
Backbone Index to Support Skyline Path Queries over
Multi-cost Road Networks

Qixu Gong
Computer Science, New Mexico State University

Las Cruces, NM, USA
qixugong@nmsu.edu

Huiping Cao
Computer Science, New Mexico State University

Las Cruces, New Mexico, USA
hcao@nmsu.edu

ABSTRACT
Skyline path queries (SPQs) extend skyline queries to multi-
dimensional networks, such as multi-cost road networks (MCRNs).
Such queries return a set of non-dominated paths between two
given network nodes. Despite the existence of extensive works
on evaluating different SPQ variants, SPQ evaluation is still very
inefficient due to the nonexistence of efficient index structures
to support such queries. Existing index building approaches for
supporting shortest-path query execution, when directly extended
to support SPQs, use unreasonable amount of space and time to
build, making them impractical for processing large graphs. In
this paper, we propose a novel index structure, backbone index,
and a corresponding index construction method that condenses
an initial MCRN to multiple smaller summarized graphs with
different granularity. We also present efficient approaches to find
approximate solutions to SPQs. Our extensive experiments on
nine real-world large road networks show that our approaches can
efficiently find meaningful approximate SPQ solutions by utilizing
the compact index. The backbone index can be constructed with
reasonable time, which dramatically outperforms the construction
of other types of indexes for road networks. As far as we know,
this is the first compact index structure that can support efficient
approximate SPQ evaluation on large MCRNs.

1 INTRODUCTION
Skyline path queries (SPQs) extend skyline queries to multi-
dimensional networks (MDNs) [29]. They generalize shortest-
path queries over single-cost graphs. Given an MDN, SPQs
return a set of non-dominated paths between two given graph
nodes. In this paper, we study SPQs on multi-cost road networks
(MCRNs), which are the most widely studied MDNs while consid-
ering SPQs [17, 20, 29, 44, 46]. In real applications, the multiple
edge costs of MCRNs can represent different things such as dis-
tance, travel time, the number of traffic lights, gas consumption,
etc. Consider an application of utilizing a public transportation
system, the walking distance, the time traveled using the public
transportation system, and the number of transitions between dif-
ferent transportation lines can be the different weights. SPQs over
a public transportation system find Pareto optimal solutions of
bus routes that can take a user from a given bus stop to a target
bus stop, where the expense and travel time of those routes do
not dominate each other. In this scenario, a user may not like the
path (say 𝑝𝑚𝑖𝑛𝐸) with the lowest expense but a long travel time
or the path (say 𝑝𝑚𝑖𝑛𝑇) with the shortest travel time and a higher
expense. Instead, the user may want to use another path, which
either (a) has a slightly higher expense and much less travel time
than 𝑝𝑚𝑖𝑛𝐸 , or (b) has a slightly longer travel time and much lower
expense than 𝑝𝑚𝑖𝑛𝑇 .

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The evaluation of SPQs is very time consuming due to the large
number of solutions [20, 29] and the vast search space. Many
works attempt to accelerate the query process by reducing the
search space. In [29], the landmark index [28] is utilized to stop
growing a path when its upper-bound cost is dominated by the cost
of at least another result. To address the cold-start problem in [29],
Yang et al. [45] use the shortest path found for each dimension
as the initial results. Other works define different variations of
SPQs and propose specialized query processing approaches by
utilizing the properties of their SPQs to reduce the search space
[7, 12, 17, 20, 44].

A general idea to speed up query evaluation is to utilize indexes.
The major challenge of designing index structures for SPQs is
the large number of skyline paths that need to be pre-calculated.
Multiple skyline paths (not just one shortest path) exist between
two nodes on an MCRN. Traditional indexes that are used to
support location-based queries (e.g., shortest path queries) [18,
26, 30, 32, 50], if directly adopted to solve SPQs, either incur
expensive index building and use much space (partition-based
method), or increase node degrees and the number of edges. As
a consequence, the query performance deteriorates. To the best
of our knowledge, no compact index structures exist to support
efficient SPQs.

We conduct an extensive analysis [19] of an improved SPQ eval-
uation method of [29] on two real-world MCRNs to understand
how the characteristics of road networks (e.g., high node-degree
distribution) and queries (e.g., long paths between the query nodes)
affect query performance. The study shows that the existing meth-
ods (even with improvements) are too inefficient to evaluate SPQs
even on small MCRNs.

Considering the above situations, this paper proposes a hierar-
chical index structure to support getting approximate answers for
SPQs. The design utilizes the concept of backbone, which captures
the core graph topology, to abstract the original graph. The idea is
similar to intuitive human behavior when navigating from a source
to a destination in a road network. Let us consider a scenario that
a student needs to drive from his/her university in city A to a
hotel in city B. He/she first finds the paths to the main street from
the university’s district. Then, the routes from the main street to
highway entrances of city A are identified. Highways between the
cities are utilized to lead him from city A to city B. Then, a similar
idea is adopted to find the paths from freeway ramps to the hotel in
city B. As Figure 1 illustrates, the search involves three levels: the
district level (paths to the main street), the intra-city level (routes
to highways’ entrances), and the inter-city level (highways from
city A to city B).

The idea of highway entrances is also utilized in partition-based
approaches [26, 30, 50] as border nodes between partitions. These
methods divide the original graph into non-overlapping partitions
and store extra information (e.g. the shortest path weight) between
every pair of border nodes for the partitions. The goal of their
design is to minimize the number of border nodes. Our design
is different in that we do not minimize the number of entrance

Series ISSN: 2367-2005 325 10.48786/edbt.2022.19

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.19

Vs

Vt

Figure 1: Example of a backbone index

nodes, instead the entrance nodes are used to preserve the over-
all topology of the original network while conducting network
summarization.

Our proposed backbone index is a hierarchical structure that
tries to preserve the topology of the original graph by condens-
ing/summarizing dense local graph units level by level. The ab-
stracted graphs at higher levels are more abstract than the lower-
level graphs, while maintaining the topological structure.

The main contributions of our work are as follows.
• We propose a novel hierarchical index based on the concept of

backbone and clustering to abstract the original graph to several
summarized graphs with different summarization granularity.
The index is utilized to find approximate answers to SPQs.

• We present an efficient index building algorithm and several
variations. The index construction algorithm summarizes a
graph by reducing the density of its dense local units (or clus-
ters).

• A query evaluation algorithm is proposed to get approximate an-
swers of SPQs. The algorithm combines a dynamic-programming
search strategy at lower index levels and an optimized many-
to-many landmark-based skyline search algorithm at the most
abstracted graph level. The approximate answers are more suc-
cinct than the exact answers and enable users to focus on choos-
ing from fewer good results.

• We analyze the quality of the approximate solutions and the
complexity of our proposed methods.

• We conduct extensive experiments using nine real-world datasets,
including large road networks with millions of nodes and edges.
The rest of the paper is organized as follows. Section 2 dis-

cusses existing works that are related to our study. Section 3
defines the research problem, related concepts, and notations. Our
proposed index structure and the query algorithm are presented in
Sections 4 and 5. Experimental results are reported in Section 6.

2 RELATED WORKS
2.1 Skyline queries on road networks
The SPQ problem over an MCRN is first proposed and studied
in [29, 39]. Kriegel et al. [29] propose to use landmark index
to calculate lower bounds of paths and reduce the search space
of SPQs. Tian et al. [39] utilize the partial path dominance test
to prune search space. Yang et al. [45] define a stochastic domi-
nance relationship. Instead of using the landmark index, the lower
bound of the cost on each dimension is calculated using a reverse
Dijkstra [15] search.

More recent works evaluate different SPQ variants. The work [17,
44] conducts SPQs over moving objects on single-dimensional
road networks with multi-attributed points of interest (PoIs). Gong
et al. [20] propose a Constrained Skyline Queries problem assum-
ing that PoIs can be off an MCRN. The work [31] proposes a new
concept of skyline groups by considering the strength of social
ties and the spatial distance in a single-dimensional road network.

The previous techniques (except [29]) answer skyline queries
without the support of any index structures. Although using the
landmark index [29] and finding shortest paths on each dimen-
sion [45] are efficient ways to prune the search space, the query
process using these techniques are still very inefficient when node
degrees are high or the number of hops between query nodes is
large. In addition, constructing landmark index on a large graph is
expensive.

The work [47] is most similar to ours. It proposes a partition-
based single-level index. However, their index supports the opti-
mal path finding problem instead of SPQs. The query performance
decreases dramatically as the degree of border nodes grows be-
cause one border node in a partition connects to multiple border
nodes (or entrances) of its neighbor partitions.

2.2 Location-based queries on road networks
The shortest-path query is one type of fundamental location-
based queries for graph structured data. The Dijkstra [15] and
the A* [23] algorithms are the most successful and widely used
methods. These traditional search methods are not practical to
work for the large graphs collected in recent years. The design and
use of an index structure to keep pre-calculated path information
is inevitable.

For road networks, graph-partition [26, 30, 32, 50] and shortcut-
based [18, 43] approaches are two typical ways to design indexes
to support location-based queries. When such approaches are
directly utilized to process SPQs, the partition-based methods
find enormous number of skyline paths when the length of paths
between partitions is long, which leads to expensive index con-
struction and large disk use. The shortcut-based approaches create
shortcuts between two graph nodes. The number of shortcuts
grows exponentially with the increase of node degrees and the
length of paths between graph nodes. The huge number of short-
cuts does not improve the query performance, but deteriorates the
query evaluation. Our preliminary analysis [19] has verified the
statements about both types of methods. Several partition-based
methods [26, 30, 50] minimize the number of border nodes so that
fewer shortest paths need to be found in a partition. This does not
work to process SPQs because the number of skyline paths and
search time increase dramatically in dense partitions, which has
nothing to do with the number of border nodes.

Recent graph-partition based attempts [13, 35, 49] utilize tree
decomposition as the pre-process step for building hubs or short-
cuts among tree nodes. These methods either (i) face the issue
of huge disk use and high computational cost while storing the
skyline path information from each tree node to its ancestor tree
nodes [13, 35] or (ii) generate large number of shortcuts from
each tree node to its neighbors in the SPQ setting. Other ap-
proaches [6, 22, 37] to answer shortest-path queries apply Breadth-
First Search (BFS)-based methods with specially designed pruning
conditions. They run slowly if directly adopted to answer SPQs
for graphs with high node degrees. Different from all the existing
approaches, our proposed approach condenses local dense units
of a graph (i.e., inside a partition) and utilizes such condensed
partitions to support SPQ evaluation.

326

2.3 Finding backbones on graphs
Graph backbone extraction identifies critical nodes and edges to
preserve the topology and other essential information of a graph.
Recent works [10, 21, 25, 36, 38] study the backbone extraction
problem for different networks with specialized research interests.
In [36], the authors identify a network’s backbone that consists of a
set of paths maximizing the Bimodal Markovian Model likelihood.
5 The work [21] finds a tree-like backbone structure utilizing both
the node attribute and the graph topology in geo-social attribute
graphs. Graph backbone can also be extracted using the graph
structure. The work [25] merges nodes and edges by creating
shortcuts with the intention to preserve the topology of the original
graph. The works in [10, 38] define a criterion to examine the
importance or relevance to a network, and adopt strategies for
edge sampling [8] or edge filtering (or pruning) [10, 14] to create
backbone structures.

The above methods either conduct high-cost inference that is
not practical on large graphs, or dramatically increase the graph
size that causes the degradation of queries, or define specific
criteria [11, 14, 33] for specialized MCRNs. Thus, they cannot
be directly applied to build indexes to support SPQs over general
MCRNs. Moreover, most of the existing methods [14] cannot
guarantee the connectivity of the extracted backbone graph.

