< HumanEval-V: Benchmarking High-Level Visual Reasoning
with Complex Diagrams in Coding Tasks

Anonymous ACL submission

Abstract

Understanding and reasoning over diagrams
is a fundamental aspect of human intelligence.
While Large Multimodal Models (LMMs) have
demonstrated impressive capabilities across
various tasks, existing benchmarks lack com-
prehensive evaluation of their diagram interpre-
tation and reasoning abilities, particularly in
coding contexts. We present HumanEval-V, a
rigorous benchmark of human-annotated cod-
ing tasks that spans six task types and evaluates
diverse visual reasoning capabilities. Each task
features carefully crafted diagrams paired with
function signatures and test cases, employing
novel code generation tasks to thoroughly as-
sess models’ diagram comprehension. Through
extensive experiments with 22 LMMs, we find
that even top-performing models achieve mod-
est success rates, with Claude 3.5 Sonnet reach-
ing only 36.8% pass@ 1, highlighting substan-
tial room for improvement. Our analysis re-
veals that current LMMs struggle with spatial
transformations, topological relationships, and
dynamic patterns that humans find intuitive.
These findings provide valuable insights for
advancing LMMSs’ visual reasoning abilities. !

1 Introduction

High-level intelligence, whether in humans or ad-
vanced Al systems, requires the ability to under-
stand and reason over visual information repre-
sented in diagrams. Diagrams are essential in many
domains, including science, engineering, and math-
ematics, as they serve as a powerful medium for
abstracting and communicating complex data, re-
lationships, and processes, encoding rich informa-
tion in a visual and structured format. The abilities
required to comprehend diagrams extend beyond
simple pattern recognition; they necessitate sophis-
ticated cognitive capabilities, including interpret-
ing transformation patterns, recognizing hierarchi-
cal structures, and integrating multiple visual cues

"Data and code available at this anonymous repository

Image: Function Signature:

def solution(input_matrix: List[List[str]]) -> List[List[str]]:

B

[cl8]
Y
ClB[A
B/C|D
17

D
WA
A

SEES

Transform the input matrix based on the shown pattern.

- Parameters:
input_matrix: Input matrix as a 2d array.

- Returns:
output_matrix: Transformed matrix as a 2d array.

+[»[~[o

Test Cases:
assert solution([['1','a'], ['3','#']])==[['a’', '1"], ['#','3°]]; assert solution ---

Ground Truth Code Solution:

def solution(input_matrix):
Reverses each row in the given matrix
return [row[::-1] for row in input_matrix]

Figure 1: A task example from HumanEval-V. LMMs
are required to figure out the facts and patterns in the
diagram and complete the function body.

such as arrows, symbols, and their relative posi-
tions to perform spatial or logical reasoning. The
rapid development of Large Multimodal Models
(LMMs) has led to the creation of various bench-
marks designed to assess the alignment between
LMMs’ capabilities and human intelligence. How-
ever, there remains a significant gap in benchmarks
that specifically evaluate the ability to understand
and reason over complex diagrams.

Popular multimodal benchmarks, such as
MMMU (Yue et al., 2024), MathVista (Lu et al.,
2023), and ChartQA (Masry et al., 2022), focus
primarily on scientific, mathematical, and chart-
based analytical questions over various domains of
images, testing LMMs’ multidiscipline knowledge
rather than diagram understanding. While abstract
visual reasoning tasks (Zhang et al., 2019; Nie et al.,
2020) from IQ tests typically feature static patterns
based on visual analogies or numerical inference
over diagrams, they often lack the complexity and
diversity in visual patterns and diagram types. This
gap highlights the need for benchmarks that assess
more intricate diagram reasoning abilities. The
field of coding presents an underexplored oppor-
tunity, as developers frequently use various dia-
grams to illustrate data structures, algorithms, and
problem constraints. A recent study, MMCode (Li
et al., 2024b), evaluated LMMs on coding prob-

