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ABSTRACT

Recently, sparsely-supervised 3D object detection has gained great attention,
achieving performance close to that of fully-supervised 3D objectors with only
a few annotated instances. Nevertheless, these methods suffer challenges when
the accurate labels are extremely limited. In this paper, we propose an Ehanced
3D object Detection strategy, termed E3D, explicitly utilizing the prior knowl-
edge from Large Multimodal Models (LMMs) to enhance the feature discrimina-
tion capability of the 3D detector under sparse annotation settings. Specifically,
we first develop a Confident Points Semantic Transfer (CPST) module that gen-
erates high-quality seed points through boundary-constrained center cluster selec-
tion. Based on these seed points, we introduce a Dynamic Cluster Pseudo-label
Generation (DCPG) module that yields pseudo-supervision signals from the ge-
ometry shape of multi-scale neighbor points. Additionally, we design a Distribu-
tion Shape score (DS score) that chooses high-quality supervision signals for the
initial training of the 3D detector. By utilizing E3D, existing leading sparsely-
supervised CoIn++ is improved by an average of 11.63% under the annotation
rate of 2%. Moreover, we have verified our E3D in the zero-shot setting, and the
results demonstrate its performance exceeding that of the state-of-the-art methods.
The code will be made publicly available.

1 INTRODUCTION
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Figure 1: Performance comparison of the sparsely-
supervised detector at various annotation rates. E3D
indicates the CoIn initialized with the proposed E3D.

3D object detection, aiming at locating
and classifying objects within 3D scenes,
has garnered significant attention in au-
tonomous driving (Wu et al., 2023; Deng
et al., 2021; Liu et al., 2023c; Xia et al.,
2023a; Huang et al., 2024). However, the
performance of mainstream 3D detectors
relies heavily on high-quality labels anno-
tated by humans, which is not only time-
consuming but also sensitive to the subjec-
tive impression of annotators.

To minimize the dependence of 3D detectors on high-quality manual annotations, recent work has
begun to focus on label-efficient training strategies (Liu et al., 2023a; Wang et al., 2021; Liu et al.,
2022a; Xia et al., 2023b). To discover unlabeled instances, SS3D (Liu et al., 2022a) employs a
self-training approach to iteratively optimize the detector trained on sparsely annotated data. CoIn
(Xia et al., 2023b) introduces contrastive learning methods, enhancing the model’s discriminative
capability for various category features. However, existing strategies make 3D detectors struggle to
extract sufficiently discriminative features from extremely limited annotations. Fig. 1 shows some
examples where the state-of-the-art sparsely-supervised object detector, such as CoIn (Xia et al.,
2023b), hardly maintains robust performance with a significant reduction in annotation rate.

Nowadays, with the successive emergence and widespread application of large language models
(LLMs) such as BERT (Devlin et al., 2018) and GPT (Brown et al., 2020; Achiam et al., 2023) in
natural language processing, research on large multimodal models (LMMs) is also gaining momen-
tum (Radford et al., 2021; Li et al., 2022; Kirillov et al., 2023; Liu et al., 2023b). Benefiting from
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Figure 2: Illustration of E3D-assisted sparsely-supervised 3D object detection.

the outstanding performance of LMMs, the utilization of pre-trained LMMs has led to significant
advancements in 2D vision tasks. Inspired by this, (Xue et al., 2023; Zhang et al., 2022; Zhu et al.,
2023) transfers the image-text knowledge prior from 2D LMMs to 3D point clouds. However, these
methods typically focus on the classification of individual instances, and there will be certain limita-
tions when applying them directly to outdoor 3D object detection. Despite this, these attempts that
transfer the priors from 2D LMMs to 3D point clouds still provide a new perspective for solving the
problem of sparsely-supervised 3D object detection.

Motivated by the methods above, we proposed a two-stage training strategy, termed E3D, enhanc-
ing sparsely-supervised 3D object detection based on LMMs. As shown in Fig. 2, we first employ
LMMs to extract semantics from 2D images and explicitly transfer them to 3D point clouds, gen-
erating pseudo-labels for the first stage of detector training. In the second stage, we fine-tune the
trained model using a small amount of accurate labels. Specially, E3D is built upon two basic ques-
tions: (1) How to accurately transfer semantic information obtained from LMMs in 2D images to
3D point clouds. Due to the absence of inherent depth information in images, directly transferring
image semantics onto point clouds may result in noisy semantics at the edge of the instance. (2)
How to efficiently utilize the LMMs-extracted semantics to enhance sparsely-supervised 3D object
detection. Based on the obtained semantics, directly fitting pseudo-labels may result in incomplete
foreground bounding boxes.

