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l Abstract001

Whole slide images (WSIs) capture intricate morpho-002
logical features that correlate with molecular profiles in003
tumors, making them valuable for non-invasive molecular004
profiling. While previous work in computational pathology005
has focused on predicting gene expression, protein levels,006
and mutation status from WSIs, we extend this by introduc-007
ing a deep learning framework that predicts pathway activ-008
ity and microRNA (miRNA) expression in addition to these009
commonly studied molecular layers. By employing multi-010
task learning, our model efficiently captures shared histo-011
logical patterns across different molecular modalities, en-012
hancing prediction accuracy. We show that pathway activ-013
ity is the most reliably predicted feature, followed by protein014
expression, with gene expression and miRNA predictions015
being more challenging. These findings highlight the neces-016
sity of incorporating pathway and miRNA data for a more017
comprehensive and biologically relevant understanding of018
tumor biology. Our approach demonstrates significant po-019
tential for improving cancer diagnostics and biomarker dis-020
covery, offering a more comprehensive alternative to tradi-021
tional molecular assays.022

1. Introduction023

Hematoxylin and eosin (H&E)-stained histopathology024
slides have long been fundamental in cancer diagnosis, of-025
fering intricate insights into tissue architecture and cellu-026
lar organization. Recent advances, however, have revealed027
that these slides also contain rich molecular information that028
correlates with alterations at the transcriptomic, proteomic,029
pathway, and microRNA levels [4–6]. Harnessing this030
latent information to predict omics profiles directly from031
WSIs presents a promising, rapid, and cost-effective alter-032
native to traditional molecular profiling methods, which are033
often labor-intensive and expensive [8].034

Deep learning techniques have revolutionized compu-035
tational pathology, enabling the extraction of biologically036

meaningful features from WSIs [14, 17, 21]. While 037
molecular profiling typically relies on specialized labora- 038
tory workflows, recent advancements in convolutional neu- 039
ral networks (CNNs), multiple-instance learning (MIL), 040
and transformer-based architectures have demonstrated that 041
histopathological patterns in WSIs can predict underlying 042
molecular phenotypes [2, 7, 10, 11, 19]. These techniques 043
have successfully been applied to predict gene expression, 044
protein abundance, and other molecular signatures from his- 045
tology, setting the stage for AI-driven virtual multi-omics 046
profiling [8]. 047

Related works to predict omics level from WSI 048
Recent advances in deep learning have enabled the pre- 049

diction of molecular profiles (mainly gene expression, mu- 050
tation status and protein expression profiles directly from 051
WSIs offering a non-invasive alternative for molecular pro- 052
filing in histopathology. Existing approaches typically fol- 053
low a shared pipeline with variations in architectural com- 054
ponents. The standard workflow involves preprocessing 055
WSIs by segmenting and tiling them into square patches. 056
A subset of N patches is randomly sampled, and patch- 057
level embeddings are generated using a pre-trained feature 058
extractor. The WSI-level representation is then obtained by 059
aggregating these patch embeddings into a single latent vec- 060
tor W ∈ R1×d which is passed to a downstream predictor 061
often a shallow linear layer to map embeddings to molec- 062
ular profiles. For brevity, we refer to the combined tiling, 063
feature extraction, and aggregation modules as the encoder 064
part. 065

In WSI-based omics prediction, model architectures typ- 066
ically consist of two core components: feature extrac- 067
tion and patch aggregation. The feature extractor gener- 068
ates patch-level embeddings, while the aggregator com- 069
bines these embeddings into a WSI-level representation for 070
downstream omics prediction. 071

For feature extraction, recent approaches leverage both 072
CNN-based and transformer-based models, pre-trained on 073
large-scale histopathology datasets. Commonly used mod- 074
els include CTransPath[20] , which uses a hierarchical 075
transformer architecture to capture local and global tissue 076
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patterns, and UNI[3], a unified framework trained in mul-077
tiple histology datasets for robust feature extraction. These078
foundation models effectively encode WSI patches into ex-079
pressive feature representations, capturing morphological080
variations relevant to molecular profiles.081

For patch aggregation, various strategies are employed082
to combine patch embeddings into a single WSI-level vec-083
tor. MLP-based aggregators, as seen in HE2RNA[17] , ap-084
ply fully connected layers to directly merge patch features.085
Transformer-based aggregators, such as tRNAsformer[1],086
use self-attention to capture inter-patch relationships,087
enabling the model to account for spatial dependen-088
cies. More recent methods, like SEQUOIA[16] adopt089
SummaryMixing[15], a linearized transformer variant, to090
enhance efficiency while preserving representational power.091