https://anonymous.4open.science/r/ARR-HumanEval-V-8FF6

< Rearrangement /' Expansion Validation
account for 17% account for 10% account for 17%
Define new traversal patterns Define new patterns to evolve Define new conditional rules to
to reorganize or reshape the data. or extend the data elements. verify or classify the input data.
31215 Expected Output [N | e
After the 2 > O] I] = .
S17A0 1Dy B2es e
7,1,0,3,9 . .
11319 ! T=1 T=2 T=3 {L‘-": :} [i='rl-'}
. Rotation
Aggregation **! Iteration i N
* 99 acgcoumfons% mee te;\cco?rsfogﬂ‘q <> compl’!mtcg}:flogge
Introduce new grouping and Define new iterative operations Introduce new computational
aggregation rules for the input data. or calculations to the input data. rules or operations to the input data.
Edge Count=7 . - ome om . w . Bynamic
ATATETE I I p asearRsaarRsratn: 59 | — 11;1011—:)2:)1— Patterns
ale 004 > > 65 | — — —
T o ._j# jﬁ | 65| — 1000001
o BIETD D Yo e g = 21 |— 10101—0101—
S s R s
I
RERSIRERIRARSIRARAIRSA [37 | — 100101—0101— 5 |

Figure 2: The six task categories in HumanEval-V, along with their
quantitative distribution and representative diagram examples.

lems with visual contexts directly crawled from
competition platforms. However, competition cod-
ing problems often include comprehensive textual
descriptions, making the visual information sup-
plementary. Their results, which showed similar
LMM performance with and without visual infor-
mation, further underscore the gap in evaluating
genuine diagram understanding abilities.

To address this gap, we introduce HumanEval-V,
a novel benchmark designed to provide a focused
evaluation of complex diagram understanding and
reasoning abilities in programming contexts. Un-
like MMCode, our benchmark is dedicated to as-
sessing visual capabilities through a rigorous anno-
tation pipeline that creates coding tasks capturing
the essence of real-world problems. Each task fea-
tures an indispensable, self-explanatory diagram
with minimal textual clues, as demonstrated by our
experiments where top LMMs failed all tasks with-
out the provided diagrams. HumanEval-V consists
of 253 human-annotated coding tasks. Each task
features (1) a diagram encoding the problem con-
text, (2) a function signature defining the task’s
input-output structures, and (3) test cases to verify
solution correctness. Figure 1 provides an example
task, where the diagram illustrates spatial transfor-
mation patterns, requiring the model to compre-
hend fine-grained visual elements such as matrices,
arrow directions, and spatially ordered data points.
This task aligns with the ARC-AGI (Chollet, 2019)
benchmark in inferring transformation patterns
from limited visual examples. However, unlike
ARC’s matrix-formatted diagrams, HumanEval-V
offers a more diverse and complex set of diagrams
spanning six task types (Figure 2), demanding ver-

Figure 3: Core knowledge required for un-
derstanding diagrams in HumanEval-V.

satile capabilities (Figure 3) for diagram under-
standing and reasoning. For a comparison of di-
agrams from existing benchmarks and ours, see
Figures 21 and 22.

Another novelty of HumanEval-V lies in using
code generation tasks for evaluation instead of the
multiple-choice or short-answer questions com-
monly used in other multimodal benchmarks. This
approach offers compelling benefits: code genera-
tion is more challenging, requiring comprehensive
logical thinking and visual understanding with min-
imal chance of correct guesses, and test cases could
rigorously verify whether the model captures all
critical visual information, rather than relying on
similarity matching with ground truth. Addition-
ally, we utilize a two-stage evaluation pipeline that
supports LMMs with limited coding abilities by
first prompting them to generate a structured dia-
gram description summarizing the visual context,
then using a more capable coder model to imple-
ment the solution, ensuring the evaluation priori-
tizes visual understanding over coding proficiency.

Through extensive experiments with 22 LMMs,
we observe the following key findings: (1) Our
benchmark presents unique challenges not ad-
dressed by other multimodal benchmarks. The top-
performing model, Claude 3.5 Sonnet, achieves
36.8% pass@]1, while the best open-weight model,
Pixtral 124B, reaches 21.3%. (2) Current LMMs
exhibit stronger vision-to-language alignment than
vision-to-code. Their best performance occurs
when they serve as diagram describers, with GPT-
40 acting as the coder model. (3) LMMs’ perfor-
mance can be further enhanced through sampling
or iterative self-refinement. For instance, Claude

3.5 Sonnet achieves a 74.3% pass rate with 100
samples, and it can reach 55.3% pass@ 1 with four
self-refining iterations based on test case execution
feedback. (4) Current LMMs still have difficulty
understanding diagrams that are trivial for humans,
particularly understanding spatial transformations,
topological relationships, and dynamic patterns.

