneously satisfy the following criteria for causal discovery in continuous time systems:
(a) It does not rely on the ‘discrete-time’ assumption, i.e., that all variables are observed at the
same, typically homogeneously spaced, time points (neither in the underlying model nor the actual
observations). Instead, different variables can be observed at different, irregularly spaced time
points in our setting. (b) We can handle partially observed systems with unobserved confounders.
(c) Path-dependence (µk, σk may depend on the entire previous history X[0,t] of paths), including
delayed SDEs, is typically not captured in existing approaches (Peters et al., 2022). (d) Beyond
‘additive observation noise’ it incorporates ‘driving noise’, where causal dependence may stem from
the diffusion, not captured by the means of observed paths.
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Contributions. Our main contributions include (a) developing CI constraints on coordinate processes
over selected intervals that we prove to be Markov with respect to the acyclic dependence graph (with
self-loops) induced by a general SDE model. (b) We then propose an efficient constraint based causal
discovery algorithm and prove it to be sound and complete, assuming a CI-oracle, for both fully and
partially observed data. Unlike existing constraint based methods in static settings, our algorithm
uniquely recovers the full underlying graph or induced ancestral graph by exploiting the direction of
time. (c) Finally, we propose a flexible, practical CI test on path space, rendering our method highly
practicable. (d) We extensively demonstrate the test’s efficacy and achieve superior performance in
causal discovery compared to existing methods.

2 BACKGROUND AND RELATED WORK

Causal discovery on time series. While virtually all causal discovery methods on time series
exploit that the direction of time constrains edges to point forward, except for Laumann et al.
(2023), most existing work assumes observations to be sampled on a regular time grid with a
discrete (auto-regressive) law, where past observations (Xt−τ , . . . , Xt−1) determine the present Xt =
f(Xt−τ , . . . , Xt−1, εt) for some fixed lag τ , which can be seen as a static structural causal model
(SCM) over an ‘unrolled graph’ with variables at different time steps considered as distinct nodes
(Assaad et al., 2022; Hasan et al., 2023; Peters et al., 2017). Based on the seminal work (Granger,
1969), various Granger-type approaches leverage the assumption that past values of a variable can
help predict future values to detect lagged causal influences both for linear (Diks & Panchenko,
2006; Granger, 1980) and non-linear (Marinazzo et al., 2008; Shojaie & Fox, 2022; Runge, 2020;
Pamfil et al., 2020) functional relationships. While non-parametric constraint-based methods for such
discrete-time models (Runge et al., 2019; 2020; 2023) can handle partial observations, they are also
fundamentally limited by the ‘discrete-time’ assumption making them unfit for irregularly sampled
observations of continuous time systems, path-dependence, or diffusion dependence. Furthermore,
they require numerous tests across all time points and rely on the correct estimation of a fixed
‘lookback window’ τ . The fundamental problems of the ‘discrete-time’ assumption have also been
discussed in Runge (2018).

Other work focuses on the (static) equilibrium behavior of differential equations (Mooij et al., 2013;
Bongers et al., 2018; Bongers & Mooij, 2018), exploiting invariance in mass-action kinetics (Peters
et al., 2022), or attempts to directly learn the full dynamical law via non-convex optimization of
heavily overparameterized neural network models (Aliee et al., 2021; 2022; Bellot et al., 2022;
Wang et al., 2024). The latter are fundamentally limited by the fixed functional modeling structures
and therefore also unable to model partially observed settings. Albeit its limited applicability to
fully-observed, Markovian SDE models, SCOTCH (Wang et al., 2024), which uses a variational
formulation to infer posterior distributions over possible graphs, is the current state-of-the-art baseline.

Constraint-based methods for continuous-time stochastic processes mostly rely on (conditional)
local independence, an asymmetric independence relation (Schweder, 1970; Mogensen et al., 2018),
which can be used to infer a (partial) causal graph in, e.g., point process models (Didelez, 2008;
Meek, 2014; Mogensen et al., 2018; Mogensen & Hansen, 2020). However, besides the limitation to
drift-dependencies, there exists no practical test of local independence for diffusions. The only work
that actually tests local independence from data is (Christgau et al., 2023), which is heavily restricted
to counting processes.

In this work, we overcome the challenges of irregular and partial observations, path- and diffusion
dependence, and practical applicability by transforming CI statements of the form

XI
I ⊥⊥XJ

J | XK
K , (2)

for disjoint I, J,K ⊆ [d] between subsets of coordinate-processes XI , XJ , XK over intervals
I,J ,K ⊆ [0, T ] into a practical hypothesis test using the signature kernel and the arrow of time.

Conditional independence tests. As a key building block of graphical models, there is a large
literature on conditional independence tests, i.e., testing the null hypothesis H0 : X ⊥⊥Y | Z. When
Z is discrete, CI testing reduces to a series of unconditional tests for each value of Z (Tsamardinos
& Borboudakis, 2010). For continuous Z, nonparametric kernel-based methods often either check
independence of residuals after kernel (ridge) regressing X and Y on Z (Shah & Peters, 2020;
Lundborg et al., 2022; Zhang et al., 2011; Daudin, 1980; Strobl et al., 2019), or measure the distance
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between joint and marginal kernel mean embeddings (Muandet et al., 2017; Park & Muandet,
2020). For example, KCIPT (Doran et al., 2014) phrases it as a two-sample test of the null H0 :
P (X,Y, Z) = P (X | Z)P (Y | Z)P (Z) and simulates samples from P (X | Z)P (Y | Z)P (Z) via
a permutation of the data that approximately preserves Z. Lee & Honavar (2017) improve on KCIPT
with an unbiased estimate of Maximum Mean Discrepancy (MMD) (Gretton et al., 2006). Other
permutation-based approaches require large sample sizes (Sen et al., 2017) or rely on densities (Kim
et al., 2022), unfit for our setting.

Laumann et al. (2023) develop a CI test for functional data using the Hilbert-Schmidt conditional
independence criterion (HSCIC) (Park & Muandet, 2020) and a permutation test (Berrett et al., 2019),
which they use as part of the PC-algorithm (Glymour et al., 2019) for causal discovery. Even though
their approach assumes PX|Z to be known (not the case in our setting), it is inapplicable under
partial observations, and does not exploit the arrow of time (to identify graphs beyond the Markov
equivalence class), we benchmark the work by Laumann et al. (2023) against our method in the
experiments. CI testing faces fundamental practical challenges, such as the exponential growth in
the number of values to condition on as dimensionality of Z increases, and theoretical limits, as any
CI test’s power is bounded by its size (Shah & Peters, 2020; Lundborg et al., 2022). This ‘no free
lunch’ statement underscores the need for carefully selecting the right test. Most existing approaches
assume Euclidean spaces and do not generalize to path-valued random variables without densities, a
gap we fill by combining kernel-based permutation tests (KCIPT, SDCIT) with the signature kernel
for a tailored CI test on path space and proving its consistency.

Signature kernels. Signature kernels (Király & Oberhauser, 2019; Salvi et al., 2021a), a universal
class for sequential data, have received attention recently for their efficiency in handling path-
dependent problems (Lemercier et al., 2021; Salvi et al., 2021c; Cochrane et al., 2021; Salvi et al.,
2021b; Cirone et al., 2023; Issa et al., 2023; Pannier & Salvi, 2024). The definition of the signature
kernel requires an initial algebraic setup, which we keep as concise as possible—yet self-contained—
here and refer the reader to Cass & Salvi (2024, Chapter 2) for more details. We provide some
more informal intuition of signatures in Appendix A.4. Let ⟨·, ·⟩1 be the Euclidean inner product
on Rd. Denote by ⊗ the standard outer product of vector spaces. For any n ∈ N, we denote by
⟨·, ·⟩n on (Rd)⊗n the canonical Hilbert-Schmidt inner product defined for any a = (a1, . . . , an)
and b = (b1, . . . , bn) in (Rd)⊗n as ⟨a, b⟩n =

∏n
i=1 ⟨ai, bi⟩1. Define the direct sum of vector

spaces T (Rd) :=
⊕∞

n=1(Rd)⊗n, where it is understood that the direct sum runs over finitely
many non-zero levels. The inner product ⟨·, ·⟩n on (Rd)⊗n can then be extended by linearity to an
inner product ⟨·, ·⟩ on T (Rd) defined for any a = (a0, a1, . . .) and b = (b0, b1, . . .) in T (Rd) as
⟨a, b⟩ = ∑∞

n=0 ⟨an, bn⟩n. Other choices of linear extensions have been studied in Cass et al. (2023).
We denote by T (Rd) the Hilbert space obtained by completing T (Rd) with respect to ⟨·, ·⟩.
The signature transform is a classical path-transform from stochastic analysis. For any sub-interval
[s, t] ⊂ [0, T ] and any continuous path X ∈ Cp([0, T ],Rd) of finite p-variation, with 1 ≤ p < 3, it
is (canonically) defined as S(X)s,t :=

(
1, S(X)

(1)
s,t , . . . , S(X)

(n)
s,t , . . .

)
∈ T (Rd), where S(X)

(n)
s,t ∈

(Rd)⊗n is the n-fold iterated integral S(X)
(n)
s,t =

∫
s<u1<...<un<t

dXu1 ⊗ dXu2 ⊗ . . . ⊗ dXun .
Given two arbitrary sub-intervals [a, b], [c, d] ⊂ [0, T ], the signature kernel KS : Cp([s, t],Rd) ×
Cp([s

′, t′],Rd)→ R is a positive definite kernel on continuous paths of bounded variation defined as
KS(X,Y ) = ⟨S(X)s,t, S(Y )s′,t′⟩ . (3)

Salvi et al. (2021a, Thm. 2.5) shows that KS(X,Y ) = f(t, t′), where f : [s, t]× [s′, t′]→ R is the
solution of the following path-dependent integral equation:

f(t, t′) = 1 +

∫ t

s

∫ t′

s′
f(u, v)⟨dXu, dYv⟩1 , with f(0, ·) = f(·, 0) = 1 . (4)

This ‘kernel trick’ allows us to evaluate the signature kernel without explicit computation of the
signature transform by solving the partial differential equation (PDE) in eq. (4). We refer to Salvi et al.
(2021a) for a numerical approximation scheme to solve this hyperbolic PDE and its error rates and to
Appendix A.4 for more mathematical details on the applicability in our setting. In our experiments,
we use the JAX library sigkerax to efficiently solve eq. (4).

In summary, the signature kernel is a universal kernel that takes (multi-variate) continuous paths—
potentially on different intervals—as input, is efficiently computable, and performs well in capturing
characteristics of sequential data (Lee & Oberhauser, 2023).

4
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3 METHODOLOGY

We start with our constraint-based causal discovery algorithms, where we assume an oracle for CI
testing on path space for eq. (2) in Section 3.1. In Section 3.2 we then introduce the signature kernel
CI test and state its consistency, which requires a new proof that does not rely on densities. Our test,
applicable to arbitrary stochastic processes, time series, or functional data, performs well empirically
in our extensive experiments in Section 4 making it a contribution of independent interest.

3.1 CAUSAL DISCOVERY IN THE ACYCLIC SDE MODEL

Throughout this section, we assume access to a CI oracle for eq. (2), where XH
[a,b] denotes the

C([a, b],R|H|)-valued random variable ω 7→ ([a, b] ∋ t 7→ (Xh
t (ω)−Xh

a (ω))
h∈H). Asymptotically,

such an oracle can be replaced in practice by a consistent finite-sample CI test for path-valued
random variables (see Section 3.2). More specifically, we test the independence of increments,
not the independence of the processes on consecutive intervals, meaning that we consider path-
valued random variables ω 7→ ([a, b] ∋ t 7→ (Xh

t (ω) − Xh
a (ω))

h∈H), effectively decoupling
initial conditions from subsequent increments. For simplicity and since this minor subtlety is
naturally handled by the signature kernel as the signature transform is translation invariant (meaning
S(X(t))a,b = S(X(t)−X(a))a,b, we denote these paths by Xh∈H

t .

In Appendix A.3, we prove that when allowing for cycles in the SDE model, constraint-based causal
discovery of the full graph is impossible using arbitrary expressions of the form in eq. (2) despite the
flexibility of these conditional independencies. This impossibility result is a key motivation to study
the acyclic setting still allowing for loops, which are crucial in dynamic settings as variables should
be allowed to depend on themselves infinitesimally into the past.

We will use the oracle in the following ways for intervals [0, s] and [s, s+ h] with h > 0:

• Xi is symmetrically CI of Xj given XK on [0, T ] if Xi
[0,T ]⊥⊥Xj

[0,T ] | XK
[0,T ];

we then write Xi⊥⊥sym Xj | XK

• Xi is future-extended h-locally CI of Xj given XK at s if Xi
[0,s]⊥⊥Xj

[s,s+h] | X
j
[0,s], X

K
[0,s+h];

1

we then write Xi⊥⊥+
s,h X

j | XK

• Xi is conditionally h-locally self-independent given XK at s if Xi
[0,s]⊥⊥Xi

[s,s+h] | XK
[0,s+h];

we then write Xi⊥⊥⟲
s,h | XK

1

X1

X2

X3

X4

G

X1
0

X2
0

X3
0

X4
0

X1
1

X2
1

X3
1

X4
1

G̃

Figure 2: The lifted dependence graph G̃
(right) for a DAG G (left) with colors high-
lighting the correspondence of selected edges.