While prior research has primarily concentrated on pre-092
dicting gene expression or mutation status from WSIs,093
with some extending to protein expression, the inference094
of pathway activity and microRNA (miRNA) expression095
has largely been unexplored. Pathway activity provides a096
more interpretable representation of molecular states com-097
pared to individual gene expression, capturing the collective098
behavior of genes involved in biological processes. This099
makes pathway-based inference not only more robust but100
also more biologically meaningful for downstream analy-101
sis. Similarly, miRNAs, which regulate gene expression102
post-transcriptionally, are vital biomarkers for cancer de-103
tection and prognosis, yet their prediction from WSIs re-104
mains largely unexplored. Moreover, most existing models105
focus on predicting individual molecular modalities, such106
as gene expression or proteomics, independently. However,107
the molecular processes in cells are intricately intercon-108
nected, with gene expression, protein regulation, and path-109
way activity influencing one another. By ignoring these in-110
terdependencies, current models may fail to capture biolog-111
ically meaningful cross-omics relationships, thereby limit-112
ing their overall predictive accuracy.113

In this work, we expand the scope of WSI-based molec-114
ular inference to include multiple omics layers, includ-115
ing gene expression, protein expression, pathway activity,116
and miRNA levels. Through both single-task and multi-117
task learning frameworks, we demonstrate that pathway118
and miRNA predictions not only enhance interpretability119
but also provide valuable prognostic insights. Our findings120
suggest that inferring higher-level molecular features, such121
as pathway activity, offers greater robustness and clinical122
relevance, thus advancing the integration of histology and123
molecular data in cancer research.124
By incorporating pathway and microRNA expression lev-125
els into WSI-based omics prediction, the framework moves126
beyond gene-level inference, providing a more stable, in-127
terpretable, and biologically relevant representation of tu-128
mor biology. This expanded approach enhances the utility129

of WSI-based profiling for both research and clinical ap- 130
plications, enabling more reliable biomarker discovery and 131
precision medicine strategies. 132

Key contributions: i) The first study to predict both 133
pathway activity and microRNA expression levels directly 134
from WSIs. ii) A multi-task learning framework that lever- 135
ages shared and complementary information across omics 136
modalities, enhancing predictive performance. iii) The first 137
comprehensive comparative analysis of omics prediction 138
accuracy from WSIs, covering pathway activity, protein ex- 139
pression, gene expression, and microRNA expression. 140

2. Method 141

Here we present our framework for predicting multi-omics 142
profile from WSI slides Figure 1. Our framework consists 143
of two main steps. i) A vision encoder that embeds the 144
patches using a vision transformer, followed by an aggre- 145
gator module for learning a slide-level embedding. ii) The 146
omics predictor module processes slide embeddings to pre- 147
dict. 148

2.1. Slide encoder 149

Feature extractor: we use a similar architecture to the 150
TANGLE framework, selecting UNI [3] as the feature ex- 151
tractor due to its superior consistency in prior benchmarks 152
[16]. The workflow tessellates the slide into small patches, 153
extracts patch embeddings using the pre-trained UNI en- 154
coder, and aggregates them into a slide-level representation 155
[13]. 156

Aggregator To aggregate the patch embeddings ob- 157
tained from the pre-trained vision encoder, we train the 158
widely used attention-based multiple instance learning 159
(ABMIL) model, which learns patch-level attention weights 160
to effectively pool the embeddings into a slide-level repre- 161
sentation [12] 162

2.2. Predictors 163

Single task learning: our framework predicts multi-omics 164
profiles, including gene expression, microRNA expression, 165
pathway activity, and protein expression levels, from WSI 166
embeddings. The WSI embeddings are obtained from the 167
first stage of our framework (Figure 1), which employs 168
TANGLE, a transformer-based model designed to learn 169
hierarchical histopathology representations. Given an in- 170
put WSI, TANGLE generates a d-dimensional embedding 171
z ∈ Rd, capturing spatial and morphological features rele- 172
vant to downstream molecular characterization. We model 173
the prediction of each omics modality as an independent 174
high-dimensional regression task, where a function f learns 175
to map the extracted WSI embedding z to a target omics 176
profile y corresponding to one specific molecular layer. For- 177
mally, for gene expression prediction, the network approxi- 178
mates: 179
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Figure 1. A histology slide is divided into patches and encoded using a pre-trained UNI encoder (FMH ) . The patch embeddings are
aggregated by an ABMIL module (AggH ) into a slide-level representation. In parallel, gene expression data is encoded with an MLP. A
SymCLR objective aligns the embeddings. The learned slide embeddings are then used to train deep regression models in single-task or
multi-task settings to predict multi-omics profiles, including gene, protein, pathway, and microRNA expression.