2 Benchmark Construction

Task Definition: As shown in Figure 1, each cod-
ing task in HumanEval-V includes: (1) a single di-
agram D providing visual context, (2) a Python
function signature o with input parameters, return
type, and brief instructions, and (3) a set of test
cases T' = ty,to,...,t, to validate the correctness
of the generated output O, a complete Python func-
tion produced by the LMM.

Annotation Standards: We establish rigorous
standards to ensure high-quality coding tasks: (1)
The visual context must be essential for solving the
task, with all relevant information contained in a
single image; (2) Tasks should be designed around
the visual context with minimal textual description;
(3) Unnecessary programming complexities, such
as recursion, intricate constraints, or complex data
structures, should be avoided.

Task Annotation Pipeline: We define the task
annotation pipeline with four steps as in Figure 4.
In the first step, we collect a large set of cod-
ing problems from prominent Q&A and coding
challenge platforms that incorporate images, then
screen them to exclude questions that (1) require
specific programming frameworks or libraries, or
contain images that (2) are not illustrative diagrams,
(3) provide no useful information for solving the
problem, or (4) require extensive textual context
for interpretation. For the second step, we distill
the screened problems to identify critical visual el-
ements, along with the data structures, operations,
transformations, or conditional rules involved, cat-
egorizing them into six task types (Figure 2) and
outlining the key capabilities needed for diagram
understanding. For the third step, we design new
coding tasks based on these distilled ideas, eliminat-
ing unnecessary complexities, refining input/output
structures and function signatures, and creating vi-
sual objects and layouts using basic shapes and a
consistent color scheme in PowerPoint. We also
generate tailored test cases, resulting in 100 newly
crafted seed tasks after excluding tasks with de-

@ Collect

Screen eligible questions from Q&A
and coding challenge platforms

——= <\ CriteriaV o

v’ Uses illustrative diagrams rather than
other types of images.

v' Diagrams should be useful for solving
or understanding the problem.

v' Diagrams should be self-explanatory,
requiring minimal textual explanation.

& + 4 Original Q Vo
x Disti " Apply color transformations according to

Identify the most critical elements and
concepts involved in the visual context.
Determine the critical visual elements
and extract any related data structure,
operations,transformations,or conditional
rules that define the problem.

specific rules and then reset the rows or
columns to white when they become filled.

O
[E4 Recreate

Design and create new coding tasks
based on the distilled ideas. Eliminate
unnecessary programming complexities,
redesign 1/0 structure, and redraw the
diagrams using PowerPoint. This process
results in 100 seed tasks.

— ¢ Y OurVersion v o—

Transform the color of specific row or
column based on the given letter

Ae c A Ae c

o| o o
g € €
f A F

AN
‘;1;' Diversify

ae o Ae C A -
of of o
g H €
F F F

—* ¢ Diversified Version ¥ ¢———

Sort the numbers of specific row or
column based on the given letter

Expand the task set by introducing \umn. letter
diverse variations to the evaluation. EIEIEN oefs

. B . E35[4 €346
Selectively modify operations, patterns, W7z fel7]2 qel7|2

conditions, transformations, objects, or
P
of1]s]8] of
eaa2 €
Ws|7s ¥

e

ol

=lo

data structures. This process expands

s ¢
oJ1TeTs
the benchmark to 253 final tasks. EH%

B
5
7

Figure 4: HumanEval-V task construction pipeline.

sign or formulation challenges. For the fourth step,
we expand the task set by diversifying the seed
tasks using a hybrid approach with GPT-40. GPT-
40 identifies relevant capability aspects for each
seed task and suggests modifications involving new
spatial transformations, mathematical operations,
dynamic patterns, or variations in data structures
and object attributes. Human annotators then re-
fine and annotate these new tasks and diagrams,
creating 0 to 2 diversified versions per seed task
based on complexity, culminating in 253 tasks in
HumanEval-V and finalizing the capability aspects
shown in Figure 3. Further details and examples
of the data collection and diversification processes
are provided in Appendix B.1 and Appendix B.2.