The key idea to leverage the unidirectional flow of
time is to split the observed paths into ‘past’ and ‘fu-
ture’ at some time t ∈ [0, T ]. Therefore, we define
the lifted dependence graph G̃ = (Ṽ , Ẽ) by setting
Ṽ := V0 ⊔ V1, where ⊔ denotes disjoint union and
V0, V1 are two copies of V , whose elements we sub-
script with 0 and 1; we include an edge (i0 → i1) ∈
Ẽ if and only if there is a loop (i → i) ∈ E, and
for each edge (i → j) ∈ E with i ̸= j, include
edges (i0 → j0), (i1 → j1), (i0 → j1) ∈ Ẽ, see Fig-
ure 2. Conversely, we say that the graph with edges
E is obtained by collapsing the graph with edges Ẽ.
Intuitively, V0 contains all ‘past’ and V1 all ‘future’
variables with the same edges among them (causal relations) with additional edges from ‘past’ to
‘future’. We can now establish the following Markov property.
Proposition 3.1 (Markov property). Assume the dependence graph G of the SDE model is acyclic
except for loops and associate Xi

[0,s] with i0 ∈ V0 and Xi
[s,s+h] with i1 ∈ V1. Then G̃ is acyclic and

the independence relation ⊥⊥+
s,h satisfies the global Markov property w.r.t. d-separation in G̃.

Our proof (see Appendix A.6) leverages the structure of the SDE-generating mechanism, which
factorizes according to the dependence graph, thereby allowing us to formally establish the global

1The ‘+’ denotes conditioning on the future of XK , not common in the literature (Florens & Fougere, 1996).
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Markov property using arguments from stochastic analysis. With an oracle for eq. (2) and a faithful-
ness type assumption (for more details see Appendix A.8), we now develop new constraint-based
causal discovery algorithms that infer the full dependence graph instead of just equivalence classes.

Algorithm 1: Causal discovery for acyclic SDEs.
1: Ṽ ← {k0, k1 | k ∈ V }

Ẽ ← {i0 → j0, i1 → j1 | i, j ∈ V, i ̸= j}
∪ {i0 → j1 | i, j ∈ V }

2: for c = 0, . . . , d− 2 do ▷ edge recovery w/o loops
3: for i, j ∈ V , i ̸= j do
4: for K ⊆ V \ {i, j}, |K| = c,

s.t. (k0 → j1) ∈ Ẽ for k ∈ K do
5: if Xi⊥⊥+

s,h Xj | XK then
6: Ẽ ← Ẽ \ {i0 → j0, i1 → j1, i0 → j1}
7: G = (V,E)← collapse(Ṽ , Ẽ)
8: for k ∈ V do ▷ removing loops
9: if Xk ⊥⊥⟲

s,h | X
paG

k
\{k} then

10: E ← E \ {k → k}
11: return G

Discovering the full DAG G. To discover
the full graph including loops we propose
Algorithm 1 that makes use of the time-
ordering via our h-local independence mod-
els (consider s, h > 0 arbitrary but fixed).

Theorem 3.2. Algorithm 1 is sound and
complete for the SDE model, assuming
acyclicity except for loops and faithfulness:
its output is the true dependence graph G.

The proof (see Appendix A.7) establishes
completeness by identifying a separating set
and leveraging the global Markov property
in Proposition 3.1; soundness is shown via
the faithfulness assumption. In particular,
our proof does not require the ‘strong faith-
fulness’ assumption, but a weaker version, ‘parent faithfulness’, suffices—see Appendix A.8 for a
detailed discussion of faithfulness in our setting.

Discovering and post-processing the CPDAG. In Algorithm 1, we leverage our Markov property
with respect to the lifted graph that also incorporates time directionality to infer the full graph. We
now show that we can also use the symmetric criterion ⊥⊥sym to recover the ‘Markov equivalence
class’—all graphs that are Markov equivalent to G—via the completed partially directed acyclic
graph (CPDAG) of G (Peters et al., 2017, Def. 6.24). Loosely speaking, the CPDAG has the same
adjacencies as G, but some edges may remain undirected. Due to space limitations, we present the
required global Markov property with respect to ⊥⊥sym in Appendix A.9. This Markov property
allows us to apply the sound and complete PC algorithm to infer the CPDAG assuming an CI oracle
for ⊥⊥sym and faithfulness (Spirtes et al., 2000). While Algorithm 1 is strictly more informative
(returns G instead of just its CPDAG), the reliability of ⊥⊥+

s,h in practice might be negatively affected
compared to ⊥⊥sym by (a) conditioning on larger sets, (b) shorter time segments (potentially losing
information), and (c) the additional choice of parameters s, h. Hence, in real-world applications
inferring the CPDAG using ⊥⊥sym may be more robust than inferring G fully using ⊥⊥+

s,h. Building
on these potential benefits, we also develop a post-processing procedure for the CPDAG that again
leverages the directionality of time to provably also orient all remaining unoriented edges.

Corollary 3.3 (post-processing). Let G = (V,E) be the dependence graph of the acyclic (except for
loops) SDE model and G̃ = (V, Ẽ) its CPDAG. Then we have Xj

[0,T ] ⊥̸⊥ Xi
0 but Xi

[0,T ]⊥⊥Xj
0 for all

(i, j) ∈ E ⊂ Ẽ with (j, i) ∈ Ẽ and i ̸= j.

The proof in Appendix A.10 relies on the joint independence of Brownian motions dW k
t and initial

conditions Xk
0 . Corollary 3.3 directly motivates an alternative algorithm for causal discovery of G,

written out as Algorithm 2 in Appendix A.10, by first constructing the CPDAG (PC algorithm with
⊥⊥sym) followed by testing unconditionally the yet unoriented edges as in Corollary 3.3.

Partially observed setting. Finally, we consider the partially observed setting, where only
{Xvk

t }vk∈Vobs,t∈[0,1] of the process {Xvi
t }vi∈Vobs⊔VL,t∈[0,1] from the model in eq. (1) with DAG

G = (Vobs ⊔ VL, E) are observed. Asymmetric local independence based methods for causal dis-
covery are challenged by requiring exponentially many oracle calls in the partially observed setting
(Mogensen & Hansen, 2022; Mogensen, 2025). However, since our symmetric conditional indepen-
dence constraint satisfies the global Markov property with respect to the induced acyclic directed
mixed graph (ADMG) Gobs = (Vobs, E

′) (also known as latent projection, with potentially arbitrary
unobserved processes) over the observed variables, we can take inspiration from the Fast Causal
Inference (FCI) algorithm (Zhang, 2008) by first running its skeleton-discovery-part and then again
leveraging the direction of time to uniquely infer the edge-type {←,→,↔} for found adjacencies.
This reduces the typical partial ancestral graph output of FCI (representing an equivalence class of
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ancestral graphs) to a single, maximally informative graph (as informative as an ancestral graph can
be). We provide all details in Appendix D.

3.2 SIGNATURE KERNEL CONDITIONAL INDEPENDENCE TEST

Our theoretical results in Section 3.1 assume a CI oracle. To make our algorithms usable in practice,
we now propose a flexible CI test for path-valued random variables on different time intervals for
expressions of the form eq. (2). Recent work using the signature kernel is limited to unconditional
hypothesis tests (Chevyrev & Oberhauser, 2022) or only use it as a heuristic measure of conditional
independence (not developing a hypothesis test) (Salvi et al., 2021c), and both do not use the time
order. Using terms of the signature to detect causality (not specifically with hypothesis testing) was
also proposed by Giusti & Lee (2020); Glad & Woolf (2021). Hence, we are the first to combine
ideas from kernel-based CI tests and the signature kernel for a practically usable, consistent CI
test on path space. While the existing consistency proof for KCIPT (also applying to SDCIT)
(Doran et al., 2014) relies on the existence of densities, we prove consistency for testing on path-
valued random variables in Appendix A.14 requiring novel arguments. We discuss the sensitivity
of constraint-based causal discovery on errors in the CI test in Appendix A.12. Given n samples
of path segments X(i)

I , Y (i)
J , Z

(i)
K on intervals I,J ,K ⊂ [0, T ] for i ∈ [n], we compute the Gram

matrices kXX , kY Y , kZZ ∈ Rn×n using the signature kernel KS and run a kernel-based permutation
CI test like KCIPT (Doran et al., 2014) or SDCIT (Lee & Honavar, 2017) to test XI ⊥⊥YJ | ZK.2
The theoretical foundation combined with the strong empirical performance of our CI test suggest
that it may be of independent interest outside of causal discovery applications.

4 EXPERIMENTS

In this section, after introducing the baselines and implementation details, we empirically evaluate our
CI test in a variety of settings. We then demonstrate strong performance in various causal discovery
tasks and also outperform traditional methods in a real-world finance case study.

Baselines. We compare against CCM (Sugihara et al., 2012), PCMCI (Runge et al., 2019), Granger
causality (Granger, 1969), a kernel-based approach (Lau) (Laumann et al., 2023), and SCOTCH
(Wang et al., 2024), a variational neural SDE method. CCM, Granger, and PCMCI are well-established
methods for time series, while Lau and SCOTCH represent the latest advances in causal discovery
for functional data and SDE models, respectively. CCM and Granger are limited to bivariate cases,
while Lau is only applicable to unconditional tests here. Details are in Appendix C.

Implementation details and metrics. We use sigkerax for the signature kernel with an RBF
kernel with length scale selected via a median heuristic (see Appendix B.1). For bivariate cases, the
causal structure is X1 → X2, for d > 2, we draw Erdös–Rényi DAGs. Performance is measured
by Structural Hamming Distance (SHD, Appendix B.8). For ⊥⊥+

s,h, s = 0.1 · T (and a fixed T = 1)
performed best (Table 5). The SDE model is

dXt =(AXt + c)dt+Diag(BXt + d)dWt, with A,B ∈ Rd×d, c, d ∈ Rd . (5)

except for the 2-dimensional non-linear SDE, which is given by

d

(
X1

t

X2
t

)
=

(
−rω sin(ωt)
rω tanh(X2

t )

)
dt+Diag(d⊤)dWt . (6)

Computational complexity. Due to space constraints, we defer the computational complexity
analysis of our CI test, the causal discovery algorithm, and the signature kernel evaluations in
Appendix B.9. The overall computation is dominated by finding the permutation that leaves Z
(approximately) invariant in the permutation based CI tests (KCIPT, SDCIT).

Choosing (conditional) independence tests. In initial experiments on two- and three-dimensional
structures (e.g., forks, colliders, chains) detailed in Appendix B.2, we found bootstrapped SDCIT and
HSIC to be the best performing variants of kernel-based (C)I tests (see Figure 6 and Tables 6 to 8 for
details) and use them for all subsequent experiments.

2While time observations within a process are not i.i.d., the n process samples are i.i.d. realizations of the
SDE model, see Appendix A.13 for details.
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Table 1: SHD (×102) comparison of SigKer to the baselines in four bivariate SDE settings: linear,
path-dependence, non-linear, and diffusion dependence. We ran SCOTCH for different sparsity
parameters λ and numbers of epochs ne; there is no clear trend in either parameter, but λ =
100, ne = 2000 performed best overall. Different learning rates performed worse across the board.

linear path-dependence non-linear diffusion dependence

×102 (λ, ne) n = 200 n = 400 n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

CCM 176 ± 7 166 ± 8 186 ± 5 194 ± 3 120±10 106±10 100±10 84 ± 10
Granger 92 ± 5 87 ± 5 85 ± 5 95 ± 6 103 ± 5 103 ± 5 105 ± 5 111 ± 4
PCMCI 89 ± 9 100±10 91 ± 4 125±15 41 ± 8 55 ± 15 98 ± 13 75 ± 23
SCOTCH 100, 1k 74 ± 14 77 ± 17 50 ± 12 46 ± 12 64 ± 15 80 ± 10 75 ± 14 62 ± 10
SCOTCH 50, 2k 79 ± 18 44 ± 17 23 ± 12 73 ± 23 83 ± 11 73 ± 13 25 ± 13 44 ± 28
SCOTCH 100, 2k 50 ± 17 36 ± 19 64 ± 19 55 ± 15 85 ± 7 91 ± 9 33 ± 16 9 ± 8
SigKer 14 ± 4 7 ± 3 5 ± 2 6 ± 2 28 ± 5 5 ± 2 72 ± 6 63 ± 5
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a22

0.00
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te
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Lau n=40

Lau n=60
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Figure 3: Test power for X1
[0,t]⊥⊥X2

[0,t]

over a21

a22
. Lines (shades) are means (stan-

dard errors) over 1000 SDE instances.

Power analysis of the unconditional test. We first
demonstrate consistently superior performance of our un-
conditional independence test (HSIC) SigKer (ours) over
the only existing baseline for this setting from Laumann
et al. (2023) (Lau) in the linear SDE-setting eq. (5) (with
B ≡ 0, di = 0.4), reaching test power near 1 already
for n ≥ 40 when the causal interaction a21 (strength of
X1 → X2) is comparable to X2’s self-dependence (a22)
in Figure 3.

Figure 7 further highlights SigKer’s robustness even with
high data missingness, and Figure 8 demonstrates its ef-
fectiveness on fractional Brownian motions outside the
semi-martingale framework. We are not aware of other CI
tests that apply to such settings—establishing it as state-
of-the-art CI test for stochastic processes.