3 PROBLEM STATEMENT
A multi-cost road network (MCRN) is represented as an undi-
rected graph 𝐺 = (𝑉 , 𝐸,𝑊) where 𝑉 is the set of nodes, 𝐸 is the
set of edges where 𝐸 ⊆𝑉 ×𝑉 , and 𝑊 ∈R |𝐺.𝐸 |×𝑑 is a weight ten-
sor. Let |𝐺.𝑉 | and |𝐺.𝐸 | be the number of graph nodes and edges
respectively. Each edge 𝑒 ∈ 𝐸 is associated with a 𝑑-dimensional
cost vector 𝑤 , where 𝑤𝑖 is the value of the 𝑖-th cost of edge 𝑒.
Roads have directions. Two roads with opposite directions gener-
ally connect two same nodes, and the costs of the two opposite
directed roads do not differ much. Given these, we model a road
network as an undirected graph. When road networks are modeled
as directed graphs, our method can be easily extended to work
(more discussions see the end of Section 4.3.1).

A path 𝑝 between a node 𝑣𝑠 and another node 𝑣𝑡 is denoted as
𝑝 (𝑣𝑠 ↭ 𝑣𝑡). The cost of a path 𝑝, cost(𝑝), is the summation of
the weights of the edges of 𝑝 on each dimension. The cost(𝑝) is
𝑑-dimensional. The length of a path is the number of edges in the
path. Given two nodes, the path hop is defined to be the average
length of all the shortest paths when different single dimension is
utilized. Given two paths 𝑝𝑖 and 𝑝 𝑗 where the ending node of 𝑝𝑖 is
the same to the starting node of 𝑝 𝑗 , 𝑝𝑖 and 𝑝 𝑗 can be concatenated
as 𝑝𝑖 | |𝑝 𝑗 , where | | denotes the concatenation of two paths.

3.1 Path domination and skyline path queries
For multiple paths with 𝑑-dimensional cost, we adopt their domi-
nation relationship from [20, 29] and define it below.

Definition 3.1 (Path domination). Given two paths 𝑝 and 𝑝 ′

with multi-dimensional costs, the path 𝑝 dominates another path
𝑝 ′, denoted as 𝑝 ≺ 𝑝 ′, if and only if ∀𝑖 ∈ [0, 𝑑], cost(𝑝)[𝑖] ≤
cost(𝑝 ′)[𝑖] and ∃𝑖 ∈ [0, 𝑑], cost(𝑝)[𝑖] < cost(𝑝 ′)[𝑖].

Intuitively, 𝑝 dominates 𝑝 ′ when 𝑐𝑜𝑠𝑡 (𝑝) is not worse than
𝑐𝑜𝑠𝑡 (𝑝 ′) on each dimension, and is strictly better than 𝑐𝑜𝑠𝑡 (𝑝 ′) on
at least one dimension.

Definition 3.2 (Skyline Path Query (SPQ)). Given a graph 𝐺

representing an MCRN, a skyline path query (SPQ) is denoted
with a starting node 𝑣𝑠 and a target node 𝑣𝑡 . The answer to a SPQ
is a set of paths P satisfying (1) ∀𝑝 ∈ P, 𝑝 is from 𝑣𝑠 to 𝑣𝑡 , (2)
∀𝑝 ′∉P, ∃𝑝 ∈P s.t. 𝑝 ≺ 𝑝 ′, and (3) ∀𝑝 ∈P, �𝑝 ′ ∈P s.t. 𝑝 ′ ≺ 𝑝.

A path 𝑝 (𝑣𝑠 ↭ 𝑣𝑡) ∈ P is called a skyline path from 𝑣𝑠 to 𝑣𝑡 .
Where there is no ambiguity in the context, we use 𝑝 to represent
𝑝 (𝑣𝑠 ↭ 𝑣𝑡). Given two nodes, one SPQ returns a set of paths
between the nodes while such paths do not dominate each other.

3.2 Degree pairs and single segments
Our approach utilizes graph density information. To better capture
and describe the density of subgraphs in a graph, we introduce sev-
eral concepts: degree pairs, degree-1 edges, and single segments.

Definition 3.3 (Degree Pair). Given an edge 𝑒 with its two end
nodes 𝑠𝑒 and 𝑡𝑒 , the degree pair of 𝑒, 𝐷𝑃 (𝑒) = ⟨𝑒.𝑓 𝑖𝑟𝑠𝑡, 𝑒 .𝑠𝑒𝑐𝑜𝑛𝑑⟩,
is defined as follows.

𝐷𝑃 (𝑒) =
{⟨𝑑𝑒𝑔(𝑠𝑒), 𝑑𝑒𝑔(𝑡𝑒)⟩ 𝑑𝑒𝑔(𝑠𝑒) ≤ 𝑑𝑒𝑔(𝑡𝑒)
⟨𝑑𝑒𝑔(𝑡𝑒), 𝑑𝑒𝑔(𝑠𝑒)⟩ 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

where 𝑑𝑒𝑔(𝑣) is the degree of the node 𝑣 . As the definition shows,
the elements in the degree-pair tuple are ordered where the first
element 𝑒.𝑓 𝑖𝑟𝑠𝑡 is always smaller than or equal to the second
element 𝑒.𝑠𝑒𝑐𝑜𝑛𝑑 . An edge that has a degree pair ⟨1, 𝑥⟩ (𝑥 ≥ 1) is
called a degree-1 edge.

v1

e2

v3 v4

e3

e1

e4

v2

v9

v10

v5

v7

v6

v8

Figure 2: Degree pair example, where 𝐷𝑃 (𝑒1)=⟨4, 4⟩, 𝐷𝑃 (𝑒2) =
⟨2, 3⟩, 𝐷𝑃 (𝑒3) = ⟨3, 4⟩, and 𝐷𝑃 (𝑒4) = ⟨1, 4⟩.

Example 3.4. Let use Figure 2 to demonstrate the concept of
degree pairs. For 𝑒1, whose two end nodes are 𝑣1 and 𝑣2, the degree
pair 𝐷𝑃 (𝑒1) is ⟨4, 4⟩ because both nodes 𝑣1 and 𝑣2 have degree 4.
Similarly, we can get that 𝐷𝑃 (𝑒2) = ⟨2, 3⟩, 𝐷𝑃 (𝑒3) = ⟨3, 4⟩, and
𝐷𝑃 (𝑒4) = ⟨1, 4⟩. 𝑒4 is a degree-1 edge because 𝑒4 .𝑓 𝑖𝑟𝑠𝑡 is 1.

Definition 3.5 (Single Segment). A single segment is a path
consisting of consecutive ⟨2, 2⟩ degree-pair edges except the first
and the last edges for which one end-node’s degree is greater than
2.

Cluster/Map 1 Cluster/Map 2

vv

v

Single Segment

Condensing

Figure 3: Single segment example

327

Example 3.6. Figure 3 shows an example of a single segment
that connects two sub-graphs/maps with consecutive edges whose
degree pairs are ⟨2, 2⟩.

Single segments are utilized to condense graphs (Section 4.3.1).

4 THE BACKBONE INDEX
The core idea for building the backbone index structure is summa-
rizing the dense local units (clusters) of the original graph.

4.1 Hierarchical summarization
Before we present the index structure, we first introduce several
major factors where the design idea emerges from.

First, the effectiveness of an index for graphs is highly related to
the efficiency in the pre-calculation. For single-cost networks, pre-
calculating shortest paths and using them to answer shortest path
queries is a commonly used strategy. On MCRNs, multiple skyline
paths exist between two nodes. Compared with pre-calculating
shortest paths from single-cost networks, it is much more expen-
sive to pre-calculate skyline paths because the number of skyline
paths for a given query is highly impacted by node degrees and
the distance between two nodes [19]. To leverage this, we identify
local units to be dense graph components with nodes having more
neighbors (or neighbors of neighbors). The abstraction occurs on
each dense local unit by removing less critical nodes and edges.
The abstraction leads to a smaller index size and a shorter con-
struction time according to [19]. After the abstraction, we expect
that the degree distribution of the graph nodes does not change
much, which then can help us find useful results without missing
too much information.

Second, too much information may be missing when directly
summarizing the original graph to a very abstracted graph. Ag-
gressive abstraction strategy may not be able to effectively support
queries whose two query nodes are relatively close to each other.
Considering this, we design our index structure to consist of a
hierarchy of multiple abstracted graphs𝐺0,𝐺1, · · · ,𝐺𝐿−1,𝐺𝐿 with
different granularity, where 𝐺0 is the original graph, 𝐺𝐿 is the
most abstracted graph, and 𝐺𝑖+1 (0 ≤ 𝑖 < 𝐿) directly summarizes
𝐺𝑖 .

Third, to compensate the information loss caused by the re-
moval of nodes and edges in dense clusters when summarizing
a graph 𝐺𝑖 , a facilitating structure 𝐼𝑖 is introduced to keep the
skyline paths from graph 𝐺𝑖 to 𝐺𝑖+1. In particular, it stores the
skyline paths from each node in a dense cluster to all the nodes
that are still in 𝐺𝑖+1.

Based upon the design of the backbone index considering the
above three factors, our query method returns informative ap-
proximate solutions instead of exact solutions by searching the
summarized graphs from the finest granularity to the coarsest
granularity. When we cannot find a path to connect two nodes in a
lower-level graph 𝐺𝑖 , the search has to be conducted on its sum-
marized graph 𝐺𝑖+1 which generates approximate skyline paths
since 𝐺𝑖+1 does not keep all the detailed information from its
lower-level graph 𝐺𝑖 .

4.2 Dense local units/clusters at each level
We introduce an important concept, dense clusters, in our back-
bone index. Intuitively, dense clusters represent local units or
subgraphs of a graph. The nodes in the dense clusters generally
have more neighbors (i.e., denser) than other subgraphs. We use
dense clusters and local units exchange-ably in this paper.

4.2.1 Dense clusters and node clustering coefficient.
DBSCAN [16] is one classical algorithm to find dense clusters.

Density based clustering on road networks [41, 48] adopts the
shortest path distance as the distance measurement. This is not
suitable for MCRNs. Without extra information such as user pat-
tern data [34], POIs [41], and trajectory location data [9], we need
to formally define the measurements that can be used to calculate
node density to conduct density based clustering on MCRNs. The
well-known local clustering coefficient [42] is designed for gen-
eral graphs where a node degree is usually more than hundreds.
For MCRNs, where a node degree is generally no more than 5,
the local clustering coefficient cannot be used to distinguish dense
nodes from others. The cluster-coefficient concept should not only
reflect the degree of a node, but also consider its neighbors. In
Figure 2, node 𝑣1 and node 𝑣9 have the same number of neighbors,
but intuitively, 𝑣1 is more likely the center of its neighbors than
𝑣9. Considering nodes 𝑣10 and 𝑣9, based on their different degrees
(𝑑𝑒𝑔(𝑣10) = 3 and 𝑑𝑒𝑔(𝑣9) = 4), it seems 𝑣9 is denser. However,
𝑣10 connects tighter with its neighbors in a local community than
𝑣9 when examining the structure of the graph. Removing 𝑣10 and
the edges connecting to it greatly reduces topological information
of the graph. Overall, it is difficult to differentiate the density of a
node by considering only node degrees.

We define a node’s cluster coefficient to capture the density
information of graph nodes. Let N1𝑠𝑡 (𝑣) be the set of neighbors
of the node 𝑣 and N2𝑛𝑑 (𝑣) be the set of nodes that are two hops
away from 𝑣 (which are also denoted as two-hop neighbors of
𝑣) except the nodes in N1𝑠𝑡 (𝑣). We consider the node clustering
coefficient of a node 𝑣 is proportional to the number of connections
between N1𝑠𝑡 (𝑣) and N2𝑛𝑑 (𝑣). Following this idea, we introduce
the concept of cluster coefficient on road networks.