Figure 2. Model performance comparison across omics layers. (A) Correlation between predicted and actual omics profiles across patients.
(B) Correlation of model performance at the individual patient level.

fg : Rd 7→ Rmg

where mgdenotes the number of genes. Similarly, for
pathway activity and protein expression prediction, we de-
fine:

fp : Rd 7→ Rmp , fk : Rd 7→ Rmkfl : R
d 7→ Rml

where mp and mk represent the number of pathways and180
proteins, respectively. Each function f is parameterized as181
a fully connected neural network with a single hidden layer182
of 512 neurons, activated by ReLU, followed by an output183
layer tailored to the corresponding omics dimension. The184
model is trained independently for each omics type using185
the Adam optimizer and a mean squared error (MSE) loss186
function, ensuring accurate reconstruction of omics pro-187
files from histopathological features. Model selection is188
performed using 5-fold cross-validation, where the model189
achieving the lowest validation MSE is selected for final190
evaluation.191

Multi-task learning Building on our single-task frame-192
work, we extend our approach to multi-task learning (MTL)193

to jointly predict gene expression, pathway activity, and 194
protein expression from WSI embeddings. Rather than 195
training independent models for each molecular layer, we 196
introduce a multi-task architecture that learns shared rep- 197
resentations while allowing task-specific adaptations. This 198
enables the model to leverage common histopathological 199
features while maintaining flexibility to capture distinct pat- 200
terns relevant to each omics type. Given a WSI embedding 201
z ∈ Rd extracted using TANGLE (Fig.1), we define a joint 202
function: 203

fθ : Rd 7→ (Rmg , Rmp , Rmk , Rmm)

where mg , mp, mk, mm correspond to the number of 204
genes, pathways, proteins, and microRNAs respectively. 205

Each omics prediction task is modeled as a high- 206
dimensional regression problem, where a shared feature ex- 207
traction backbone is followed by task specific output lay- 208
ers. The shared backbone consists of a fully connected (FC) 209
layer with 512 neurons and ReLU activation, capturing a 210
common histological representation of tumor morphology. 211
The task-specific heads, one for each omics modality, con- 212
sist of independent linear layers, each mapping the features 213
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Top 50 Top 500

Single Task Multi Task Single Task Multi Task

Gene 0.6778 ± 0.0226 0.6741 ± 0.0281 0.5573 ± 0.0244 0.5935 ± 0.0194

Protein 0.4694 ± 0.0218 0.4924 ± 0.0088 0.2897 ± 0.0161 0.2958 ± 0.0127

microRNA 0.5295 ± 0.0278 0.5338 ± 0.0170 0.2624 ± 0.0243 0.3259 ± 0.0099

Pathways 0.5970 ± 0.0071 0.6449 ± 0.0263 0.4902 ± 0.0207 0.5031 ± 0.0187

Figure 3. Comparison of single task vs. multi task learning and the prediction performance of breast cancer-relevant genes (PAM50). The
left table presents quantitative results (mean Pearson correlation ± standard deviation) for the top 50 and top 500 molecular targets across
different omics modalities, while the right panel visualizes model performance on PAM50 gene signatures.

to the corresponding output dimension.214

fg(z) = Wg · z + bg, fp(z) = Wp · z + bp,

fk(z) = Wk · z + bk, fm(z) = Wm · z + bm

where W and b are task-specific weight matrices and biases.