Leveraging the direction of time. Next, we leverage time to orient the edge in the much-studied
bivariate causal-discovery setting (X1 → X2) via our ⊥⊥+

s,h constraint with K = ∅ for a variety of
settings: (i) linear SDEs with dependence in the drift, (ii) diffusion, (iii) or path-dependent, as well as
(iv) nonlinear interactions. Table 1 shows that SigKer decisively dominates all baselines in all settings
for different sample sizes except diffusion dependence. In this setting, SCOTCH is better for specific
hyperparameter settings, while performing worse for others. Crucially, one cannot ‘cross-validate’ or
otherwise select such hyperparameters for the causal-discovery task in a data-driven fashion without
ground-truth knowledge. The lack of robustness (different optimal hyperparameters for different
sample sizes) renders SCOTCH unreliable in practice even for diffusion dependence.

Specifically, we draw the settings for these experiments as follows: for linear drift interactions we
sample a21 ∼ U([1, 2.5]), a11, a22 ∼ U([−0.5, 0.5]), a12 = 0, B ≡ 0, di ∼ U([0.1, 0.2]) in a two-
dimensional linear SDE model eq. (5). For linear diffusion interactions we draw a11, a22 ∼ U([0.5, 1])
and b21 ∼ U([1, 4.5])), the rest set to zero in a two-dimensional linear SDE model eq. (5). For path-
dependence, we simulate dX2

t = µ2(X1
[0,t])dt+ d2dW

1
t via a three-dimensional SDE eq. (5) with

B ≡ 0, c ≡ 0, a23, a31 ∼ U([−3.5,−1] ∪ [1, 3.5]) and d = (d1, d2, 0)
⊤, di ∼ U([0.1, 0.2]), the

rest set to zero. For the nonlinear SDEs we use eq. (6) with ω ∼ U([6π, 8π]), r ∼ U([0.5, 1]),
di ∼ U([2, 2.5]).

Table 2: SHD (×102) comparison of SigKer to PCMCI and SCOTCH
(different λ and ne) in causal discovery. Means and standard errors
are over 40 SDE instances.

d = 3 d = 5 d = 10 d = 20 d = 50

PCMCI 29 ± 16 243 ± 37 793 ± 84 3530 ± 159 19.6k ± 857
SCOTCH 100, 2k 188 ± 28 417 ± 86 250 ± 61 1525 ± 1160 10275 ± 6176
SCOTCH 200, 2k 110 ± 21 270 ± 48 530 ± 223 370 ± 174 538 ± 70
SCOTCH 200, 1k 400 ± 17 1370 ± 29 6425 ± 80 705 ± 77 7863 ± 2670

⊥⊥+
s,h 26 ± 5 80 ± 8 284 ± 19 1026 ± 40 4946 ± 113

⊥⊥sym+p.p. 13 ± 4 38 ± 7 157 ± 15 725 ± 439 4593 ± 93
⊥⊥sym only 57 ± 84 147 ± 11 436 ± 19 1294 ± 48 6005 ± 98

Causal discovery. For
causal discovery, we sample
40 linear SDEs from eq. (5)
(with aij ∼ U([−2,−1] ∪
[1, 2]) for j ̸= i and aii ∼
U([−0.5, 0.5])) with random
DAG adjacency structures for
d ∈ {3, 5, 10, 20, 50} and use
n = 200 sample paths from
each SDE as input for the al-
gorithms. Table 2 shows that
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Figure 4: An example graph demonstrating the advantage of our approach under partial observations.

our Algorithm 1 (denoted by ⊥⊥+
s,h) and Algorithm 2 (⊥⊥sym+pp and ⊥⊥sym the result before post-

processing) clearly outperform PCMCI and SCOTCH up to d = 10. SCOTCH’s heavy dependence
on hyperparameter choices for λ (graph sparsity) and ne (the number of epochs), can sometimes
render it superior when charitably picking the best setting. However, since good values particularly
for λ cannot be known up front nor selected in a data-driven fashion, one must interpret SCOTCH’s
performance more conservatively—arguably in terms of its worst case performance over a set of
reasonable hyperparameter settings. Hence, SigKer—free of any hyperparameter choices—broadly
outperforms the state-of-the-art, such as SCOTCH even in the setting SCOTCH was specifically
tailored to (SDE models). Unlike such methods, our approach continues to work well for other data
generating mechanisms as our CI test handles stochastic processes beyond the SDE model.

Summary and discussion of results. Our CI test for ⊥⊥+
s,h reliably detects the direction of time

and outperforms strong baselines (CCM, Granger, PCMCI), consistently improving with larger
sample sizes (Table 1). SigKer also dominates PCMCI in causal discovery across dimensions and
consistently beats most hyperparameter settings of SCOTCH. While isolated hyperparameter settings
for SCOTCH perform better than SigKer in diffusion dependence and high-dimensional causal
discovery, its strong dependence on hyperparameters, particularly the sparsity parameter λ, renders it
unreliable in practice. Finally, SCOTCH and PCMCI are tailored to Markovian SDEs (or SDEs with
a fixed lag). Instead, our CI test is broadly applicable and effective across data modalities which we
further demonstrate empirically in a functional data example where both PCMCI and SCOTCH fail
to detect path-dependence, see Table 10.

The partially observed setting. One of the main benefits of constraint-based causal discovery
(especially with a non-parametric test) is the ability to handle partial observations. Score-based
methods like SCOTCH are fundamentally challenged in this setting, since there could in principle
be infinitely many unobserved variables, impossible to model, e.g., with neural-network based
approaches. We showcase this advantage on the challenging example graph in Figure 4, where
SCOTCH falsely infers an adjacency A—D in 88 out of 100 runs, whereas our algorithm correctly
handles the unobserved confounder and only (falsely) predicts this adjacency in 8 instances.

Table 3: SigKer outperforms baselines in most
pairs trading performance metrics. ↑ / ↓ indicates
‘higher/lower is better’.

return ↑ APR ↑ Sharpe ↑ maxDD ↓ maxDDD ↓

ADF 0.004 0.004 0.090 0.087 230
Granger -0.010 -0.011 -0.230 0.056 219
ADF & Granger 0.008 0.008 0.242 0.022 153
SigKer 0.076 0.077 1.500 0.027 21

Real-world pairs trading example. To demon-
strate the applicability of our developed meth-
ods on real-data, we evaluate pairs trading
strategies on ten stocks from the VBR Small-
Cap ETF over a three-year period (2010/01/01–
2012/12/31). We only provide a concise sum-
mary of our results here and refer to Ap-
pendix B.7 for more details on this proof-of-
concept study. We assess our method’s effective-
ness by quantifying the profit-and-loss (P&L) profile of the generated pairs trading strategy as a
substitution for ground truth. Pairs were selected based on pairwise p-values from different hypothesis
tests: 1) cointegration via the Augmented Dickey-Fuller (ADF) test, 2) Granger causality, and 3) our
method. Table 3 shows that our strategy’s P&L substantially outperforms the baselines in total return,
APR, Sharpe ratio, and maxDDD while being almost on par with ADF & Granger in the fifth relevant
metric maxDD. This case-study highlights the broad applicability and potential downstream impact
of the findings in this work.

5 CONCLUSION AND FUTURE WORK

We introduce constraint based causal discovery algorithms for both fully and partially observed data
in the form of stochastic processes, proving them to be sound and complete assuming a CI oracle.

9
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These are based on novel Markov properties corresponding to the developed CI constraints with
respect to the induced dependence graph. Our algorithms critically leverage the directionality of time
to uniquely identifying the full underlying graph or induced ancestral graph, critically improving
over existing constraint-based algorithms in the static case that only output equivalence classes. Our
framework also efficiently captures path- or diffusion-dependence. Finally, we propose a practical
and consistent kernel-based CI test on path-space leveraging recent advances in signature kernels that
empirically outperforms existing alternatives across a wide range of settings also beyond the SDE
model such as functional data and fractional Brownian motions.

Due to the identified fundamental limitations in the cyclic setting, we limit ourselves to acyclic
(except for self-loops) dependence graphs and assume causal relationships to not change over time.
Relaxing both of these assumptions and assessing how much of the causal structure can in principle
be learned in the cyclic settings are immediate interesting directions for future work. We highlight
that the field of causality represents just one of the many potential applications of our conditional
independence test for path-valued random variables. Exploring applications in different domains is a
worthwhile direction for future work that could also catalyze new methodological developments.

REPRODUCIBILITY STATEMENT

Significant effort was made to ensure reproducibility, both for the theoretical and experimental
results. The complete proofs of Proposition 3.1, Theorem 3.2, Corollary 3.3 can be found in
Appendix A.6 Appendix A.7, Appendix A.10, respectively. Additionally, we discuss the limitations
and requirements in Section 1, which outlines the assumptions made throughout the paper. Details
regarding implementation and metrics can be found in Section 4, along with further information on
the data-generating mechanism and results evaluation throughout Section 4. The implementation
of baselines is described in Appendix C, and details on the real-world pairs trading example can be
found in Appendix A.11. We will also make all code used to produce the results in this paper openly
available.
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A PROOFS AND THEORETICAL DIGRESSIONS

A.1 SUMMARY OF NOTATIONS

A summary of notation is provided in Table 4.

Table 4: Summary of notations

Symbol Meaning
[m] short for {1, . . . ,m}, m ∈ N
X stochastic process X = (X1, . . . , Xd) ∈ C([0, T ],Rn1+...+nd)
d number of coordinate processes X = (X1, . . . , Xd) or nodes in graph
Xk k-th coordinate process of X = (X1, . . . , Xd), Xk

t ∈ Rnk

nk dimension of the k-th coordinate process Xk

W k k-th Brownian motion, W k
t ∈ Rmk

mk dimension of the k-th Brownian motion W k

n total dimension of the stochastic process X , n = n1 + . . .+ nd

µk k-th drift component µk : Rn → Rnk

σk k-th diffusion component σk : Rn → Rnk×mk

T ∈ R>0 maximum observation time
t, s ∈ [0, T ] time points within the observation time
G = (V,E) dependence graph with nodes V and edges E
V ∼= [d] set of vertices in the dependence graph

E ⊆ V × V set of directed edges between nodes V
paGv parents of node v in graph G (omitted if clear from context)

G̃ = (Ṽ , Ẽ) lifted dependence graph of graph G = (V,E)
V0, V1 disjoint copies of V , with 0/1 indicating past/future

Ṽ := V0 ⊔ V1 node set in lifted dependence graph
Ẽ ⊆ Ṽ × Ṽ edge set in lifted dependence graph

S(X)s,t ∈ T (Rd) signature transform of path X over interval [s, t]
KS(X,Y ) signature kernel of paths X , Y
T (Rd) the direct sum

⊕∞
n=1(Rd)⊗n := {a = (an)n∈N =

∏
n∈N(Rd)⊗n; max{n : an ̸= 0} <∞}

T (Rd) the completion of T (Rd) w.r.t. ⟨a, b⟩ = ∑∞
n=1 anbn (well-defined)

O(·) Landau asymptotic notation (“Big-O notation”)

A.2 INTUITION AND DETAILS FOR THE SDE MODEL

Making the actual dependence of µk and σk on their arguments in eq. (1) explicit, we can rewrite it as{
dXk

t = µk(X
pak
[0,t])dt+ σk(X

pak
[0,t])dW

k
t ,

Xk
0 = xk

0 k ∈ [d].
(7)

Then µk, σk are functions defined on C([0,+∞),Rdim(pak)) (or some suitable subspace thereof):
Lipschitz conditions on the coefficients that guarantee existence and uniqueness for this type of SDE
can be found in Rogers & Williams (2000), which we assume to hold throughout. Each W k is an
mk-dimensional Brownian motion (a collection of mk independent 1-dimensional Brownian motions,
that is), σk maps to the space of nk ×mk-dimensional matrices, and the noises W k together with the
(possibly random) initial conditions xk

0 are jointly independent. In other words, the system can be
written as an n := n1 + . . .+ nd-dimensional SDE driven by an m := m1 + . . .+md-dimensional
Brownian motion, with a block-diagonal diffusion coefficient σ (since the noise is unobserved, this
structure has to be imposed if we wish not to deal with unobserved confounding). This means the
SDE can be written in the matrix-form

d

X1
t

. . .
Xd

t

 =

µ1(X
pa1
[0,t])

. . .
µd(X

pad
[0,t])

 dt+

σ1(X
pa1
[0,t]) . . . 0

...
. . .

...
0 . . . σd(X

pad
[0,t])

d

W 1
t

. . .
W d

t

 (8)
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The superscript pak refers to the parents of the kth node in G, which may (and most often does)
contain k itself. Intuitively, all of this means that, for all times t and small increments ∆t, the
increment of the solution Xk

t+∆t −Xk
t is random with distribution that is well-approximated by a

multivariate normal with mean µk(X
pak
[0,t])∆t and covariance function σk(X

pak
[0,t])σ

k(X
pak
[0,t])

⊺∆t, and
independent of the history of the system up to time t. This interpretation can actually be made precise
by showing that these piecewise constant paths converge in law to the true solution (usually known as
the weak solution, when viewed in this way).

We will refer to G as the dependence graph of the eq. (1), which we refer to as the SDE model for
brevity. Compared to that of Peters et al. (2022), this model is slightly more general in that (i) it
allows for path-dependence and (ii) for each node to represent a multidimensional process; the special
case of state-dependent SDE—i.e., in which µ and σ only depend on Xt, the value of X at time
t—continues to be an important special case, although our model also accommodates delayed SDEs
(the coefficients depend on the value of X at a prior instant in time, e.g., Xt−τ for fixed or possibly
random/time-dependent τ > 0), and SDEs that depend on quantities involving the whole past of
X , such as the average t−1

∫ t

0
Xsds. We note that the choice not to make the coefficients explicitly

time-dependent is deliberate and motivated by the requirement that the system be causally stationary
(the causal relations between the variables do not change over time).