Definition 4.1 (A node’s cluster coefficient). The cluster coeffi-
cient of a node 𝑣 is defined as

cluster_coefficient(𝑣) = |N 𝑣
𝑐𝑜𝑚 |

|N1𝑠𝑡 (𝑣) | ∗ (|N1𝑠𝑡 (𝑣) | − 1) (2)

where 𝑁 𝑣
𝑐𝑜𝑚 is the set of node pairs (𝑢,𝑤) where 𝑢 ∈ N1𝑠𝑡 (𝑣) and

𝑤 ∈ N1𝑠𝑡 (𝑣) connect to a same node 𝑣𝑐𝑜𝑚 ∈ N2𝑛𝑑 (𝑣).
Example 4.2 (Node’s cluster coefficients). In Figure 2, the

cluster coefficient of node 𝑣1 equals to 3
4∗3 = 1

4 since 𝑣1 has 4
neighbors (𝑣2, 𝑣4, 𝑣6, and 𝑣8) and those neighbors share 3 common
nodes (𝑣3, 𝑣5 and 𝑣7) in N2𝑛𝑑 (𝑣1). For node 𝑣9, the cluster coeffi-
cient is 1

4∗3 = 1
12 because the nodes in 𝑁1𝑠𝑡 (𝑣9) share one common

node. For node 𝑣10, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑐𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 (𝑣10) is 2
3∗2 = 1

3 .

If more second-order neighbors of 𝑣 are connected through 𝑣’s
first-order neighbors (e.g., the center of a district), 𝑣 has a higher
probability to be in a dense area. Our approach thus clusters the
nodes with bigger cluster coefficient first.

4.2.2 Condensing threshold. Our graph summarization is
to keep the topology (thus the reachability) of the graph while
condensing a graph. We discuss the rationale behind our design.

Motivation of defining condensing threshold. There are sparse
components in real-world networks, such as secluded roads that
connect business areas in a city. These sparse components are
treated as noise clusters. Such noise clusters should not be com-
pletely condensed in the summarization stage. Otherwise, the
nodes in these clusters cannot be reached from other graph nodes.

A node 𝑣 can be categorized as a noise node or non-noise node
using its node degree (i.e., the number of its first-order neigh-
bors |𝑁1𝑠𝑡 (𝑣) |) or its cluster coefficient (cluster_coefficient(𝑣)).
We observe that using either measurement is not sufficient to
decide whether a node should be condensed or not. This is be-
cause the node degree (i.e., |𝑁1𝑠𝑡 |) and the cluster coefficient

328

(decided by |𝑁1𝑠𝑡 | or |𝑁2𝑛𝑑 |) of different nodes on road networks
have very similar values. I.e., the value ranges of node degrees
and cluster coefficients are small. For instance, most nodes have
degrees 2 and 3, and most nodes’ neighbors share no or few com-
mon N2𝑛𝑑 neighbors. This makes the cluster coefficient values
very small. E.g., in Figure 2, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑐𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 (𝑣9) = 1

12 and
𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑐𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 (𝑣10) = 1

3 .
We need to investigate other measurements to decide whether

a node can be condensed. That measurement should have a larger
range and should capture the neighbor information so that a
smaller value indicates a less important node.

We observe that |𝑁1𝑠𝑡 (𝑣) + 𝑁2𝑛𝑑 (𝑣) | has a much bigger value
range. Figure 2, |𝑁1𝑠𝑡 (𝑣10)+𝑁2𝑛𝑑 (𝑣10) | = 7 is less than |𝑁1𝑠𝑡 (𝑣9)+
𝑁2𝑛𝑑 (𝑣9) | = 10. The node 𝑣10 is a less important node because
it is connected with less other nodes. Thus, the cluster that 𝑣10
belongs to can be condensed later than the cluster that 𝑣9 be-
longs to since 𝑣9’s cluster is denser than 𝑣10’s cluster. Based on
|𝑁1𝑠𝑡 (𝑣) + 𝑁2𝑛𝑑 (𝑣) |, we introduce another parameter, condens-
ing threshold percentage 𝑝𝑖𝑛𝑑 , to help identify nodes that can be
condensed.

Given a graph 𝐺 , we can find the two-hop neighbors of all
the nodes and calculate the cardinality of such neighbor sets. For
each distinct two-hop neighbor cardinality 𝑘, we can find the
number of nodes having this cardinality (denoted as 𝑓 𝑟𝑒𝑞(𝑘)). I.e.,
𝑓 𝑟𝑒𝑞(𝑘) = |{𝑣}| s.t. |𝑁1𝑠𝑡 (𝑣) + 𝑁2𝑛𝑑 (𝑣) | = 𝑘 . Let ®𝐿(𝐺) be the list
of sorted frequency values calculated from a graph 𝐺 , and ®𝐿[𝑗]
be the frequency value at the j-th position in ®𝐿(𝐺), where 𝑗 starts
with 0. We define the condensing threshold as follows.

Definition 4.3 (Condensing threshold). Given 𝐺 , the sorted
frequency list ®𝐿(𝐺), a percentage 𝑝𝑖𝑛𝑑 ∈ (0, 1), the condensing
threshold 𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 is the cardinality value with frequency ®𝐿[𝑝𝑜𝑠]
s.t.

𝑝𝑜𝑠−1∑︁
𝑖=0

®𝐿[𝑖] ≤ 𝑝𝑖𝑛𝑑 ∗ |𝐺.𝑉 | <
𝑝𝑜𝑠∑︁
𝑖=0

®𝐿[𝑖]

Example 4.4 (Condensing threshold). Given a graph 𝐺 with 10
nodes, let the cardinality of the two-hop neighbor sets of the nodes
be {8, 3, 6, 3, 6, 4, 4, 8, 2, 8}. The distinct cardinality values are 2,
3, 4, 6, and 8. Then, ®𝐿(𝐺) = (1, 2, 2, 2, 3) because 𝑓 𝑟𝑒𝑞(2)=1,
𝑓 𝑟𝑒𝑞(3)=2, 𝑓 𝑟𝑒𝑞(4)=2, 𝑓 𝑟𝑒𝑞(6)=2, and 𝑓 𝑟𝑒𝑞(8)=3. Let 𝑝𝑖𝑛𝑑 =

0.3, then 𝑝𝑖𝑛𝑑 ∗ |𝐺.𝑉 | = 3. ®𝐿[0] + ®𝐿[1] = 3 ≤ 3 and 3 < ®𝐿[0] +
®𝐿[1] + ®𝐿[2] = 5. The 𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 of 𝐺 is the cardinality value with
frequency ®𝐿[1]. Since ®𝐿[1] = 2 = 𝑓 𝑟𝑒𝑞(3), 𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 of 𝐺 is 3.

A node 𝑣 is treated as a noise node if |𝑁1𝑠𝑡 (𝑣) + 𝑁2𝑛𝑑 (𝑣) | <
𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 . The clustering procedure sets low-density nodes as
noises when the condensing threshold is used. For example, two
clusters, 𝐶1 and 𝐶2, in Figure 4(a) contain low-density nodes.
These two clusters are condensed in the index construction process.
However, using the condensing threshold, these low-density nodes
are identified as noise nodes (Figure 4(b)). The noise nodes are
not condensed when creating the index to preserve the topology
structure that connects the low-density nodes.

4.2.3 Condensing dense clusters. Nodes on a map are
always connected. We desire that the connectivity of a graph is
preserved after condensing. We propose to use a spanning tree to
condense a dense cluster because all the nodes in a spanning tree
are connected. Minimum spanning trees (MSTs) are generated for
optimization purposes on single-cost graphs. It is not possible to
find MSTs from MCRNs because of the multiple edge weights.
When using spanning trees to summarize a dense cluster, we build
a spanning tree from the perspective of preserving the graph’s

C1

C2

(a) clusters found without using con-
densing threshold

Cnoise

(b) clusters found using condensing
threshold

Figure 4: Example of dense clusters on C9_NY_5K

topology as much as possible. In particular, we keep higher degree-
pair edges because they can keep more information in the original
graph, which is consistent with [40].

4.2.4 Details to process dense clusters of𝐺𝑖 . A graph𝐺𝑖

can be abstracted to a more summarized graph 𝐺𝑖+1 by removing
its nodes and edges. The removed node and edge information
needs to be saved as labels (Definition 4.7) to support future query
processing. This section discusses the process of condensing a
graph 𝐺𝑖 by utilizing its dense clusters. The detailed steps are
described in Algorithm 1.

The condensing process contains two steps: (i) finding dense
clusters of nodes (Lines 7-35) and (ii) abstracting each dense
cluster (Lines 36-39). The cluster finding process grows the node
with the highest cluster-coefficient value (the seed node) to the
first cluster (details see below), then grows the node (as seed node),
which has the highest cluster-coefficient value among all the nodes
not belonging to any clusters, to the second cluster. This process
of growing a seed node to a dense cluster stops until all the nodes
are marked either as belonging to one cluster or as a noise node.
After all the clusters are formed, small clusters (constrained by
a parameter𝑚𝑚𝑖𝑛 defined in Definition 4.8) are merged to avoid
cluster fragmentation (Line 35).

The details of growing a seed node 𝑣 to a dense cluster 𝐶𝑖, 𝑗 are
as follows. First, we calculate the threshold 𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 using the
parameter 𝑝𝑖𝑛𝑑 (Line 2) and create a cluster list𝐶 that stores dense
clusters of 𝐺𝑖 (Lines 3-5). We designate a special set (𝐶𝑛𝑜𝑖𝑠𝑒) to
keep all the noise nodes and add this noise-node set to 𝐶 (Lines
4-5).

Then, a priority queue 𝑞 is created to manage the growing
process (Lines 21-33). Initially, 𝑞 has a seed node 𝑣 . While 𝑞 is
not empty, the node 𝑣𝑝𝑜𝑝 with the highest cluster-coefficient value
in 𝑞 is popped out. If 𝑣𝑝𝑜𝑝 is not a noise node or has not been
visited yet, 𝑣𝑝𝑜𝑝 is put into the cluster𝐶𝑖, 𝑗 (Line 30). Then, all the
neighbors 𝑣 ′ of 𝑣𝑝𝑜𝑝 are checked to see whether they need to be
added to 𝑞 to grow the cluster𝐶𝑖, 𝑗 (Lines 31-33). When the cluster
𝐶𝑖, 𝑗 already contains 𝑚𝑚𝑎𝑥 nodes or when 𝑣 ′ is a noise node, we
do not need to add 𝑣 ′ to 𝑞. Once 𝑞 is empty, the dense cluster 𝐶𝑖, 𝑗
is added to the cluster list 𝐶 (Line 34).

The second step of condensing 𝐺𝑖 is to condense each cluster.
We form a spanning tree of 𝐺𝑖 using a similar procedure as the
Kruskal’s algorithm with a different strategy on choosing edges.
Our method first chooses the edges (not a random edge) with
higher degree-pair values. Then degree-1 edges on the tree are
recursively removed to guarantee the road network to be a 2-core
graph after the removal. The removed nodes Δ𝑉𝑖 and edges Δ𝐸𝑖
are kept to create the index structure later (Details see Section 4.3).