Quality Assurance: Our annotation team com-
prises four experienced programmers, each with
over four years of Python programming experience.
Initially, each annotator independently annotates
their assigned tasks following pre-defined guide-
lines. Subsequently, all annotators review each
other’s work by annotating ground truth code solu-
tions and diagram descriptions to ensure tasks are
visually grounded, solvable with the provided in-
formation, and free of design or conceptual errors.
Any identified issues are resolved collaboratively,

1024 {7 ®e ceommse 150 A
n
E >
3 g 100
= =
5 s121 g s0-
(7] w
T 256 H o
512 1024 5 10 15
Width (pixels) Number of Test Cases
(a) Diagram Size (b) Test Cases Count
m 34 /= HumanEval-v
40 . Humankval
= 1 oy
3 i G 27
El "| I
- * w N\
ful o 1 B
w r
0 A , hhﬂ'? =] 0 .
250 500 750 0.00 0.25 0.50 0.75 1.00
Number of Tokens Cyclomatic Complexity
(c) Description Length (d) Coding Complexity

Figure 5: Distribution analysis of the benchmark data.

with tasks finalized only after consensus is reached.
Additionally, one annotator ensures consistent for-
matting and style across all visual representations
and coding tasks. Each annotator contributes over
200 hours to the annotation process.

Benchmark Statistics: To further demonstrate
the quality of our benchmark, we conduct statis-
tical analyses on several key aspects and present
the distribution of these statistics in Figure 5. First,
we strictly control diagram sizes, capping the max-
imum width or height at 1024 pixels to eliminate
the need for high-resolution perception. Second,
each task includes at least five test cases, with
the majority containing ten, ensuring full state-
ment and branch coverage over human-annotated
code solutions. Third, the token length of human-
annotated diagram descriptions is predominantly
around 400 (measured using tiktoken (OpenAl,
2024c)), demonstrating that our diagrams encap-
sulate rich visual context. Lastly, our human-
annotated code solutions exhibit cyclomatic com-
plexity (Gill and Kemerer, 1991) levels compara-
ble to HumanEval (Chen et al., 2021), a widely
used coding benchmark designed for entry-level
programming tasks.

3 Benchmarking Setup

Models: We evaluate 22 state-of-the-art LMMs,
including a representative mix of leading pro-
prietary and open-weight models. Our evalua-
tion covers five of the latest proprietary mod-
els: Claude 3.5 Sonnet, GPT-40, GPT-40-mini,
Gemini 1.5 Pro, and Gemini 1.5 Flash. We

V2C (wicor) V2T2C V2T2C w/SC
Vision Function Vision Function Vision Function
Input Signature Input Signature Input Signature
@ @ Textual @ St?nd
LMM LMM Description LMM Coder

(CoT Prompt)

=

Code Code Textual Code
Solution Solution Description Solution

Figure 6: Evaluation pipelines employed in the experi-
ments: (1) Direct translation of visual context into code
(V2C), (2) with an optional Chain-of-Thought prompt
(V2C w/ CoT); (3) Translation of visual context into a
textual description, which is then processed to generate
code (V2T2C); and (4) A variant of the third pipeline,
where a stronger coder model is used to generate the
code solution (V2T2C w/ SC).

also assess 17 top-performing open-weight mod-
els spanning various parameter sizes, including In-
ternVL 2.5 (4/8/26/78B), Qwen2-VL (7/72B), Pix-
tral (12/124B), LLaVA-OV (7/72B), Llama-3.2-V
(11/90B), Molmo-D (7/72B), Chameleon (7/30B),
and Phi-3.5-V (4B). Further details are in Table 4.

Prompting: we employ multiple strategies for
our evaluation pipelines as illustrated in Figure 6,
where LMMs may encounter four different prompt-
ing scenarios: (1) Direct Code Generation. The
model directly generates code based on the given
diagram D and function signature o, denoted as
Pyoc(D,o); (2) Chain of Thought (CoT). This
variant enhances the V2C pipeline by incorporat-
ing a zero-shot CoT instruction I, (Wei et al.,
2022), prompting the model to outline its reason-
ing process before generating the code. This is de-
noted as Pyoc (D, o, Icor); (3) Intermediate Tex-
tual Representation. The model first produces a
structured textual problem specification PS based
on D and o, denoted as Pyor (D, o). The problem
specification consists of three key sections: Prob-
lem Restatement, Visual Facts, and Visual Patterns.
This structured representation is derived from our
benchmark annotation process, which we found to
be effective in capturing a comprehensive descrip-
tion of the problem context; (4) Code Generation
from Text. The model generates code based on
PS rather than the original diagram D, denoted
as Ppoc(PS, o). The corresponding prompt tem-
plates are shown in Figure 27, with further details
on prompt design available in Appendix C.2.

