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Abstract

We study the high-dimensional asymptotics of empirical risk minimization (ERM) in over-parametrized
two-layer neural networks with quadratic activations trained on synthetic data. We derive sharp
asymptotics for both training and test errors by mapping the ¢>-regularized learning problem to a
convex matrix sensing task with nuclear norm penalization. This reveals that capacity control in such
networks emerges from a low-rank structure in the learned feature maps. Our results characterize
the global minima of the loss and yield precise generalization thresholds, showing how the width
of the target function governs learnability. This analysis bridges and extends ideas from spin-glass
methods, matrix factorization, and convex optimization and emphasizes the deep link between
low-rank matrix sensing and learning in quadratic neural networks.

1. Introduction

Modern machine learning relies heavily on training highly over-parameterized neural networks,
which often generalize well despite having far more parameters than data points [51]. While it is
known that large non-linear networks can approximate many functions [10], it remains unclear what
these models actually learn in practice, and why training succeeds so often. In particular, we lack
a precise understanding of how the structure of the data and the target function affects learnability,
and how many samples are needed. Developing such an understanding remains a central theoretical
challenge.

A promising route toward addressing these questions is to study models that go beyond the
linear case—already well understood, eg. [24, 26, 43]—while remaining simple enough for rigorous
analysis. Two-layer networks with quadratic activations are then the next natural candidate that
captures some nonlinear behavior while still allowing for mathematical treatment [2, 18, 31]. On top
of that working with synthetic data helps isolate the core mechanisms of learning and generalization
[3, 11, 35, 36, 49], free from the confounding factors of real-world datasets.

In this paper, we thus study learning by empirical risk minimization with quadratic networks from
data that is also generated by a quadratic network. Consider a dataset D = {x*, y“}ﬁzl where the
data x* € R? are standard Gaussian " ~ N (0,I) (though our results allow for some universality)
for u = 1,...,n, and the labels y* € R are generated by an unknown target function f*(x). We
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aim at learning this unknown function using a quadratic neural network f (x; W) with a number of
hidden unit m > d:

i = fla:W) :=¢17n20k (Vkada") (M)
k=1

where oy (u) = u? — ||wy||?/d is the (centered) quadratic activation, and where we collect the
first-layer weights wy, € R? for k = 1,...,m in the matrix W € R™*9. We learn W by empirical
risk minimization of the square loss with ¢5 regularization (or equivalently, weight decay):

W= argmin £0F). where  £(0) =3 (v~ f@ W) - MWIE. @
pn=1

Given the structure of the model, the considered quadratic neural network can represent any centered
positive semi-definite quadratic form of the input data—but no more. In particular, functions
involving higher-order nonlinearities cannot be captured and are effectively treated as noise by the
learner. To focus on the regime where generalization is possible, we therefore choose a target function
f* that lies within the expressivity class of the model (1) (we will also refer to the model as the
student while thinking about the target as the teacher):

1 Wi - x
W k(. * m : Y *\ . = k
Yt = frat W) + VAR, with  ff (W) W;Uk< Va >, 3)
where &* ~ N(0, 1) is an additional Gaussian label noise. As will shall see, our result will depend
on W* only through the spectral density of S* = (W*)TW* /v/m*d € R?*?, which needs to have a
well-defined limit as d — oo.
We will work in the high-dimensional limit d — oo with extensive-width target and quadratically
many samples, i.e. the joint limit d, n, m*, m — 400 with

a=n/d*>=0(1), ke=m*/d=0(1), k=m/d=0O(1). 4)

Our contributions. We provide an exact characterization of training and generalization in over-
parameterized two-layer neural networks with quadratic activations, in the high-dimensional limit
with Gaussian data. Our main result (Theorem 1) gives closed-form expressions for the training loss,
generalization error, and spectral properties of the global minima of the regularized empirical risk (2),
in the regime k = m/d > 1, k* = O(1), and A > 0.

Our solution to this problem connects three previously distinct lines of research that turn out
to be related: the geometry and training dynamics of quadratic networks in teacher-student setups
[2, 18, 33, 47], recent advances in high-dimensional Bayesian analysis of networks with extensive
width [29, 31], and the role of implicit regularization in matrix factorization [21] and its connection
to matrix compressed sensing and nuclear norm regularization [16, 46].

Concretely, we map the non-linear estimation problem for W in (2) to the linear one of estimating
the matrix S = WTW/ Vmd € R%4_ where, remarkably, the {5 regularization on W translates into
a nuclear norm regularization on .S. This reveals that the learning dynamics implicitly favor solutions
f corresponding to narrow neural networks. We then study this equivalent matrix model by rigorous
tools based on approximate message passing [7, 19] and their relation to convex optimization [28].
Our main result is Theorem 1, an analytical prediction for the test error achieved by the ERM, where
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importantly the error does not depend on the value of « as long as x > 1, thus describing potentially
massively over-parameterized models. Theorem 1 allows us to answer a range of questions as a
function of k* (see Section A).

1. Location of the interpolation threshold: How many samples 7 are needed to have only a unique
global minimum of (2) in the limit A = 0, both in the noiseless and noisy case?

2. Generalization performance: How many samples n are needed to achieve perfect generalization
with zero label noise?

3. Low-rank limit: What is the generalization performance in the limit £*11 corresponding to
low-rank target functions?

In this paper, we provide new sharp results focusing on the extensive width case, encompassing
the full range of target widths and focusing in particular on the setting 0 < k* < 1, previously
unexplored.

Finally, we remark that while (2) is a priori non-convex, it has no non-global local minima [2],
implying that if a gradient-based algorithm converges to a minimum at all, it must converge to a global
one. Hence, our main result Theorem 1 provides a closed-form characterization of the behavior at
convergence to minima of gradient-based algorithms for any strictly positive regularization \.

2. Setting and notations

We consider a dataset of n samples D = {x*, y“}ﬁzl, with z* € R? and y* € R, constructed as in
(1). We remark that the assumption of Gaussian data could be relaxed in the same spirit as in [50,
Assumption 2.2], and denote by E the average of the training set. We will assume that the empirical
spectral density of the matrix S* = (W*)TW* /v/m*d € R?*? converges to a limiting distribution
w* with finite first and second moment as d — oo with k* = m*/d = O(1), and call Q* its
second moment. As our running example, we will focus on the Marchenko-Pastur (MP) target case,
where the weights w* are such that the limiting distribution satisfies 1*(z) = vk*uap.(VE*T),
where pyr p. is the Marchenko-Pastur distribution [32] with parameter x* (the asymptotic spectral
distribution of AT A/m where A € R™*? has i.i.d. zero-mean unit-variance components), and
Q* = 1+ k*. For example, this is the case for w* with i.i.d. components extracted from a
distribution with zero mean and unit variance, but we stress that our results hold also for deterministic
targets, as well as targets with different spectral distributions.

We learn the dataset by empirical risk minimization on the loss (2), and unless stated otherwise,
in this paper we will always consider learning with m > d, typically for m > m™*. We will measure
the performance of the empirical risk estimator using the test error on the labels

cues (W) = 3B (1 (W) — flaz W) )

where the average is over a new test sample & with the same distribution as the training samples
(notice that for the sake of the test error we do not add any label noise on the test label). We will
always consider the high-dimensional limit (4).
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3. Main theorem

Our main technical result is the characterization of the properties of the global minima of the
empirical loss (2) in the high dimensional limit in terms of training and test error.

Theorem 1 (Asymptotics of ERM (2), informal) Consider the setting of Section 2 with k > 1. De-

fine A = \/k\ and s = W*Bps.c. 5, where B is the free convolution and fis ¢ 5 = V 462 — 22 /(2m6?)
the semicircle distribution of radius 26 for § > 0. Call (6, €) € Ri the unique solution of

- 3 e
dad K nJ (9, A(;) i i where J(a,b) = / dz () (z — b)*. (6)
Q* + 5 + 2062 — - = (1 - 6)\82)J(57 )‘6) b

Then, for all values of a, k4, X > 0, A > 0 and x > 1 any global minimum W/ v'md of (2) satisfies

X o5 A N
lim Eegest (W) = 206 — =, lim d2EL(W) = 82J(5 A€) . (7
d—o00 2 d—o0 42
Moreover, the empirical singular value density of W satisfies
1< < -
dlim E p §(x — ;) = Fs(\e)d(z) + I(x > 0) |2xpug(2x? + )\E)] (8)
—00
i=1

where {O’Z‘}zdzl are the singular values of W, I is the indicator function and Fj is the c.d.f. of .