Given that we are considering the dynamic setting, it is generally natural to allow for G to have cycles.
This comes at no additional requirement of consistency constraints as it does in the static case (see
for example Bongers et al. (2021)), since the causal arrows in the model eq. (1) should be thought of
as ‘pointing towards the infinitesimal future, with infinitesimal magnitude’, integrated over the whole
time interval considered. Indeed, the system of SDEs does not require any global consistency to be
well-posed, other than the regularity and growth conditions that guarantee global-in-time existence
and uniqueness. On the other hand, we will be interested in the potential for constraint-based
causal discovery of such systems, qualified by the following assumption on the types of conditional
independencies that we allow to be tested in continuous time:

A.3 COUNTEREXAMPLE FOR CYCLIC CAUSAL DISCOVERY IN THE SDE MODEL

The following example demonstrates that constraint-based causal discovery of the full graph is
impossible using expressions of the form eq. (2) when allowing for cycles.

Example A.1. An oracle for eq. (2) is not powerful enough to rule out a directed edge X1 → X3 for
an SDE model with the following dependence graph:

X1 X2 X3

We now go through this example and describe a different type of oracle that would be required for
causal discovery in cyclic SDE models. Concretely, we claim that an oracle for eq. (2) is not powerful
enough to rule out a directed edge X1 → X3 for an SDE model with the graph in Example A.1.
Testing X1

[0,s]⊥⊥X3
[s,s+h] | X

2,3
[0,s], will not remove the edge, due to the open path

X1
[0,s] → X1

[s,s+h] → X2
[s,s+h] → X3

[s,s+h].

Testing X1
[0,s]⊥⊥X3

[s,s+h] | X3
[0,s], X

2
[0,s+h], on the other hand, runs into the collider

X1
[0,s] → X1

[s,s+h] → X2
[s,s+h] ← X3

[s,s+h].

There is no other way of splitting up the time interval (even allowing for more than 2 subintervals)
that overcomes both these problems: when testing X1

[0,s]⊥⊥X3
[s,s+h] (as is necessary in order to rely

on time to obtain direction of the arrow), if X2 is not conditioned on over [s, s + h] it will be a
mediator, and if it is, it will be a collider.

What would be needed to detect the edge in the above example (and to perform causal discovery
more generally in the cyclic case), is the availability of tests of strong instantaneous non-causality
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X3

X2

X1

Figure 5: The blue highlighter is for intervals over which the path is being tested for independence,
while orange is for conditioning. The first figure illustrates the path opened by the unconditioned-on
mediator X2

[s,s+h], while the second illustrates the path opened by the same variable acting as a
conditioned-on collider. While not quite possible to draw extra/figures this way, it is helpful to think
of the arrows as pointing from values to increments Xt → (Yt+dt − Yt), infinitesimally, with the
total causal effect accrued over time.

in the Granger sense as defined in Florens & Fougere (1996). This reflects the fact that the SDE
model is ‘acyclic at infinitesimal scales’. Unfortunately, such a property—which has to do with the
Doob-Meyer decompositions of functions of the process w.r.t. two different filtrations—is much
more difficult to test for, as it is infinitesimal in nature. Recent progress in this direction was made
in Christgau et al. (2023) for the case of SDEs driven by jump processes; this local independence
criterion, which goes back to Schweder (1970), is however weak in the sense that it only takes into
account the Doob-Meyer decomposition of X and not functions of it, and is not therefore able, for
example, to detect dependence in the diffusion coefficient (Gégout-Petit & Commenges, 2010). Here
we take the view that a continuously-indexed path, queried over an interval, can be considered as an
observational distribution (cf. the discussion in Sokol & Hansen (2013) on whether the infinitesimal
generator can be considered ‘observational’).

A.4 SIGNATURE KERNEL DETAILS

Additional mathematical details. For any p ∈ [1, 2), let K ⊂ Cp([0, T ],Rd) be a compact subset
such that the signature transform is a continuous injection from K to T (Rd). An example of compact
set K satisfying such conditions is the set of time-augmented paths started at a common origin, where
Cp([0, T ],Rd) is endowed with the p-variation topology. Further examples of compact sets and
choices of topologies on path-space are discussed by Cass & Turner (2024). Then, the signature
kernel is universal over K in the sense that the associated RKHS, whose elements are restricted to act
on K, is dense in C(K), the space of continuous real-valued functions on K, endowed in the topology
of uniform convergence. See Cass et al. (2023, Proposition 3.3) for a proof. The compactness
assumption can be relaxed by either renormalizing the signature transform so that its range is always
guaranteed to be bounded (Chevyrev & Oberhauser, 2022) or by operating on weighted path-spaces
with a different choice of topology Cuchiero et al. (2023).

The signature kernel is well-defined and can be shown, under similar compactness conditions, to be
universal also when p ≥ 2 (Salvi et al., 2021a; Lemercier & Lyons, 2024). In the specific setting of
stochastic differential equations (SDEs) considered in this paper, i.e. when p ∈ [2, 3), one can use a
classical limiting procedure from rough analysis to show that the integral equation in eq. (4) takes
the Stratonovich form f(t, t′) = 1 +

∫ t

s

∫ t′

s′
f(u, v)⟨◦dXu, ◦dYv⟩1. We refer the interested reader to

Salvi et al. (2021a, Section 4.3) for further details.

Another important property that a kernel should possess in order to ensure theoretical guarantees of
most kernel methods, including tests for conditional independence (Muandet et al., 2017), is that
of being characteristic. Loosely speaking, a kernel k is said characteristic to a topological space
if for any (Borel) probability measure µ on that space, the µ-expectation of the feature map k(x, ·)
uniquely characterises µ. An important result from the theory of kernels relates to the equivalence
between the notions of universality and characteristicness. In particular, these three notions can be
shown to be equivalent for kernels defined over general locally convex topological vector spaces
(Simon-Gabriel & Schölkopf, 2018, Theorem 6).

Intuition. The signature transform of a (potentially multidimensional) continuous path (or time
series) is a sequence of iterated integrals, static features, which form an expressive representation
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of the path. An analogy is often drawn to monomials in (multiple) indeterminants, with which
one can express continuous functions. Another useful analogy is the Fourier transform. While
Fourier transforms (or wavelet transforms) capture the frequency content of different modes (over
different times), the signature captures information about order, area, and so forth (due to the iterated
integrals). For example, the depth 1 (or order 1) iterated integral describes the changes of each
variable throughout the time interval; depth 2 describes the signed area that is swept by the curve (an
illustration of depth 1 and 2 of a path can be found in Morrill et al. (2020)); higher depths capture
properties of the volume, and so on, but those can be hard to grasp visually. We refer the reader to
Chevyrev & Kormilitzin (2016); Lee & Oberhauser (2023) as introductory texts on the signature
(kernel) method that contain more visualizations and examples for building intuitions about these
mathematical objects.

A.5 TESTING ON TIME POINTS

It is also possible to replace any of the path-valued random variables in eq. (2) by a random variable
at a single time-point (as for example done in the post-processing by testing on X0) using a regular
rbf-kernel. Note, that in addition, if we knew in advance that there is no path-dependence, the
unconditional independence Xi⊥⊥+

s,h X
j is equivalent to the conditional independence Xi

s⊥⊥Xj
s+h−

Xj
s | Xj

s (at fixed times s, s + h): this is because without path-dependence Xj
u for u ∈ [s, t] only

depends on Xj
[s,t] via Xj

s . Testing on entire (segments of) paths is always required when allowing for
path-dependence.

A.6 PROOF OF PROPOSITION 3.1

Proof of Proposition 3.1. Since G is acyclic, a directed cycle in G̃ that is not a loop must contain
nodes both in V0, V1. But there can be no such directed cycles, since edges only travel in the direction
V0 → V1, by construction of G̃. Since G̃ also free of loops, it is a DAG. We now show that there
exists a structural causal model (SCM) over G̃ with the path-valued random variables of the statement:
Markovianity will then follow from Peters et al. (2017, Proposition 6.31), original to Verma & Pearl
(1990). In other words, we must show there exist Borel-measurable functions

F k
0 :

{
Rdim(paGk ) × C([0, s],Rmk)× C([0, s],Rdim(paGk\{k})) ⇀ C([0, s],Rnk)

(x
paGk
0 ,W k

[0,s];X
paGk\{k}
[0,s] ) 7→ Xk

[0,s]

and

F k
1 :

{
C([s, s+ h],Rmk)× C([0, s],Rdim(paGk ))× C([s, s+ h],Rdim(paGk\{k})) ⇀ C([s, s+ h],Rnk)

((W k
s+t −W k

s )0≤t≤h;X
paGk
[0,s], X

paGk\{k}
[s,s+h] ) 7→ X̃k

[s,s+h]

for each k ∈ [d] where the initial conditions x0 and the Brownian path segments W k
[0,s], (W

k
s+t −

W k
s )0≤t≤h are jointly independent and X̃k

[s,s+h] := Xk
[s,s+h]−Xk

s . This independence follows from
the definition of the SDE model and from independence of Brownian increments over disjoint or
consecutive intervals. These functions are partial in that they are not defined on the whole space of
continuous functions on the interval: we only need to show them to be defined on a measurable set
of paths that contains all solutions of SDEs on the required interval. F k

1 can be defined as follows,
with care to make explicit the dependence on the solution on the two intervals via the operation of
path-concatenation ∗:

Xk
[s,s+h] = solution of Xk

u = Xk
s+

∫ u

s

µk(X
paGk\{k}
[0,s] ∗Xpa

G
k \{k}

[s,u] , X
{k}∩paGk
[0,s] ∗X{k}∩paGk

[s,u] )dt (9)

+

∫ u

s

σk(X
paGk\{k}
[0,s] ∗Xpa

G
k \{k}

[s,u] , X
{k}∩paGk
[0,s] ∗X{k}∩paGk

[s,u] )dW k
t

(10)
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for u ∈ [s, s + h], we obtain F k
1 by removing the initial condition Xk

s in front of the integrals in
equation 9.

We have also separated out the k-th component of the solution from the rest of the arguments on which
σk, µk are dependent, which we consider part of the measurable adapted dependence on W pa\{k}

needed in the existence and uniqueness theorem. F k
0 is defined similarly (with no dependence on

past path-segments and with xk
0 replacing Xk

s in equation 9). Such functions are well-known to be
well-defined and measurable (Rogers & Williams, 2000, Theorem 10.4).

Remark A.2. In testing, using the symmetric criterion ⊥⊥sym has proven to be more reliable than the
asymmetric one used in the test above. A procedure, which is a little redundant, but which makes
good use of the superior performance of ⊥⊥sym would work as follows:

1. Run the PC algorithm to discover the CPDAG corresponding to the variables Xk
[0,T ].

2. Pass this CPDAG as input to Algorithm 1: by this we mean that Ṽ is the same and the input Ẽ is
given by

{i0 → j0, i1 → j1, i0 → j1 | i, j ∈ V, (i→ j) or (i −− j) ∈ E′} ∪ {k0 → k1 | k ∈ V }
where (i → j) denotes an undirected arrow and E′ is the CPDAG output by the classical PC
algorithm.

3. The loop-recovery step is identical as before.

The algorithm would run very similarly as before, but performing fewer CI tests in the first phase,
since it can make use of the information contained in the partially-directed skeleton.
Remark A.3. If we knew in advance that there is no path-dependence, the test Xi⊥⊥+

s,h X
j (with no

additional conditioning set) is equivalent to the test on values of the process Xi
s⊥⊥Xj

s+h | Xj
s : this is

because Xj
u, for u ∈ [s, t] only depends on Xj

[s,t] via Xj
s . However, this kind of statement no longer

works in the conditional case (by arguments similar to Example A.1), and testing on whole paths is
strictly necessary when allowing for path-dependence.
Remark A.4. CI testing of SDEs is conceptually similar to static CI on discretely sampled data,
when the sampling rate is lower than the actual frequency at which causal effects propagate. This
is because, in continuous time and for any h > 0, there are going to be causal effects that occur at
time scales less than h. Whenever we just discretely sample time series with no instantaneous effects,
Peters et al. (2017, Thm. 10.3) provides full causal discovery, even in the presence of cycles in the
summary graph, by performing d2 tests Xi

s⊥⊥Xj
s+∆s | X

[d]\{i,j}
[0,s] . Potentially absent loops could

then be removed as in Algorithm 1. Ignoring that this might suffer from the conditioning set being
too large, our signature method can be of help in this setting too, if there is path-dependence: the
conditioning variable can be taken to be S(X [d]\{i,j})0,s.