Based on the questions mentioned above, our E3D first designs a Confident Points Semantic Trans-
fer (CPST) module, obtaining 3D seed points through boundary-constrained center cluster selec-
tion. These seed points focus on central foreground semantic masks generated by LMMs. Inspired
by unsupervised algorithms (Zhang et al., 2023; Wu et al., 2024), we can utilize these seed points
to generate bounding box pseudo-labels. In this case, we introduce a Dynamic Cluster Pseudo-
label Generation (DCPG) module and Distribution Shape score (DS score) to discover high-quality
pseudo-labels with complete foreground information from seed points. As shown in Fig. 2, we uti-
lize the generated pseudo-labels to train the 3D object detector for the first stage. After training, the
3D detector has learned a certain of feature discrimination capability from the 2D images. Subse-
quently, we fine-tune the 3D detector with sparse accurate labels, and in conjunction with current
label-efficient methods, it demonstrates relatively high detection capabilities even under extremely
low labeling scenarios. The contributions of this paper can be summarized as follows:

• We propose an Ehanced 3D object Detection strategy (E3D), utilizing 2D image and LMMs
to boost the feature discrimination capability of 3D detector under sparsely-supervised sit-
uations. E3D provides an initial detector with a stronger feature extraction capability, en-
abling stable detection performance despite continuous reduction in annotated instances.

• We propose a Confident Points Semantic Transfer (CPST) module, which leverages LMMs
to obtain accurate semantic seed points. Subsequently, we propose Dynamic Cluster
Pseudo-label Generation (DCPG) module and Distribution Shape score (DS score) for
high-quality pseudo-label generation based on the seed points, which will be applied in the
first-stage training process.

• Experiment results on the KITTI dataset show that E3D substantially enhances the per-
formance of leading sparsely-supervised 3D object detectors. By utilizing E3D, CoIn is
improved by 36.92% and 14.89% under the annotation rate of 0.1% and 2%. Moreover,
without fine-tuning on labeled data, our E3D has shown superior performance compared to
zero-shot methods, demonstrating the effectiveness of E3D-initialized detector.
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2 RELATED WORK

2.1 LABEL-EFFICIENT 3D OBJECT DETECTION

Recently, label-efficient 3D object detection methods have begun to be explored in responding to
the challenge of extremely low annotation volumes. Generally, these label-efficient methods can be
categorized into semi-supervised (Wang et al., 2021; Zhao et al., 2020; Park et al., 2022; Liu et al.,
2023a), and weakly-supervised (Meng et al., 2021; Liu et al., 2022b) approaches according to the
difference in quantity and supervision form. To maintain accuracy while reducing the annotations,
SS3D (Liu et al., 2022a) introduces the concept of sparse supervision, annotating only one complete
3D object per frame. Based on SS3D, CoIn (Xia et al., 2023b) adopts a contrastive instance feature
mining strategy, enabling the extraction of feature-level pseudo-labels from a significantly reduced
amount of annotated data. However, the performance of existing methods remains constrained due to
the insufficient feature discriminability of the initial detector, which may affect subsequent training
under very few annotations. This work aims to develop a two-stage strategy, enabling the 3D detector
to maintain robust feature representation capabilities despite having lower instance annotations.

2.2 LARGE MULTIMODAL MODELS IN 3D

As the outstanding performance achieved by LMMs in 2D tasks (Radford et al., 2021; Kirillov et al.,
2023; Liu et al., 2024; Peebles & Xie, 2023; Bai et al., 2023), some studies are beginning to explore
their application in the 3D domain. Inspired by CLIP (Radford et al., 2021), ULIP (Xue et al.,
2023) enhances the 3D understanding capability by transferring knowledge from 2D LMM to 3D
encoder through contrastive learning methods. Similar works are (Zhang et al., 2022; Zhu et al.,
2023). In the outdoor scenario, SAM3D (Zhang et al., 2024) employs SAM to segment BEV images
of point clouds and fit bounding boxes based on the segmentation masks to obtain detection results.
CLIP2Scene (Chen et al., 2023b) establishes the connection between point clouds and text by using
images as an intermediate modality, enhancing the 3D model’s semantic understanding of the scene
with the prior knowledge of CLIP. Differing from previous approaches, our E3D explicitly transfers
semantic masks obtained from LMMs onto point clouds to generate high-quality pseudo-labels for
the first-stage training of the 3D detector.

2.3 MULTIMODAL REPRESENTATION LEARNING

Recently, the utilization of multimodal from 2D images and 3D point clouds to enhance 3D object
detectors has been gradually gaining the attention of the community (Liu et al., 2023c; Wang et al.,
2023; Wu et al., 2023; Song et al., 2024; Xie et al., 2023). However, these works mainly focus on
investigating the image-point cloud fusion strategy, neglecting the utilization of images to explore
label-efficient 3D detection. To reduce the required annotations, some methods transfer 2D image
information into 3D point clouds to generate pseudo-labels (Yang et al., 2024). However, semantic
ambiguity may occur at the edge of the object due to the 2D-3D calibration error. MixSup (Yang
et al., 2024) proposed a connected components labeling strategy, addressing this issue with the
spatial separability property inherent to point clouds. SAL employ (Yang et al., 2024) employ a
density-based clustering to refine imperfect projection issues. Compared with these methods, our
E3D provides a simple but efficient way to reduce semantic noise caused by projection errors.