329

Algorithm 1: Creation of dense clusters
Input :Graph 𝐺𝑖 at the 𝑖-th level, maximum cluster size𝑚𝑚𝑎𝑥 ,

minimum cluster size𝑚𝑚𝑖𝑛 , 𝑝𝑖𝑛𝑑 for the condensing
threshold, removed nodes Δ𝑉𝑖 , removed edges Δ𝐸𝑖

Output :Updated Δ𝑉𝑖 , updated Δ𝐸𝑖 , and a list of clusters C
1 begin
2 noise_val = findNosieIndicator(𝑝𝑖𝑛𝑑);
3 Set the set of clusters C = ∅;
4 Create a noise-node cluster 𝐶𝑛𝑜𝑖𝑠𝑒 = ∅;
5 C.put(𝐶𝑛𝑜𝑖𝑠𝑒);
6 /* Nodes in 𝐺𝑖 .𝑉 are sorted in the

descending order of their
cluster_coefficient values */

7 foreach 𝑣 ∈ 𝐺𝑖 .𝑉 do
8 /* If 𝑣 is visited, skip it */

9 if v.isVisited then
10 continue;
11 /* If the number of 𝑣’s two-hop

neighbors in N1𝑠𝑡 (𝑣) ∪ N2𝑛𝑑 (𝑣) is less
than the condensing threshold, 𝑣

is a noise node, skip it */

12 if |N1𝑠𝑡 (𝑣) + N2𝑛𝑑 (𝑣) | < noise_val then
13 𝐶𝑛𝑜𝑖𝑠𝑒 .add(𝑣);
14 𝑣.isVisited = true ;
15 continue;
16 /* Nodes in the queue are sorted by

their cluster_coefficient values */

17 𝑗=size(C)+1 /* The 𝑗-th cluster for level 𝑖 */;
18 𝐶𝑖,𝑗= new cluster();
19 𝑞 = new priority queue();
20 𝑞.add(𝑣);
21 while !q.empty() do
22 𝑣𝑝𝑜𝑝 = 𝑞.pop() /* 𝑣𝑝𝑜𝑝 has the highest cluster

coefficient */;
23 if 𝑣𝑝𝑜𝑝 .isVisited then
24 continue;
25 else if 𝑣𝑝𝑜𝑝 ∈ 𝐶𝑛𝑜𝑖𝑠𝑒 then
26 𝐶𝑛𝑜𝑖𝑠𝑒 .remove(𝑣𝑝𝑜𝑝);
27 𝐶𝑖,𝑗 .add(𝑣𝑝𝑜𝑝);
28 else
29 𝑣𝑝𝑜𝑝 .isVisited = true;
30 𝐶𝑖,𝑗 .add(𝑣𝑝𝑜𝑝);

31 foreach 𝑣′ ∈ 𝑣𝑝𝑜𝑝 .neighbors do
32 if |𝐶𝑖,𝑗 .𝑉 | ≤𝑚𝑚𝑎𝑥 &

|N1𝑠𝑡 (𝑣′) + N2𝑛𝑑 (𝑣′) | ≥ noise_val then
33 𝑞.add(𝑣′);
34 C.add(𝐶𝑖,𝑗);
35 C.mergeSmallCluster(𝑚𝑚𝑖𝑛);
36 foreach 𝐶𝑖,𝑗 ∈ C do
37 SpanningTree t = 𝐶𝑖,𝑗 .findSpanningTree();
38 Δ𝑉𝑖 = Δ𝑉𝑖∪ t.removeNode();
39 Δ𝐸𝑖 = Δ𝐸𝑖∪ t.removeEdges();
40 return C, Δ𝑉𝑖 , Δ𝐸𝑖

4.3 Backbone index
We introduce more terminologies and concepts. A given graph
𝐺𝑖 may have multiple dense clusters, e.g., 𝐶𝑖,1,𝐶𝑖,2, · · · , 𝐶𝑖,𝑐 . Let
𝐶𝑖, 𝑗 .𝑉 denote the nodes in the dense cluster 𝐶𝑖, 𝑗 and use 𝐶𝑖, 𝑗 .�̃� to
denote the remaining nodes after removal.

Definition 4.5 (Highway Entrance Set). Given 𝐺𝑖 , its dense
clusters {𝐶𝑖,1,𝐶𝑖,2, · · · ,𝐶𝑖,𝑐 }, and its abstracted graph 𝐺𝑖+1, the
highway entrances of any 𝑣 ∈ 𝐶𝑖, 𝑗 .𝑉 from 𝐺𝑖 to 𝐺𝑖+1 are 𝐶𝑖, 𝑗 .�̃�

and are denoted as 𝐻 𝑖+1
𝑣 . Correspondingly, the overall highway

entrances to 𝐺𝑖+1 from 𝐺𝑖 , denoted as 𝐻𝑖+1, form a set of nodes
∪𝑐
𝑗=1𝐶𝑖, 𝑗 .�̃� .

V1

V4

V3

V2

V5
V6

V11

V9

V10

V8 V7

Ci,1

Ci,2

Figure 5: Example of highway entrances
Example 4.6 (condense process and highway entrances). In

Figure 5, the given graph has two dense clusters 𝐶𝑖,1 and 𝐶𝑖,2, and
two noise nodes 𝑣1 and 𝑣5. The edges are shown in lines (solid
and dash lines). Initially, we find the spanning tree with higher
degree-pair edges in each cluster (solid lines). Then the degree-1
edges on the trees are removed. Finally, thicker solid blue lines
are the summary of dense clusters and are kept in 𝐺𝑖+1. This gives
us𝐶𝑖,1 .�̃� = {𝑣7, 𝑣8, 𝑣10} and𝐶𝑖,2 .�̃� = {𝑣2, 𝑣4}. 𝐺𝑖+1 consists of the
noise nodes (𝑣1, 𝑣5) and nodes in 𝐶𝑖,1 .�̃� and 𝐶𝑖,2 .�̃� . The nodes
in 𝐶𝑖,1 .�̃� and 𝐶𝑖,2 .�̃� are the highway entrances of the nodes in
𝐶𝑖,1 and in 𝐶𝑖,2 to 𝐺𝑖+1 respectively. 𝐻𝑖+1 = 𝐶𝑖,1 .�̃� ∪ 𝐶𝑖,2 .�̃� =
{𝑣7, 𝑣8, 𝑣10, 𝑣2, 𝑣4} is the highway entrance set from 𝐺𝑖 to 𝐺𝑖+1.

We use a facilitating structure 𝐼𝑖 to store the skyline paths from
each node 𝑣 in 𝐶𝑖, 𝑗 to its highway entrance set 𝐻 𝑖+1

𝑣 . An element
of 𝐼𝑖 , denoted as 𝑙𝑎𝑏𝑒𝑙 (𝑣), is defined below.

Definition 4.7 (label(𝑣)). Given a graph 𝐺𝑖 , its dense clus-
ters {𝐶𝑖,1,𝐶𝑖,2, · · · ,𝐶𝑖,𝑐 }, and its abstracted graph 𝐺𝑖+1, the label

of a node 𝑣 ∈ 𝐶𝑖, 𝑗 .𝑉 is defined to be a triple (𝑣, 𝐻 𝑖+1
𝑣 , P

𝐻 𝑖+1
𝑣

𝑣).
Here, 𝐻 𝑖+1

𝑣 is the set of highway entrances from 𝑣 to 𝐺𝑖+1 and

P
𝐻 𝑖+1

𝑣
𝑣 = ∪ℎ∈𝐻 𝑖+1

𝑣
Pℎ𝑣 , where Pℎ𝑣 is the set of skyline paths from 𝑣 to

a highway entrance ℎ ∈ 𝐻 𝑖+1
𝑣 .

A structure 𝐼𝑖 keeps labels for all the nodes in each cluster𝐶𝑖, 𝑗 .𝑉
no matter whether the node is removed from 𝐺𝑖+𝑖 or preserved
in 𝐺𝑖+1. I.e., 𝐼𝑖 = ∪𝑣∈𝐶𝑖,𝑗 .𝑉 𝑙𝑎𝑏𝑒𝑙 (𝑣). For example, in Figure 5, the
label of the highway entrance 𝑣7, 𝑙𝑎𝑏𝑒𝑙 (𝑣7), needs to be created
if the path (𝑣7, 𝑣6, 𝑣9, 𝑣11, 𝑣10) is a skyline path from node 𝑣7 to
𝑣10, which uses the removed edges (𝑣7, 𝑣6), (𝑣6, 𝑣9), (𝑣9, 𝑣11), and
(𝑣11, 𝑣10).

Definition 4.8 (Backbone Index). Given a graph 𝐺 , two integer
thresholds 𝑚𝑚𝑎𝑥 and 𝑚𝑚𝑖𝑛 , and a percentage 𝑝, the backbone
index of 𝐺 consists of (i) a list of graph summarization structures
(0, 𝐼0), (1, 𝐼1) · · · , (𝐿 − 1, 𝐼𝐿−1), and (ii) the most abstracted graph
𝐺𝐿 . Here,𝑚𝑚𝑎𝑥 and 𝑚𝑚𝑖𝑛 are the maximum and minimum num-
ber of nodes of a dense cluster, and 𝑝 is the minimum percentage
of edges that must be condensed in each level.

For example, if we set the parameters to be𝑚𝑚𝑖𝑛 = 30,𝑚𝑚𝑎𝑥 =

200, and 𝑝 = 0.01, we expect (i) at most 200 nodes exist in each
cluster, (ii) clusters containing less than 30 nodes are merged, and
(iii) at least 1% of the edges need to be removed in the process
of index construction at each level to avoid generating too many
summarization structures. The parameter 𝑝 decides the number of
edges that must be removed, thus controls the index level 𝐿.

Figure 6 shows a backbone index with three layers (i.e., 𝐿 = 3).
The index provides a multi-level view of the original graph with
different abstraction power. For instance,𝐺1 is a summarized view

330

G3

G2

G1

G0

I2

I1

I0

I: { (0, I0), (1, I1), (2, I2), G3}

A
B

C

Figure 6: Index example

G2

G0

G1

Vs C0,i

C1,i

C2,i

h = h3
h2

h1

Figure 7: Paths in index

of the original graph 𝐺0 by condensing three dense clusters (local
units) A, B, and C. 𝐼0 keeps the labels of the nodes in 𝐺0. The
highest level graph 𝐺𝐿 (𝐺3) is the most abstracted view of 𝐺0.

4.3.1 Index construction. Algorithm 2 outlines the frame-
work of the index construction process. Initially, the backbone
index takes the original graph 𝐺0 as the root. Then, the index is
construed recursively. This summarization works in two steps:
(1) regular summarization and (2) aggressive summarization if
needed.
Regular summarization. We first remove the degree-1 edges
from graph 𝐺𝑖 . This action leads to the removal of paths consist-
ing of consecutive degree-1 edges. All the degree-1 edges are
removed until every remaining node in 𝐺𝑖 has a degree of 2 or
higher.

Then, we identify dense clusters (i.e., 𝐶𝑖,1, . . . ,𝐶𝑖, 𝑗 , . . . ,𝐶𝑖,𝑐) of
𝐺𝑖 (Algorithm 1). A more abstracted graph is formed after the
condensation. The removed nodes Δ𝑉𝑖 and edges Δ𝐸𝑖 are returned
to create 𝑙𝑎𝑏𝑒𝑙 (𝑣) of each node 𝑣 in 𝐶𝑖, 𝑗 . In 𝑙𝑎𝑏𝑒𝑙 (𝑣), the skyline
paths from 𝑣 to its highway entrances 𝐻 𝑖+1

𝑣 are generated using
only the deleted edges 𝐸𝑖𝑟 of 𝐶𝑖, 𝑗 where 𝐸𝑖𝑟 ⊆ Δ𝐸𝑖 by applying a
single source skyline path query algorithm (e.g., BBS mentioned
in Section 6s). This strategy not only preserves the deleted edge
information in the skyline paths, but also speeds up the query
process.

The index height 𝐿 increases rapidly if 𝐺𝑖 is only condensed
in one iteration to form 𝐺𝑖+1. To prevent the rapid increase of the
index height, we keep abstracting 𝐺𝑖 until both of the following
two conditions are met: (i) some nodes and edges are left after the
current iteration (i.e., |𝐺𝑖+1 .𝑉 | ≠ 0), and (ii) sufficient number of
edges are removed from 𝐺𝑖 (i.e., |Δ𝐸𝑖 | ≥𝑝 ∗ |𝐺0 .𝐸 |). When these
conditions are met, the abstracted graph is considered as 𝐺𝑖+1 and
used as the input of the summarization to the next level.
Aggressive summarization. While trying to maintain the graph’s
topology, it is possible that the regular summarization function
cannot remove sufficient nodes and edges (Line 9), with the con-
struction terminating with a large 𝐺𝐿 , which leads to high compu-
tational cost during the query process. To address this issue, we
deploy a more aggressive strategy that condenses a special type of
paths, single segments (Definition 3.5), in 𝐺𝑖+1. In particular, it
builds shortcuts to replace single segments and creates labels for
the deleted nodes in the single segments.