A.7 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. We have to show that EAlg = E (where EAlg the edges detected by Algo-
rithm 1).
"⊆:" This direction can be shown by finding an appropriate separation set in G̃ by exploiting the
global Markov property Proposition 3.1. We begin by proving correctness of the recovery of the
skeleton modulo loops. This will follow if we show that for (i→ j) ̸∈ E for i, j ∈ V distinct

i0⊥⊥G̃
d−sep j1 | {j0} ∪ {k0, k1 | k ∈ paGj \ {j}},

where ⊥⊥G̃
d−sep denotes d-separation in the graph G̃. Indeed, eventually, the set K in the algorithm

will take the value {k0, k1 | k ∈ paGj \ {j}}, at which point the three edges (i0, j0), (i1, j1), (i0, j1)
(which are either all present or all absent, inductively, by construction of Ẽ) are deleted. (Of course it
may be that these edges are deleted before this, if a smaller or different d-separating set is found, but
note that edges are never added.) All undirected paths between i0 and j1 factor as i0 · · ·h0 → l1 · · · j1,
where the dots stand for a possibly empty undirected path. All such paths with l1 = j are blocked by
{j0} ∪ {k0 | k ∈ paGj \ {j}}, so we focus our attention on the case in which l1 · · · j1 is non-empty.
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Here we follow a similar argument to that of Verma & Pearl (1990, Lemma 1). If l1 · · · j1 is of the
form l11 · · · lr1 → j1 (with l11 = l1) it is blocked by {k1 | k ∈ paGj \ {j}}. Assume instead it is of the
form l11 · · · lr1 ← j1 and let 1 ≤ q ≤ r be such that lq1 is the first collider on the entire path i0 · · · j1,
starting from j1 and travelling back: certainly this exists (and belongs to V1), thanks to the arrows
h0 → l11 and lr1 ← j1. For the path i0 · · · j1 to be open given the conditioning set, it must be the case
that lp1 must be an ancestor (in G̃) or member of {k1 | k ∈ paGj \ {j}} (lp1 cannot be an ancestor of
nodes in V0): this would yield a directed cycle, which is impossible.

We argue similarly for the loop-removal phase. If (i ∈ i) ̸∈ E ⇐⇒ (i0, i1) ̸∈ Ẽ, we must show

i0⊥⊥G̃
d−sep i1 | {k0, k1 | k ∈ paGi \ {i}}

Consider a path i0 · · ·h0 → l1 · · · i1 in G̃. If the segment l1 · · · i1 is non-empty we conclude that the
path is blocked by the same argument as above (with i1 replacing j1). Assume that the path is of the
form i0 · · ·h0 → i1 (with i0 ̸= h0 since (i0, i1) ̸∈ Ẽ): in this case h ∈ paGi \ {i} and the path is
again blocked. Thus all paths are blocked and the implication follows.
⊇: Assume (i, j) ∈ E, thus (i0, j1) ∈ Ẽ. Hence as G̃ a DAG by construction, ∄ S ⊆ V \ {i, j} s.t.
{i0}⊥⊥G̃

d {j1} | S0 ∪ {j0} ∪ S1. By the faithfulness assumption Definition A.5 one therefore has
Xi

[0,s] ⊥̸⊥ Xj
[s,s+h] | XS

[0,s], X
j
[0,s], X

S
[s,s+h] ∀ S ⊆ V \ {i, j}. Hence (i, j) ∈ EAlg.

A.8 FAITHFULNESS AND CAUSAL MINIMALITY

In the above proof, we have used the following notion of faithfulness:

Definition A.5 ((Global) Faithfulness of ⊥⊥+
s,h in G̃). Let {Xi

t}i∈[d] be the coordinate processes of
a solution of eq. (1) for t ∈ [0, 1], G = (V ∼= [d], E) the dependence graph defined by eq. (1). The
independence relation ⊥⊥+

s,h is called (globally) faithful w.r.t. the DAG G̃, if

XA⊥⊥+
s,h X

B | XC ⇒ A0⊥⊥G̃
d B1 | B0, C0, C1 (11)

for all A,B,C ⊆ V pairwise disjoint.

Faithfulness is a standard assumption in the causal discovery literature. Some type of faithfulness-like
assumption is strictly necessary to do causal discovery since, otherwise, it would be impossible
to make any inference about adjacencies in the underlying graph from the observed distribution.
While we used the strong faithfulness assumption Definition A.5 for the proof above, various weaker
faithfulness-like assumptions in the case of DAG-based causal discovery could be used, e.g., the
strictly weaker assumption known as ‘parent faithfulness’ (Mogensen (2024) gives a definition of
parent faithfulness in the context of stochastic processes). This assumption suffices in our algorithm
without making any changes to it (or the respective proofs) in the acyclic case.

The strength of the faithfulness assumption in real-world data is heavily debated. Besides Weinberger
(2018), who states that ‘proposed counterexamples to the causal faithfulness condition are not
genuine’, Spirtes et al. (2000) argues that for parametric models, ‘the measure of the set of free
parameter values for any DAG that lead to such cancellations is zero for any smooth prior probability
density, such as the Gaussian or exponential one, over the free parameters’. What is meant in our
case is, that when allowing the diffusion coefficients σ in eq. (1) to range in some ‘reasonable’ finite-
dimensional family (such as linear or affine functions) and drawing the parameters of such a family
from a distribution which has positive density w.r.t. the Lebesgue measure (and independently of the
noise), the resulting distribution on path-space, split over [0, s] and [s, t], will almost surely be faithful
for any 0 < s < t w.r.t. the lifted dependence graph. We do not attempt a proof of this statement here,
as it may require considerable effort and technique. On the other side, Andersen (2013) or Uhler et al.
(2013) (among others) caution against making the strong faithfulness assumption easily. Many of
their concerns are ameliorated by only assuming the weaker parent faithfulness.

Causal minimality, on the other hand, is generally easier to understand and can be expected to hold for
the arrow Xi

[0,s] → Xj
[s,t] whenever the following condition is satisfied: the conditional distribution

Xj
u | XpaGj \{i} = xj admits a positive density on some submanifold Mx

u of Rn and for all u there
exist xi

1, x
i
2 ∈Mx

u , xi
1 ̸= xi

2, s.t. (µj , σj)(x, xi
1) ̸= (µj , σj)(x, xi

2).
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Example A.6 (Causal minimality). The fact that we are allowing for variables to have more than
one dimension means the causal minimality condition is not a trivial one, as the following examples
demonstrate. Let X1 = (W, 0) where W is a 1-dimensional Brownian motion (so that n1 = 2),
and let µ1 and/or σ1 depend on X1 only through its second coordinate. Then, even though this
dependence may be non-trivial, causal minimality does not hold. This may lead one to believe that
one can generically only expect causal minimality to hold if m = n, but this is not the case. Take,
for example, d = 4 = n and assume σ3 ≡ 0, i.e., X3 has no driving Brownian motion, so that m
is only 3. Assume, furthermore, that pa4 = {4}. Then, by Hörmander’s Lie bracket-generating
condition (see for example §V.38 in Rogers & Williams (2000)), (X1, X2, X3) has a density in
R3 for any choice of an initial condition, if (σ1(x), 0, 0), (0, σ2(x), 0) span R2 for all x ∈ R3 and
[(σ1(x), 0, 0), µ] = σ1∂1µ−µi∂iσ

1 or [(σ2(x), 0, 0), µ] span the third direction. Arrows going from
the first three nodes to the fourth will be necessary for Markovianity as long as the coefficients of
X4 depend on the respective variables on the support of such density. The point is that even though
(X1, X2, X3) is only driven by a two-dimensional Brownian motion, the coefficients of the SDE (at
the initial condition) impart a ‘twist’ to the solution, making causal minimality a trivial condition on
(σ4, µ4) which is verified as soon as there is any dependence.

A.9 GLOBAL MARKOV PROPERTY FOR THE SYMMETRIC INDEPENDENCE CRITERION

In this section, we provide a proof for the global Markov property of the symmetric independence
criterion in order for the PC-algorithm to be applicable. It is based on the notion of independence
models:
Definition A.7. Let V ∼= [d] be a set. An independence model J (V ) over V is a ternary relation
over disjoint subsets of V ,

J (V ) ⊂ {(A,B,C) | A,B,C ⊂ V disjoint}
When (A,B,C) is a triple in J (V ), (A,B,C) ∈ J (V ), we also use ⟨A,B | C⟩ to denote (A,B,C).
This notation highlights the fact that C is a conditioning set. An independence model J (V ) is called
a semigraphoid if 1.-4. hold for all disjoint A,B,C ⊂ V .

1. (symmetry) ⟨A,B | C⟩ ∈ J (V )⇒ ⟨B,A | C⟩ ∈ J (V )

2. (decomposition) ⟨A,B | C⟩ ∈ J (V ) and D ⊂ B ⇒ ⟨A,D | C⟩ ∈ J (V )

3. (weak union) ⟨A,B ∪D | C⟩ ∈ J (V ) =⇒ ⟨A,B | C ∪D⟩ ∈ J (V )

4. (contraction) ⟨A,B | C⟩ ∈ J (V ) and ⟨A,D | B ∪ C⟩ ∈ J (V ) =⇒ ⟨A,B ∪D | C⟩ ∈ J (V )

A semigraphoid J (V ) is called graphoid if 5. holds.

5. (intersection) ⟨A,B | C ∪D⟩ ∈ J (V ) and ⟨A,D | B ∪ C⟩ ∈ J (V ) =⇒ ⟨A,B ∪D | C⟩ ∈
J (V )

An independence model J (V ) called compositional if 6. holds.

6. (composition) ⟨A,B | C⟩ ∈ J (V ) and ⟨A,D | C⟩ ∈ J (V ) =⇒ ⟨A,B ∪D | C⟩ ∈ J (V )

The graphical criterion of d-separation defines a independence model on a DAG G = (V, E) by

Jd−sep(G) = {(A,B,C) | A,B,C ⊂ V disjoint, A⊥⊥d−sep B | C} (12)

Theorem A.8 (Lauritzen & Sadeghi (2018)). For any DAG G = (V, E), the independence model
Jd−sep(G) is a compositional graphoid.

Let V = [d]. Given random variables Xi : (Ω,A, P )→ (X i,Ai), i ∈ V, and A,B,C ⊂ V disjoint,
conditional independence

XA⊥⊥XB | XC :⇔ σ(XA)⊥⊥σ(XB) | σ(XC)

defines the probabilistic independence model

J (P ) = {(A,B,C) | A,B,C ⊂ V disjoint, XA⊥⊥XB | XC} . (13)
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We will use this as a symmetric conditional independence relation. Note that Xi may take values in a
path-space in which case it is a stochastic process. The independence model J (P ) is a semigraphoid
which is an immediate consequence of sub-σ-algebra properties.

For v ∈ V , we let ndGv denote the set of nondescendants of v, i.e., the set of nodes i such that there is
no directed path from v to i.

Definition A.9 (Directed global and local Markov properties). Let G = (V, E) be a DAG and J (V )
be an independence model over V . The independence model J (V ) satisfies the global Markov
property w.r.t. G :⇔

⟨A,B | C⟩ ∈ Jd−sep(G) =⇒ ⟨A,B | C⟩ ∈ J (V ) ∀A,B,C ⊂ V disjoint (14)

The independence model J (V ) satisfies the directed local Markov property w.r.t. G :⇔

⟨{v},
(
ndGv \paGv

)
| paGv ⟩ ∈ J (V ) for all v ∈ V (15)

Theorem A.10 (Lauritzen et al. (1990)). Let G = (V, E) be a DAG, let and J (V ) a semigraphoid
over V . The directed global and local Markov properties are equivalent, that is,

J (V ) satisfies eq. (14) w.r.t. G ⇔ J (V ) satisfies eq. (15) w.r.t. G (16)

We therefore only have to establish the local Markov property for the symmetric independence model
⊥⊥sym:

Proposition A.11. Let X be a set of variables induces by the model in eq. (7) with a constant and
diagonal diffusion matrix such that it induces the DAG G = (V, E). Then the system satisfies the
directed local Markov property w.r.t. G,

Xi⊥⊥sym ndGXi \ paGXi | paGXi ∀i ∈ [d] (17)

Proof. The idea of the proof is that all information about node Xi is contained in its parents
pai := paGXi , the Brownian motion W i, and the initial condition Xi

0. A similar idea can be used to
show the result in the case of a SCM Pearl (2009). We let J̃ (P ) denote the semigraphoid induced by
⊥⊥sym on the variable set Ṽ = {X1, . . . , Xn} ∪ {W 1, . . . ,Wn} ∪ {X1

0 , . . . , X
n
0 }, and we let J (P )

denote the semigraphoid induced by ⊥⊥sym on the variable set V = {X1, . . . , Xn}. We define the
DAG

G̃ =
(
Ṽ = {X1, . . . , Xn} ∪ {W 1, . . . ,Wn} ∪ {X1

0 , . . . , X
n
0 }, Ẽ = E ∪ {Xj ←W j} ∪ {Xj ← Xj

0}
)
.

(18)

By construction, Ft(X
i) ⊂ Ft(W

i) ∨ Ft(X
paGi ) ∨ σ(Xi

0), and therefore

Ft(X
i)⊥⊥Ft(X

ndG
i \pai ∨W−i ∨X−i

0 ) | Ft(X
pai) ∨ Ft(W

i) ∨ σ(Xi
0)

where the parent and nondescendant sets are to be read in the graph G, W−i = {W1, . . . ,Wn}\{Wi},
and X−i

0 = {X1
0 , . . . , X

n
0 } \ {Xi

0}. The above statement corresponds to eq. (15) when v ∈
{X1, . . . , Xn}. When v = Wi or v = Xi

0, v has no parents in G̃ and eq. (15) also holds. Therefore,
the independence model J̃ (P ) satisfies the local directed Markov property w.r.t. to G̃.