3 METHODS

3.1 OVERVIEW

This paper introduces an Ehanced 3D object Detection strategy (E3D), explicitly utilizing the prior
knowledge from LMMs to boost the sparsely-supervised 3D detectors. As shown in Fig. 3, E3D
consists of three primary components: (1) Confident Points Semantic Transfer (CPST) mod-
ule, which acquires high-quality seed points with the boundary-constrained center cluster selec-
tion. (2) Dynamic Cluster Pseudo-label Generation (DCPG) module, which dynamically gener-
ates pseudo-label proposals based on the geometric shapes within the multi-scale neighborhood of
these seed points. (3) Distribution Shape score (DS score), which employs unsupervised priors as
the criterion for evaluating the quality of pseudo-label proposals, and we subsequently apply non-
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Figure 3: The overview of our E3D, including (a) CSPT finds semantic seed points through high-
confidence semantic masks transfer, (b) DCPG dynamically clusters neighbor points of seed points
to fit pseudo-label proposals, and (c) DS score to evaluate the quality of generated pseudo-label
proposals, serving as a scoring metric to NMS to suppress low-quality proposals.

maximum suppression (NMS) (Neubeck & Van Gool, 2006) to retain high-quality pseudo-labels
further. We then follow the training strategy of CoIn (Xia et al., 2023b) to train an initial 3D detec-
tor with enhanced discriminative capacity. We detail our E3D framework as follows.

3.2 CONFIDENT POINTS SEMANTIC TRANSFER MODULE

Forward view Top view

Figure 4: Semantic transfer noise. Semantic be-
longing to the same objects may be assigned to
different instances.

Encouraged by the development of LMMs, we
first utilize LMMs to extract semantic informa-
tion from 2D images explicitly. Meanwhile,
by integrating the projection relationship ma-
trix between images and point clouds, it is quite
straightforward to transfer semantic informa-
tion onto point clouds. However, as shown in
Fig. 4, there is significant noise in the edge
points of instances during the process trans-
fer. To prevent the incorporation of noise dur-
ing the transfer of semantic information, we use
the boundary-constrained mask shrink opera-
tion, followed by the coordinate system trans-
formation, to obtain accurate semantic seed points. CSPT is illustrated in Fig. 3(a); we have divided
it into two parts as LMMs-guide semantic extraction and confident points filtering.

LMMs-guide semantic extraction. The goal of LMMs is to generate high-quality foreground
semantic masks. Specifically, we take as input an image I ∈ R3×H×W and C text prompt T C ={
tC1 , t

C
2 , ..., t

C
C

}
, where H and W denote the height and width of the image. We first utilize FastSAM

(Zhao et al., 2023) to perform speed-efficient segmentation as

MI = SAM(I), (1)

where MI ∈ RM×H×W denotes the M class-agnostic masks extracted from I, and SAM(·) in-
dicates the FastSAM model. We then utilizeMI as the mask prompts and feed them, along with
image I, into SemanticSAM (Chen et al., 2023a) model, which is except to output the descriptions
T D =

{
tD1 , t

D
2 , ..., t

D
M

}
for each mask inMI . Specifically:

T D = SSAM(I,MI), (2)

where SSAM(·) refers to the SemanticSAM model. Generally, the elements in T C represent the
categories of interest. Therefore, we calculate the cosine similarity between T C and T D to filter out
uninteresting background masks, thereby obtaining the foreground masksM′

I .
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Confident points filtering. As fuzziness of boundaries results from depth occlusions in images
and calibration inaccuracies, we opt to constrain the boundary of foreground masks before 2D-3D
transfer, retaining only its central portion. Specifically, for each foreground mask, we denote its
maximum and minimum values in the pixel coordinate system (u, v) as (umin, umax, vmin, vmax).
We perform mask shrink to constraint boundary range ofM′

I to obtain M̂′
I :

u ∈ [umin +
1

2
(1− γ)(umax − umin), umin +

1

2
(1 + γ)(umax − umin)],

v ∈ [vmin +
1

2
(1− γ)(vmax − vmin), vmin +

1

2
(1 + γ)(vmax − vmin)],

(3)

where γ denotes the shrink factor. With this constraint, we obtain the shrunk masks that filter
out the semantically ambiguous regions, ensuring the accuracy of foreground semantic information
transferred onto the point clouds. Following (Vora et al., 2020), we transfer the semantic mask
from the image onto the point clouds to obtain semantic seed points using the camera’s intrinsic and
extrinsic parameter matrices. It is worth noting that we adopt the approach of explicitly transferring
the shrunk masks onto the point cloud rather than implicitly embedding unprocessed semantic masks
into the point cloud’s features as (Vora et al., 2020). This approach helps avoid potential semantic
feature confusion between different modalities arising from sparse annotations.