The aggressive summarization strategy is simple, but when to
apply it is not trivial. The graph’s topology is destroyed if the
strategy is used during the regular summarization step. If it is
not applied, 𝐺𝐿 can still be very large, thus cannot help support
efficient query processing. If this strategy is called too frequently,
numerous short single segments are merged, which increases the
node degrees of the graph. This goes against our design principle
of reducing the graph’s node degrees and incurs longer index-
building process.

Example 4.9 (Condensing single segments.). Given a single
segment 𝑠=(𝑢, 𝑣0, 𝑣1, · · · , 𝑣 𝑗−1, 𝑣 𝑗 ,𝑤), the aggressive strategy con-
denses it to an edge 𝑒 = (𝑢,𝑤) by removing all the nodes 𝑣0, 𝑣1,
· · · , and 𝑣 𝑗 . The cost of 𝑒 is the summation of the edge weights of
𝑠. The labels are created for each 𝑣 to its highway entrances {𝑢,𝑤}.
Figure 3 shows an example of condensing a single segment.

Algorithm 2: Framework of index construction
Input :Graph 𝐺 , percentage 𝑝, maximum and minimum cluster

sizes𝑚𝑚𝑎𝑥 and𝑚𝑚𝑖𝑛

Output :Backbone index 𝐼𝑙𝑖𝑠𝑡 : (0, 𝐼0), · · · , (𝐿-1, 𝐼𝐿−1) and the
highest graph 𝐺𝐿

1 begin
2 𝑖 = 0;
3 Create index 𝐼𝑙𝑖𝑠𝑡 =∅;
4 do
5 /* Step 1: Regular Summarization of 𝐺𝑖

*/
6 (Δ𝐸𝑖 , 𝐼𝑖 , 𝐺𝑖+1) = GraphSummarization(𝐺𝑖 , 𝑝,

𝑚𝑚𝑎𝑥 ,𝑚𝑚𝑖𝑛);
7 𝐼𝑙𝑖𝑠𝑡 .put(i, 𝐼𝑖);
8 /* Step 2: Aggressive Summarization

of 𝐺𝑖+1 */

9 if |𝐺𝑖+1 .𝑉 | ≠ 0 & Δ𝐸𝑖 ≤ 𝑝 ∗ |𝐺0 .𝐸 | then
10 Δ𝐸𝑛𝑒𝑤 , 𝐼𝑛𝑒𝑤 = AggressiveGraphSummarization(

𝐺𝑖+1);
11 if |Δ𝐸𝑛𝑒𝑤 | ≠ 0 then
12 Update 𝐼𝑖 using 𝐼𝑛𝑒𝑤 ;
13 Δ𝐸𝑖 = Δ𝐸𝑖 ∪ Δ𝐸𝑛𝑒𝑤 ;
14 L=i, i=i+1 ;
15 while |𝐺𝑖+1 .𝑉 |≠0 and Δ𝐸𝑖 ≥𝑝∗ |𝐺0 .𝐸 |;
16 landmark(𝐺𝐿);
17 return 𝐼𝑙𝑖𝑠𝑡 , 𝐺𝐿

The index element 𝐼𝑛𝑒𝑤 , which is generated in the aggressive
graph summarization process, is used to update the existing index
item 𝐼𝑖 . In particular, every path 𝑝 ∈ P𝑣′𝑣 (where 𝑙𝑎𝑏𝑒𝑙 (𝑣) ∈ 𝐼𝑖) is
concatenated with every path 𝑝 ′ ∈ Pℎ

𝑣′ (where 𝑙𝑎𝑏𝑒𝑙 (𝑣 ′) ∈ 𝐼𝑛𝑒𝑤)
where 𝑣 ′ is a highway entrance of 𝑣 (i.e., 𝑣 ′ ∈𝐻 𝑖+1

𝑣 and 𝐻 𝑖+1
𝑣 is in

𝑙𝑎𝑏𝑒𝑙 (𝑣)). Finally, the landmark index [28] is built over the highest
level graph 𝐺𝐿 .
Index maintenance. The backbone index can be dynamically
maintained when there are changes in the underlying road net-
works (e.g., addition or removal of nodes and edges). The basic
idea is to recalculate the skyline path information for the cluster
nodes that are involved in graph updates. We omit the details and
the experimental results due to space limitation, which can be
found from [19].
Extended to directed graphs. When road networks are modeled
as directed graphs, the index just needs to include the extra infor-
mation from highway entrances to each node in dense clusters.
Getting such information is straightforward because skyline path
information between all pairs of nodes in each dense cluster has
been calculated in the regular summarization process.

5 QUERY PROCESSING ALGORITHM
This section explains the query processing algorithm over a graph
𝐺 to get approximate solutions for a SPQ. A SPQ is denoted by
two nodes 𝑣𝑠 and 𝑣𝑡 . The query is processed on the backbone
index 𝐼={(0, 𝐼0), (1, 𝐼1), · · · , (𝐿 − 1, 𝐼𝐿−1),𝐺𝐿}.

Given a node 𝑣𝑠 ∈ 𝐺0 .𝑉 , let us use Pℎ𝑖𝑣𝑠 to denote the set of
skyline paths from 𝑣𝑠 to a highway entrance ℎ𝑖 ∈ 𝐻 𝑖

𝑣 in 𝐺𝑖 . A path
in Pℎ𝑖𝑣𝑠 concatenates multiple skyline paths 𝑝 (𝑣𝑠 ↭ ℎ1), 𝑝 (ℎ1↭

331

ℎ2), · · · , 𝑝 (ℎ𝑖−1 ↭ ℎ𝑖) where ℎ𝑖 is a highway entrance at 𝐺𝑖 .
Figure 7 shows an example of one path 𝑝 in Pℎ𝑣𝑠 on subgraphs of
𝐺0, 𝐺1, and 𝐺2 where blue hollow circles in 𝐺1 and 𝐺2 are the
highway entrances. 𝑝 consists of three sub-paths 𝑝 (𝑣𝑠 ↭ ℎ1) (in
𝐺0), 𝑝 (ℎ1↭ ℎ2) (in 𝐺1), and 𝑝 (ℎ2↭ ℎ3) (in 𝐺3).

A node 𝑣 can directly or indirectly reach a highway entrance
node ℎ at different index levels through a path 𝑝 (𝑣 ↭ ℎ). We call
the set of highway entrance nodes at different index levels that
𝑣 can reach as 𝑣’s successor nodes and denote them as 𝑠𝑢𝑐𝑐 (𝑣).
For example, all the nodes represented as blue hollow circles in
Figure 7 are successor nodes of the node 𝑣𝑠 .

Given a query with two nodes 𝑣𝑠 and 𝑣𝑡 , the backbone paths
are formed as two types: (1) when two sets Pℎ𝑣𝑠 and Pℎ𝑣𝑡 reach a
common highway node ℎ ∈ 𝐻𝑘 where 𝑘 < 𝐿 is an intermediate
index level (the first type), or (2) when both nodes 𝑣𝑠 and 𝑣𝑡 reach
the most abstracted graph 𝐺𝐿 through the highway nodes ℎ𝑠 and
ℎ𝑡 in 𝐻𝐿 , which means that Pℎ𝑠𝑣𝑠 and Pℎ𝑡𝑣𝑡 are connected using paths
𝑝 (ℎ𝑠 ↭ ℎ𝑡) in 𝐺𝐿 , where ℎ𝑠 and ℎ𝑡 are successor nodes of 𝑣𝑠 and
𝑣𝑡 respectively (the second type).

Algorithm 3 describes the process to find the first (Lines 6-28)
and the second type (Lines 29-32) of backbone paths between 𝑣𝑠
and 𝑣𝑡 . Given a node 𝑣 , the function ReadLabel(𝑣) reads the index
label of 𝑣 and extracts the highway entrance nodes 𝐻 𝑖

𝑣 that 𝑣 can
reach 𝐺𝑖 from 𝐺𝑖−1 directly. When 𝑣 does not exist in 𝐺𝑖−1, then
𝐻 𝑖
𝑣 is empty. The function addToSkyline adds paths to the result

set R while guaranteeing all the paths in R do not dominate each
other.

To find the first type of skyline paths, the algorithm grows sky-
line paths from 𝑣𝑠 and 𝑣𝑡 to their successor nodes. If the paths from
𝑣𝑠 and 𝑣𝑡 meet at a common successor node, such paths are skyline
candidates. To manage the skyline path growing process, two map
structures, S and D, are created (Lines 3 and 4) to store the skyline
paths from 𝑣𝑠 and 𝑣𝑡 to their successor nodes respectively. In S, a
key is the ending node of a path from 𝑣𝑠 and the corresponding
value for the key is a list of skyline paths from 𝑣𝑠 to the ending
node. The initial key-value pair in S is (𝑣𝑠 , {𝑝𝑣𝑠 = {𝑣𝑠 }}) (Line 3).
Similarly, D is constructed to manage skyline paths from 𝑣𝑡 .

Lines 6-15 grow the skyline paths from 𝑣𝑠 using the index
structure at each level 𝑖 by utilizing the ending node 𝑠ℎ of a path in
S. The algorithm finds all the paths Pℎ

𝑠ℎ
from 𝑠ℎ to each highway

entrance node ℎ at level 𝑖 (i.e., ℎ ∈ 𝐻 𝑖
𝑠ℎ

), which can be extracted
from 𝑙𝑎𝑏𝑒𝑙 (𝑠ℎ) (Line 10) and concatenates them with the skyline
paths in P𝑠ℎ𝑣𝑠 (which can be found from S with key 𝑠ℎ (Line 11).
If the highway entrance node ℎ is another query node 𝑣𝑡 , the
formed skyline paths are used to update the result set R (Line 13).
Otherwise, the formed skyline paths are added to the intermediate
skyline path set S. This path growing process may reach level 𝐺𝐿 .

A similar procedure is used to calculate backbone paths from
𝑣𝑡 to its successor nodes (Lines 16-28). The difference is that one
more condition is added to form new candidate paths, when one
successor ℎ ∈ 𝑠𝑢𝑐𝑐 (𝑣𝑡) is also in S (Lines 24-26).

The second type of skyline paths are found when the paths
in S and D reach 𝐺𝐿 but cannot be concatenated. A many-to-
many method, m_BBS, is conducted (Line 32) to find the skyline
paths 𝑝 (𝑣𝑠 ↭ 𝑣𝑡) = 𝑝 (𝑣𝑠 ↭ ℎ𝑠) | |𝑝 (ℎ𝑠 ↭ ℎ𝑡) | |𝑝 (ℎ𝑡 ↭ 𝑣𝑡).
𝑝 (ℎ𝑠 ↭ ℎ𝑡) represents any skyline path from ℎ𝑠 to ℎ𝑡 where ℎ𝑠
and ℎ𝑡 are successor nodes of 𝑣𝑠 and 𝑣𝑡 in 𝐺𝐿 respectively. The
m_BBS method is a modified version of BBS by accepting multiple
nodes as input and estimating the lower bounds of a path to all the
possible destination (not one destination in the original algorithm).
The proposed m_BBS just needs to be executed once, instead of
multiple times, for each pair of nodes in S.𝑘𝑒𝑦𝑠 and D.𝑘𝑒𝑦𝑠.