The independence model J̃ (P ) is a semigraphoid, and by Theorem A.10 it satisfies eq. (14) w.r.t. G̃.
We have Xi⊥⊥d−sep X

ndi\pai | Xpai in G̃, and one therefore has

Ft(X
i)⊥⊥Ft(X

ndi\pai) | Ft(X
pai)

establishing eq. (15) for J (P ) w.r.t. G.
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A.10 PROOF OF COROLLARY 3.3 AND ALGORITHM FOR ROBUST CAUSAL DISCOVERY

Proof. This is clear from the data generating mechanism in eq. (1) where all Brownian motions dW k
t

and initial conditions Xk
0 are jointly independent. Since Xj

[0,T ] is fully determined by {Xanj

0 ,dW
anj

t }
where anj are the ancestors of j in G, it follows that i ∈ anj if and only if Xj

[0,T ] ⊥̸⊥ Xi
0. Since we

already know from the CPDAG that i and j are adjacent and the graph is acyclic, i ∈ anj implies
i→ j.

The full written out algorithm then looks like Algorithm 2 and is sound and complete by Corollary 3.3.

Algorithm 2 Robust Causal discovery for acyclic SDE models leveraging the initial values

1: Vpre ← {k ∈ V }
Epre ← {i→ j, j → i | i, j ∈ V, i ̸= j}

2: for c = 0, . . . , d− 2 do ▷ Adjacency detection
3: for i, j ∈ V , i ̸= j do
4: for K ⊆ V \ {i, j}, |K| = c,

s.t. (k — j) ∈ Epre for k ∈ K do
5: if Xi⊥⊥Xj | XK then
6: Epre ← Epre \ {i→ j, j → i}

Sij ← V
7: for each triple i, j, k ∈ V with i— j — k and i—̸ k do ▷ Collider Orientation
8: if j ̸∈ Sik then
9: Epre ← Epre\{(j, i), (j, k)}

10: Apply the Meek-Rules
11: for i, j ∈ V , i ̸= j s.t. (i, j), (j, i) ∈ E do
12: if Xi

0⊥⊥Xj
[0,1] then

13: E ← \{i→ j}
14: else
15: E ← \{j → i}
16: for k ∈ V do ▷ removing loops
17: if Xk ⊥⊥⟲

s,h | X
paG

k
\{k} then

18: E ← E \ {k → k}
19: return G

A.11 POST-PROCESSING WITHOUT JOINTLY INDEPENDENT INITIAL VALUES

In real-world settings where there is no natural ‘starting point’ of the processes, we can typically
not assume joint independence of initial values Xi

0 as ‘the process also happened before’. In this
subsection we extend Algorithm 2 to a version that is applicable in scenarios where we cannot assume
the initial values (Xi

0)i∈[d] to be jointly independent. The algorithm works similar as to Algorithm 2,
except for the fact that for each pair i, j ∈ V with an unoriented edge, we have to condition on the
parents of j when testing for the existence of edge i→ j to prevent information flowing from i to j.
As it can happen that j is connected to k ̸= i with another undirected edge, the set Ki→j is required:

Ki→j := pa
Gpost

j,known × P(Vj,un),

where pa
Gpost

j,known := {k ∈ V \{i, j} : (k0, j1) ∈ Ẽpost, (j0, k1) ̸∈ Ẽpost}, Vj,un := {k ∈ V \{i} :
(k0, j1) ∈ Ẽpost, (j0, k1) ∈ Ẽpost}. Ki→j is required to implement the procedure of conditioning on
all known parents of j (paGpost

j,known) and in case there are unspecified other neighbors Vj,un of j, loops
through the options of either condition on them or don’t condition on them. In case j has no other
undirected adjacencies, this set only contains one element, the parents of j except i.

Proposition A.12. Algorithm 3 is sound and complete assuming faithfulness, meaning if we denote
the output graph of Algorithm 3 by Gext = (V,Eext), the output edges Eext coincide with the edges
of the true DAG G = (V,E).
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Algorithm 3 Robust causal discovery for acyclic SDE models.

1: Vpre ← {k ∈ V }
Epre ← {i→ j, j → i | i, j ∈ V, i ̸= j}

2: for c = 0, . . . , d− 2 do ▷ Adjacency detection
3: for i, j ∈ V , i ̸= j do
4: for K ⊆ V \ {i, j}, |K| = c,

s.t. (k — j) ∈ Epre for k ∈ K do
5: if Xi⊥⊥Xj | XK then
6: Epre ← Epre \ {i→ j, j → i}

Sij ← V
7: for each triple i, j, k ∈ V with i— j — k and i—̸ k do ▷ Collider Orientation
8: if j ̸∈ Sik then
9: Epre ← Epre\{(j, i), (j, k)}

10: Apply the Meek-Rules
11: Ṽ ← V

Ẽpost ← {i0 → j0, i1 → j1, i0 → j1 | (i, j) ∈ Epre}
∪ {i0 → i1 | i ∈ V } ▷ Lifted Graph

12: for i, j ∈ V , i ̸= j s.t. (i0, j1), (j0, i1) ∈ E do
13: for K ∈ Ki→j do
14: if Xi⊥⊥+

s,h Xj | XK then
15: Ẽ ← Ẽ \ {i0 → j0, i1 → j1, i0 → j1}

Break the loop
16: G = (V,E)← collapse(Ṽ , Ẽ)
17: for k ∈ V do ▷ removing loops
18: if Xk ⊥⊥⟲

s,h | X
paG

k
\{k} then

19: E ← E \ {k → k}
20: return G

Proof.

"⊃": We have to show (i, j) ∈ E =⇒ (i, j) ∈ Eext. This direction is clear but will still be stated
here. Since the original PC algorithm (see e.g. Spirtes et al. (2000)) is sound, (i, j) ∈ Ẽpost

Since (i, j) ∈ E, i0 and j1 cannot be separated in the lifted graph ∀K ⊂ V \{i, j}. Thus by
the faithfulness assumption Xi ⊥̸⊥+

s,h Xj | XK ∀K ⊂ V \{i, j} which holds especially for
K ∈ Ki→j , hence (i, j) ∈ Eext.

"⊂": Proof by contraposition: (i, j) ∈ Eext =⇒ (i, j) ∈ E is equivalent to (i, j) ̸∈ E =⇒
(i, j) ̸∈ Eext. Since the PC result Gpre = (V,Epre) has the correct skeleton and v-structures,
the only option would be that wlog i ̸= j s.t. j → i ∈ G, (i0, j1), (j0, i1) ∈ Ẽpost meaning
the original PC was to detect an adjacency but unable to discard (i, j). But then j0 is separated
from i1 by the parents paGi of i, which do not contain j. Therefore, they are contained in
Kj→i as a single element and by the global Markov property, we obtain Xj ⊥⊥+

s,h X
i | XpaGi ,

thus (i, j) ̸∈ Eext.

A.12 SENSITIVITY OF CONSTRAINT-BASED METHODS TO ERRORS IN CONDITIONAL
INDEPENDENCE TESTING

Constraint-based causal discovery methods such as PC or FCI heavily rely on conditional indepen-
dence tests to infer the causal structure. However, the adaptive nature of these tests, where the results
of subsequent tests are contingent upon the outcomes of earlier ones, complicates the error analysis
of these approaches. While this is a widely acknowledged challenge faced by all constraint-based
methods, how the final graph depends on type I and II errors remains an important open problem
in the field. Already early work by Spirtes & Meek (1995) presented a simulation study showing
the sensitivity of different methods to the different types of errors, underscoring a variable trade-off
between sensitivity and specificity across different sample sizes in skeleton and edge orientation
detection depending on the size of the graph and number of samples. Instead, Kalisch & Bühlman
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(2007) provide theoretical results showing that the PC algorithm is uniformly consistent for high-
dimensional settings under a mild sparsity assumption on the DAGs, where the number of nodes can
grow quickly with the sample size. However, they critically rely on the restrictive assumption that the
observational distribution is a multi-variate Gaussian for their finite sample results, where a strong
theory for testing CI with partial correlations is available.

The performance of conditional independence tests is critical for the robustness of constraint-based
methods and consistency (as demonstrated for our test in Appendix A.14) is a critical first step. In prac-
tice, extensive simulation studies are another useful approach to benchmark the actual performance
of the final causal discovery method.

A.13 I.I.D. ASSUMPTION OF THE CONDITIONAL INDEPENDENCE TEST

KCIPT and SDCIT both require i.i.d. samples as input. In our analysis, a solution path of all variables
in X is treated as a single example originating from the SDE model. By generating n solution
paths as independent realizations of a stochastic process (e.g., independent initial conditions and
independent Brownian motions in the SDE), we obtain n i.i.d. samples. It is important to note that
while multiple observations from each path at different time points are considered part of a single
sample, these within-path observations are not assumed to be i.i.d. However, as each path is an
independent realization, the collection of different paths meets the i.i.d. requirement necessary for the
effective application of KCIPT and SDCIT in our setting.

A.14 CONSISTENCY OF THE CONDITIONAL INDEPENDENCE TEST

In this section, we argue, that under certain assumptions on our system, Theorem 1 of Doran
et al. (2014) still holds even without assuming the existence of a density. At first, it is to be
noted that the signature kernel eq. (3) is bounded on compact sets C ⊂ BV(C(I,Rdx)) of BV
paths, an assumption that can be made as we evaluate our SDEs over finite, discrete time steps.
Satisfying this boundedness, it defines an RKHS over these compact sets. In addition, the signature
kernel is characteristic on these bounded sets (see Proposition 3.3 Cass et al. (2023)). We use the
notation X : (Ω,A, P ) → (X ,AX ), Y : (Ω,A, P ) → (Y,AY), Z : (Ω,A, P ) → (Z,AZ) with
X ,Y,Z being compact subsets in BV(C(I,Rnx)), BV (C(I,Rny )), BV (C(I,Rnz )) and denote
the RKHS’s defined by the signature kernel as (HX , kX ), (HY , kY), (HZ , kZ).

Our measure-theoretical argumentation now follows the definitions in Park & Muandet (2020) and
the original proof in Doran et al. (2014). Let H be a Banach space, A′

H ⊂ AH a sub-σ-algebra of
the Borel-σ-algebra.
Definition A.13. Let F : (Ω,A, P ) → (H,AH) a Bochner P -integrable random variable. The
conditional expectation of H w.r.t. E is a Bochner P -integrable RV F : (Ω,A, P )→ (H,A′

H) s.t.

∀A ∈ A′
H

∫
A

FdP =

∫
A

F ′dP .

Due to the existence and (almost sure) uniqueness, such an F ′ is denoted E[F | A′
H ] with the

notation E[F | Z] := E[F | σ(Z)] for a general Z : (Ω,A, P ) → (Z,AZ) which in turn can be
used to define the conditional expectation P (A | A′

H) := E[1A | A′
H ] and can be used to define the

conditional kernel mean embedding

µX|Z := µPX|Z := EX|Z [kX (X, · ) | Z]

As proven in Theorem 5.8 of Park & Muandet (2020) under the assumption, that PX|Z := E[ ·, | Z]
admits a regular version (meaning its can be written as a transition kernel, see Park & Muandet
(2020)) and kX ⊗ kY is characteristic, it holds that

X ⊥⊥Y | Z ⇔ ∥µXY |Z − µX|Z ⊗ µY |Z∥HX⊗HY = 0 ⇔ ∥µXY |Z ⊗ µZ − µX|Z ⊗ µY |Z ⊗ µZ∥HX⊗HY⊗HZ = 0

where the second equivalence is trivial. Let now σ ∈ Sn be a permutation such that its permutation
matrix Mσ = (mij)

mij =

{
1 if j = σ(i) ,

0 if j ̸= σ(i) .
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satisfies Tr(Mσ) = 0. The empirical estimates for the given sample {(xi, yi, zi)}i∈[n] and its
permuted version under σ

µ̂PX,Y,Z
:=

1

n

n∑
i=1

kX (xi, ·)⊗ kY(yi, ·)⊗ kZ(zi, ·), (19)

µ̂P ′
X,Y,Z

:=
1

n

n∑
i=1

kX (xi, ·)⊗ kY(yσ(i), ·)⊗ kZ(zi, ·). (20)

Similar to Laumann et al. (2023), can now write the distance between test statistic and the approx-
imated test statistic in terms of the sum of the distance between the empirical estimates and its
respective counterparts by using the inverse and the regular triangle inequality∣∣∣∥µXY |Z ⊗ µZ − µX|Z ⊗ µY |Z ⊗ µZ∥HX⊗HY⊗HZ − ∥µ̂PX,Y,Z

− µ̂P ′
X,Y,Z

∥HX⊗HY⊗HZ

∣∣∣
≤

∣∣∣∥µXY |Z ⊗ µZ − µX|Z ⊗ µY |Z ⊗ µZ − µ̂PX,Y,Z
+ µ̂P ′

X,Y,Z
∥HX⊗HY⊗HZ

∣∣∣
≤ ∥µXY |Z ⊗ µZ − µ̂PX,Y,Z

∥HX⊗HY⊗HZ + ∥µX|Z ⊗ µY |Z ⊗ µZ − µ̂P ′
X,Y,Z

∥HX⊗HY⊗HZ .