3.3 DYNAMIC CLUSTER PSEUDO-LABEL GENERATION MODULE

Algorithm 1 Dynamic cluster pseudo-label generation

Input: LiDAR points P , the k-th seed points P(k)
T ={

p
(k)
t

}
, initial radius rinitial;

Output: Pseudo-label proposal set B̂(k)

1: N (k) = P(k)
T .shape[0]

2: Pgr ← GroundRemove(P)
3: B̂(k) = [ ]

4: for t = 1, 2, ..., N (k) do
5: pt = P(k)

T [t]

6: r ← update(t, rinitial)

7: b̂← BoxFit(DBSCAN(Pgr, pt, r))

8: B̂(k).append(b̂)
9: end for

With the assistance of CPST, we explicitly
obtain the semantic seed points from trans-
formation M̂′

I of the foreground mask.
Given P ∈ RN×3 = {p1, p2, ..., pN} as
LiDAR points, we define the seed points
covered by M̂′

I as PT = {pt}, PT ⊂
P . It is crucial for the 3D detection task
that obtain complete bounding boxes from
these seed points.

By referring to traditional unsupervised
pseudo-label generation methods (Zhang
et al., 2023), we produce a large number of
pseudo-labels and then use the positional
constraints of the seed points to retain the
more promising pseudo-labels as super-
visory signals. However, existing unsu-
pervised bounding box fitting approaches
(Zhang et al., 2023; Wu et al., 2024) usu-
ally take a fixed constant as cluster radius, leading to the problem of inadequate foreground or
excessive background noise for the generated bounding boxes. In this case, we propose a dynamic
cluster pseudo-label generation (DCPG) module. This module utilizes the geometry shape of the
seed points’ multi-scale neighborhood to capture complete foreground information while minimiz-
ing background interference. It dynamically generates pseudo-label proposals.

Specifically, we denote P(k)
T as the k-th instance in a point cloud frame and utilize DCPG dynami-

cally generates a clustering radius r for the t-th seed point p(k)t . We define the updating function for
the dynamic radius as

update(t, rinitial) = rinitial ·
t

N (k)
+ δ, t = 1, 2, ..., N (k), (4)

where rinitial is a hyper-parameter set based on empirical experience, δ denotes the adjustment
factor to avoid r too small, and N (k) is the number of seed points in the current instance. By
applying Eq. 4, we dynamically update the radius r, r ∈ (δ, rinitial + δ], during point clustering,
thereby obtaining foreground clusters with multi-scale receptive fields. Following (Zhang et al.,
2023). We utilize the radius calculated from Eq. 4 as the clustering radius for DBSCAN (Ester
et al., 1996) and employ (Zhang et al., 2017) to fit the bounding box for each foreground cluster.
Algorithm 1 summarizes Our DCPG.
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3.4 DISTRIBUTION SHAPE SCORE

While DCPG has the capacity for high-quality pseudo-label generation, it unavoidably produces
an amount of low-quality pseudo-label proposals. The shapes of these proposals and the extent of
foreground completeness contained within the proposals usually deviate significantly from reality.
Traditional detection methods typically compute the Intersection over Union (IoU) score between
predicted bounding boxes and ground-truth (GT) boxes and then employ the NMS (Neubeck &
Van Gool, 2006) to suppress these low-quality proposals. However, lacking GT makes it challenging
to directly apply NMS using IoU as the evaluation criterion within our E3D framework. In this case,
we propose a distribution shape score (DS score) to assess the quality of the pseudo-labels using
unsupervised prior knowledge. We divided the DS score into two parts: distribution constraint
score and meta-shape constraint score.

Distribution constraint score. Inspired by (Luo et al., 2024), within a high-quality pseudo-label
proposal b̂, the distances from its interior points pi,i=1,...,n to its boundary roughly follow a Gaus-
sian distribution N (µ, σ), where µ = 0.8 and σ = 0.2, respectively. In other words, we denote
random variable D = {d1, ..., dn} as the distance between pi and the box boundary of b̂, and
D ∼ N (0.8, 0.2). Based on this prior, we assign a distribution constraint score to the pseudo-label
proposal b̂ by calculating the similarity between the random variable D corresponding to each b̂ and
the normal distribution N . Specifically:

sdc(b̂) =
1

|Pfg|
∑

pi∈Pfg

log(N (D|µ, σ)), (5)

where log(·) denotes the logarithm function, Pfg is the foreground points within b̂, and |Pfg| is the
number of points in Pfg .