Sketch of the proof. The proof, detailed in Appendix B, proceeds as follows. We use a reduction of
a regularized version of the minimization (2) to the one of a positive semi-definite matrix estimation:

S = argmin £(S), with £(S ZTr ) (S — SN+ Vmd (A\Te(S) +7||S|%)  (9)
S>0

where we defined S* = W*(W*)T /v/m*d and X (z) = (zx” —1,)/V/d, and where we have added
a Frobenius norm penalty of amplitude 7. Notice that (9) is strongly convex for A\, 7 > 0, so that
S is unique. Under the mapping S(W) = WW7 /v/md, we have S = S(W) for any (Frobenius
regularized) solution of (2), due to the uniqueness of S. The second part is to use the Gaussian
universality principle, that allows to replace each matrix (xa” —1,)/+/d by a random Wigner matrix,
following closely the steps of [31, 50]. This in turns reduces the problem to a rank-penalized matrix
recovery problem with GOE(d) sensing matrices:

S =argmin Lg(S), with £(S) = Tr[Z" (S — 5*)* + Vmd (ATe(S) + 7[|S|F)  (10)
S=0 P

The problem can then be studied in various way. For instance with the heuristic, but powerful, replica
method technique from statistical physics (see for instance [30]). To provide a rigorous approach,
we use instead a suitable Approximate Message Passing (AMP) algorithm with non-separable prior
[7, 19], designed in such a way as its (unique) non-trivial fixed point is also the fixed point of projected
gradient descent on (9) [5, 28, 40], which by the convexity of (9) coincide with the unique S. We
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Figure 1: Left: Test error of simulations of vanilla GD (crosses, error bars are the standard deviation
over 16 realizations of the target/training set at d = 300) compared with the results of
Theorem 1 (lines) as a function of the number of samples n = ad?, noiseless case A = 0.
We observe a perfect match, particularly striking in the regime of small test error. The
purple line is the Bayes-optimal performance [31]. Right: Test error of simulations of
GD run with LBFGS on (2) (yellow dots, d = 300) and of a convex solver run on the
equivalent convex matrix problem (9) (blue dots d = 50, purple d = 100 dots), for
A = 0.5 and A = 0.02 and as a function of the number of samples n = «d?. Error bars
are the standard deviation over 16 realizations of the target/training set, compared with the
result of Theorem 1 (gray line).

then write the state evolution of this AMP algorithm which gives us all the relevant characteristics of
the minimizer. Simple manipulations of the state evolution equations, in the limit 7 — 0, lead to the
characterization (6). O

Theorem 1 provides an asymptotic result for train and test error, as well as a characterization of
the singular values of the optimal neural network weights. It is of independent interest for the matrix
compressed sensing problem (10) and extends directly to matrix problems with any convex loss and
spectral regularization under convex constraints.

A remarkable observation is that the {5 regularization over the weights W naturally translates to
a nuclear norm regularization in the equivalent matrix problem (the convexification of the minimum
rank regularization), naturally favoring model weights configurations with an effective lower width
(i.e., implementable with fewer hidden units): a weight decay in W thus implies a low nuclear norm
of the matrix S.

Theorem 1 also implies that the properties of the global minima do not depend on the network
width m, as long as m > d. This means that a neural network with width x > 1 will achieve the
same test error as a much narrower network with £ = 1, when trained on the same data, provided
that the regularization strength is appropriately matched. Theorem 1 thus described both mildly and
massively over-parametrized models since for very large ~ the number of learnable parameters will
be not only much larger than the target function, but also can be much larger than the number of
samples.
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Overview of Appendix A. In Appendix A, we present the main consequences of Theorem 1. We
first analyze the learning curves of the empirical risk minimizer in both noiseless and noisy settings.
We then define and characterize the interpolation threshold ajpter (£’A), providing an exact formula
and its limits for vanishing and large label noise. Next, we derive the strong recovery threshold
ozstmng(n) in the noiseless setting, identifying when test error vanishes. Finally, we analyze the
k* — 0 limit, providing a closed-form expression for the test error in this regime and highlighting
the presence of a BBP-type phase transition.

Numerical implementation. We provide the code for the solution of the equations in Theorem 1
and the experiments at https://github.com/SPOC-group/OverparametrisedNet.
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Appendix A. Main consequences of Theorem 1

In this section we focus specifically on the Marchenko-Pastur target case (see Section 2, details on
the computation of y5 in Result 1 are given in Appendix F). We believe that our results generalize
(qualitatively for the learning curves, and as is for the thresholds and the low-rank target limit) to
any target such that x* has a finite spectral gap, i.e. such that Ay, = min{z € supp(u*)|x > 0}
satisfies Apin > 0, with mass in zero equal to max(0,1 — x*) (i.e. rank of the associated target
matrix |min(x*, 1)d]) and second moment Q* = 1 + x*.

Learning curves. In Figure 2 we show the test and train error of any global minimum of the loss
function (2) given by Theorem 1, both the noiseless (A = 0) and noisy (A = 0.5) scenarios. Details
on the numerical experiments are given in Appendix F.

In the noiseless case (Figure 2 left), we plot the test error as functions of the sample ratio « for
a finite regularization value (A = 0.4, blue line), in the limit of vanishing regularization (A\ — 07,
yellow line), and for the optimal choice of regularization (dashed line). These are contrasted with
the Bayes-optimal performance as derived in [31] (purple line), clearly illustrating the effect of
regularization on the perfect recovery threshold, marked by the vertical gray line as per Corollary 1.

In the noisy case (Figure 2 center and right), we show both the test and train losses as functions
of the sample ratio o for multiple values of A (solid lines), including the minimum regularization
interpolator limit (A — 0, yellow line) and the optimally regularized scenario (dashed line). Notably,
we highlight the specific region of o where the non-regularized training loss reaches zero (vertical
gray line, as per Result 1), which coincides with the emergence of a cusp — the double descent peak
[6, 41] — in the test error as A decreases.

Interpolation threshold. We define the interpolation threshold ajpter (%, A) as the value of the
sample ratio at which the set of PSD matrices S for which the loss (9) is zero for A = 0 (we call
those the interpolators of the training dataset) shrinks to a single point. For o > aipter (K*, A), (9)
thus has a single global minimum with positive training loss if A > 0, or with both zero training
and test loss if A = 0. For @ < ainter(k*, A) instead, the non-regularized A\ = 0 loss admits many
global minima (all PSD interpolators), while the limit A — 0™ has still a single global minimum
with zero training loss, and minimum value of the regularization norm. While we stated Theorem
1 for A > 0 it also holds, at least at an heuristic level, for & > aipter(k*, A) and A = 0 by directly
plugging A = 0 in (6). The theorem does not hold for A = 0 and o < Qjpter(K*, A) while it can
be adapted to the limit A\ — 0% by a careful rescaling, which we comment upon in Appendix C. A
direct consequence of Theorem 1 is a theoretical characterization of the position of the interpolation
threshold cipger (K*, A).

Result 1 (Interpolation threshold) Consider the setting of Section 2 for a Marchenko-Pastur target.
Then, the interpolation threshold cinger(K*, A) satisfies

1 = A - ) -
iner (57, 8) = =J 1 (5,0) + 04(1) where Q"+ =7 (6,0) — 501740 (5,0) , (A1)
where 01 denotes derivative w.r.t. the first argument, and J was defined in (6). Additionally, we have

: . 1
lim  cypter(K*, A) = = {

1426 — K2 if0<k*<1 . . 1
Jim 1 f lim  ipter (K™, A) = 1 (12)

2 if K*>1 T ASoo

11
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Test error (A = 0) Test error (A = 0.5) Train loss (A = 0.5)
6 0.15
1.2 = = Optimal A _— =01
N\ — xZou {20
x=ot — A =0.01
Bayes 4 = w— A = 0.005 0.10 A
0.8 o optimal m— X = 0.001
34 A = 0.0001
A=o0t
0.4 g { T Optimel A 0.05 /
~ ) 14 : 4
~ /
~. —
0.0 1 1 1 1 = 1 T T -.I 0.00 T T
0.00 0.05 0.10 0.15 0.20 0.25 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Sample complexity a = n/d2 Sample complexity o = n/d2 Sample complexity a = n/d2

Figure 2: (Left) The test error of any global minimum of (2) (Theorem 1) in the noiseless case
A = 0 for finite regularization A\ = 0.4 (blue line), in the limit A — 0" (yellow line) and
for optimal regularization (dashed line). We compare with the Bayes-optimal performance
[31] (purple line), and highlight the strong recovery threshold (vertical gray line, see
Corollary 1). (Center, Right) The test and train loss (2) in the noisy case A = 0.5
for several values of the regularization )\ (solid lines), A\ — 0T (yellow line) and for
optimal regularization (dashed line). We highlight the region of sample ratio o« where
non-regularized training loss goes to zero (before the vertical grey line, from Result 1),
which coincides with the development of a cusp in the test error as A decreases.