By Park & Muandet (2020), the first term tends to zero for n → ∞. With a similar line of
argumentation as in Doran et al. (2014) on can establish a majorant for the estimated HSCIC, namely

∥µ̂PX,Y,Z
− µ̂P ′

X,Y,Z
∥HX⊗HY⊗HZ

=

∥∥∥∥∥ 1n
n∑

i=1

kX (xi, ·)⊗ kY(yi, ·)⊗ kZ(zi, ·)−
1

n

n∑
i=1

kX (xi, ·)⊗ kY(yσ(i), ·)⊗ kZ(zi, ·)
∥∥∥∥∥
HX⊗HY⊗HZ

=

∥∥∥∥∥∥ 1n
n∑

i=1

kX (xi, ·)⊗ kY(yi, ·)⊗ kZ(zi, ·)−
1

n

n∑
i=σ(j),j=1

kX (xσ−1(i), ·)⊗ kY(yi, ·)⊗ kZ(zσ−1(i), ·)

∥∥∥∥∥∥
HX⊗HY⊗HZ

≤ 1

n

n∑
i=1

∥∥(kX (xi, ·)− kX (xσ−1(i), ·)
)
⊗ kY(yi, ·)⊗

(
kZ(zi, ·)− kZ(zσ−1(i), ·)

)∥∥
HX⊗HY⊗HZ

≤ 1

n

n∑
i=1

∥∥kX (xi, ·)− kX (xσ−1(i), ·)
∥∥
HX︸ ︷︷ ︸

≤2Mx

∥kY(yi, ·)∥HY︸ ︷︷ ︸
≤My

∥∥(kZ(zi, ·)− kZ(zσ−1(i), ·)
)∥∥

HZ

≤ 2MxMy

(
1

n
Tr(PDRKHS)

)
where the assumptions can be made due to the boundedness of the kernels. Hence, under the
assumption that

1

n

n∑
i=1

δ(xi,yσ(i),zi) → PX|Z ⊗ PY |Z ⊗ PZ (21)

a statement that holds true in the case of densities (see supplementary material of Janzing et al.
(2013)), since P|Z is regular, µ̂P ′

X,Y,Z
→ µX|Z ⊗ µY |Z ⊗ µZ .

Hence under the assumptions that P·|Z admits a regular version (an assumption also made by Laumann
et al. (2023)), the considered random variables operate on compact sets of BV-paths and eq. (21)
holds, the test is consistent if and only if 1

n Tr(PDRKHS)→ 0. This is the exact same statement as
in Theorem 1 of Doran et al. (2014).

B EXPERIMENTS AND EVALUATION

This section provides details about the experimental framework, elaborating on the data generation
process, the parameters and architectures employed, and presents additional results.
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Table 5: Performance of future-extended h-locally conditionally independence criterion in the
bivariate setting for the two heuristic σ1 and σ2 for different sample sizes. The SHD is measured for
different values of s in ⊥⊥+

s,t with t = 1, defining different lengths of intervals in the past and future.
Overall the performance is best of shorter values of the past intervals compared to the future (s < t

2 ).

σ1 σ2

(×102) n = 400 n = 600 n = 400 n = 600

s = 0.1 76.2± 2.5 58.4± 2.7 14.9± 2.0 15.8± 2.0
s = 0.2 77.3± 2.7 72.2± 2.8 12.9± 1.7 10.9± 1.7
s = 0.3 80.2± 2.3 76.2± 2.6 21.8± 2.2 17.8± 2.0
s = 0.4 89.1± 2.0 92.0± 2.1 31.7± 2.4 25.7± 2.2
s = 0.5 89.1± 2.0 98.1± 2.0 38.6± 2.5 27.7± 2.2
s = 0.6 82.4± 1.9 96.0± 2.1 60.0± 2.7 48.5± 2.9
s = 0.7 102.0± 1.2 104.0± 2.0 80.2± 2.2 61.4± 2.7
s = 0.8 104.0± 1.4 95.0± 1.5 81.1± 2.0 87.1± 2.4
s = 0.9 95.0± 1.6 104.4± 1.8 102.0± 1.2 101.0± 2.1

B.1 KERNEL HEURISTIC AND INTERVAL CHOICE

In kernel methods, besides selecting the right kernel function, the correct choice of its parameters is
vital. A reasonable choice for radially symmetric kernels k (xi, xj) = f(∥xi−xj∥/σ), f : R+ → R+

is to choose σ to lie in the same order of magnitude as the pairwise distances (∥xi − xj∥)i,j . Choosing
the bandwidth for the RBF kernel in our setting with samples (xi)i∈[n], xi ∈ C0(I,Rd) is not straight
forward, as the RBF kernel ultimately acts on signatures and there is no immediate way in obtaining a
‘typical scale’ of pairwise distances of signatures. To still set the bandwidth purely based on observed
data, there are two natural ways to implement a median heuristic based on two different collections
of pairwise distances. The first option is to choose

σ1 = Median
{
∥xi − xj∥L2

∣∣ i, j ∈ [n]
}
,

where ∥ · ∥L2 is the is the L2 norm of entire paths, i.e., integrated over the time interval I . Given that
in practice we observe the paths xi still at fixed time points t1 < . . . < tm within the interval I , we
can also consider the heuristic

σ2 = Median
{
∥xi,tl − xj,tk∥2

∣∣ i, j ∈ [n], l, k ∈ [m]
}
,

where ∥ · ∥2 is the Euclidean norm in Rd and we consider pairwise distances of all observations
across all paths and time points. In early benchmarks, we have empirically found σ2 to yield a
better heuristic by comparing the performance of both heuristics by evaluation of the SHD in a
causal discovery task in the linear bivariate setting X1 → X2 without diffusion interaction with
a21 ∼ U ((−2.5,−1] ∪ [1, 2.5)), a11, a22 ∼ U ((−0.5, 0.5)) and σi ∼ U ([0, 0.5)). The experiment
is performed for different choices of intervals [0, s], [s, s+h] in the future-extended h-local conditional
independence. As can be seen from Table 5, σ2 and the intervals [0, 0.1], [0.1, 1] seem to perform
best on average and are therefore used in the rest of the experiments. In all the experiments of the
paper, in the implementation of the signature kernel we use a depth parameter of 4, the RBF kernel
and we add time as an extra dimension to the signature kernel.

B.2 EMPIRICAL COMPARISON OF DIFFERENT TESTS

Different kernel-based conditional and unconditional tests are compared. HSIC with bootstrap
(HSICb) and with γ-distribution approximation (HSICγ) (Gretton et al., 2007) were implemented for
the unconditional setting, while KCIPT (Doran et al., 2014), KCIT with bootstrap (KCITb), KCIT
with γ approximation (KCITγ) (Zhang et al., 2011) and SDCIT for the conditional setting (Lee &
Honavar, 2017). Figure 6 shows that SDCIT and HSICb are overall the best performing ones in
terms of type I and type II error. In this experiment, we sampled 100 different linear SDEs and we
sample 400 different trajectories within time interval [0,1]. The number of bootstrap samples over
permutation test is set to 100, the number of permutations for a single permutation test to 20000, the
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Figure 6: Performance in terms of type I and type II errors of different unconditional (HSICb and
HSICγ) and conditional tests (KCIPT, KCITb, KCITγ , SDCIT). Among the conditional tests, SDCIT
outperforms KCIPT in terms of type I error, while performig in a similar range in terms of type II
error. Among the unconditional tests, HSICb outperforms HSICγ
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Figure 7: Test power over the missingness level (percentage of observations that is being dropped at
random). While both our method as well as Laumann et al. (2023) maintain their power up to high
levels of missingness, our test still consistently outperforms the baseline. Lines show means over
1000 settings in the power analysis in Section 4 and shaded regions show standard errors.

number of null samples via Monte Carlo from all values in permutation test to 20000 and 1000 for
HSIC, the number of null samples for KCIT-bootstrap to 20000 and the number of null samples for
SDCIT is set to 1000. These are the tests parameters also used in the rest of the experiments.

B.3 ADDITIONAL EXPERIMENTAL RESULTS FOR THE BIVARIATE CASE

Figure 7 shows that in the simple unconditional bivariate setting of the power analysis in Section 4
our test maintains high power up to substantial levels of missingness and only starts degrading once
more than 80% of observations are dropped at random starting from 64 time steps over the interval
[0, 1] for 1000 different SDEs.

B.4 BUILDING BLOCKS FOR CAUSAL DISCOVERY

The performance of the conditional and unconditional independence tests was evaluated using widely
recognized causal structures that are at the foundation of causal discovery. Specifically, we examined
scenarios involving two variables, both connected and unconnected, and three-variable configurations
comprising chain, fork, and collider structures. The analysis of type I and type II errors, as shown
in Table 6, indicates robust performance for both conditional SDCIT and unconditional HSIC tests.
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Table 6: Test performance on the key building blocks for causal discovery. Here, ⊥⊥ refers to ⊥⊥sym

except for X1
p ⊥⊥X1

f which means X1
[0,t/2]⊥⊥X1

[t/2,t]. We use SDCIT for CI tests and bootstrapped
HSIC unconditional independence. We simulate 40 samples of 512 trajectories for 10 different SDEs
(400 tests per column) with 25% of the 128 original observations dropped uniformly at random. The
error represent type I or type II error when the null hypothesis H0 should be rejected (✗) or accepted
(✓), respectively.

graph X1 X2 X3 X1 X2 X3 X1 X2 X3 X1 X1 X2 X1 X2

H0 X1⊥⊥X2|X3 X1⊥⊥X3|X2 X1⊥⊥X2|X3 X1⊥⊥X3|X2 X1⊥⊥X3|X2 X1
p⊥⊥X1

f X1⊥⊥X2 X1⊥⊥X2

should
reject ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓

error 0.0000 0.0075 0.0000 0.0000 0.9600 0.0000 0.0450 0.0000

Table 7: Test performance on the key building blocks for causal discovery. Here, ⊥⊥ refers to ⊥⊥sym

except for X1
p ⊥⊥X1

f which means X1
[0,t/2]⊥⊥X1

[t/2,t] in a setting where the dependence only comes
from the diffusion. We use SDCIT for CI tests and bootstrapped HSIC unconditional independence.
We simulate 40 samples of 512 trajectories for 10 different SDEs (400 tests per column) with 25% of
the 128 original observations dropped uniformly at random. The error represent type I or type II
error when the null hypothesis H0 should be rejected (✗) or accepted (✓), respectively.

graph X1 X2 X3 X1 X2 X3 X1 X2 X3 X1 X1 X2 X1 X2

H0 X1⊥⊥X2|X3 X1⊥⊥X3|X2 X1⊥⊥X2|X3 X1⊥⊥X3|X2 X1⊥⊥X3|X2 X1
p⊥⊥X1

f X1⊥⊥X2 X1⊥⊥X2

should
reject ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓

error 0.0000 0.0072 0.0000 0.0000 0.9600 0.00 0.07 0.01

These results refer to the symmetric conditional independence ⊥⊥sym, while future-extended h-local
conditional independence are presented in Table 8. The tables show that the test is able to reconstruct
the presence and the directionality of the edges overall all building blocks of causal structure learning.
We also perform the same experiments for the setting in which the causal dependence only comes
from the diffusion. Referring to the linear SDE in eq. (5), aij = aji = 0, a11, a22 ∼ U [−0.5, 0.5],
σ12, σ21 ∼ U [(−2.5,−1.0) ∪ (1.0, 2.5)] and σ11, σ22 ∼ U [−0.5, 0.5]. bi and di are sampled from
U [−0.1, 0.1] and U [−0.2, 0.2]. Table 7 includes the results for all the different causal structures.

B.5 CAUSAL DISCOVERY

We tested SCOTCH using various sparsity parameters and epochs to identify the optimal configuration.
Table 9 confirms that the configuration with λ = 200 and ne = 2000 outperforms others in the
tested settings, and hence is chosen for the comparison with our method in Table 2. The table also
reveals that SCOTCH’s performance is not robust to changes in λ, showing substantial variations
under the same number of epochs, optimizer, and learning rate with different λ values. These
results demonstrate that the SCOTCH’s performance can significantly deteriorate with changes in the
parameter λ, while keeping the number of epochs constant. For example, when λ is adjusted from
200 to 100, the Structural Hamming Distance (SHD, scaled by 102) increases from an average of 538
to 10,275 for ne = 2000.

B.6 CONDITIONAL INDEPENDENCE TESTING BEYOND THE SDE MODEL

In this section, we aim to demonstrate that our proposed non-parametric conditional independence
(CI) test extends beyond the setting of SDEs and even beyond semi-martingales, rendering it more
broadly applicable than most existing methods, which usually assume independent (additive) noise.
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Table 8: Test performance on the chain, fork and collider causal structures for the future-extended
h-locally conditionally independence criterion. Here, ⊥⊥ refers to ⊥⊥+

s,h and we use SDCIT. We
simulate 10 samples of 512 trajectories for 10 different SDEs (100 tests per column). The error
represent type I or type II error when the null hypothesis H0 should be rejected (✗) or accepted (✓),
respectively.

graph

X1 X2 X3

H0 X1⊥⊥X2|X3 X2⊥⊥X1|X3 X1⊥⊥X3|X2 X3⊥⊥X1|X2 X2⊥⊥X3|X1 X3⊥⊥X2|X1

should reject ✗ ✓ ✗ ✗ ✗ ✓

error 0.07 0.33 0.04 0.04 0.03 0.00

graph

X1 X2 X3

H0 X1⊥⊥X2|X3 X2⊥⊥X1|X3 X1⊥⊥X3|X2 X3⊥⊥X1|X2 X2⊥⊥X3|X1 X3⊥⊥X2|X1

should reject ✓ ✗ ✗ ✗ ✗ ✓

error 0.12 0.02 0.04 0.02 0.04 0.06

graph

X1 X2 X3

H0 X1⊥⊥X2|X3 X2⊥⊥X1|X3 X1⊥⊥X3|X2 X3⊥⊥X1|X2 X2⊥⊥X3|X1 X3⊥⊥X2|X1

should reject ✗ ✓ ✓ ✓ ✓ ✗

error 0.08 0.4 0.56 0.46 0.36 0.16
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Table 9: SHD (×102) of discovered graphs, for 200 samples and d nodes in the SDE model. The
mean and standard error of SCOTCH for different values of λ and ne for 20 different SDEs is
presented. The best performing setting for higher dimensional graphs is λ = 200 and ne = 2k.