Meta-shape constraint score. In addition, the shape of a high-quality pseudo-label is expected to
be consistent with its template in the real world, which we define as the meta instance, corresponding
to its category (Wu et al., 2024). For class c, we denote Bc ∈ {lc, wc, hc} as the shape of its meta
instance, where lc, wc and hc are the normalized length, width and height, respectively. we followed
this shape prior to constructing the class-aware meta-shape constraint score smsc(b̂) as

smsc(b̂) = 1− ΦKL(Bc||B̂b̂), (6)

where ΦKL(·) denotes the normalized KL divergence function, and B̂b̂ ∈
{
lb̂, wb̂, hb̂

}
indicates the

normalized shape of the pseudo-label proposal. The purpose of this operation is to suppress the
low-quality proposals whose shape deviates significantly from the meta instance. By combining the
distribution constraint score and the meta-shape constraint score, we can obtain the DS score as

DS(b̂) = λ1sdc(b̂) + λ2smsc(b̂), (7)
where λ1 and λ2 denote weight adjustment factor. Notably, to unify the dimension, we normalized
the two constraint scores before combining them, resulting in sdc and smsc. We then employ the DS
score as a substitution for the confidence score in NMS to suppress the low-quality pseudo-labels.
We utilize the obtained pseudo-labels in conjunction with CoIn (Xia et al., 2023b) for the first phase
of training. Subsequently, we fine-tune the trained detector with a small amount of accurate labels
to boost the performance of the 3D detector.

4 EXPERIMENTS

Dataset and metrics. As one of the large-scale benchmark datasets in autonomous driving, the
KITTI (Geiger et al., 2012) dataset has been widely used in 3D object detection. During the first
training stage, we did not use any ground truth for training. Instead, we relied solely on the semantic
information provided by LMMs to generate pseudo-labels. In the fine-tuning stage, we followed the
recent works (Deng et al., 2021; Xia et al., 2023b) to split the training set (contains 7,481 scenes)
into a train split (contains 3,712 scenes) and a val split (contains 3,769 scenes). We then randomly
select 10% of the scenes from the train split and retain only one instance annotation per scene. In
this case, we can obtain a limited split, which merely takes 2% of instance annotations compared
with the origin train split. To guarantee a fair comparison, we present the results with the primary
official evaluation metric: 3D Average Precision (AP) across 40 recall thresholds (R40).

6
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Implementation Details. Pseudo-labels Generation: We directly employed the model parame-
ters provided by FastSAM (Zhao et al., 2023) and SemanticSAM (Chen et al., 2023a) implemen-
tations for inference, without additional supervisory signals for fine-tuning. To achieve accurate
segmentation results, we set a higher segmentation threshold of 0.7 during the FastSAM inference
process. To mitigate computational demands, we opted to generate pseudo-labels within a confined
spatial domain of the semantically relevant points, specifically within an 8-meter radius. We set
mask shrink factor γ to 0.3, initial cluster radius rinitial to 1, adjustment factor δ to 0.1. We uti-
lize unsupervised priors to filter out pseudo-labels that are evidently inconsistent with the intuitive
expectations and set the weight adjustment factor of DS score λ1 and λ2 as 0.5, 0.5. Detector Train-
ing: We conduct all experiments with a batch size of 8 and a learning rate of 0.003 on 4 RTX 3090
GPUs. Following previous sparsely-supervised 3D object detection methods (Xia et al., 2023b; Liu
et al., 2022a), we choose three different classical detectors (Yin et al., 2021; Deng et al., 2021; Wu
et al., 2022) as our architecture. And we employ the OpenPCDet (Team et al., 2020) to conduct our
experiments. In the first training stage, we employ CoIn (Xia et al., 2023b) to train an initial detector
with the generated pseudo-labels. Then, we use limited split to fine-tune the detector.

Baselines. To thoroughly validate the effectiveness of the proposed E3D, we select the state-of-
the-art (SoTA) sparsely-supervised methods Xia et al. (2023b) as the primary baseline for compari-
son. We compare the proposed E3D approach with the baseline under conventional sparse settings
with 2% annotation cost. We also compared with cross-modal weakly-supervised methods (Qin
et al., 2020; Liu et al., 2022b), which also incorporate visual models to extract semantic information
to enhance the performance of weakly-supervised detectors. Furthermore, we establish baselines
under progressively reduced annotation costs to evaluate the sensitivity to annotation costs.

4.1 COMPARISON WITH SOTA METHODS

Table 1: Comparsion with SoTA sparsely-supervised methods on KITTI val split. All methods are
based on VoxelRCNN, and we report the 3D AP results of full cost (100%) and limited cost (20%,
2%). The best sparsely-supervised methods are highlighted in bold.

Setting Cost Method Car Ped Cyc
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Fully-sup. 100% VoxelRCNN 92.3 84.9 82.6 69.6 63.0 58.6 88.7 72.5 68.2

Sparsely-sup.