Algorithm 3: Query processing algorithm
Input :Query nodes 𝑣𝑠 and 𝑣𝑡 , the most abstracted graph 𝐺𝐿 ,

backbone index 𝐼

Output :The set of backbone skyline paths R
1 begin
2 Initialize the result set R = ∅;
3 Create a new map S initialized with (𝑣𝑠 , 𝑝𝑣𝑠);
4 Create a new map D initialized with (𝑣𝑡 , 𝑝𝑣𝑡);
5 /* Find the first type of skyline paths

*/
6 foreach 0 ≤ 𝑖 ≤ 𝐿 do
7 foreach 𝑠ℎ ∈ S.𝑘𝑒𝑦𝑠 do
8 𝑅𝑒𝑎𝑑𝐿𝑎𝑏𝑒𝑙 (𝑠ℎ) and extract the highway entrances

𝐻 𝑖
𝑠ℎ

;
9 foreach ℎ ∈ 𝐻 𝑖

𝑠ℎ
do

10 Get the set of skyline paths Pℎ
𝑠ℎ

from 𝑠ℎ to ℎ

(𝑅𝑒𝑎𝑑𝐿𝑎𝑏𝑒𝑙 (𝑠ℎ));
11 Pℎ𝑣𝑠 = combine all the paths in P𝑠ℎ𝑣𝑠 with all the

paths in Pℎ
𝑠ℎ

;
12 if ℎ = 𝑣𝑡 then
13 R.addToSkyline(Pℎ𝑣𝑠);
14 else
15 S.put(h, Pℎ𝑣𝑠) ;

16 foreach 0 ≤ 𝑖 ≤ 𝐿 do
17 foreach 𝑑ℎ ∈ D.𝑘𝑒𝑦𝑠 do
18 𝑅𝑒𝑎𝑑𝐿𝑎𝑏𝑒𝑙 (𝑑ℎ) and extract the highway entrances

𝐻 𝑖
𝑑ℎ

;
19 foreach ℎ ∈ 𝐻 𝑖

𝑑ℎ
do

20 Get the set of skyline paths Pℎ
𝑑ℎ

from 𝑑ℎ to ℎ

(𝑅𝑒𝑎𝑑𝐿𝑎𝑏𝑒𝑙 (𝑑ℎ));
21 Pℎ𝑣𝑡 = combine all the paths in P𝑑ℎ𝑣𝑡 with all the

paths in Pℎ
𝑑ℎ

;
22 if ℎ = 𝑣𝑠 then
23 R.addToSkyline(Pℎ𝑣𝑡);
24 else if ℎ ∈ S then
25 P𝑣𝑡𝑣𝑠 = new paths combining Pℎ𝑣𝑡 with

S.get(ℎ).Pℎ𝑣𝑠 ;
26 R.addToSkyline(P𝑣𝑡𝑣𝑠);
27 else
28 D.put(h, Pℎ𝑣𝑡) ;

29 /* BBS on 𝐺𝐿 to find the second type of

skyline paths */

30 𝑆𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = 𝐺𝐿 .𝑉 ∩ S.𝑘𝑒𝑦𝑠 ;
31 𝐷𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = 𝐺𝐿 .𝑉 ∩ D.𝑘𝑒𝑦𝑠 ;
32 R.addToSkyline(m_BBS(𝐺𝐿 , 𝑣𝑠 , 𝑣𝑡 , 𝑆𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 , 𝐷𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒))
33 return R // Return the results

Support to other types of queries. The backbone index can
be used to support one-to-all SPQs to return approximate skyline
paths to all other nodes from a given query node. The details and
experimental results can be found in [19].

Solution bound. Given a graph 𝐺 , its backbone index, a query
(𝑣𝑠 , 𝑣𝑡), the upper bound of an approximate solution path’s weight
is 𝑂 ((𝐹𝑣𝑎𝑙)𝐿). Here, 𝐿 is the height of the index, and 𝐹𝑣𝑎𝑙 is
the expected summation of the weights for all the edges in the
minimum spanning tree over a complete graph with a very large
number of nodes.

Complexity. The complexities of index construction time and
index size are𝑂 (|𝐺.𝑉 |𝑙𝑜𝑔(|𝐺.𝑉 |)) and O(|𝐺.𝑉 |𝑚𝑚𝑎𝑥𝑆𝑛𝑑) respec-
tively. Here, 𝑑 is the number of dimensions of edge cost, and 𝑆𝑛
is the average number of skyline paths between every node to its
highway entrance in each dense cluster and is almost constant

332

Table 1: Statistics of road networks
description vertex # edge # raw data size

C9_NY New York 254,346 365,050 16.2 MB
C9_BAY San Francisco Bay Area 321,270 397,415 18.9 MB
C9_COL Colorado 435,666 521,200 38.9 MB
C9_FLA Florida 1,070,376 1,343,951 98.4 MB

C9_E East USA 3,598,623 4,354,029 337.7 MB
C9_CTR Center USA 14,081,816 16,933,413 1304.0 MB
L_CAL California 21,048 21,693 1.3 MB
L_SF San Francisco 174,956 221,802 12.2 MB
L_NA USA 175,813 179,102 11.0 MB

when 𝑚𝑚𝑎𝑥 is small. 𝑆𝑛 is no more than 10 when 𝑚𝑚𝑎𝑥 is 200 in
our experiments.

The detailed complexity analysis for the upper bound of an
approximate solution, the index construction time, and the index
space is omitted here due to space limit and can be found at [19].

6 EXPERIMENTS
6.1 Experimental settings
Our experiments are conducted on a desktop with an Intel(R) 3.60
GHz CPU, 32 GB main memory, and 2 TB HDD, running Ubuntu
18.04. All the algorithms are implemented using Java 13 [3]. We
use Neo4j [4], the most popular graph database [2], to store all
the graphs. The page size and cache size of Neo4j are set to 2 KB
and 2 GB respectively. The native JAVA APIs of Neo4j are used
to access neighbor nodes. Our backbone index is not stored in
Neo4j.
Default parameter setting. The condensing threshold 𝑝𝑖𝑛𝑑 (Def-
inition 4.3) is set to 30%, the minimum and maximum cluster
sizes 𝑚𝑚𝑖𝑛 and 𝑚𝑚𝑎𝑥 (Definition 4.8) are set to be 30 and 200 re-
spectively, and the percentage 𝑝 used to decide whether sufficient
number of edges are removed (Definition 4.8) is 0.01. More dis-
cussions about the effect of these parameters are in Section 6.2.5.
Parameter value selection. To set values of different parameters,
users can take a strategy that is widely adopted in using machine
learning libraries: starting with the default setting and fine-tuning
the parameters. For any dataset, users can use the above default
setting to get query results with similar accuracy that we report. If
users accept query results with less accuracy guarantee, they can
increase 𝑚𝑚𝑎𝑥 and/or 𝑝. Otherwise, they need to decrease𝑚𝑚𝑎𝑥

and/or 𝑝. Users need to be aware that the index construction time
for larger/smaller datasets is longer/shorter. Generally,𝑚𝑚𝑖𝑛 and
𝑝𝑖𝑛𝑑 do not need to be changed. Or, users can follow the analysis
in Section 6.2.5 to fine tune them.
Data. Our experiments use nine real-world road networks [1, 5]

(details see Table 1). The original networks contain the coordinates
of nodes and one-dimensional edge weights (the spatial length of
road segments). We generate two extra synthetic edge weights by
sampling them from a uniform distribution in the range of [1,100]
following the practice in [12, 29]. A detailed comparison of dif-
ferent ways to generate synthetic costs is in Section 6.3. When
smaller subgraphs with a specific number of nodes are needed in
the experiments, we generate such subgraphs by conducting BFS
from a random node on the real-world networks.
Approximation quality measurements. To evaluate the quality
of an approximate result set, we apply the following measure-
ments.
(1) The ratio of average cost on each dimension (RAC). We
introduce RAC𝑖 to measure the similarity between the approxi-
mate results and the exact solutions on the 𝑖th dimension. It is
defined as RAC𝑖 =

(∑𝑝′∈P′ 𝑤
′
𝑖 |𝑤′

𝑖 ∈𝑐𝑜𝑠𝑡 (𝑝′))/ |P′ |
(∑𝑝∈P 𝑤𝑖 |𝑤𝑖 ∈𝑐𝑜𝑠𝑡 (𝑝))/ |P | where P′ and P are

the set of approximate skyline paths and the exact SPQ solutions
respectively. A RAC𝑖 value that is closer to 1 is better.
(2) Goodness. We modify the goodness measurement [20] to

200 400 600
cluster size

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e

co
st

 ra
tio

none
each
normal

(a) RAC on C9_NY_5K

200 400 600
cluster size

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Av
er

ag
e

co
st

 ra
tio

none
each
normal

(b) RAC on C9_NY_15K

200 400 600
cluster size

0.80

0.85

0.90

0.95

1.00

Go
od

ne
ss

 (C
os

in
e

sim
.) none

each
normal

(c) Goodness on C9_NY_5K

200 400 600
cluster size

0.80

0.85

0.90

0.95

1.00

Go
od

ne
ss

 (C
os

in
e

sim
.) none

each
normal

(d) Goodness on C9_NY_15K
Figure 8: Comparison of approximation quality

make it suitable for SPQs, which are different from the queries
in [20]. Given the exact solution set P and an approximate solu-
tion set P′ for an SPQ, the goodness score of P′ is defined as:

𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 (P′) =

∑
𝑝∈P {argmax𝑝′∈P′ 𝑠𝑖𝑚 (𝑝,𝑝′) }

|P | where 𝑠𝑖𝑚(𝑝, 𝑝 ′) is
the similarity function between the cost of two paths. We use the
cosine similarity (the higher the better) to calculate 𝑠𝑖𝑚(𝑝, 𝑝 ′).
Exact method. We implement the SPQ method in [29] and speed
up the query by initializing the result set with the shortest path on
each dimension. We call this implementation the Baseline Best-
first Search method (abbreviated as BBS). BBS returns exact SPQ
solutions that are used to verify the quality of the approximate
solutions.
Comparison methods. Since no existing index structure is partic-
ularly designed to support SPQs, to demonstrate the effectiveness
of our proposed index construction strategy backbone_normal
(Algorithm 2), we modify two representative shortest path indexes,
GTree [50] and CH [37], to compare with our index structures.
The index construction process of GTree and CH follows their
original contracting process. The difference is that we use skyline
paths (instead of shortest paths) as the new edges. We also imple-
ment two more variations (backbone_none and backbone_each)
of our index construction methods by varying the implementation
of triggering the aggressive graph summarization (Section 4.3.1).
The backbone_none only conducts regular graph summarization.
The backbone_each triggers the aggressive summarization at each
level.

6.2 Experimental results
6.2.1 Effectiveness of the proposed index structure and

query method. We compare the query results with the exact
solutions returned by BBS. The BBS method does not work well on
large graphs [19]. Thus, we use small subgraphs of C9_NY with
5K and 15K nodes. On both C9_NY_5K and C9_NY_15K, we
randomly generate 300 queries (i.e., pairs of starting and ending
nodes of the queries). For these random queries, we run both
the BBS method and our methods to get exact and approximate
solutions for comparisons.

We examine how good the approximate results are. Figures 8(a-
b) show the RAC values. Three consecutive bars in the same color
and shape represent results from one method. The ratio for each
dimension is shown from left to right. Figures 8(c-d) plot the good-
ness values. We can see that backbone_none has the best (smallest)

333

average approximation in most cases among the three variations.
This is because the backbone_none variation keeps much more
nodes and edges in 𝐺𝐿 while building the index. One exception
is that backbone_none is slightly worse than backbone_each on
C9_NY_15K when 𝑚𝑚𝑎𝑥=600 . This is because the level 𝐿 of
the index generated by the backbone_none (𝐿=6) is larger than
the level of index generated by backbone_each (𝐿=4). This is
consistent with our analysis about the index structure: an index
with a larger 𝐿 (meaning a higher index) loses more information.

The backbone_each and backbone_normal variations perform
similarly because they all trigger the aggressive strategy. They
provide rough 1.5-approximation solutions (RAC) and get ∼0.85
goodness scores. The approximation of backbone_normal is slightly
better than that of backbone_each for three settings (𝑚𝑚𝑎𝑥=200
for both graphs, and𝑚𝑚𝑎𝑥=600 for C9_NY_5K) because the in-
dexes generated using backbone_normal are larger than those gen-
erated using backbone_each in these three settings. On the other
hand, backbone_each slightly outperforms backbone_normal for
the remaining three settings (𝑚𝑚𝑎𝑥=400 for both graphs, and
𝑚𝑚𝑎𝑥=600 for C9_NY_15K) because of a similar reason.