1 -
Models v2C V2C w/ CoT V2T2C V2T2C w/ GPT-40 % ® 1
a
pass@F k=1 k=3 k=l k=3 k=1 k=3 k=1 k=3¢ T 7°] °e e
Proprietary LMMs 50 -:
Claude 3.5 Sonnet | 28.1 37.9 | 36.81s7 47.91100 | 33.2 43.6 31.6 43.7 0 20 40
GPT-40 24.1 338 | 27.7 40.0162 | 26.5 40.5167 | 26.5 40.516.7 100 A
Gemini 1.5 Pro 233 269 | 229 34.1172 | 28.5 36.4195 | 26.9 37.31104 ” 5
Gemini 1.5 Flash 154 205|174 24.9 15.8 22.0 18.6 27.216.7 ; 50 4 ‘ il
GPT-40-mini 9.90 16.0 | 15.8 21.1 14.2 227167 | 18.2183 24.6136 =
Open-weight LMMs with more than 70B parameters (?—2'0—4'0—
Pixtral 124B 12.6 20.3 | 16.6 28.117s | 213187 29.9196 | 21.3157 31.61113
InternVL 2.578B | 12.3 19.7 | 134 273176 | 17.8 25.7 21.7v94 3144117 < 100 4
Qwen2 VL72B | 9.10 157 | 142151 19.4 10715 19.1 16.6175 25.1104 g M
LLaVA-OV 72B 6.70 7.70 | 6.30 11.4 10.7 13.1 13.817.1 19.7112 g 50 4
Molmo-D 72B 320 4.80 | 3.20 8.80 1.60116 7.00 5.10 142194 = o
Llama-3.2-V90B | 430 6.10 | 4.00 8.20 5.90 10.9 4.70 11.0 m
Open-weight LMMs with fewer than 70B parameters o751
Pixtral 12B 40 59 |63 12.2163 | 5.5 12.6167 | 13.81958 21.31154 B °® o
InternVL 2.526B | 3.6 6.6 | 4.3 6.8 2.8 6.7 8.3 16.7+10.1 E 50 A o °
Qwen2 VL 7B 0.8 33 | 1.6 3.9 2.4 6.3 6.3 14. 71114 s
InternVL2.58B | 0.8 2.0 |08 37 1.2 33 5.1 13.61116 e
InternVL2.54B | 1.2 4.1 |32 3.4 32 5.8 5.9 13.5104 0 20 40
LLaVA-OV 7B 20 19 |16 2.4 2.0 32 5.1 102133 o %
Phi-3.5-V 4B 00 00 |00 0.0 0.0 0.0 5.9 9.4019.4 2 601 @ ®
Llama-3.2-V 11B 20 20 | 1.6 3.9 2.0 5.2 4.0 8.8016:8 % 20 - °
Molmo-D 7B 1.2 1.0 | 04 1.8 0.8 1.0 2.8 8.40174
Chameleon 7B 00 00 |00 0.2 0.0 0.0 1.2 2.20 20 '0"_2'0—4'0_
Chameleon 30B | 0.0 0.0 | 0.0 02 0.4 0.0 0.0 1.90 HumanEvaly

Table 1: Performance of LMMs across different settings. Models are ranked based on
the @ column. The best and second-best performances in each column are highlighted.
The numerical values are color-coded to indicate performance changes relative to the
corresponding pass@Fk values in the V2C column: green represents improvement, red

indicates decline, and denotes minimal change.

Hyper-parameters & Post-processing: We ap-
ply two distinct decoding strategies for both code
and description generation. First, we use greedy
decoding to produce a single deterministic output,
assessing model performance in a constrained set-
ting. Additionally, we employ a sampling method
with Top_p = 0.95, Top_k = 20, and a temper-
ature of 0.8 to generate diverse outputs, allowing
us to evaluate the models’ ability to produce cor-
rect solutions when given multiple attempts. We
set the maximum output length to 2048 tokens for
both code and description generation. To facilitate
extraction, we prompt the models to encapsulate
their generated code within Markdown-style code
blocks. We then apply an abstract syntax tree parser
to detect and retrieve generated import statements,
class definitions, and function definitions. These
components are concatenated to form the final code
solution. An additional ablation study on the tem-
perature setting is presented in Appendix C.3.

