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has been “weaponized” against him - Negative

Figure 1: An example of various facets of word “trump”

Extended Abstract

The opaqueness of deep neural network (DNN)
models is a major challenge to ensuring a safe and
trustworthy Al system. Extensive and diverse re-
search works have attempted to interpret and ex-
plain these models. One major line of work strives
to understand and explain a neural network model’s
prediction using input words’ attribution to predic-
tion (Sundararajan et al., 2017; Denil et al., 2014).

However, the explanation based solely on input
words is less informative due to the discrete na-
ture of words and the lack of contextual verbosity.
A word consists of multifaceted aspects such as
semantic, morphological, and syntactic roles in a
sentence. Consider the word “trump” in Figure 1.
It has several facets such as a verb, a verb with spe-
cific semantics, and a named entity representing a
certain aspect such as tower names, family names,
etc. We argue that given various contexts of a word
in the training data, the model learns these diverse
facets during training. Given a test instance, de-
pending on the context a word appears, the model
uses a particular facet of the input words in making
the prediction. The explanation based on salient
words alone does not reflect the facets of the word
the model has used in the prediction and results in
a less informed explanation.

Dalvi et al. (2022) showed that the latent space of
DNNss represents the multifaceted aspects of words
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learned during training. The clustering of training
data contextualized representations provides access
to these multifaceted concepts, hereafter referred to
as latent concepts. Given an input word in context
at test time, we hypothesize that the alignment of
its contextualized representation to a latent concept
represents the facet of the word being used by the
model for that particular input. We further hypoth-
esize that this latent concept serves as a correct
and enriched explanation of the input word. To
this end, we propose the LAtent COncept ATtribu-
tion (LACOAT) method that generates an explanation
of a model’s prediction using the latent concepts.
LACOAT discovers latent concepts of every layer
of the model by clustering contextualized repre-
sentations of words in the training corpus. Given
a test instance, it identifies the most salient input
representations of every layer with respect to the
prediction and dynamically maps them to the latent
concepts of the training data. The shortlisted latent
concepts serve as an explanation of the prediction.
Lastly, LACOAT integrates a plausibility module that
generates a human-friendly explanation of the la-
tent concept-based explanation.

Methodology & Results Consider a sentiment
classification dataset and a sentiment classification
model as an example. LACOAT works as follows:
ConceptDiscoverer takes the training dataset and
the model as input and outputs latent concepts
of the model. At test time, given an input sen-
tence, PredictionAttributor identifies the most
salient input representations with respect to the pre-
diction. ConceptMapper maps these salient input
representations to the training data latent concepts
and provides them as an explanation of the predic-
tion. PlausiFyer takes the test sentence and its
concept-based explanation and generates a human-
friendly and insightful explanation of the predic-
tion.

We perform a qualitative evaluation of LACOAT to
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Figure 2: Sentiment task: Latent concepts of the most attributed words in Layers 0, 6 and 12
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stance correctly predicted by the model.

that is incorrectly predicted as positive.

Figure 3: A few examples of LACOAT explanations for BERT using Sentiment tasks

evaluate the usefulness of the latent concept-based
explanation and the generated human-friendly ex-
planation with the sentiment task.

Evolution of Concepts LACOAT generates the ex-
planation for each layer with respect to a prediction,
which shows the evolution of concepts in making
the prediction. Figure 2 shows layers 0, 6 and
12’s latent concept of the most attributed input
token for ROBERTa fine-tuned on the sentiment
task. We found that the initial layer latent concepts
do not always align with the sentiment of the in-
put instance and may represent a general language
concept. Figure 2(a) shows the concept of com-
parative and superlative adjectives of both positive
and negative sentiments. In the middle layers, the
latent concepts evolved into concepts that align bet-
ter with the sentiment of the input sentence. The
latent concept of Figure 2(b) shows a mix of ad-
jectives and adverbs of negative sentiment. In the
sentiment task, the most attributed word in the last
layer is [CLS] which resulted in latent concepts
consisting of [CLS] representations of the most re-
lated sentences to the input. We randomly pick five
[CLS] instances from the latent concept and show
their corresponding sentences in the figure (see
Figure 2(c)). We found that the last layer’s latent
concepts are best aligned with the input instance
and its prediction and are the most informative ex-
planation of the prediction. Then, we deepen our

analysis of the explanations generated using the
last layer only.

Analyzing Last Layer Explanations Figure 3
presents various examples of LACOAT for Sentiment
tasks using BERT.

Correct prediction with correct gold label Fig-
ure 3a presents a case of correct prediction with
latent-concept explanation and human-friendly ex-
planation. In the case of sentence-level latent con-
cepts (Figure 3a), it is harder to interpret compared
to latent concepts consisting of words. However,
PlausiFyer still highlights additional information
about the relation between the latent concept and
the input sentence. For example, it captures that the
reason of positive sentiment in 3a is due to prais-
ing different aspects of a film and its actors and
actresses.

Wrong prediction with correct gold label Fig-
ure 3b shows the predicted label is wrong. The in-
put sentence has a negative sentiment but the model
predicted it as positive. The instances of latent con-
cepts show sentences with mixed sentiments such
as “manages to charm” is positive, and “never quite
lives up to its promise” is negative. This provides
the domain expert an evidence of a possible wrong
prediction. The PlausiFyer’s explanation is even
more helpful as it clearly states that “there is no
clear ... relation between these sentences ...".
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