Result 1 is derived derived by considering the solution of the minimization problem (6) and setting
A = 0 directly at large o — where there is a unique minimum of (9) — and then looking for the
smallest value of o consistent with a unique minimum assumption. Equivalently, this is when the
asymptotics training loss reach zero (see Appendix D). We plot (12) in Figure 3. As discussed above,
the interpolation threshold does not depend on the width of the student.

It is interesting to contrast our results with the ellipsoid-fitting problem, where one seeks a PSD
matrix S such that a dataset of points {m“}zzl lies on the surface of the associated ellipsoid. This
problem, recently studied in a high-dimensional limit similar to (4) [29, 30], predicts that fitting is
possible as long as o < 1/4. We recover this same threshold, ainter = 1/4, in two extreme cases:
when noise dominates (A — +00) or when the target is vanishingly small (A = 0, x* — 07). In
all other scenarios, however, the interpolation threshold is strictly larger, reflecting the structural
advantage of the data over random labeling. Unlike linear ridge regression or kernel methods, the
interpolation threshold here is nontrivial and intricately linked to data structure. Notably, it is not
simply determined by the ratio of samples to parameters. Despite the effective number of parameters
scaling as O(d?/2), interpolation can occur well before this count if the target function is sufficiently
narrow (0 < k* < 1). This effect arises from the PSD constraint in the equivalent matrix problem
(9), marking a fundamental departure from classic kernel theory.

We note that special cases this threshold has been considered in the literature, for «* > 1 and
A = 0in [18], and our result agrees with these works. An analogue of this threshold (still for
A = 0) has been considered in [47] for the case of low-width target m* = 1, where the interpolation
for the model with x > 1 happens at n = 2d. The authors conjecture without a solid theoretical
justification that for generic m* the interpolation happens at n = d(m* + 1) — m*(m* + 1)/2,

12
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Interpolation inter(£*,A)  Thresholds at A =0 Test error for k* — 0
0.50 T F——| - = 10t
— BO,A=0 — A=0,A=1
A=0A=0" = A =0.005,A =1

—_— A=0.01,A=1

0.25 — A=0 B
— A =0.01 107" o
—_— A =0.1 = BO Str.
= A =05 = ERM Str. i
A=1 Interp. 10~2 4
0.00 ——rrrrrm—rrrrm——rrrrm——rrr } . E . 1 . . . . .
1072 107 10° 10" 10° 0.0 0.5 1.0 00 05 10 1.5 20 25 30 35 4.0
Target width «* Target width x* Rescaled sample complexity & = n/(dm*)

Figure 3: (Left) Interpolation threshold inter(*, A) as a function of k* for several values of label
noise A (Result 1). Notice the convergence to the 1/4 random-label-fitting threshold for
very narrow targets £*11 and large label noise A > 1. (Center) Comparison between
interpolation threshold (Result 1, A = 0) and strong recovery threshold (Corollary 1) of the
global minima of (2), with the BO strong recovery threshold [31]. Minimal regularization
interpolators of (2) reach perfect recovery well before the interpolator set shrinks to a
singleton on the target weights (the effect is more pronounced for very small ranks of
the target function x*11. (Right) The test error of any global minimum of (2) in the limit
k* — 0 (Result 2) for several values of regularization A = A / Vk* and label noise A,
compared with the Bayes-optimal [31].

which, however, is not compatible with our results. We conclude that their conjecture is incorrect in
the regime m* = Oy(d), as it predicts interpolation for values lower than the rigorous 1/4 random
labels threshold [29, 30] as well.

Strong recovery threshold. A different phenomenon can be studied in the noiseless case A = 0 and
A — 07, i.e. what we call the strong recovery: the value of the sample ratio cstrong (K*) = Nstrong/ d?
such that, for o > aiirong the test error of the global minima of (2) is zero, and for o < Qtrong 18
strictly positive at A = 0. Notice the difference with the previous paragraph, where the interpolation
peak was concerning the training error vanishing in the A > 0 case, while we here consider the
perfect test error at A = 0. This limit was studied in the context of matrix model (9) in the minimal-
norm interpolation setting [1, 15, 42]. Here we re-derive their result independently as a consequence
of Theorem 1.

Corollary 1 (Strong recovery threshold) Consider the setting of Section 2 for Marchenko-Pastur
targets with A = 0, A\ — 0" and k > 1. Define for v € [—2,2] the incomplete moments of the
semicircle distribution

z 1
Mb(’f:) (z) = / dx ps.c.(x) = — de /4 — 222, (13)

-2 27T )

and call ¢ the solution of the equation

M (e) — eMQ(c) + =0, (14)

13
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for 0 < k* < 1. Then,

Ostrong = {

Informally, the strong recovery threshold presented in Result 1 is derived by expanding (6) for
§ — 01 within an appropriate scaling ansatz, as the test error is proportional to §2 (Theorem 1,
noiseless case A = 0), and finding the value & = arong such that the expansion is consistent. We
provide all the details in Appendix D. We plot (15) in Figure 3, comparing with the strong recovery
threshold of the BO estimator [31] and with the interpolation threshold Result 1 for A = 0.

— 3(1— k") (MS@((;) — CMs(.lc).(C)) if 0<rk*<1

+oy(l).  (15)
if k*>1

N—= NI

Small target rank limit. Finally, we consider the small target width limit x* — 0 for x bounded
away from zero. This is an example of large over-parametrization, as the ratio between student and
target widths m/m™* diverges. In the limit x* — 0, i.e. m*1d, we define the rescaled sample ratio
a = a/k* = n/(m*d). The natural baseline to compare this limit against is given by the analogue
limit for the test error of the BO estimator given in [31].

Result 2 (Test error in the <* — 0 limit) Consider the setting of Section 2. Consider the limit
k* — 0% for any fixed k > 0, @ = o/k* and A = \/k*. Then, if A = 0 and X\ — 07 the test error
satisfies

1 if 0<a<1/2,
lim lim Eewes(S) =< 2a(4 —v6a —2)2  if 1/2<a<3 (16)
k*—=01 d—oo
0 if a>3

In Appendix E we provide analogous expressions, albeit less explicit, for generic regularization
A > 0 and noise A > 0. We just state that for all X\ > 0 and A > 0, and for & < Qweak (A, A) the
test error equals one, where

- 1+A/2 A=2(1+A/2
G (3, &) = ma (LT A2 A2 HA2)Y (17)
2 4
and that that for all X\ > 0 and A > 0 and for & — +o0c he have
. . N 3A
/@*151(1)"' dlggo E etest (S) = g(l +0q(1)). (18)

Result 2 provides a closed-form expression for the test error in the £ — 0 limit. It is derived by a
direct expansion of (6) at small «, and it involves a BBP-like phase transition [4] in the spectrum of
. We notice that Result 2 holds for any extensive student width x > 0 due to the fact that the rank
of the global minima of (2) is vanishing as O (k™).

Figure 3 right shows the test error in the x* — 0 limit for a selection of parameters. We see
that the solution at X\, A # 0 as a non-trivial behavior, tracking closely but not exactly the A — 0T,
A = 0 curve until an angular point is reached. We observe that for & < @weak(j\, A), the empirical
risk minimizer achieves BO performance, even though that is given by the trivial prior-average
estimator. Moreover, for A = 0 and A — 0%, the empirical risk minimizer achieves strong recovery
for @ = 3 in accordance with Corollary 1. Finally, we remark that for fixed A > 0 and A > 0, the
test error goes to zero as 1/, which is the Bayes-optimal rate.

14
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Appendix B. Proof of Theorem 1

In this section we discuss theorem 1 for the minima of

n
. . 2
W =argmin L(W), where L(W):= Z (y“ — f(x"; W)) + AW|Z + 7| WWT %,
pn=1

19)

which, due to the added regularization, is strongly convex for 7, A > 0 and hence it admits a unique

global minimum.