200 400 600
cluster size

0

50

100

150

200

of

 sk
yl

in
e

pa
th

s

BBS
none
each
normal

(a) C9_NY_5K

200 400 600
cluster size

0

50

100

150

200

250

of

 sk
yl

in
e

pa
th

s

BBS
none
each
normal

(b) C9_NY_15K
Figure 9: Comparison of result set size (# of skyline paths)

Figures 9 shows that all three variations can hugely reduce the
result-set sizes. When more nodes and edges are kept in 𝐺𝐿 , more
skyline paths are found on 𝐺𝐿 , which leads to a larger result set.
When cluster size increases, the backbone_none variation gen-
erates larger 𝐺𝐿 compared with the other two variations, which
slows down the m_BBS significantly. Figure 10 reports the aver-
aged query time for the 300 queries. The backbone_none variation
even needs more time than BBS in most situations because of the
large𝐺𝐿 . The query time of backbone_each and backbone_normal
is stably small because of a smaller 𝐺𝐿 (Figure 10). In summary,
our proposed index construction approach can achieve a good
trade off in preserving the graph information and effectively sup-
porting queries.

200 400 600
cluster size

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Qu
er

y
tim

e
(m

s)

1e3
BBS
none
each
normal

(a) C9_NY_5K

40

60

80 1e3
BBS
none
each
normal

200 400 600
cluster size

0
2
4
6

Qu
er

y
tim

e
(m

s)

(b) C9_NY_15K

Figure 10: Comparison of query time

6.2.2 Efficiency of index construction. We conduct experi-
ments to measure the index size and building time by comparing
our index structure with GTree and CH. We use subgraphs of
C9_NY with 5K, 10K, and 15K nodes. For the GTree method, the
fan out is set to be 4 and the number of vertices in a leaf node is
set to 64. These parameter values are used to generate the best

results in the original paper. The experimental results are reported
in Table 2.

The results show that the index size of GTree is comparable to
our proposed method. However, the construction time of GTree is
much more than our method. The main reason is that the graph
contracting process of GTree increases the graph size, which
grows exponentially in the number of nodes and edges. Such
graph-size increase slows down the performance of SPQs. For
example, the root node in the GTree contains 74794 and 169623
edges for C9_NY_5K and C9_NY_15K respectively. The index
on C9_NY_10K cannot be created in one day while processing a
non-leaf node with 2,754,341 edges. Given these, we can observe
that GTree index structure is not practical in supporting SPQs on
large graphs.

Table 2: Comparison of index construction

C9_NY_5K C9_NY_10K C9_NY_15K

Construction
time (sec.)

Backbone 99 251 216

GTree
23,896

(6 hours) -
39,781

(11 hours)
CH 12,000 42,184 26,340

Index size
(MB)

Backbone 27 89 68
GTree 27.5 - 41.6

Size of the
most abstracted graph

CH node #
CH edge #

4,071
22,627

9,654
30,894

13,499
83,302

For the CH index, we report the graph size instead of the index
size because the final graph of the CH is used to speed up online
shortest path queries. The result shows that the number of nodes
does not change much after summarization. However, the number
of edges is at least 5 times more than that in the initial graph.
The huge final graph causes the deterioration of query processing.
The underlying reason is that multiple skyline paths (instead of
one shortest path) exist between two nodes. Furthermore, the
index building time also becomes impractical when the graph size
increases.

6.2.3 Effectiveness of using dense clusters to condense
𝐺𝑖 . We evaluate the effectiveness of our approach of using dense
clusters to condense 𝐺𝑖 (Section 4.2). For comparison purpose,
we implement another approach to partition the nodes in 𝐺𝑖 to
different connected components by using BFS. Other partition
methods [24, 27] used in [26, 30, 32] that merely consider the
connectivity between partitions but not the density of the partitions
get similar results as the BFS partitioning method. Our method is
labeled as NODE and the alternative partition method is labeled
as BFS. We measure the index size and the time to construct the
backbone index from the partitions discovered using our dense-
cluster based method and from the partitions found using BFS
method.

Figure 11 shows the results on dataset C9_NY_15K. When
the cluster size increases, building indexes using the partitions
found from the BFS method requires longer time and uses more
space (can be more than three times for 𝑚𝑚𝑎𝑥=800), compared
with creating indexes using graph partitions discovered from our
method.

This result demonstrates that our design of using dense clusters
to condense a graph is more appropriate than using partitions
which do not consider graph density.

6.2.4 Scalability test of query algorithms. We test the
scalability of our approach by comparing it with BBS on subgraphs
of C9_BAY with different number of nodes (from 10K to 100K).
We generate ten random queries for different datasets. To control
the randomness of queries, we constrain the distributions of the
number of hops between the starting and ending query nodes to
be similar for all the datasets. In particular, for each dataset, two

334

200 400 600 800
cluster size

0

50

100

150

200

250

300

Co
ns

tru
ct

io
n

tim
e

(S
ec

.) BFS
NODE

(a) Construction time

200 400 600 800
cluster size

0

100

200

300

In
de

x
siz

e
(M

B)

BFS
NODE

(b) Index size

Figure 11: Effectiveness of cluster-based condensing

queries have less than 50 hops, three queries have between 50 to
100 number of hops, and five queries have larger than 100 hops.
We also constrain that these queries can be finished in fifteen
minutes using the BBS method so that comparisons can be done
with reasonable time. We run these queries using our approach
and the BBS method, and report the averaged running results in
Table 3.
Table 3: Scalability of query algorithms (subgraphs of
C9_BAY)

of nodes 10K 40K 70K 100K
RAC 1.41, 1.67, 1.63 1.48, 1.79, 1.68 1.85, 1.90, 1.93 1.56, 1.80, 1.71

Goodness
(Cosine similarity) 0.88 0.85 0.87 0.87

BBS method
query time (ms) 34,154 63,557 101,470 30,789

Backbone index
query time (ms) 461 410 437 470

Speed-up ratio 74 155 232 65

Construction time
(ms) 126,450 429,488 815,771 930,892

The first observation is that our proposed algorithm achieves
reasonable RAC and goodness score in these different graphs.
Second, although the construction time grows as the graph size in-
creases, the improvement of query time is significant. Our method
speeds up the BBS method dramatically (more than 65 times in
all subgraphs). We are aware that the construction time of our
backbone index is not less than the average query time of BBS.
This is because the index construction needs to pre-calculate sky-
line path information for all the node pairs in each cluster. We
need to emphasize that the backbone index just needs to be built
once and can support any ad-hoc SPQs efficiently. To speed up the
index construction process, we need to improve the component of
pre-calculating skyline paths. A reasonable idea is to pre-calculate
less (but still good) skyline paths for the node pairs in clusters
utilizing strategies in [20].

The query time of both the BBS method and our method does
not show a steady trend with the increase of node numbers. This
is because the performance of the BBS method is more affected
by node degrees and the number of hops of queries according
to our preliminary study [19]. On the 100K subgraph, the BBS
method has abnormally low running time because of the lower
average node degree of this graph compared with other graphs and
the smaller average number of hops for queries on this subgraph.
Our proposed method takes a relatively constant time on different
subgraphs (vary from 410 ms to 470 ms). The queries over the
10K graph have larger query time because its index has more
levels (i.e., a larger 𝐿).

6.2.5 Effect of parameters. Figure 12 shows the impact
of the parameters 𝑝 and𝑚𝑚𝑎𝑥 on the performance of index con-
struction. The index construction process is sensitive to the cluster

200 400 600 800
cluster size

0.5

1.0

1.5

2.0

2.5

Co
ns

tru
ct

io
n

tim
e

(S
ec

.)

1e4
construction time
index size

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
de

x
Si

ze
 (M

B)

1e4

(a) Varying𝑚𝑚𝑎𝑥

5 10 15 20
percentage

3.0

3.2

3.4

3.6

3.8

4.0

Co
ns

tru
ct

io
n

tim
e

(S
ec

.)

1e3
construction time
index size

2.2

2.3

2.4

2.5

2.6

2.7

2.8

In
de

x
ize

 (M
B)

1e3

(b) Varying 𝑝

Figure 12: Index building time and index size for C9_NY

size as shown in Figure 12(a). Both the time of finding skyline
paths and the number of skyline paths in each cluster grow with
the increase of𝑚𝑚𝑎𝑥 . The results indicate that it is practical to set
𝑚𝑚𝑎𝑥 to be 200 and 400 to get reasonable building time and index
size. When𝑚𝑚𝑎𝑥 reaches 800, the algorithm can take 6 hours to
build the index and the index size is 3.5 times of 𝐺’s size, which
is not workable. On the contrary, the building time and the index
size are almost constant when 𝑝 changes (Figure 12(b) because 𝑝
only affects the levels of the indexes 𝐿, which are almost the same
for different 𝑝 values.

0 10 20 30 40 50
pind

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Go
od

ne
ss

 (C
os

in
e

sim
.) Cosine sim.

(a) Varying 𝑝𝑖𝑛𝑑

0 50 100 150
mmin

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Go
od

ne
ss

 (C
os

in
e

sim
.) Cosine sim.

(b) Varying𝑚𝑚𝑖𝑛

100 500 1000
mmax

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Go
od

ne
ss

 (C
os

in
e

sim
.) Cosine sim.

(c) Varying𝑚𝑚𝑎𝑥

Figure 13: Goodness comparison on C9_NY_15K

We further examine the effect of three parameters, condensing
threshold 𝑝𝑖𝑛𝑑 , minimum cluster size𝑚𝑚𝑖𝑛 , and maximum cluster
size𝑚𝑚𝑎𝑥 on the quality of approximation results using a small
graph with 15K nodes (C9_NY_15K) because BBS is inefficient
on large graphs. The reported numbers in Figure 13 are averaged
from results of 100 random queries over C9_NY_15K. For the
parameter 𝑝𝑖𝑛𝑑 , the overall trend is that its effect fluctuates before
reaching a value (20 for this test) and slightly decreases after that.
In this test, the best performance is achieved with zero. This is be-
cause the dataset is obtained using BFS and it has less low-density
nodes. This is not the general conclusion for all the datasets. For
𝑚𝑚𝑖𝑛 , a similar overall trend is observed: its effect fluctuates be-
fore reaching a value (𝑚𝑚𝑖𝑛=50) and slightly decreases after that.
This is because the approximation is worse when we do not suffi-
ciently merge small clusters (smaller 𝑚𝑚𝑖𝑛) or merge big clusters
(larger𝑚𝑚𝑖𝑛). For the parameter𝑚𝑚𝑎𝑥 , the goodness score shows
fluctuations with an overall trend of decreasing performance with
the increase of 𝑚𝑚𝑎𝑥 . Given these, smaller 𝑚𝑚𝑎𝑥 should be used

335

to achieve better query accuracy. However, very small 𝑚𝑚𝑎𝑥 (the
extreme case is 𝑚𝑚𝑎𝑥=1) should not be used because of much
longer query time.

6.2.6 Performance on larger graphs. We apply our index
construction approach to large real-world graphs. The results are
shown in Table 4. The size of the highest graph row shows the

Table 4: Scalability of backbone index construction

C9_NY C9_BAY C9_COL C9_FLA C9_E C9_CTR
Construction time (sec.) 3,305 3,056 4,331 12,082 61,471 532,456

Index size (MB) 2,526 1,954 2,535 6,531 21,484 81,196
Size of the (node #)

highest graph (edge #)
193
193

152
152

4
6

219
306

97
131

167
217

Query time (ms) 419 426 414 505 526 516
(a)

L_CAL L_SF L_NA
Construction time (sec.) 270 3,056 1,472

Index size (MB) 86 1954 709
Size of the (node #)

highest graph (edge #)
173
248

152
152

56
87

Query time (ms) 479 424 418
(b)

number of nodes (top number) and edges (bottom number) in
the most abstracted graph 𝐺𝐿 . Table 4(a) shows the results on
the graphs [1] that have higher node degrees. Table 4(b) shows
the results on graphs with lower average node degrees [5]. Our
proposed algorithm scales well as the number of graph nodes
increases from 0.01 million (C9_NY_10) to 14 million (C9_CTR).
On the graph C9_CTR, the average search time is only 0.5 seconds.
A huge jump on the index construction time occurs on C9_CTR.
This is because the graph has higher node degrees, which make the
pre-calculation of skyline paths in dense clusters more expensive
than in other graphs.