L =
1

N

N∑
i=1

∑
t∈{g,p,k,m}

M i
t · ||yit − ft(z

i)||2

To address missing omics measurements across patients,215
we employ task-specific masking, where a binary mask is216
applied during loss computation to exclude missing tar-217
gets. The model is trained using a partial supervision strat-218
egy, ensuring that only available omics labels contribute219
to the gradient update. Optimization is performed using220
the Adam optimizer, with the loss function defined as the221
masked mean squared error (MSSE) across all available222
omics tasks. Model selection is conducted via 5-fold cross-223
validation, selecting the model with the lowest validation224
MSE for final evaluation.225

3. Experiments and results226

3.1. Dataset227

This study utilizes publicly available multimodal data from228
the Xena browser for breast cancer (BRCA)[9]. We col-229
lected a dataset comprising matched gene expression pro-230
files, WSIs, protein expression levels, microRNA expres-231
sion, and pathway activity measurements for a cohort of232
1,024 BRCA patients.233

Histology slides: Matched histopathology slides for234
BRCA were obtained from the Xena browser and processed235
using the TANGLE framework. This approach generated236
patch embeddings, enabling the model to learn meaningful237
representations of tissue morphology for downstream pre-238
dictive tasks.239

Gene expression data: We obtained matched gene ex-240
pression data with FPKM values for protein-coding genes241

from the Xena browser. To improve the interpretability of 242
the model, we excluded genes with a median expression of 243
zero, retaining 17, 759 protein-coding genes. To mitigate 244
the dominance of highly expressed genes in the regression 245
analysis, we applied a log10(1 + a) transformation to ex- 246
pression values. 247

microRNA expression data: We obtained matched mi- 248
croRNA expression data with FPKM values for 1800 mi- 249
croRNA from the Xena browser. To enhance the inter- 250
pretability of the model, we excluded microRNA with a me- 251
dian expression of zero, retaining 751 microRNA genes. To 252
mitigate the dominance of highly expressed genes in the re- 253
gression analysis, we applied a log10(1+a) transformation 254
to expression values. 255

Protein expression data: We obtained proteomics 256
data for breast cancer across 980 samples from the 257
Xena Browser, measured using reverse-phase protein array 258
(RPA), which includes expression levels for 480 proteins. 259
Missing values were imputed using the median expression 260
of the respective protein across all samples, ensuring data 261
completeness. To stabilize variance and improve down- 262
stream analysis, the entire dataset was subsequently loga- 263
rithmically transformed. 264
Pathway activity data: We obtained pathway activity 265
data for breast cancer from the Xena Browser, using the 266
PARADIGM algorithm for inference[18]. PARADIGM 267
integrates pathway information with gene expression and 268
copy number variation data to estimate the activation status 269
of pathway components within a unified pathway network. 270
This network structure consolidates 1, 387 constituent path- 271
ways derived from three major pathway databases: NCI- 272
PID, BioCarta, and Reactome, providing a comprehensive 273
framework for pathway activity analysis. Furthermore, we 274
evaluated TANGLE in both multimodal mode (contrastive 275
alignment) and unimodal mode. However, we did not ob- 276
serve a significant improvement in omics layer prediction 277
between the two settings, suggesting that multimodal align- 278
ment did not substantially enhance predictive performance 279
in this context. 280
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3.2. Single task learning of multi-omics281

We performed omics prediction at both the target and pa-282
tient levels and evaluated the model’s performance across283
different molecular layers. At the target level, we assessed284
the accuracy of predicting individual gene, protein, path-285
way, and microRNA expression levels, while at the patient286
level, we predicted the entire omics profile for each patient.287
The predictive performance of our model varied between288
different omics layers inferred from WSI of breast cancer289
tissues Figure 2. Pathway activity exhibited the highest290
correlation between predicted and hold-out data, followed291
by protein expression, while miRNA and gene expression292
showed comparatively lower correlations (Figure 2).293

Pathway activity prediction: The superior performance294
in pathway prediction is likely due to the aggregation of295
gene expression into functional networks. By capturing col-296
lective biological activity rather than individual gene fluc-297
tuations, this approach reduces transcriptional noise and298
stochastic variability, leading to more stable and inter-299
pretable predictions. The top predicted pathways that were300
strongly linked to cancer progression and relevant biolog-301
ical processes include Targets of MYC transcriptional acti-302
vation, Aurora B signaling, and Cyclin B2 mediated events.303
These pathways play pivotal roles in cell cycle regulation,304
tumor invasion, and cellular growth. C-MYC, a key onco-305
gene, activates several transcriptional programs that drive306
tumor genesis and progression, including genes involved307
in cellular metabolism, proliferation, and survival. The308
model’s ability to predict pathway activity associated with309
C-MYC transcriptional activation implies that the morpho-310
logical features of WSI reflect key signaling events that311
drive the pathology of breast cancer. Aurora B signaling is312
involved in the regulation of mitosis and chromosome seg-313
regation, crucial for proper cell division and genomic sta-314
bility. These pathway predictions suggest that WSI cap-315
tures cellular processes that underlie tumor proliferation316
and metastasis, providing clinically relevant insights into317
cancer progression at the tissue level.318