The proof of Theorem 1 goes as follows:

1. In Section B.1, we show how to map the original learning problem into an equivalent matrix
estimation problem. This, in turn, can be reformulated as a vector Generalized Linear Model
(GLM) with a non-separable regularization.

2. In Section B.2, we use Gaussian universality and show that this model is asymptotically
equivalent to a Gaussian sensing problem, leveraging recent results on universality in high-
dimensional estimation.

3. The resulting Gaussian model can then be analyzed using the Generalized Approximate
Message Passing (GAMP) algorithm. We briefly recall the relevant properties of GAMP in
Section B.3. To apply GAMP rigorously, we exploit the fact that its fixed points coincide with
the solutions of the associated convex optimization problem (Section B.3.1). These fixed points
are characterized by a set of deterministic equations known as state evolution (Section B.3.2).
With appropriate initialization (see Corollary 2), GAMP converges to the correct fixed point
(Theorem 5), which corresponds to the global minimizer of our original problem. Hence, the
fixed points of the associated state evolution equations describe the properties of the global
minima of (1). Notice that this discussion is generic (i.e. allows for generic convex losses and
regularizations), as long as the global minimum of the associated matrix problem is unique.

4. Finally, in Appendix B.4, we describe the state evolution equations that precisely characterizes
the asymptotic behavior of the minimizer of the empirical risk (2), which is precisely equivalent
to the results given in Theorem 1 in the limit 7 — 0.

B.1. Mapping to a matrix model

The mapping of the data part of the loss is straightforward. For the /5 regularization on the network
weights we have

d,m

m d,m
) W2
2 2 ki
wi||3 = Wgi = vmd
;H ll3 ; =V ;1 o

d
— Vimd 3" S(W)is = Vmd Te(S(W)). (20)
=1

The same goes for the part proportional to 7 in (19), that become the Frobenius norm of S. This
leads to the equivalent problem:

2

XHXT —Hd * 2
#(S—S )| +Vmd (ATe(S) +7(1S)1%) -

S = argmin £(S), with £(S) := ZTr
5-0 =

2D
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B.2. Data universality

The universality of the minimal error (or “ground state energy” in the physics jargon) follows directly
from a rich line of work on universality of empirical risk minimization [20, 22, 29, 34, 39, 50]. These
results establish that, under broad conditions, the asymptotic behavior of the test and training errors
becomes equivalent to those with a Gaussian sensing matrix. Given the maturity of this theory, we
will refer directly to these foundational works and provide a concise sketch of the main arguments
for completeness.

The universality follows directly from Proposition 2.1 in [29], who derived it in the related
context of ellipsoid fitting. This was adapted to the "planted" case in [50, Section 3.1, Lemma
3.3]. The proof strategy is to consider an interpolating model where each data matrix is given by
U(t) = cos(t) (XMXE —13)/Vd + sin(t)G,, in t € [0, 27], from the original model at ¢ = 0 to the
one with a GOE(d) random matrix G, at t = 7/2, and to show that the "time" ¢ does not change
the expected loss. We refer to these works (and to [39]) for the detailed proofs, and directly state the
universality result:

Theorem 2 (Gaussian Universality of the loss, from [31, 50]) Let ¥ : R — R be a bounded dif-
Jferentiable functions with bounded derivative, then for any finite o = n/d?, the minimum of the

training loss GS({(I)#}Zzl) = argming E(S)({@M}Zzl) is universal with respect to the input
data ®,:

T n

: Luly —la n _

lim |Eqg, 0 |GS, {m} | Eeeurtoona® [GSa({G -] =0. @2
u:

if the matrices ({ X, X E—Hd}) /\/d respects the so-called one-dimensional CLT property (Assumption
2.2, [50]).

The required one-dimensional CLT [12, 20, 39] property is a point-wise normality of the projec-
tion of the operator, proven in the case of Gaussian * in [29, Lemma 4.8].

The universality argument can be readily adapted to other quantity as well, in order to show that
not only the loss, but also other observables such as the overlaps are universal. We will not repeat the
full proof, and directly use Theorem 3 in [12] that can be applied mutatis mutandis':

Theorem 3 (Universality of the overlaps [12], informal) For any bounded-Lipchitz function ® :
R x R® — R, we have:

Blo(5.5)] o Be o (5.57)]
n/d?=a>0

where S = arg ming E(S ), and S* determines the target function.

1. The argument is a classic approach of large deviation, or Legendre transform. This is done by applying the universality
to a perturbed version of the loss, where —to use the parlance of physics— a source term, or a regularization, such as
As Tr[STS *], is added. Due to the convexity of the loss in Ag the derivative with respect to As must converges to the
same exact quantity in both the original and the equivalent model, since they converge point-wise to the same limit.
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This directly can be applied to the overlap Tr[57'S] and Tr[ST S*], which are thus universal, as well
as to the test error. Notice indeed that

Cuas(18) = 3B (e (550°) = fin (30))° = 18(w) = S e3)

leading to an expression for the test error as a function of the overlaps. Finally, note that one can
apply the same argument to show the universality of any finite k¥ € Z, moment d~! Tr[S’ ¥] (hinging
crucially on the PSD constraint to claim that all such perturbations are convex). With mild regularity
assumptions (for e.g. compact support, which is satisfied by the Marchenko-Pastur target case studied
in detail in the main text), this implies the universality of the spectral distribution of S as well.

B.3. Generalized Approximate Message Passing algorithm and state evolution equations

We review here how to use GAMP to solve asymptotics convex optimization problems. Later, in
section B.4.1 we show indeed that the present PSD matrix optimization problem can be written as a
vector one, with a non-separable denoiser.

We will work in a vector setting, where one has sensing matrices A € RV*P ~ N (0,1/D) (i.e.
N samples in D dimension) with rows a*. Notice that in this scaling ||u||? should be always of
order O(D).

The generic form of the "rectangular” GAMP algorithm reads [23]:

ultt = ATgt(vt) + dtet(ut),

v = Aey(u') — bigi 1 (v, 29
with initialization u'=° and the convention that g;_1(-) = 0. Here v € RN, u € RP, g : RN — RV
and e : RP — RP.

The terms b, d; are usually called Onsager’s reaction terms [37], and are tuned in such a way
as to erase time-to-time correlations between the iterates (u?, v) and the sensing matrix A, so that
from a statistical point of view of (u!, v') it is as if the matrix A was resampled independently at

each time—step (Conditioned on the previous iterates {(US, ’US) i 11) One has
= V - v an = V - er(u
t D gt t D t ’

where V - f = Zle ; f; denotes the divergence of a function f : R? — R?. We will see later that
in high-dimension D > 1, N = O(D), the Onsager’s term concentrate and do not depend on the
iterates u’ and v’ anymore.

B.3.1. GAMP FOR CONVEX OPTIMIZATION

Using AMP for studying the minimum of a loss is now a classical approach that has been used in
many context, e.g. [5, 28, 40, 45, 48]. This is also discussed in detail the pedagogical review [17,
Section 4.4] and in the lecture notes [25, Section 12.7.4].

The argument goes as follows: consider the convex optimization problem

N
arg min Z lu-a,u"-a)+ R(u), (26)
uelC =1
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with £, R convex in their first argument, and C C RPL a convex set. Define the functions

- 1 & _
G(r,s,b) = argmin |£(z,5) + —(z —r)?| and g(r,s,b) = M ,
z€R 2b b

b 27
e(r,d) = argmin [R(z) + ||z — dlr\|2] :
zeC 2
Consider the GAMP algorithm
utt = AT g(v, y, b)) + die(ul, db),
9(v', 9. ) + dreu', d) o8)

vl = Ae(ul,d') — big(v' ™, y, b1,

where g is applied component-wise to v and y. Then, [17, Proposition 4.4] guarantees that fixed
points of (28) are solutions of (26) (by a minor adaptation, as they consider separable regularization,
but all their arguments generalize directly). As long as ¢, R are convex in their first argument, state
evolution follows automatically for this choices of g and e.

Additionally, we remark that if the loss is strictly convex, then the optimization problem (26) has
only a single global minimum, so that AMP will have a single fixed point coinciding with this global
minimum.