20% SS3D 89.3 84.2 78.2 - - - - - -
2% VoxelRCNN 70.5 54.9 44.8 42.6 38.5 32.1 73.3 47.8 43.2
2% CoIn 89.1 70.2 55.6 50.8 45.2 39.6 80.2 52.3 48.6
2% CoIn++ 92.0 79.5 71.5 46.7 36.1 31.2 82.0 58.4 54.6
2% CoIn++ with E3D 91.3 80.5 74.0 67.4 58.7 50.9 92.5 73.1 68.3

Comparison with sparsely-supervised methods. We integrate our proposed E3D into the SoTA
sparsely-supervised 3D detection algorithm, CoIn++ Xia et al. (2023b). For a fair comparison, all
detectors employ the VoxelRCNN Deng et al. (2021) as the base architecture. As illustrated in
Tab. 1, E3D significantly improves the detection performance of CoIn++. Concurrently, we observe
a slight decrease in precision for the ‘Easy’ car category with our E3D-initialized model. This could
arise because our initial pseudo-labels are inferred based on the geometric shape of the objects,
which may differ from the conventions of manual annotation. When the point cloud structure of an
instance is relatively intact, such discrepancies can lead to noticeable differences in the size of the
annotated bounding boxes.

Comparison with fully-supervised methods. For a fair comparison, consistent with the approach
of CoIn (Xia et al., 2023b), we select CenterPoint (Yin et al., 2021), VoxelRCNN (Deng et al.,
2021), and CasA (Wu et al., 2022) as our baseline detectors, representing three distinct types of
detection algorithms. We initialize the 3D detector using our E3D, followed by fine-tuning with the
limited split. As shown in Tab. 2, due to limited annotations, it is difficult for the detectors designed
under a fully supervised setting to achieve good detection results. Despite the effectiveness of CoIn
in improving this situation, the results achieved are still unsatisfactory for single-stage detection
algorithms with relatively simple structures. Our designed strategy, E3D, significantly reduces this
discrepancy, enabling detectors to achieve similar results.
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Table 2: Comparison with different fully-supervised methods. Sparse label refers to the use of
limited split (2% annotation cost). The 3D object detection and BEV detection benchmark are
evaluated by mean average precision with R40, under IoU thresholds 0.7.

Stage Label Method Car-3D @IoU 0.7 Car-BEV @IoU 0.7
Easy Mod Hard Easy Mod Hard

Single-stage

Fully 1.CenterPoint 89.07 80.50 76.49 92.98 89.01 87.50
Sparse 2.CenterPoint 49.69 31.55 25.91 56.78 42.50 34.14
Sparse 3. CoIn(CenterPoint-based) 72.03 54.82 43.77 87.20 73.54 66.03
Sparse 4. 3 with E3D(CenterPoint-based) 87.44 69.24 58.61 92.72 80.00 69.01

- 5. Improvements 4→1 -1.63 -11.26 -17.88 -0.26 -9.01 -18.49
- 6. Improvements 4→3 16.41 14.42 14.84 5.52 7.54 2.98

Two-stage

Fully 1.Voxel-RCNN 92.38 85.29 82.86 95.52 91.25 88.99
Sparse 2.Voxel-RCNN 70.52 54.97 44.82 83.67 71.14 57.71
Sparse 3. CoIn(Voxel-RCNN-based) 84.56 68.47 58.02 92.31 81.01 70.24
Sparse 4. 3 with E3D(Voxel-RCNN-based) 91.37 74.89 63.84 95.41 85.27 74.57

- 5. Improvements 4→1 -1.01 -10.4 -19.02 -0.11 -5.98 -14.42
- 6. Improvements 4→3 6.81 6.42 5.82 3.1 4.26 4.33

Multi-stage

Fully 1.CasA 93.08 86.33 81.86 93.93 90.20 87.72
Sparse 2.CasA 74.18 57.37 45.05 85.90 73.21 57.23
Sparse 3.CoIn(CasA-based) 89.17 75.32 62.98 95.99 85.02 72.47
Sparse 4. 3 with E3D(CasA-based) 91.12 75.94 66.46 96.55 85.65 76.31

- 5. Improvements 4→1 -1.96 -10.39 -15.4 +2.62 -4.55 -11.41
- 6. Improvements 4→3 1.95 0.62 3.48 0.56 0.63 3.84

Table 3: Comparison with cross-modal weakly-
supervised methods. We report the results with 40 re-
call positions, under 0.5 and 0.7 IoU thresholds.

Method Car-3D @IOU 0.5/0.7
Easy Mod Hard

VS3D 31.09/9.09 37.36/5.73 40.32/5.03
WS3DPR -/60.01 -/44.48 -/36.93
Ours E3D 93.75/69.71 76.36/48.65 71.01/40.53

Comparison with cross-modal weakly-
supervised methods. We also compare
our E3D (CasA-based) with the SoTA
cross-modal weakly-supervised 3D detec-
tion methods under the zero-shot set-
ting. In VS3D (Qin et al., 2020) and
WS3DPR (Liu et al., 2022b), they both use
the pre-training sematic-processing model
to support the semantic information to the
detector. As shown in Tab. 3, compared
with previous methods, by introducing se-
mantic information from large multimodal models and then utilizing the designed pseudo-label gen-
eration module, our detection results are leading by a wide margin.