Protein expression prediction: showed stronger corre-319
lation compared to microRNA and gene expression. Protein320
expression prediction from WSI is inherently more accurate321
than gene expression inference due to the stronger morpho-322
logical imprint of proteins on tissue architecture. Unlike323
mRNA, which reflects transient transcriptional states, pro-324
tein abundance integrates post-transcriptional and transla-325
tional regulation, resulting in more stable and visually dis-326
cernible patterns. Proteins directly influence cellular mor-327
phology, adhesion, and staining intensity, creating distinct328
histological signatures that deep learning models can ef-329
fectively capture. In contrast, gene expression exhibits330
higher variability due to transcriptional noise, cell-type het-331
erogeneity, and dynamic regulation, making it less reliably332
linked to tissue morphology. Additionally, the lower dimen-333

sionality of proteomics data compared to transcriptomics 334
reduces prediction complexity, further improving model ac- 335
curacy. These factors collectively make protein expression 336
more amenable to robust inference from WSI in computa- 337
tional pathology. 338

miRNA Prediction: despite its moderate accuracy, the 339
model’s ability to predict miRNA expression from WSI re- 340
veals that breast cancer tissue morphology encodes subtle 341
yet detectable imprints of miRNA activity. miRNAs are 342
critical regulators of post-transcriptional gene expression, 343
influencing key cancer processes such as cell proliferation, 344
apoptosis, and metastasis. Their successful inference from 345
histological data suggests that the morphological features 346
of tumor tissues capture molecular dysregulation associated 347
with miRNA activity, providing a potential new biomarker 348
for histology-based cancer profiling. However, the rela- 349
tively lower accuracy of miRNA prediction compared to 350
protein and pathway activity can be attributed to the com- 351
plexity of miRNA regulation, which is highly tissue-specific 352
and often present at lower abundance. These factors make 353
it more challenging to directly capture miRNA expression 354
from morphological patterns alone. Nonetheless, the abil- 355
ity to predict miRNA expression from WSI opens up ex- 356
citing possibilities for incorporating small RNA data into 357
histopathological analyses, enhancing the predictive capa- 358
bilities of cancer diagnostics and enabling more compre- 359
hensive molecular profiling from tissue slides. 360

Gene expression prediction: Gene expression predic- 361
tion from WSI showed the lowest correlation among the 362
evaluated omics layers. This lower performance can be 363
attributed to several challenges, including technical noise, 364
cell-type heterogeneity, and regulatory mechanisms that ex- 365
tend beyond the morphological features captured in WSI. 366
Since gene expression is influenced by complex, tissue- 367
specific regulatory networks, predicting expression for all 368
genes from histological data alone is inherently more dif- 369
ficult. The morphological features of tissue sections pro- 370
vide only indirect insights into the transcriptomic land- 371
scape, leading to reduced accuracy compared to protein 372
and pathway predictions, where functional relationships are 373
more directly reflected in tissue morphology. This high- 374
lights the limitations of using WSI for gene expression- 375
based biomarker inference, which may be suboptimal and 376
a limiting factor. This underscores the need to model other 377
omics layers, such as pathways, proteins, or small RNA, 378
to infer more accurate and comprehensive predictions from 379
WSI. 380

Patient level prediction: beyond target-level predic- 381
tions, our model demonstrates superior performance in ac- 382
curately predicting omics profiles at the patient level. This 383
can likely be attributed to the inherent correlations within 384
each omics modality—genes within the transcriptomics 385
layer are correlated with each other, and similarly, pro- 386
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teins within the proteomics layer exhibit strong correlations.387
When the model performs at the patient level, it can lever-388
age these correlation structures, which helps improve pre-389
dictive accuracy. In contrast, at the target level, the model390
struggles to utilize these correlations since the focus is on391
individual targets like specific genes or proteins, rather than392
on the collective relationships between them. This lack of393
structural correlation at the target level limits the model’s394
ability to make accurate predictions across modalities.395