B.3.2. STATE EVOLUTION

Thanks to the conditional Gaussianity discussed in Appendix B.3, one can track the statistics of the
iterated w, v of GAMP through a set of so-called state evolution equations. The main difference with
respect to previous approaches in our case is that the denoising function e is not separable. However,
[7, 19] guarantees that the state evolution that allows to track the performance of AMP remains
corrects (under regularity assumptions that are automatically satisfied by e and g being proximal
operators).

The state evolution associated to the GAMP

ut+1 = ATgt(vtv Yy, bt) + dtet(’u’tv dt)7

29
Ut = Aet(uta dt) - btgt—l(’vtila Y, btil) ( )

(where again here we consider g applied component-wise to v and y) is derived by considering that
y* = ¢(u* - @*) where ¢ is a possibly random non-linearity, and taking into account the evolution
of the iterates u and v separately in the parallel and orthogonal directions to «* (and similarly with
vand v* = ATu*). Using [7, 19] we have:

Theorem 4 (Theorem 1 in [7], informal) Define

mit = FEL[0g(w, ¢(2%), b)) = FEL[2*g(w, ¢(2%), b')]

i = (gl 0=, V)

At = —FELd,g(w, ¢(27),b)

mt = SE! [(u;e(\/glz + miu*, dt)ﬂ (30)
d@ = HEL |(e(Valz + mid) eVl + mi )|

bt = %Efjv ce(\/qtz + mlu*, db)
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where the average !, is over the randomness in ¢ as well as over (w, z*) € R? distributed as

(2 )

and B! is over z i.i.d. Gaussian N'(0,1p).

Then the AMP vectors u'*! and v* converges weakly to their Gaussian version: Ut = m! u* +
\/gz (with z random Gaussian as above) and V' = \/qt, — miw-+m! ATu* (withw ~ N(0,1y)),
in the sense that, for any deterministic sequence ¢, : (RP x RN)t x RN — R of uniformly pseudo-
Lipschitz functions of order k,

$n(u®, V0, ut Vi vl ut) 2 By [ga (U0, VO, UL VY VEL UYL (3)
An immediate corollary we shall use is the following:

Corollary 2 (Fixed point initialization) Consider a fixed point of the state evolution equations (30)
(we denote the fixed point quantities by fp). If one initializes an AMP sequence in the fixed point,

i.e. by using u® = m 44/ qipz (with z random Gaussian as above), then in probability for any
timet > 0 and as d — oo, the sequence of iterates U' and V'* remains in their fixed point.

We then use the following theorem, that ensure with the initialization of 2, then the GAMP
equation converges to their fixed point:

Theorem 5 (Convergence of GAMP, Lemma 7 from [28]) Consider the GAMP iteration with
e, g as in (27), where all free parameters are initialized at any fixed point of the state evolution
equations. If the associated loss (26) is strongly convex, then GAMP converges to the fixed point of
the loss under study:

1 fp VP =
tlgglodll}m \TH’LL uP||p =0, hm hm THU lr=0 (33)
Thus, state evolution allows to compute all scalar observables (such as overlaps, errors, etc) on
the iterates, which at convergence and under the setting of Appendix B.3.1, are equivalent to the
global minimum of (26).

4. State evolution for Theorem 1

Now that we have reviewed how to use GAMP to study the fixed point of an optimization problem, it
remains to show that the present matrix problem can be mapped to such an equivalent vectorized
problem. Consider (9), and write it in the following form:

S =argmin £(S), with £(S) = ¢(Tr[X"S], Tr[X"S"]) + R(S), (34)
Sec s

where S € Sym, is a symmetric d x d matrix, C C R” is convex and ¢, R are convex in their first
argument.
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B.4.1. MAPPING MATRIX-GLM TO VECTOR-GLM

We consider the mapping from vec : Sym,; — RUAH1)/2 (which conveniently maps the Frobenius
scalar product in Sym, given by (A; B) = Tr(AB) to the standard Euclidean scalar product in

RUI+1)/2) oiven by
vee (A)py = (B3 4) = V2~ by Aay (35)

under the choice of orthonormal basis

plad) _ 0iabjp + Oipdja
1] \@ :

Here (ab) stands for the ordered pair of 1 < a < b < d, and we denote A;; as the 7, j entry of a

matrix A, while as A,y the component of matrix A onto the basis element b(ab) . Let us denote

d(d+1)/2 = D (we will often use D ~ d?/2 as we will be interested in the leading order in d).
Under this mapping, we have that w = /d/2vec (S) satisfies

b = Giabja (36)

d
[[wll* = 5 Te[S*] = O(D), (37)

for any S with asymptotically well-defined spectral density. In particular in state evolution u* =
vec (S*) is such that ||u*||?/D = Q*. Moreover, we can define the correctly normalized sensing

vectors
=\ ryvee (X = “” B~ N(0,1/D), (38)

forall 1 < a < b < d, where we used that X ~ GOE(d), giving

Tr[X*S] = Zvec (bvec ab =14/2 d+1ZA W(qp) NWZA )W (ab) - (39)

(ab) (ab)

where o = n/d>.
Thus, we can pick

{(a,b) = £(v/2a,V/2b), R(w) = R(mat (w)/~\/d/2) and ¢(z) =z++/A/2¢  (40)

where mat () denotes the inverse of vec (), { is a standard Gaussian (we are restricting here to the
Gaussian noise function ¢), and similarly we define C by a rescaling of C. Finally, we define the
equivalent vector problem in dimension D = d(d + 1)/2 with N = n samples

N
W = arg min Lyee(w), with Lyee( Zg (a" - w, p(a" - w*)) + R(w). 41
wel u=1

In particular, the GAMP iteration described in Appendix B.3 for this loss solves (9) modulo the
bijection vec (), with generic convex loss, regularization and constraint set C.
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B.4.2. GAMP DENOISER g FOR THE SQUARE LOSS

We directly specialize to the case of the square loss, but all this can be generalized to generic losses,
see [27]. For £(a,b) = (a — b)? we have

7 ~ 1
g(r,s,b) = arger]gin Uz, s) + 27_)(2 _ 2| = .

r + 4bs b — s—r
b+ 1/47

(42)

The associated state evolution equations read (recall that ¢(z*) = 2* + /A/2¢, including the
average over the noise £ in the activation ¢ in [E,,)

A = — B 0.g(w, 6(27),b) = 20547,

mift = FEL[0.-g(w, 6(27), V)] = 2054 @)
* T—2m A

gl = %EZ[(Q(W, B(2*),04)?] = 20‘%

where we used that N/D = 2n/d? = 2a.

B.4.3. GAMP DENOISER e FOR SPECTRAL REGULARIZATION, INCLUDING PSD CONSTRAINTS
AND NUCLEAR/FROBENIUS REGULARIZATION

Spectral denoising function e. 'We have (calling ' = mat (N /2/ dr) and k = d to avoid confusion
with the dimension d)

e(r, k) = arg min []:Z(z) + g||z - k‘erQ}

zeC
= arg min [R(\/2/dmat (2)) + gﬂz - k_1r||2] (44)
zeC

d d’k
= \/>VCC <arg min [R(Z) +—||Z - kll“H%])
2 zec 4

Now, assume that both C and R are spectral, meaning that they do not depend on the eigenvectors
of Z. Then, if we consider the spectral decompositions I' = ODOT, e(r, k) = ULU™, and we
parametrize Z = VTV, then for each T

U = argmax Tr(VLVTODOT), 45)
Veo(d)

which, by Von Neumann’s trace inequality [38] is given by the rotation V such that U7 O aligns
the eigenvalues of 7" and D in decreasing order, which if we take the convention that all spectral
decomposition are given with eigenvalues sorted decreasingly, gives U = O. Thus, the problem
reduces to a spectral minimization

d d
k 1
L= in |d°R(T) + = > T} — 5> T.D; 46
ar%égln ( )+4i:1 i P iDi| (46)

where here we are abusing the notation by writing 7; to mean 7T;; as 7' is really a diagonal d x d
matrix, and similarly for D. Notice that this expression is still general.
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Spectral denoising function e for the case of the main text. 'We now specialize to the case of the
main text. If C is the set of PSD matrices and R(T) = d*>(\Y_, T; + /2., T?) , then

L= 271 -ReLU <Di - 2&) . (47)