Figure 7: Comparison
of LMM performance
on HumanEval-V and
other popular multi-
modal benchmarks.

Evaluation Metrics Following established prac-
tices in code generation evaluation (Chen et al.,
2021, 2022), we use the pass@k metric to assess
functional correctness. A task is considered solved
if at least one of the k selected solutions passes all
test cases, and pass@¥k is the percentage of solved
tasks. We report results for £k = 1, 3. In the V2C
setting, we generate n code samples per task and
randomly select k for evaluation. For greedy decod-
ing, n = 1 for pass@ 1, while for sampling-based
evaluation, n = 6 for pass@3. In the V2T2C set-
ting, we first sample six problem specifications per
task, then use greedy decoding to generate one code
solution per PS, resulting in six solutions per task
for pass@3 computation.

4 Benchmarking Results

Main Results: We present the benchmarking re-
sults of 22 LMMs in Table 1, covering the four
evaluation pipelines introduced in Figure 6. Ad-
ditionally, Figure 7 provides a correlation analy-

Iterative V2C Iterative V2T2C
—#— Claude 3.5 Sonnet
0 GPT-40
50 1 == Gemini 1.5 Pro
Vision Function Vision Function —k— Gemini L5 Flash
Input Signature Input Signalure —#— GPT-4o-mini

:

pass@1 Score

& &
Ammm———— Textual «--

LMM i Description LMM
i Iteration | ;/terationf
1
= --=> |0I0 vl [1010 20
S 1010, 1010
Code Execution Code Execution
Solution Environment | Solution Environment 10

@ iter 0 iter 1

—§— Pixtral 124B —* —#— Claude 3.5 Sonnet
InternVL.2:5788 GPT-40

~4="Qwen2 VL 728 —#— Gemini 1.5 Pro
QVQ 72B Preview

InternVL 2.5 788
—4— Qwen2 VL 728

Pixtral 12B.
~0--Qwen2 VL 7B
—@— InternVL 2.5 8B

InternVL 2.5 4B

—— Gemini 1.5 Flash
—#— GPT-40-mini
—4— Pixtral 124B

o

Test Strong Test
Cases Coder Cases

Figure 8: Iterative evaluation pipelines.

sis to illustrate the performance gap between the
evaluated LMMs on HumanEval-V and other pop-
ular benchmarks (more details on the correlation
analysis are in Appendix A.1). Based on these re-
sults, we highlight the following key findings: (/)
Our benchmark presents unique challenges not cap-
tured by other benchmarks. As shown in Figure 7,
most evaluated LMMs exhibit significantly larger
performance gaps on HumanEval-V compared to
other benchmarks. While MMMU demonstrates
the highest correlation with our benchmark, its re-
sults still lack sufficient discrimination between
models. (2) LMMs generally achieve their best
performance under the V2T2C w/ GPT-4o setting.
This is particularly evident for LMMs with fewer
than 70B parameters, which struggle to complete
tasks in the V2C setting. These findings validate
the importance of decoupling visual understanding
from coding abilities. Additionally, CoT prompt-
ing and the decoupled V2T2C pipeline show sim-
ilar performance distributions, with more capable
LMMs benefiting more from these enhancements
than smaller models. (3) Open-weight LMMs still
lag behind top proprietary models. Although high-
capacity open-weight LMMs (e.g., Pixtral 124B)
outperform the mini/flash versions of proprietary
models, they still fall short of the most capable pro-
prietary LMMs. For smaller-scale models, Pixtral
12B, Qwen2 VL 7B, and InternVL 2.5 4B demon-
strate a high performance-to-size ratio. (4) Cer-
tain LMMs exhibit anomalously poor performance.
Models such as Molmo-D, Llama-3.2-V, and the
Chameleon series perform significantly worse than
other LMMs of similar scale. Another case is Phi-
3.5-V, which appears to lack coding ability, achiev-
ing a performance score of O in the V2C settings,
compared to 9.4% pass@3 when assisted by GPT-

V2C w/ CoT lIteration Steps

iter 2 iter 3 iter 4 iter 0 iter 1 iter 2 iter 3 iter 4
V2T2C w/ SC Iteration Steps

Figure 9: Performance of LMMs under the iterative evaluation settings.