3.3. Multi task learning of multi-omics396

Using the architecture described in the Methods section, we397
conducted multi-task learning (MTL) across multiple set-398
tings. Initially, we trained a unified model to predict 17759399
genes, 778 microRNAs, 1857 pathways, and 457 proteins,400
following the STL baseline. However, we observed no sig-401
nificant performance improvements with MTL. A key factor402
could be the imbalance in task dimensionality, where large403
output spaces dominate optimization, leading to suboptimal404
representation learning for smaller tasks. To mitigate this,405
we constrained MTL to the top 500 genes, pathways, mi-406
croRNAs, and proteins, aligning task dimensions and re-407
ducing the risk of unequal loss scaling. The 480-protein408
constraint naturally set 500 as a threshold, harmonizing the409
learning dynamics across tasks.410

To further refine task balance, we trained MTL on the411
top 50 genes, pathways, and proteins. This was motivated412
by the hypothesis that reducing dimensionality while re-413
taining biologically relevant targets would enhance feature414
sharing and optimization stability. From an AI/ML perspec-415
tive, high-dimensional MTL can suffer from negative trans-416
fer, where conflicting gradients degrade task-specific learn-417
ing. By restricting MTL to a compact, high-signal subset,418
we aimed to improve cross-task knowledge transfer, stabi-419
lize shared representations, and prevent task interference.420

Table 3 demonstrates the effectiveness of multi-task421
learning (MTL) across different omics modalities. While422
MTL and single-task learning (STL) showed similar per-423
formance for the top 50 features, MTL consistently outper-424
formed STL in the top 500 setting, particularly for genes,425
microRNAs, and pathways. Notably, MTL improved gene426
prediction by 6.5%(0.5573 → 0.5935) and microRNA pre-427
diction by 24%(0.2624 → 0.3259), highlighting its abil-428
ity to leverage shared representations across omics layers.429
Pathway prediction also benefited from MTL, showing an430
increase from 0.4902 to 0.5031, indicating that incorpo-431
rating cross-task dependencies enhances predictive power.432
While protein prediction showed only a marginal improve-433
ment (0.2897ß0.2958), this suggests that further architec-434
tural refinements may be needed to better capture protein435
interactions in the MTL framework. Overall, these re-436
sults demonstrate that MTL effectively leverages shared437
histological representations to improve multi-omics predic-438

tion when task dimensionalities are aligned. The signif- 439
icant performance gains in gene and microRNA predic- 440
tion suggest that incorporating structured multi-task objec- 441
tives facilitates cross-task knowledge transfer, particularly 442
for omics layers with overlapping regulatory mechanisms. 443
These findings reinforce the potential of MTL for enhancing 444
histology-based biomarker discovery by integrating com- 445
plementary molecular signals. 446

3.4. Survival analysis 447

To evaluate the clinical relevance of the inferred omics pro- 448
files, we examined whether the top predicted targets were 449
associated with patient survival outcomes. Specifically, we 450
performed survival analysis on AGR, FOXM1, and HSA- 451
miR-190b expression levels in breast cancer (BRCA) pa- 452
tients. The expression of these biomarkers was accurately 453
predicted from WSI of BRCA tumors using our deep learn- 454
ing model (Fig. 4). Kaplan-Meier survival curves revealed 455
significant associations between the predicted expression 456
levels and patient survival. 457

AGR (Activator of G-protein signaling) was strongly 458
linked to poorer overall survival (OS), suggesting its poten- 459
tial role in driving BRCA progression. Similarly, FOXM1 460
(Forkhead Box M1), a key regulator of cell cycle and pro- 461
liferation, was associated with reduced survival, highlight- 462
ing its value as a prognostic marker. In contrast, HSA- 463
miR-190b, a tumor-suppressive microRNA, showed a pro- 464
tective effect, with higher expression correlating with im- 465
proved survival outcomes. These results demonstrate that 466
WSI-derived omics predictions can capture clinically rel- 467
evant biomarkers, offering potential for non-invasive risk 468
stratification and personalized treatment planning. 469