In the end, this means that if

T = vec (MODOT> (48)

with eigenvalues D; sorted decreasingly, then

e(r,k) = \/gvec <027_1+kReLU (D - 25\> OT> 49)

where here ReLLU is applied component-wise to the diagonal matrix D — Ny

State evolution equations. Now we need to derive explicit expressions for the associated state
evolution equations

mh = HEL | (x03e(v/dhz +miu,d))]
qf) :%Ef} 6( qu%—mZU*,dt)Se( q5z+m2u*7dt)>j| . (50)
b= BELTL, (Ve +mi” dY);

We revert to the case of general C and R for this, assuming that R is strictly convex over C for
simplicity. It is useful to consider the following function

1 _ 2
W(k, gu.my) = 5 EL min [R<w> + S llwlf? — atw; 2) — m u*ﬁ

D " wec
1 i gt / dwe— BRI+ [w]P- Tz -m.ww?) (5]
D B—~+00 ﬁ v wel
1 1
= _5ﬁli}I—II—lOOEiElogZB(k’qu’mu’z’a:O)7

where the limiting procedure and all following integration/derivation/limit exchanges are well defined

by the strict convexity of 12, and Z3 was defined in the last line. Then we have immediately

1 t * t t. % gt

—Om, Y (k, qu, my) = BE” [<u re(v/ghz +myu*,d )>} ,
1

OV (k. guma) = HEG | (Vi +min’, d) s e(Vahz + miut,d))|

(52)
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Moreover (dropping the omnipresent 3 limit and average E, as well as the inputs of Z for readability)

_28Qu\1j(k7 Qu, mu) =

1 . 1 e—,@(R(w)—l—%Hw\P—@(w;z)—mu(w §u*>)
=—=E, dw Z W; 2
D Gu JweC i ZIB
g w0y w0 o B(ROw)+El[w][2—y/gu (w s2)—mu (w u”))
D"\ /qu wel P o Zg
1 e BRW)+5|[w]]*—yu(w;z)-mu(wu®))  (53)
= SE; 3uz+u*/ dww
D ; Vauzitmau w ’ ZB
1
= BEZ Z 81%-6(7’7 k)i’r:@zi+muuf
1 D
= EEZ Z Oie(v/ ¢tz +miu*, d');
i=1
where in the third line we used Stein’s lemma, so that
mf) = _8mqu(dt7qz7m2)
g = oY(d', q,,ml) . (54)
bt = —28%\1!((1’5’ qfu mi)

We just need to compute W for the sake of the state evolutions.

State evolution equations for the case of the main text. If C is the set of PSD matrices and
R(T)=d*(\Y, Ty +7/2, T?), then

ZLi+T/2ZL?+§ZL?— %ZL@-

where D; is the i-th eigenvalue of the matrix S* + /gy, /myZ, and L; is determined by

U (k, qu, my) = 2, ; (35)

my

Li= 7 ReLU (Di _ 2)\/mu> , (56)

giving

\I/(k> Qu mu) = QEZ

XZLZ-+T/2ZL$+§ZL§— %ZLiDi

2
m ~
= u EtE ReLU(D; — 2)\/m,,)?
2(k+27)”i eLU( /1)

m2

~ _ u * _ 93 2
~ it /ﬁ/mudw o () (@ — 23/m,)

2
My

= 513 Vil 2\ /my)

where in the last step we used that at leading order the spectrum of S* + ,/q,,/m,,Z concentrates (by
assumption in 2) to “T/qj i defined in Theorem 1.

(57)
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B.4.4. FINAL FORM OF THE STATE EVOLUTION AND OBSERVABLES

Collecting the state evolution equations derived in Appendices B.4.2 and B.4.3, calling m,, = m,
G =q,b=2%,my =, ¢, = ¢ and d = X we get the system of equations

S 2a0
= Ti+1/4
t+1 _ 2a
~ Ttt1/4

Al g, @ —2miqtA/2
q (zt+1/4) (58)

t _ t t
m =0t = 2(Zt+2 J(VG /201
t _ t t
q - Et+2 \/>/ 2)\/
»to = Et+2 Ot J (V@) 2)/")

where J is defined in Theorem 1. This reduces to the equations presented in in Theorem 1 at its fixed
point and under the change of variable § = \/q/,€ = 2/.
The test error then is given by

erest = Qo — 2m + q = 2a6% — A /2. (59)

The expression train loss instead van be derived by using the fact that the residuals in the data
part of the loss can be computed from state evolution as §/16, and by evaluating the regularization
at the spectral density 5 (which is just the Tr of a shift and rescaling of this spectral distribution)
giving the expression in Theorem 1 in the limit 7 — 0.

Notice that these state evolution can be also heuristically applied in the case A =0as long as the
problem has a unique global minimum. This can be checked by having ¥ < +o0, as X is a proxy
for the inverse of the curvature of the loss at the global minimum [9], which becomes flat when
3. = +4o00. Notice also that 3. can be used to guarantee, at the heurisitc level, that the minimum of the
global loss is unique even without the need of the regularization 7 > 0.

B.5. Replicon condition for Generalized Approximate Message Passing fixed points

For completeness, we discuss in this section the pointwise convergence of the GAMP algorithm when
initialized at a fixed point of the state evolution equations. While the convex nature of the problem
ensure this convergence [28], we discussed here the explicit criterion that can also be directly checked
within the state evolution formalism. As noted by [8], it hinges on a stability condition—known in
statistical physics as the replicon or de Almeida-Thouless (AT) condition [13, 14]—which can be
directly and easily checked from the state evolution equations.

We thus provide the replicon condition on point-wise convergence of GAMP for generic non-
separable denoisers (see for instance [48] for the separable case). Consider again the recursion
(24)

= AT gi(v?) + dies(u),
v’ = Ae(u') = brgi 1 (v,
with the b, d; given in (25). We want to assess linear stability. To this end, we suppose that

the iteration is initialized at a fixed point (u,v) (and that at this point we also assume that the
nonlinearities g, e and the Onsager’s terms are constant in time), consider a Gaussian perturbation

(60)
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€ ~ N(0, €ly) of u, and compute whether the iteration converges back to the fixed point after such
perturbation. Notice that we can avoid perturbing the Onsager’s terms, as in the high-dimensional
limit they are independent on the iterates. We have (at first order in €)

= Ae(u + €) — bg(v) = v+ A(Ve(u))e,
= ATg(v + A(Ve(u))e) + de(u +¢€)

=u+ ATV (g(v))A(Ve(u))e — D1V - g(v))(V ( )€,
D N L 61
upt™ = ug + Z Z AprAi0ug,0ie€; — NZ ugu28ekez
i,j=1 p,v=1 =1 =1

D N
=uy + Z Z (AvkAuj = D™ 6,0,0k;)0ugu Die i

ij=1 pr=1

where in the second to last step we used the explicit form of the Onsager’s term d, and in the last step
we suppressed the dependencies of the functions g, e on u, v for clarity and passed in components
notation.

The L2 norm of the perturbation "% — wu equals (on average over the initial perturbation €)

D N
Ee(uzew — uk)Q = Ee Z Z (AVkA,uj — N_lém,ékj)@gl,@iejei

1,5=1 p,v=1
D N
X > > (AyrAuy = N7 600k ) O g Ovejie;
7;/7]'/:1 M/’V/:1
5 (62)

1 & 1 <
~ 5 D (iey)* x D > (0u90)?,
where we used that Ece;e;; = §;;7, and the law of large number to substitute

(AukAu; — D16,0k) (A Ay — N 710, 0k50)

- (63)
~D 25Vl//5jj/5

pp s

where in the last step we only kept the term that will contribute to leading order (equality at elading
order is denoted by ~. This is the generalization to non-separable functions g, e of [48, Definition 1].
Thus, the linear stability criterion for GAMP is

D N
% 1 Z aej N Z “g,, (64)

In particular, in the case of independent observations we will have 9,9, = 9,,,0,,9,,, and in the case
of separable denoiser one would have d;e; = 0;;0;e;. Notice also that this criterion is independent of
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the value of the iterates u, v at the fixed points, as it concentrates onto its state-evolution-predicted
value.
A fixed point of the state evolution describes a stable fixed point of GAMP if

2
[aruite) [ i) (RGLU(”C‘ZjEGLU(y*)) <20, (65)

We have checked numerically that this condition was satisfied in our fixed point (in accord with
Theorem 5).

Appendix C. Minimal norm interpolation limit A\ — 0"

Consider (6). We would like to give a prescription to manipulate this equations in order to describe
minimal regularization interpolators. We first remark that the limit A — 0T of (6) as written describes
the case of non-regularized minimization, and thus Theorem 1 will be valid in this case only for
Q' > Qinterp, When only one interpolator of the training dataset exists.