4o for code generation. (5) Additional Results of 01
and QVQ: We also evaluated reasoning-enhanced
LMMs that leverage test-time scaling by generat-
ing long chain-of-thought (CoT) reasoning. Specif-
ically, we assessed OpenAl ol (OpenAl, 2024b)
and QVQ-72B-Preview (Team, 2024b) under the
V2C w/ CoT setting, achieving pass@1 scores of
40.6% and 19.0%, respectively. Our case study
reveals that both models still struggles with visual
understanding, often failing to identify rules or pat-
terns in the diagrams. Meanwhile, QVQ primarily
fails due to excessively long CoT reasoning, with
35% of cases unable to generate a valid code so-
lution within the 20k token limit. These results
underscore the complexity of the diagrams in our
benchmark. Example cases for ol and QVQ are
shown in Figures 34, 39, 44 and Figures 35, 40, 45.

Iterative Benchmarking: We introduce an iter-
ative benchmarking pipeline to evaluate LMMs’
ability to reason over environmental feedback and
perform self-refinement—an essential skill for real-
world problem-solving. Figure 8 illustrates two
types of iterative pipelines derived from the V2C
and V2T2C w/ SC settings. In these pipelines,
LMMs must refine either their generated code so-
lutions or textual descriptions based on feedback
from the execution environment. To support this
process, we design new prompt templates (Fig-
ure 28) that guide the refinement steps. Specifi-
cally, for each task, LMMs perform an additional
iteration if the generated code contains syntax er-
rors or fails to pass all test cases. The feedback
includes detailed error messages or the failed test
cases’ inputs and expected outputs.

For the iterative evaluation, we select the most
capable LMMs across different parameter scales,

Gemini 1.5 Pro
Pixtral 1248

60 GPT-40-mini

® Gemini 1.5 Flash
@ Llama-3.2-V 90B
® 50 Qwen2 VL 728
o LLaVA-OV 728
= Molmo-D 728
S Pixtral 128
<40 InternVL 2.5 268
H Llama-3.2V 118
& InternVL 2.5 88
[N, InternVL 2.5 48
LLaVA-OV 7B J]

Qwen2 VL 78

2 —%~ Claude 3.5 Sonnet —&— Gemini 1.5 Flash Molmo-D 78 o

; Chameleon 308 we
GPT-40 —%— GPT-do-mini Chameleon 76| w7
—%— Gemini 1.5 Pro Phi3sv 4B | dem=""
1510 20 50 100 0 20

GPT-40 { =i pass@1
Claude 3.5 Sonnet 1 —#- pass@3
InternVL 2.5 78B { —&- success parsing

" /: GPT-40
L Gemini 1.5 Pro
. i Claude 3.5 Sonnet
L Pixiral 1248
L Gemini 1.5 Flash
[I GPT-4o-mini
RE! i Quen2 VL 728
e InternVL 2.5 788
W o A Pixtral 128
L] A LLaVA-OV 728
[8% A InternVL 2.5 268
a ¢ Qwen2 VL 7B
,’ ,/ R Molmo-D 728
o InternVL 2.5 4B
- K A InternVL 2.5 88
I > Llama-3.2-V 90B
LLaVA-OV 7B
: Llama-3.2-V 11B
- Molmo-D 7B
e Chameleon 308 Basic:Level Perception
A Chameleon 78 High-Level Comprehension
Phi-3.5-V 4B Contextual Interpretation

Sampling Number k

Figure 10: Performance with in-
creased sample size.

using greedy decoding and the pass@1 metric. Fig-
ure 9 presents the results, where ifer 0 represents
the first round of generation without feedback. We
observe that LMMs generally improve across itera-
tions, with more capable models achieving larger
performance gains. Notably, some models, such as
Claude and QVQ, exhibit stronger self-refinement
capabilities. We also investigate the cases that
are corrected after iterations and find that approxi-
mately 90% of these cases are corrected due to the
models’ improved understanding of the diagram
and task. The remaining 10% are cases that fix edge
conditions highlighted by the test case feedback.
None of these corrections result from hard-coding
the exposed test cases into the code solutions.