4. Discussion 470

In this study, we demonstrated the ability to predict multi- 471
ple omics layers directly from WSI of breast cancer tissues 472
using a deep learning framework. The predictive perfor- 473
mance of our model varied across the different molecular 474
modalities, with pathway activity emerging as the most pre- 475
dictable feature, followed by protein expression. miRNA 476
and gene expression predictions showed lower correlations, 477
highlighting the challenges and opportunities in histology- 478
driven molecular inference. 479

The superior performance of pathway-level predictions 480
suggests that aggregating gene expression into functional 481
networks enhances predictive robustness. Biological path- 482
ways, by their nature, integrate signals from multiple genes 483
that contribute collectively to a functional process. This ag- 484
gregation helps to reduce transcriptional noise and stochas- 485
tic variability, which are often associated with individual 486
gene expression measurements. As a result, pathway-level 487
inference offers more stable and interpretable predictions, 488
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Figure 4. Correlation plot showing predicted vs. ground truth expression or activity values for the top 4 genes, proteins, microRNAs, and
pathways.

Figure 5. Survival analysis of AGR, FOXM1, and HSA-miR-190b expression levels in breast cancer (BRCA) patients, highlighting their
prognostic significance.
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effectively mitigating the challenges of capturing transcrip-489
tional variability.490

Protein expression prediction from WSI also demon-491
strated a higher correlation compared to miRNA and gene492
expression. This finding indicates that histological features,493
which reflect tissue morphology, are better at capturing as-494
pects of post-transcriptional regulation and protein abun-495
dance than transcriptomic data alone. Since protein ex-496
pression levels are more directly influenced by cellular ar-497
chitecture and histological features, it is not surprising that498
these predictions were more accurate than gene expression499
predictions. The intermediate performance of miRNA pre-500
diction underscores the potential for leveraging histolog-501
ical patterns to infer regulatory elements beyond mRNA502
and protein levels. While the prediction of miRNA ex-503
pression from WSI is still a relatively novel approach, the504
model’s moderate success in this area suggests that miRNA-505
associated regulatory activity leaves a morphological im-506
print in cancer tissues, offering a promising avenue for fu-507
ture exploration.508

In contrast, gene expression prediction exhibited the509
lowest performance in our study. This may be attributed to510
several factors, including the greater variability of transcript511
levels due to technical noise, cell-type heterogeneity, and512
complex regulatory mechanisms that are not fully captured513
by histological features alone. The relatively lower corre-514
lation for miRNA prediction compared to protein and path-515
way predictions further suggests that miRNA expression,516
despite its biological relevance, is more difficult to infer517
from histology. miRNA regulation is highly tissue-specific518
and influenced by a complex network of post-transcriptional519
processes, making it more challenging to detect directly520
from morphological patterns. Nevertheless, the ability to521
predict miRNA expression from WSI represents a signif-522
icant advancement in integrating small RNA profiles into523
histopathological analysis, contributing to a more compre-524
hensive molecular understanding of cancer biology.525

Beyond predictive accuracy, our study explored the bi-526
ological relevance of the model’s predictions by focusing527
on the PAM50 gene signature, a widely used panel for528
molecular subtyping in breast cancer. Our findings re-529
veal that the model achieved significantly higher predic-530
tion accuracy for the PAM50 genes compared to the rest531
of the transcriptome3. This result underscores the model’s532
ability to capture clinically relevant signals from histology533
slides, as the PAM50 genes are tightly associated with spe-534
cific breast cancer subtypes that exhibit distinct histopatho-535
logical patterns. The high prediction accuracy for these536
genes highlights the potential of using WSI-based mod-537
els for molecular subtyping, which could enhance clinical538
decision-making in personalized treatment strategies.539

We conducted survival analysis on the top predicted540
genes, proteins, and miRNAs (AGR, FOXM1, and541

hsa-miR-190b) to evaluate their prognostic significance. 542
Kaplan-Meier survival curves revealed strong associations 543
between their expression levels and patient outcomes. 544
AGR, a regulator of G-protein signaling, correlated with 545
poorer overall survival, suggesting its role in cancer pro- 546
gression. Similarly, FOXM1, a key driver of cell cycle reg- 547
ulation and proliferation, was linked to reduced survival, re- 548
inforcing its potential as a prognostic marker. Conversely, 549
lower expression of hsa-miR-190b, a tumor-suppressive mi- 550
croRNA, was associated with worse survival outcomes, un- 551
derscoring its protective role. These findings highlight 552
the clinical relevance of histology-derived molecular pre- 553
dictions and their potential for risk stratification and per- 554
sonalized treatment strategies in breast cancer. Our study 555
highlights the advantage of pathway-based inference and 556
multi-omics integration in improving predictive accuracy 557
and clinical relevance. Pathway-level predictions offer a 558
more stable and interpretable representation of molecular 559
states, while protein and miRNA predictions provide valu- 560
able insights into post-transcriptional regulation. The abil- 561
ity to predict these features directly from WSI opens new 562
possibilities for integrating histological data with molecu- 563
lar profiling, offering a more accessible and cost-effective 564
alternative to traditional molecular assays. 565