Consider now the rescaling of (9) given by A~LL. For any fixed positive A, this rescaling does not
alter the solution of the minimization problem. In the limit A — 07 instead, the loss first imposes that
the global minimum is an interpolator of the training dataset, and then minimizes the regularization
within the interpolator set. Thus, rescaling the loss by A1 and then sending A — 0T will describe
minimal regularization interpolators, as long as o < ainterp in the noisy case (after that threshold no
interpolator exists, and the minimization problem is ill-defined) of for all « in the noiseless case (as
in this case there exists always one interpolator).

We practically achieve the loss rescaling in (6) by renaming Ae — €, and obtaining the new
system of equations

_ )\ —
{4a5 A = 817(5,€) | ©6)

QF + 5 +200% - AZ = (1 - edr)J(,¢)

equivalent to (6) for all A > 0, and then taking }\ — 0t
Thus, to summarize the learning curves at A\ = 0™ are found as follows.

* In the noiseless case A = 0, we solve (66) with A = 0 for all values of a.

e In the n~oisy case A > 0, we solve (66) with X = 0 for all values of a < Qtinter, and we solve
(6) for A = 0 for all values of o > ainter-

Appendix D. Derivation of Result 1 and Corollary 1

D.1. Prerequisites

For both Result 1 and Corollary 1 we will need the following results on the spectral density p* B c. 5,
where H is the free convolution and pis . s = V4 — x?/ (27752) the semicircle distribution of radius
26 for § > 0. Here p*(z) = v/k*parp.(vV/K*x), where juy p. is the Marchenko-Pastur distribution
[32] with parameter x* (the asymptotic spectral distribution of A7 A/m where A € R™*% has i.i.d.
Zero-mean unit-variance components), and Q* = 1 + x*.
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We start by recalling that
+o0 s
J(é,s):/ dx s (x) (:U—s)QzQ*+52—23M*—I—S2—/ dx ps(x) (a:—s)Q, (67)
where

Q" —/dm,u*(m)a:Q, M —/dm,u*(:c)x, (68)

and where we used that
/dx,ug(x) x = /dx,u*(ac) x + /da:,us.c"(; x=M"

(69)
/dx wi(x) z? = /dx pt () 2% + /dx fisc.s 02 = QF + 67

by additivity of the mean and variance.
Now we use [31, Appendix D.3] to state that for any fixed x, for § — 0T, we have at leading

order
V1 — r* ps(zdvV1 — k%) = (1 — K ) pse () . (70)

This will allow us to compute the last integral in (67) when J11 for some values of s. Indeed, when
011 and 0 < k™ < 1 the spectral density p is composed by a small semicircle around the origin with
mass 1 — x*, and an approximately p*-shaped bulk gapped away from the origin. So as long as s lies
in the gap between the two bulks, only this semicircle will contribute to (67). For k* > 1 instead, the
bulk at the origin is not present leading to a zero contribution from all the integrals. The case x* = 1
is more delicate, as there the spectral distribution of the target may be non-gapped (for example, in
the narrow target case). We recover this case by a limiting procedure from the two sides.

D.2. Derivation of Result 1

To find the interpolation threshold, we consider (6) for A = 0. To do this, we need to make sure that
we are in the a > ajpter region, where only one interpolator (noiseless case) or no interpolator (noisy
case) exists, giving a single minimum of the training loss. This can be checked by having

1
Z:ae—1<+oo, (71)

where ¥ was defined in (58). The interpolation threshold will be exactly at the point where 3 €
diverges.

Noisy case. Consider the (6) with A = 0. We have

dad — 2 = 01J(38,0
00— =00 (72)
Q"+ 5 +2a0® — = = J(6,0)
We now consider the limit e — 400, obtaining
4ad = 0 J (6,0 inter = 201.J(8,0
Q" + 5 +2a0® = J(0,0) Q"+ 5 = J(4,0) — 501J(4,0)
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i.e. an equation for §, which can be plugged in to directly find «.. This gives the first part of Result 1.
Notice that the value of § found will be finite, giving also an analytic prediction of the height of the
cusp of the test error at interpolation.

For A — 400, we see that a consistent solution is given by § — +oo. In that case, fy is, at
leading order, a semicircle with radius 24, so that

1
J(5,0)z§62 and 0,J(5,0) ~ 6, (74)

implying that for large A the interpolation threshold converges to 1/4.

Noiseless case. Here we can advance more. In the noiseless case A — 0, we also know that after
interpolation we have zero test error, hence 6 = 0. Thus, we can expand J (9, 0) for small 4. Using
(67) and (70) we have

0
05 (5,0) = 05(Q" + 62) — 05/ dz 1 (z) 22

=20 — 05 [62(1 — k") /0 dy d0v/1 — k*p3(0V1 — K*y) yZ]

oo (75)
0
~ 20 — 05 [(52(1 — K,*)Q/ dy pis.c.(y) y2]
-2
~o[2—(1—k%)7],
implying that the equation for ¢ is satisfied for 6 = 0, and that
142k, — /iz
Qinter = + . (76)

Let us no~tice that the § = 0 solution here is valid for all & > @jpter, SO We could have worked with
(6) with A = 0 and finite ¢, and computed € explicitly as a function of a. Doing this shows that
€ < oo for all & > ajnter, and that e — 400 exactly at the threshold. This concludes the derivation
of Result 1.

D.3. Derivation of Corollary 1

Consider first the case 0 < k* < 1. We start from the stationary conditions for (6)

das — 8 = 95 (5, Xe)
: \ 77
Q* +200% + 5 — & =[(1—505)J(6,5)],_5

To compute the strong recovery, i.e. the value of « at which the test error is zero, we look for the
value of « that is consistent with a solution of (6) in the limit § — 0*. We assume the scaling

e =0V1—kK*c (78)
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and verify it self-consistently. We have that (70) implies at leading order

e i
o5 [ dupis(e) (o — Ae)?
) Xe/6y/T—r* XE 2
= 050 (1—/1*)/ dy 6v/1 — k* 1} (V1 — K*y) y—ﬁ
~ 0 52(1 _ K*)Q /5\6/(S e d ( ) _ L 2 (79)
~ U5 o Y Us.c.\Y Yy 6m

— 20(1 — K*)? (M;%?(xc) — 23eMY(Re) + X%?M;Og_(xc))
+25(1 — K*)? (S\CMs(lc)(S\C) - S\QCQMS(?(S\CD
= 20(1 = 1) (MZ () = AeM P (A0))
where we defined the incomplete k-th moment of the semi-circle distribution as

M) (z) = / 4 fise.(y) yF - (80)

Similarly

(1—s50)) [ dopi(a) (@ —s)? = . dz p3(z) (z — Ae)?
a0 | |-/

Ae
+ 2\ dr p(z) (x — eX)
I 81)
e i
= [ dw i) @2 - 3

~ 021 = w2 (ME(e) - R2AMO (M) -
This leads to the equations (at leading order in § — 0T)

a0 =1 Fr+ g — 30— ) = 30— w2 (M) - M)

where we renamed ¢\ — ¢ (which will allow to be in the interpolation limit for A = 0 as detailed in
Appendix C). Define ~
_ A - A
A=——+—— and A= —,
46v/1 — K* 402

that is the small regularization limit and noisless limit at the critical scaling. Then the equations read

(83)

A-A=1(1-r)2 (CMs(.lc’.(@ — ML () + 151*) (84)
s = 5+ 2 = 40 =7 (M)~ emllie))
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giving one equation for ¢, and one for asirong given c. By computing the next-to-leading order, one
could access the speed at which & — aistrong in 6, invert it and find the critical scalings of A and A

as a function of atrong — . In the case A = A = 0 we have the simpler equation
c=(1-rk") (cMs(%)(c) — Ms(lc)(c)> 85)
Ostrong = % - %(1 - H*)Q (Ms(2c) (C) - CMS(IC) (C)> ’

which modulo conversions gives the same ostrong as [15, 12].
For k* > 1, the same equations hold with all M contributions set to zero (see discussion above),

giving (again for A = A = 0)
1
COlstrong = 5 . (86)

This shows Corollary 1.