Table 4: Comparison with different annotation rates
(10% → 0.1%). We report the results with 40 recall
positions, under 0.7 IoU threshold.

Annotation Rate Method Car-3D @IoU 0.7
Easy Mod Hard

100% CenterPoint 89.07 80.50 76.49

10% CoIn 85.95 71.80 62.64
+ E3D 88.84 73.56 65.17

5% CoIn 81.64 67.48 58.32
+ E3D 87.52 72.42 63.87

2% CoIn 72.03 54.82 43.77
+ E3D 87.44 69.24 58.61

1% CoIn 70.39 51.31 41.31
+ E3D 83.79 63.16 52.50

0.5% CoIn 66.77 47.68 38.38
+ E3D 80.36 59.99 49.44

0.2% CoIn 45.47 31.20 23.52
+ E3D 75.30 52.99 42.14

0.1% CoIn 6.84 4.65 3.61
+ E3D 58.57 37.41 29.88

Comparison with different annotation
rates. To explore the influence of our
proposed E3D on the sparsely-supervised
algorithm, we conducted a group of com-
parative experiments under different anno-
tation rates. Tab. 4 provides the variation
in performance as annotation rates rang-
ing from 10% to 0.1%. Following the pre-
vious method (Liu et al., 2022b), we se-
lect a two-stage detector as a base detec-
tor for fair comparison. The experimental
results indicate that the original sparsely-
supervised 3D detector can significantly
enhance performance upon integrating the
proposed E3D. For example, at a 2% la-
beling rate, the CoIn integrated with E3D
improved 3D AP by 15.41%, 14.42%, and
14.84% on easy, moderate, and hard dif-
ficulty levels, respectively. Also, this re-
sult represents an average improvement of
14.89% over the original detector. Be-
sides, our E3D significantly boosts the sparsely-supervised 3D detector’s performance even at very
low annotation rates, which achieves the 41.95% (36.92% higher than CoIn) average AP across dif-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ferent difficult levels under the annotation rate of 0.1%. The experimental results indicate that the
performance of the original sparsely-supervised 3D detector can improve significantly after loading
the E3D-initialized model, even at low annotation rates.

4.2 ABLATION STUDY

Table 5: Effects of the different components of E3D.
We report the mAP with R40, under IoU threshold 0.7.

Mask shrink DCPG DS score 3D-Car AP@IoU 0.7
Easy Mod. Hard

✓ 35.10 23.75 19.52
✓ ✓ 40.56 28.15 22.40

✓ ✓ 47.23 33.40 27.13
✓ ✓ ✓ 52.56 38.00 31.52

Effectiveness of mask shrink, DCPG,
and DS Score. To rapidly verify the ef-
fectiveness of the proposed modules, we
conducted ablation studies based on Cen-
terPoint (Yin et al., 2021) and recorded the
results in Tab. 5. The results presented in
the first and second rows illustrate that the
precision of pseudo-labels, as augmented
by the multi-scale neighborhood cluster-
ing mechanism within DCPG, can sub-
stantially amplify the detection capabili-
ties of the 3D detector. This may be attributed to incorporating more comprehensive foreground
information in the generated pseudo-labels, which has enhanced the model’s feature discrimination
capability. The comparison between the third and fourth rows of the table demonstrates that the
mask shrink operation is necessary for handling semantic noise at the instance edges. Moreover, the
results from the second and fourth rows indicate that using the DS score for filtering out low-quality
labels can significantly enhance the precision of the detector. When combined, the three modules
facilitate the most accurate information transfer and pseudo-label generation, enabling the 3D de-
tector obtained from the first-stage training with more robust performance, promoting subsequent
fine-tuning with accurate labels.

Table 6: The comparison of Recall on different IoU
thresholds (0.3, 0.5, 0.7).

Recall @IoU 0.3 @IoU 0.5 @IoU 0.7

CoIn 0.67 0.63 0.46
+ E3D 0.84 0.79 0.61

Improvement 0.17 0.16 0.15

The comparison of recall on different
IoU thresholds. To verify the positive
impact of the proposed E3D on recog-
nition, we evaluated the recall rates un-
der different IoU thresholds. As depicted
in Tab. 6, the E3D model consistently
elevates recall rates across the different
IoU thresholds, demonstrating a stable im-
provement. Since the geometric informa-
tion we provide is derived from rule-based
generation, a discrepancy exists with the annotated boxes. Consequently, this discrepancy results in
a slightly higher increase in recall rate at lower IoU thresholds.