5. Conclusion 566

This work extends molecular inference from WSIs beyond 567
gene and protein expression to include pathway activity and 568
miRNA expression, providing a more holistic view of tumor 569
biology. By leveraging MTL, we demonstrate that multi- 570
omics integration enhances prediction accuracy, particu- 571
larly for pathway activity and microRNAs, which are criti- 572
cal in cancer progression. These findings highlight the po- 573
tential for deep learning frameworks to transform histology- 574
based molecular profiling into a non-invasive, scalable ap- 575
proach for biomarker discovery and precision oncology. 576

6. Code Availability 577

The implementation of our framework, including data pre- 578
processing and model training scripts, is available upon re- 579
quest. 580
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7. Top predicted targets692

Top Genes Pearson Correlation Top Proteins Pearson Correlation Top microRNA Pearson Correlation Top Pathways Pearson Correlation

AGR3 0.707977 ERALPHA 0.645216 hsa-mir-18a 0.655745 Validated targets of C-MYC transcriptional activation 0.682704
ESR1 0.701862 ASNS 0.604106 hsa-mir-577 0.597472 role of ran in mitotic spindle regulation 0.659594
CCNE1 0.693196 ECADHERIN 0.600070 hsa-mir-17 0.591355 Aurora B signaling 0.656991
TBC1D9 0.693071 PLK1 0.597685 hsa-mir-942 0.585266 regulation of p27 phosphorylation during cell cycle progression 0.653634
MLPH 0.687592 CYCLINB1 0.586213 hsa-mir-190b 0.579965 Cyclin B2 mediated events 0.650797
THSD4 0.685178 GATA3 0.583716 hsa-mir-210 0.574278 G1/S-Specific Transcription 0.647201
C6orf97 0.684455 CDK1 pT14 0.575290 hsa-mir-505 0.573169 E2F mediated regulation of DNA replication 0.646681
FOXA1 0.682475 FOXM1 0.563957 hsa-mir-590 0.572802 Condensation of Prometaphase Chromosomes 0.644174
SCUBE2 0.681247 BETACATENIN 0.563820 hsa-mir-130b 0.550578 E2F transcription factor network 0.636441
PSAT1 0.677510 CASPASE7CLEAVEDD198 0.553280 hsa-mir-19a 0.550189 Removal of licensing factors from origins 0.630824
ORC6L 0.676083 IDO 0.545630 hsa-mir-301b 0.548072 cyclin e destruction pathway 0.630183
CENPA 0.675721 BCL2 0.542713 hsa-mir-301a 0.547313 FOXM1 transcription factor network 0.626097
KCNJ11 0.674130 Aurora-A 0.532306 hsa-mir-934 0.547292 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 0.625988
CENPN 0.668963 INPP4B 0.528886 hsa-mir-1307 0.540670 e2f1 destruction pathway 0.625697
GATA3 0.667477 MSH6 0.527805 hsa-mir-106b 0.538964 Aurora A signaling 0.623811
FAM54A 0.667091 Mnk1 0.501646 hsa-mir-197 0.535915 Association of licensing factors with the pre-replicative complex 0.622085
DNALI1 0.665293 CYCLINE1 0.500675 hsa-mir-1306 0.535651 Assembly of the pre-replicative complex 0.620776
CDC25A 0.664781 DJ1 0.488249 hsa-mir-1301 0.533062 G0 and Early G1 0.620678
DEGS2 0.663996 MCT4 0.488224 hsa-mir-877 0.522733 Phosphorylation of Emi1 0.620344
ZMYND10 0.661833 Puma 0.488050 hsa-mir-16-2 0.519643 Unwinding of DNA 0.619240

Table 1. List of top predicted genes, proteins, microRNA, and
pathways.
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