Appendix E. Derivation of Result 2
We start again from (6)
406 — 8 = 957 (5, Xe)
> - - - 87)
Q" +2a8% + 5 — & = J(8,xe) — eAJOD(5,eN).
We redefine e — ¢ and consider the limit K+ — 0 under the scaling ansatz & = Qky, 0 = dn*_l/Q,
€ = CKy Y2 and X = S\Hi/ 2. Notice that Q* =1+ k* &~ 1 in the limit. The equations read

dad — X% = 047 (6,€) 38)

1+ 2ad? + % - X% =(1- c@C)J(d/@*_I/z, C/@TI/Q)

Then
12 —1/2 +oo . ~1/2\2
J (dn* , CRx ) = s dx udm_m(x) (x —cry '7)
) +00 (89)
= / T T (s TR0
c *
We now use the fact that at leading order for small x*

viy) ~ Pt (e ) (90)

dﬁ;1/2

is given by a semi-circle distribution of radius 2d centered at zero with mass 1 — x*, plus a Dirac’s
delta spike at y = 1 + d? with mass x* if d> < 1, see [31, Appendix E.1].
We then have the following cases in which the spike does not contribute.

* No spike d> > 1 and ¢ > 2d, or spike 0 < d?> < 1and ¢ > 1 + d? > 2d. Then the integral .J
does not contribute to the equations. Thus

dad = 2\ c= 2 1
14+2ad2+5 —£X=0 — Y\ p_olxar o 1)

c 2a
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under the condition
1+A/2

P>1 = a< 5 _ :
2 _ 32 — a < min
c> = &< mAAD

1+A/2 2?2
2 ’32(1+A/2))’ ©2)

or

d? <1 q > a2 A —
{ <1 = a> L LA A=214A)  o

e3> 1+ — a< A2LHA2) 2 4

* No spike d? > 1 and bulk integral contribution ¢ — (2d)~. In this case c tends to 2d with
the appropriate rate in order to have order O(1) contribution from the bulk integral in the
equations. We have, calling 2d — ¢ = dt i.e. ¢ = d(2 — t) for some ¢ > 0

-1 2d 1 Yy 2 2 -1 2 2
Ky dy —psc. (5 ) (y—d(2—1))" = d’k, dy pis.c. (y) (y —2+1)
d d 2—¢

(2—t)d (94)
2 —1 16t7/2 1,9/2
=&’ +O</¢; t /)
Y
giving
Jbulk _ 164°t7/2
1057k, -
16dt5/2
9, JPulk — ~T 95
d 157K, ©3)
8dt>/2 T
acjbulk — ~
157K, 2

from which we see that the bulk integral contributes to non-diverging order if 7/ = O(k4),
giving the equations

dad— A3 =T T =22a(1+A/2) — 3\
_ == 96
{1+25¢d2+ﬁ—>\§:dT {d?:lgﬁ/z ©0)
under the conditions
?>1 = a< 222 A2 1+A/2
_a 2"‘;\2 — < a< ;_/ 7
Thus, we start finding that
1+A/2 A=2(1+A/4
MSE =1 for d<max< +2/,)\ (4+ /)> (98)

We now consider the case in which the spike contributes.
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» If there is the spike d?> < 1 and it is the only contribution 2d < ¢ < 1 + d?, then the equations
read

dad — A\ = 4d(1 + d? —
{ o : (1+ ¢) 99

1+2ad> —EX+ 2 = (1+d®—¢)’ +2c(1+ 2 —¢)
This system can be solved explicitly under the conditions above, giving quite an unmanageable

expression. It reduces to § = 0 for A = \ = 0.

» If there is the spike d?> < 1 and it contributes along with the bulk (see discussion above and
(95)) ¢ — (2d)~, then the equations read

4ad — A =4d(1 —d)* +T
a5 A 4 2 (100)
1+ 2ad? — 5)\—1—1—(1—61) +4d(1 — d)? + dT

These give again unmanageable expressions, but for A = 0 it gives

MSE — 3@ (4—v6a—2)°. (101)

One can check by explicit solution that the last two cases lead to test error strictly smaller than one.
The last two cases can be easily solve numerically, allowing to plot the curves in Figure 3.
Finally, the large o behavior can be found by considering the last case

dad — L) —d)?+T
A= dd(l a4 T : (102)
1+42ad? — N+ 2 = (1 —d)* +4d(1 — d)? + dT

under the scaling ansatz

1 dq _ ﬂ
d—\/a<d0++ )T—\/E<T0+\/a+...> (103)

and solving the equations perturbatively gives

VA 3VA
dy=—— and dy =—— (104)
2 4
giving the large « scaling presented in Result 2.

This completes the derivation of Result 2.

Appendix F. Details of the numerical implementation of Theorem 1

All the code for reproducing the experiments and the figures can be found in the public repository
https://github.com/SPOC-group/OverparametrisedNet. The numerical implemen-
tation of (6) reduces, at its core, to two sub-tasks: the numerical evaluation of y, the integration
involved in computing .J(a, b) and its partial derivatives, and the numerical solution of the equations
themselves.
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Computing ;7. Recall that the spectral density p; is the free convolution of a rescaled Marchenko-
Pastur p* distribution, and that of a semicircle distribution with radius 2a. In particular, p*(z) =
VE* LM.P. (\//?*:U) where pg p. is the Marchenko-Pastur distribution with parameter £* (the asymp-
totic spectral distribution of A” A/m where A € R™*9 has i.i.d. zero-mean unit-variance compo-
nents). This free convolution can be computed using standard random matrix theory [44] tools. We
report here the procedure as described in [31], and summarize here only the steps without providing
a derivation.

To compute the spectral density under consideration, first we fix the noise level a and the location
x at which we want to compute 4 (x). Then, we solve the following cubic equation (looking for the
solution with largest imaginary part, if all solutions are real then the spectral density at that location

18 Zero)
1 3 _ L 2 L_ * 1 =
<ma>g <\/,?*+a>g +<Z+\/m7 \/ﬁ)g 1=0, (105)

where z = x — i7 with 7 a small positive constant. The solution g = g(z) of the equation is the
so-called Stieltjes transform of p*(z), i.e.

g(Z)z/dfv () , (106)

r—z

which can be inverted by the Stieltjes—Perron inversion formula, i.e.

o (x) = Tlilél+ %Im Guy (x — 7). (107)
In practice, the limit is done by using 7 = 10~!2 directly in (105).

Additionally, by imposing that the discriminant of (105) is zero we obtain an equation for x
(setting 7 = 0) that allows to precisely evaluate the boundaries of each of the bulks of x) (the
distribution has two bulks in the low-noise setting, and one single bulk otherwise, with the splitting
threshold depending non-trivially on «* and a).

Computing J(a,b). We use the estimate of the bulk boundaries to set-up an efficient integration
scheme to finally compute J(a, b). We first compute the bulk boundaries, then intersect the support
of the bulks with the integration region (b, +-c0), and finally for each bulk integrate ;. (z)(x — b)?
using quad from the Scipy library in Python. This explicit use of the bulk boundaries allows precise
evaluation of J(a, b) even in the low-noise regime, where one of the bulks has very small support
with quite large values for the spectral density.

Finally, we compute the partial derivatives of J(a,b) by centered finite differences, with step
size equal to 1078,

Numerical solution of the equations. To solve numerically (6), we find it convenient to revert to
the state evolution equations presented in Appendix B.4, equation (58). We follow the prescribed
iteration, possibly damping the updates with a factor as small as 1072, and declaring convergence
when the Euclidean distance between two subsequent updates falls below a prescribed tolerance
of at least 10~%. It is also convenient to adopt a planting scheme, where the equations for a given
value of 5\, A, k* are solved for one initial value of « (we found that a value around the mid-point
between o = 0 and o = cvgtrong WOrks best), and then the rest of the learning curve as a function of
« is computed by successively using the solution at a value « as the initialization for that of o + da,
where d« is a small step-size.
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Appendix G. Details of the experiments

For Figure 1 right and d < 100 we used the CVXPY package in Python. All the other experiments are
realized in PyTorch. We instantiate the student weights randomly as centered Gaussian variables with
standard deviation 10~ and the target ones with variance 1, appropriately changing the functional
form of the target. In Figure 1 right we optimize using LBFGS for the sake of efficiency. For Figure
1 left we optimize using the GD iteration

2
t n m t
t+1 t Wi 1 Wy~ Ty
witl = wl — 2\ Y Vo |Yu— —= > 0% <>] (108)
vmd =1 vm k=1 Vd

with n = 20.
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