CORR ANTI INDE0.0

0.5

1.0

1.5

2.0

2.5

Qu
er

y
tim

e
(m

s)

1e4
BBS
Backbone

(a) C9_NY_20K

CORR ANTI INDE0.0

0.5

1.0

1.5

2.0

2.5

Qu
er

y
tim

e
(m

s)

1e4
BBS
Backbone

(b) C9_BAY_20K

Figure 14: Query time (different edge-cost distributions)

CORR ANTI INDE0.70

0.75

0.80

0.85

0.90

0.95

1.00

Go
od

ne
ss

 (C
os

in
e

Si
m

.) Cosine Sim.

(a) C9_NY_20K

CORR ANTI INDE0.70

0.75

0.80

0.85

0.90

0.95

1.00

Go
od

ne
ss

 (C
os

in
e

Si
m

.) Cosine Sim.

(b) C9_BAY_20K

Figure 15: Goodness scores (different edge-cost distributions)

6.3 Effect of edge-cost distribution
We examine the effect of the distribution of edge cost on the
query time and the goodness score. We generate subgraphs with
20K nodes from the C9_NY and C9_BAY datasets. For these sub-
graphs, we generate synthetic edge cost that are correlated (CORR)
with, or anti-correlated (ANTI) with, or independent (INDE) from

the distance between two nodes. Over these subgraphs, 150 ran-
dom queries have been generated and executed. The average query
time is reported in Figure 14. The correlated edge cost leads to
the shortest BBS query time. Among the three types of edge cost,
BBS method has the longest query time when edges have anti-
correlated cost. On the contrary, the performance of our proposed
algorithm is relatively constant to the edge-cost distributions and
is much faster than the BBS method (Figure 14). Figure 15 shows
the similar performance of queries over the backbone index on
graphs with different types of edge-cost distributions. It is interest-
ing to note that our proposed approach works even slightly better
on graphs with anti-correlated or random edge cost than on graphs
with correlated edge cost. This shows the potential of applying
our methods to networks other than road networks because road-
network cost are generally correlated to the distance between two
nodes.

6.4 Case study
To illustrate the usefulness of the query results returned by our
method, we visualize the result sets returned by our method and
BBS from C9_NY_10K for a randomly picked query. Figure 16(a)
plots all the 293 exact skyline paths, which differ from each other
with only a tiny portion of the nodes/edges. When plotted, it
looks like there are only very few alternative routes. Thus, the
visualization cannot clearly show the many different routes. Fig-
ure 16(b) shows the five approximate skyline paths returned from
our method, where only the highway entrances and the abstracted
paths are drawn. The results returned by our method are more
representative and succinct than the large number of exact solu-
tions that share a large portion of nodes and edges, thus can better
support decision making.

(a) Exact search results (b) Approximate search results

Figure 16: Use case demonstration

7 CONCLUSIONS
This paper introduces a new index structure (denoted as backbone
index) to support efficient processing of SPQs over MCRNs. This
index structure organizes the summarized graphs of the original
graph with different summarization granularity in a hierarchical
structure. Higher-level graphs summarize lower-level graphs by
reducing the graph density. We implement a practical index con-
struction approach that utilizes the idea of finding dense clusters to
condense graphs. A corresponding query processing method is in-
troduced to find approximate skyline paths by using our proposed
index. Extensive experiments are conducted on nine real-world
road networks. Our introduced query method can find reasonable
approximate results efficiently, which are comparable to the re-
sults found by an exact SPQ query algorithm. The results also
show that our backbone index has more efficient index size and
building time than two other index structures adopted from the
shortest-path-query supporting indexes.

336

REFERENCES
[1] 9th DIMACS Implementation Challenge. http://users.diag.uniroma1.it/

challenge9/download.shtml.
[2] DB-Engines Ranking of Graph DBMS. https://db-engines.com/en/ranking/

graph+dbms.
[3] GitHub Repository for this work. https://github.com/gongwolf/BackbonIndex.
[4] Neo4j Graph Platform. https://neo4j.com/.
[5] Real Datasets for Spatial Databases: Road Networks and Points of Interest.

https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm.
[6] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data,
pages 349–360, 2013.

[7] Saad Aljubayrin, Bin Yang, Christian S. Jensen, and Rui Zhang. Finding non-
dominated paths in uncertain road networks. Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems, 2016.

[8] Neli Blagus, Lovro Šubelj, and Marko Bajec. Assessing the effectiveness of
real-world network simplification. Physica A: Statistical Mechanics and its
Applications, 413:134–146, 2014.

[9] G. Borruso. Network density estimation: A gis approach for analysing point
patterns in a network space. Trans. GIS, 12:377–402, 2008.

[10] Zhan Bu, Zhiang Wu, Liqiang Qian, Jie Cao, and Guandong Xu. A backbone
extraction method with local search for complex weighted networks. 2014
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2014), pages 85–88, 2014.

[11] S. Chawla, Venkata Rama Kiran Garimella, A. Gionis, and Dominic Tsang.
Backbone discovery in traffic networks. International Journal of Data Science
and Analytics, 1:215–227, 2016.

[12] Yi-Chung Chen and Chiang Lee. Skyline path queries with aggregate attributes.
IEEE Access, 4:4690–4706, 2016.

[13] Zitong Chen, A. Fu, Minhao Jiang, Eric Lo, and Pengfei Zhang. P2h: Efficient
distance querying on road networks by projected vertex separators. Proceedings
of the 2021 International Conference on Management of Data, 2021.

[14] Liang Dai, Ben Derudder, and Xingjian Liu. Transport network backbone
extraction: A comparison of techniques. Journal of Transport Geography,
69:271–281, 2018.

[15] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[16] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

[17] Xiaoyi Fu, Xiaoye Miao, Jianliang Xu, and Yunjun Gao. Continuous range-
based skyline queries in road networks. World Wide Web, 20(6):1443–1467,
2017.

[18] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
traction hierarchies: Faster and simpler hierarchical routing in road networks.
In International Workshop on Experimental and Efficient Algorithms, pages
319–333. Springer, 2008.

[19] Qixu Gong and Huiping Cao. Technical report, TR-CS-NMSU-2022-
0223, Supplementary Materials. https://computerscience.nmsu.edu/research/
technical-reports.html.

[20] Qixu Gong, Huiping Cao, and Parth Nagarkar. Skyline queries constrained by
multi-cost transportation networks. 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pages 926–937, 2019.

[21] Sheng Guan, Hanchao Ma, and Yinghui Wu. Attribute-driven backbone dis-
covery. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 187–195, 2019.

[22] Andrey Gubichev, Srikanta J. Bedathur, Stephan Seufert, and Gerhard Weikum.
Fast and accurate estimation of shortest paths in large graphs. In CIKM ’10,
2010.

[23] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern.,
4:100–107, 1968.

[24] Y. Huang, N. Jing, and Elke A. Rundensteiner. Effective graph clustering for
path queries in digital map databases. In CIKM ’96, 1996.

[25] Shalev Itzkovitz, Reuven Levitt, Nadav Kashtan, Ron Milo, Michael Itzkovitz,
and Uri Alon. Coarse-graining and self-dissimilarity of complex networks.
Phys. Rev. E, 71:016127, Jan 2005.

[26] N. Jing, Y. Huang, and Elke A. Rundensteiner. Hierarchical encoded path views
for path query processing: An optimal model and its performance evaluation.
IEEE Trans. Knowl. Data Eng., 10:409–432, 1998.

[27] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. J. Parallel Distributed Comput., 48:96–129, 1998.

[28] Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Matthias Renz, and Tim
Schmidt. Proximity queries in large traffic networks. In GIS, 2007.

[29] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route skyline
queries: A multi-preference path planning approach. 2010 IEEE 26th Interna-
tional Conference on Data Engineering (ICDE 2010), pages 261–272, 2010.

[30] K. Lee, W. Lee, B. Zheng, and Yuan Tian. Road: A new spatial object search
framework for road networks. IEEE Transactions on Knowledge and Data
Engineering, 24:547–560, 2012.

[31] Qiyan Li, Yuanyuan Zhu, and J. X. Yu. Skyline cohesive group queries in
large road-social networks. 2020 IEEE 36th International Conference on Data

Engineering (ICDE), pages 397–408, 2020.
[32] Zijian Li, Lei Chen, and Yue Wang. G*-tree: An efficient spatial index on road

networks. 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 268–279, 2019.

[33] A. Maratea, A. Petrosino, and Mario Manzo. Extended graph backbone for
motif analysis. Proceedings of the 18th International Conference on Computer
Systems and Technologies, 2017.

[34] D. Orellana and M. Guerrero. Exploring the influence of road network structure
on the spatial behaviour of cyclists using crowdsourced data. Environment and
Planning B: Urban Analytics and City Science, 46:1314 – 1330, 2019.

[35] Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Y. Zhang, and Xuemin Lin.
Progressive top-k nearest neighbors search in large road networks. Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data,
2020.

[36] Ning Ruan, Ruoming Jin, Guan Wang, and Kun Huang. Network backbone
discovery using edge clustering. arXiv preprint arXiv:1202.1842, 2012.

[37] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest
path queries. In ESA, 2005.

[38] M Ángeles Serrano, Marián Boguná, and Alessandro Vespignani. Extracting
the multiscale backbone of complex weighted networks. Proceedings of the
national academy of sciences, 106(16):6483–6488, 2009.

[39] Yuan Tian, K. Lee, and W. Lee. Finding skyline paths in road networks. In GIS
’09, 2009.

[40] Ulrike von Luxburg, Agnes Radl, and Matthias Hein. Hitting and commute
times in large graphs are often misleading. 2010.

[41] T. Wang, C. Ren, Y. Luo, and J. Tian. Ns-dbscan: A density-based clustering
algorithm in network space. ISPRS Int. J. Geo Inf., 8:218, 2019.

[42] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. nature, 393(6684):440–442, 1998.

[43] Victor Junqiu Wei, R. C. Wong, and Cheng Long. Architecture-intact oracle
for fastest path and time queries on dynamic spatial networks. Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data,
2020.

[44] Bin Xu, Jun Feng, and Jiamin Lu. Continuous skyline queries for moving
objects in road network based on mso. In Proc. of the 12th Intl. Conf. on
Ubiquitous Information Management and Communication, IMCOM, pages
53:1–53:6. ACM, 2018.

[45] Bin Yang, Chenjuan Guo, Christian S. Jensen, Manohar Kaul, and Shuo Shang.
Multi-cost optimal route planning under time-varying uncertainty. 2013.

[46] Bin Yang, Chenjuan Guo, Christian S. Jensen, Manohar Kaul, and Shuo Shang.
Stochastic skyline route planning under time-varying uncertainty. 2014 IEEE
30th International Conference on Data Engineering (ICDE), pages 136–147,
2014.

[47] Yajun Yang, Hang Zhang, Hong Gao, Qing hua Hu, and Xin Wang. An efficient
index method for the optimal route query over multi-cost networks. ArXiv,
abs/2004.12424, 2020.

[48] Man Lung Yiu and N. Mamoulis. Clustering objects on a spatial network. In
SIGMOD ’04, 2004.

[49] Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang
Zhou. Dynamic hub labeling for road networks. 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 336–347, 2021.

[50] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. G-tree: An
efficient index for knn search on road networks. In Proceedings of the 22nd
ACM international conference on Information & Knowledge Management,
pages 39–48, 2013.

337