5 DISCUSSION AND CONCLUSION

This paper proposes a two-stage 3D object detection training strategy, E3D, exploring an approach to
explicitly utilize the prior knowledge inherent in LMMs to enhance the capabilities of the sparsely-
supervised 3D detectors. First, we develop a CSPT module to obtain accuracy seed points in point
clouds by efficiently transferring high-confidence semantic masks extracted with LMMs. Next,
we introduce a DCPG module to dynamically generate pseudo-label proposals within the multi-
scale neighborhoods of seed points. Lastly, we propose a DS score as the criterion for NMS to
select the high-quality pseudo-labels integrated with the CoIn training strategy to train the initial
detector. After fine-tuning with sparsely annotated data, E3D demonstrated superior performance
over the original sparsely-supervised 3D object detector on the KITTI dataset, and it maintained
robust performance even as the amount of annotation decreased.

Limitations. One limitation is that the current E3D framework exhibits a relatively significant
performance degradation when fine-tuning with annotation rates below 0.1%, which may result from
the noise introduced by the extremely low annotations. Future efforts to explore efficient fine-tuning
strategies to solve this problem.
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APPENDIX

A THE VISUALIZATION OF THE EFFECT OF MASK SHRINK

The left side of Fig. 5 displays four scenarios of seed points (blue) directly using the prior infor-
mation from the LMMs. As shown in the figure, pervasive noise exits in the seed points, which
significantly hinders the subsequent generation of high-quality pseudo-labels. At the same time, we
observe that the noise is primarily concentrated at the edges of the mask. Based on this finding, we
design a mask shrink module based on boundary constraints. After incorporating this module, the
effect on the seed points is shown on the right side of Fig. 5. It can be seen that we finally retained
high-quality seed points.

Without Mask shrink With Mask shrink

Figure 5: Visualization of semantic seed points transformed from LMMs-extracted foreground
mask. Direct transformation (left): Uncertainty edge segmentation, coupled with the inherent one-
to-many nature of the pixel-to-point cloud, often results in a significant number of background points
being mistakenly classified as foreground. Transformation with mask shrink (right): We only trans-
fer the central region of the foreground mask onto the point cloud, which can eliminate edge seman-
tic ambiguity and projection uncertainty.
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B THE VISUALIZATION OF THE EFFECT OF DCPG

Fig. 6 upper and lower parts respectively showcase the bounding box pseudo-label fitting process
for two instances. From these two examples, it can be seen that using a fixed parameter for the
clustering radius r makes it difficult to fit the most appropriate bounding box pseudo-labels. More-
over, combined with DS score and the NMS strategy, we subsequently filter out the low-quality
pseudo-labels. Finally, it is the retained high-quality pseudo-labels that can support the training of a
well-performing initial 3D detector.

(1) (2) (3)

(4) (5) (6)

(4) (5) (6)

(1) (2) (3)

𝑟𝑟 = 0.10 𝑟𝑟 = 0.11 𝑟𝑟 = 0.12

𝑟𝑟 = 0.15 𝑟𝑟 = 0.17 𝑟𝑟 = 0.29

𝑟𝑟 = 0.11𝑟𝑟 = 0.10 𝑟𝑟 = 0.14

𝑟𝑟 = 0.21 𝑟𝑟 = 0.56 𝑟𝑟 = 0.61

Figure 6: Visualization of the process of fitting bounding boxes with dynamic cluster radii in DCPG.
By assigning different cluster radii r to different seed points, our method is capable of capturing
multi-scale foreground information, thereby fitting higher-quality pseudo-label proposals. Finally,
we use the proposed DS score to rate each fitted bounding box, and in conjunction with NMS (Non-
Maximum Suppression), only retain high-quality boxes as the final pseudo-labels.
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C PSEUDO-LABEL QUALITY ASSESSMENT

Figure 7: Visualization of pseudo-label quality assessment.

Table 7: Comparison of pseudo label quantities across
different IoU thresholds.

IoU≤0.5 IoU<0.7,>0.5 IoU≥0.7

Num. 156 281 668
Per. (%) 14.12 25.43 60.45

To visually demonstrate the E3D-
generated pseudo-labels’ quality, we
simultaneously visualize them with the
KITTI GT bounding boxes in Fig. 7. We
represent the pseudo-labels generated
by E3D with the red boxes and the GT
annotations with the blue boxes. As
shown in the figure, the red boxes exhibit
characteristics close to the corresponding
blue boxes in the majority of cases,
indicating the high quality of the E3D-generated pseudo-labels. In addition, to quantitatively
analyze the E3D-generated pseudo-labels’ quality, we counted the number of pseudo-labels across
various IoU thresholds, with the results recorded in Tab. 7. As demonstrated in the table, most of
the generated pseudo-labels have an IoU with the GT above 0.7, and the ones with an IoU below
0.5 constitute only 14.12% of the total, which verifies the effectiveness of our proposed E3D.
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