×102 (λ, ne) d = 3 d = 5 d = 10 d = 20 d = 50

SCOTCH 100, 2k 188± 28 417± 86 250± 61 1525± 1160 10275± 6176
SCOTCH 200, 2k 110± 21 270± 48 530± 223 370± 174 538± 70
SCOTCH 1, 1k 20± 11 85± 20 375± 28 1455± 103 6095± 153
SCOTCH 50, 1k 330± 27 1255± 54 5895± 107 1340± 243 2994± 941
SCOTCH 200, 1k 400± 17 1370± 29 6425± 80 705± 77 7863± 2670

Fractional Brownian Motion. To illustrate this, we start by applying our test to a stochastic process
driven by fractional Brownian motions (fBMs). Fractional Brownian motion is a generalization
of standard Brownian motion, a continuous time Gaussian process BH(t) with zero mean and
E[BH(t)BH(s)] = 1

2

(
|t|2H + |s|2H − |t− s|2H

)
that incorporates a parameter H ∈ (0, 1), the so

called Hurst parameter, which governs long-range dependencies. For

• H = 0.5 it reduces to the regular Brownian Motion.
• H > 0.5 increments are positively correlated.
• H < 0.5 increments are negatively correlated.

Specifically, we consider the following system of stochastic differential equations driven by fractional
Brownian motions (

dXt

dYt

)
=

(
0 0
a21 0

)(
Xt

Yt

)
dt+

(
d1 0
0 d2

)(
dW 1

t

dW 2
t

)
, (22)

with W 1
t , W 2

t independent fBMs with Hurst parameter H and a21, d1, d2 ∼ U([−2, 2]). To quantify
the effectiveness of our test in this context, we measure the test power for different strengths of
interaction for different Hurst parameters. Figure 8 shows this power analysis for 500 random settings
of eq. (22). The power of our test steadily approaches 1 as the interaction strength increases to
1 regardless of H . We note that since the above example does not have independent increments,
Algorithm 1 is not applicable anymore for causal discovery in such settings. Instead, the fractional
Brownian motion example merely highlights the usefulness of our CI test independently from its
application in causal discovery in the SDE model.

Functional data. For further corroboration of our claims, we turn to the following example from
functional data analysis (FDA), taken from Laumann et al. (2023), to test causal discovery in a non
SDE setting. After drawing a DAG G = (V,E), processes for source vertices, i.e., vertices i = vi
without parents in G, are generated according to

Xi(t) =

M∑
m=1

cimϕm(t) + ϵit

with Fourier basis functions ϕ1(t) = 1, ϕ2(t) =
√
2 sin (2πt), ϕ3(t) =

√
2 cos (2πt) and so on, the

weights cim ∼ N (0, 1), and the additive noise ϵit ∼ N (0, 1). For all vertices i with at least one parent,
we set

Xi(t) = a
∑

k∈paGi

∫ t

0

Xk(s)βk(s, t)ds+ ϵit

with βk(s, t) = 8(s− ck1)
2 − 8(t− ck2))

2, ck1 , c
k
2 ∼ U[0,1] and a = 1.

We draw 40 DAGs with 40 distinct FD generating mechanisms for each dimension d ∈
{3, 5, 10, 20, 50}. Table 10 shows that SCOTCH cannot capture the underlying dependencies, as
it is tailored specifically to the SDE model. It is thus misspecified for such a function generating
mechanism. Under such (arguably mild) misspecification, SCOTCH is even outperformed by PCMCI,
whereas our method still performs much better than both baselines.
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Figure 8: Test power over for different fBM-driven processes eq. (22) for different H. The CI test
picks up dependence for as little as 100 samples given a certain amount of interaction-strength. Lines
show means over 500 settings and shaded regions show standard errors.

Table 10: SHD (×102) comparison of SigKer to the baselines PCMCI and SCOTCH (with λ = 200
and ne = 2000) in the functional data setting. We report mean and standard errors over 40 instances.

×102 d = 3 d = 5 d = 10 d = 20 d = 50

⊥⊥sym 40± 8 22± 10 509± 25 1542± 60 6786± 223
⊥⊥sym+p.p. 42± 8 141± 13 489± 28 1498± 56 6529± 250

PCMCI 110± 30 320± 42 1150± 121 6518± 293 7799± 250
SCOTCH 558± 14 1861± 43 8567± 63 35467± 833 105165± 10934

B.7 REAL-WORLD PAIRS TRADING EXAMPLE

In the pairs trading experiment, stock price data is downloaded from Yahoo Finance for a predefined
list of stocks over a specific period, divided into training (1st January 2010 to 31st December 2011)
and trading intervals (1st January 2012 to 31st December 2012). The chose stocks are Trinity
Industries (TRN), Brandywine Realty Trust (BDN), Commercial Metals Company (CMC), The New
York Times Company (NYT), New York Community Bancorp (NYCB), The Wendy’s Company
(WEN), CNX Resources Corporation (CNX). Logarithms of the stock prices are computed to stabilize
variance and normalize the prices. During the training period, pairs of stocks are selected based
on various statistical tests: Cointegration Test (Engle-Granger) to determine if a pair of stocks is
cointegrated, suggesting a long-term equilibrium relationship; Augmented Dickey-Fuller (ADF) Test
to assess the stationarity of the spread (ratio) of a pair’s prices; and Granger Causality Test to check if
the price of one stock in the pair can predict the price of the other. Pairs are selected based on the
p-values from these tests, with a threshold of 0.05 determining significance. In the trading phase, a
rolling window is used to continuously recalculate the mean and standard deviation of the spread
between the selected pairs. Trades are initiated based on the z-score of the spread, where a high
z-score indicates a short position and a low z-score indicates a long position. Positions are managed
and closed when the spread returns to a predefined z-score threshold. The strategy’s performance is
evaluated based on total return, annual percentage rate (APR), Sharpe ratio, maximum drawdown
(maxDD), and maximum drawdown duration (maxDDD).

B.8 EVALUATION METRICS

Following common conventions in the causal discovery literature, we evaluate our algorithms using
the following metrics.

Structural Hamming Distance (SHD). Given two directed graphs G1 = (V,E1), G2 = (V,E2)
over the same nodes with different sets of edges and let A1, A2 ∈ {0, 1}n×n be their adjacency
matrices. Then we define the structural hamming distance (SHD) as

SHD =
∑

i,j∈[n]

|(A1)ij − (A2)ij |
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Normalized SHD. In order to compare the recovery performance of our algorithms for different
types of graph-sizes, the normalized SHD is defined as

SHDnorm =
SHD

d(d− 1)

B.9 COMPUTATIONAL COMPLEXITY

Conditional Independence Test. For KCIPT, we denote by B the number of outer bootstraps,
by b the number of inner bootstraps, by n the number of i.i.d. samples, and by nMC the number of
Monte-Carlo samples. We spell out the computational complexity of all steps in performing a single
conditional independence test.

• computing B permutations of the n-samples: O(n)
• the loop over the B outer bootstrap contains in each iteration:

– permuting matrices: ≈ O(n2.4) (assuming fast matrix multiplication algorithms, otherwise
O(n3))

– splitting matrices using indexing: O(n2)
– computing RKHS distances: O(n2)
– solving the linear program to find the best permutation (this depends on the solver, but for a

primal-dual interior point methods it is O(√n log(1/ϵ)(mn+m2)), where m is the number of
constraints, n the number of variables, and ϵ the accuracy tolerance for the solution. Overall, in
our case with m = n(n−1) constraints, we obtain: O(√n log(1/ϵ)(n2(n−1)+n2 · (n−1)2))
which becomes O(n4.5 log(1/ϵ))

– permuting matrices: O(n2.4)
– computing the original statistic: O(n)
– loop over b inner permutations

* permuting matrices: O(n2.4)

* computing the permuted statistic: O(n2)
– computing the p-value: O(b)

• computing the original statistic: O(B)

• for nMC Monte Carlo samples computing the null sample: O(B · b)
• computing the final p-value: O(nMC)

Causal discovery. The computational complexity of our causal discovery algorithm is in the worst
case O(ddmax · d2), where d is the number of nodes and dmax is the maximal degree in the graph,
meaning the maximal number of adjacencies of any node. For sparse graphs (e.g., graphs with a low
maximal degree), the complexity can reduce to being polynomial in the number of nodes.

Signature kernel. The computational complexity of evaluating the signature kernel scales quadrati-
cally in the number of time points within a process using the sigkerax Python package with an
RBF lifting kernel and again quadratically in the number of samples when computing the full Gram
matrix. The is another package, iisignature, that allows for linear scaling in the number of time
points when using a linear lifting kernel. Both implementation support highly parallelized execution
on GPU accelerators.

C BASELINES

In Section 4, we benchmark our method against other baselines, including Granger causality, CCM,
PCMCI, and Laumann (Laumann et al., 2023). For the latter, we used their implementation provided
in the causal-fda package. For the Granger-implementation for two variables (d = 2), we
used Seabold & Perktold (2010), for CCM we used Javier (2021), and for PCMCI we used the
tigramite package (Runge et al., 2019). In PCMCI, tests for edges are conducted by applying
distance correlation-based independence tests (Székely et al., 2007) between the variables’ residuals
after regressing out other nodes using Gaussian processes. For SCOTCH implementation (Wang
et al., 2024), we use the package causica. For SCOTCH, we always use a learning rate of 0.001
and keep the same default parameters for the learning algorithm.
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D DETAILS ON THE PARTIALLY OBSERVED SETTING

Since in the partially observed setting there could in principle be infinitely many unobserved variables,
special tools are required. Usually, the graphical framework of maximal ancestral graphs (MAGs)
(loosely speaking DAGs with also bidirected edges) is used, which encodes ancestral relations in
the DAG G and aims at graphically representing conditional independencies implied by G involving
only the (marginal of the) observed variables. The unique MAG MG corresponding to the partially
observed DAG G can be constructed via Zhang (2008) the following rules.

• For v1, v2 ∈ Vobs, v1 — v2 in MG if and only if there exists an inducing path relative to VL between
v1, v2 in G.

• For each pair of adjacent vertices v1 — v2 in MG we orient the edge between them as follows:
– v1 → v2 if v1 ∈ anGv2 and v2 ̸∈ anGv1
– v1 ← v2 if v2 ∈ anGv1 and v1 ̸∈ anGv2
– v1 ↔ v2 if v2 ̸∈ anGv1 and v1 ̸∈ anGv2

An inducing path is a path with all colliders on the path being in anG{v1,v2} ∩ Vobs and all other
nodes on the path in VL. The obtained MAG MG therefore preserves causal ancestral relations with
respect to G. The Fast Causal Inference (FCI) algorithm (Zhang, 2008) run on the observed marginal
outputs an equivalence class of MAGs, known as a Partial Ancestral Graph (PAG), which captures
the same adjacencies but leaves some endpoints unoriented as there are multiple MAGs with the
same conditional independence relations. For example, in Figure 4 FCI cannot rule out an additional
latent confounder between A and C such that the induced MAG has the same m-separation properties.
Unlike FCI, by leveraging the direction of time, we can recover the full underlying MAG MG , which
is substantially more informative than FCI’s PAG. First, we establish adjacencies analogous to the first
part of Algorithm 2 (or simply by running FCI with our symmetric criterion) and then follow the steps
in the construction of the MAG from a DAG to orient these adjacent edges vi — vj , vi ̸= vj ∈ Vobs:

• vi → vj if Xi
0 ⊥̸⊥sym Xj

[0,T ] and Xj
0 ⊥⊥sym Xi

[0,T ]

• vi ← vj if Xi
0⊥⊥sym Xj

[0,T ] and Xj
0 ⊥̸⊥sym Xi

[0,T ]

• vi ↔ vj if Xi
0 ⊥̸⊥sym Xj

[0,T ] and Xj
0 ⊥̸⊥sym Xi

[0,T ]

We note that these criteria precisely encode the (non-)ancestral relationships in the MAG construction
rules. Uniqueness of the obtained result follows from Richardson & Spirtes (2002, Corollary 3.10) as
two ancestral graphs G1, G2 are equal, if they share the same adjacencies and ancestral relations.

We have thus constructed a sound and complete algorithm (assuming access to a CI oracle)
to recover the unique MAG MG for the ground truth DAG G in the partially observed SDE
model. To illustrate our causal discovery algorithm in practice, we conduct experiments on an
SDE model with a graph G as depicted in Figure 4 where Vobs = {A,B,C,D}, VL = {U},
E = {(A,C), (B,C), (U,C), (U,D)}. While FCI run on data coming from a Markov model with
this DAG is able to detect the adjacency structure, it is unable to decide whether A is truly an ancestor
of C. It will correctly infer the arrow-head into C, but cannot rule out an arrow-head at A, see
Figure 4. Neural network approaches like SCOTCH that directly infer the functional relationships
by model fitting are not able to deal with such partially observed settings and are typically expected
to predict edges that do not exists in the ground truth graph, since they can not model potentially
infinitely many unobserved processes. To demonstrate this concretely, we ran SCOTCH as well as
our FCI-inspired algorithm on 100 SDEs with the adjacency from our example graph G and compare
how often A and D are (falsely) adjacent in the output. SCOTCH predicted an edge between A and
D in 88% and ours algorithm in only 8% of all settings, see also Figure 4.
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