5 Experimental Analysis

This section presents our analysis of model perfor-
mance under various settings, including increased
sampling sizes, human-annotated problem specifi-
cations, the use of GPT-40 judge for rating LMMs’
diagram descriptions, and error pattern analysis.
Our goal is to examine both the potential and lim-
itations of the LMMs on HumanEval-V. Further
analysis is provided in Appendix D, where we ex-
plore the co-occurrence of capability aspects re-
quired in our benchmark tasks, the stability of us-
ing QwenCoder-32B as a strong coder instead of
GPT-40, and experimental evidence supporting the
value of tasks diversified from the seed tasks.

Performance with Increased Sample Size: We
scale up the number of samples for five proprietary
LMMs to explore their potential performance. We
increase the sampling number n to 200, using the
same Top_p, Top_k, and max token limitations
outlined in Section 3 to calculate the pass@ 100
score under the V2C w/ CoT setting. As shown

Performance Rate (%)

Figure 11: LMMs’ performance
with human problem specifications.

40 60 80 100 0 1 2 3 4 5

GPT-40 Judge Ratings

Figure 12: LLM-as-Judge ratings
for LMMs in the V2T2C setting.

in Figure 10, we observe a consistent performance
improvement across all models with larger sample
sizes. Notably, Claude 3.5 Sonnet achieves a sig-
nificant improvement, reaching 74.3% pass@ 100,
underscoring the strong potential for these models
when scaling up sample sizes.

Coding Performance with Human-Annotated
Problem Specifications: We evaluate all LMMs
on a new task where they generate code based on
human-annotated problem specifications, without
direct access to the diagrams. This setup isolates
their ability to perform visual reasoning and gen-
erate code. We also calculate the success parsing
rate using Pylint (Wikipedia, 2024), which mea-
sures the syntactic correctness of the generated
code, independent of its functional accuracy. The
results, presented in Figure 11, show that most
LMMs demonstrate strong coding capabilities, gen-
erally outperforming their best results from Table 1.
Notably, GPT-40 achieves 96.5% pass@3, a signif-
icant improvement over its 40.5% pass@3 in the
V2T2C setting. Smaller models, such as InternVL
2.5 4B, also show substantial improvement.

We also evaluate a setting where LMMs generate
code based solely on the function signature, with-
out access to diagrams or descriptions, and find
that none of the five proprietary models are able
to pass any tasks. This underscores the necessity
of visual context in our benchmark. These results
suggest that current LMMs face more challenges
in visual reasoning than coding on HumanEval-V.
LLM-as-Judge Ratings: We evaluate the prob-
lem specifications (PS) generated by LMMs in the
V2T2C setting using GPT-40 as the judge. GPT-40
rates the PS in three dimensions: Basic-Level Per-
ception (identifying basic visual elements), High-
Level Comprehension (understanding objects, pat-

terns, transformations, and operations), and Contex-
tual Interpretation (clear description without vague-
ness or hallucinations) as outlined in the prompt
template shown in Figure 29. Ratings are on a 1-3
scale, where 1 indicates severe errors and 3 reflects
near perfection in the capability dimension. The re-
sults, shown in Figure 12, reveal that while LMMs
generally excel in basic perceptual abilities, they
struggle with high-level comprehension and clar-
ity of expression. Notably, the performance gap
between models is small. We also find the differ-
ence in ratings between passed and failed tasks is
minimal. For example, GPT-40 scores 2.9, 2.0, and
1.3 across the three dimensions on passed tasks,
compared to average ratings of 2.8, 1.6, and 1.2
across all tasks, highlighting the limitations of us-
ing LLM-as-judge as an evaluation tool. This lack
of robustness may stem from rigid comparisons
to human-annotated PS, further emphasizing the
importance of pass rates as the evaluation metric.

Error Analysis: We conducted a comprehensive
error analysis to understand the limitations of cur-
rent LMMs in HumanEval-V, as detailed in Ap-
pendix E. Our analysis examined correlations be-
tween model performance and three key factors:
task types, general capability dimensions, and spe-
cific capability aspects. The results reveal that
LMMs particularly struggle with tasks involving
Transformation and Iterative Calculation. And
models show notable difficulties with specific ca-
pabilities such as understanding dynamic patterns
(e.g., spirals, circular arrangements) and spatial
transformations (e.g., stacking, translation). Inter-
estingly, our investigation of task difficulty metrics
shows that LMM performance correlates poorly
with human-perceived difficulty measures, includ-
ing both programming complexity (measured by
cyclomatic complexity) and visual comprehension
difficulty (measured by description length). This
suggests a fundamental gap in LMMs’ visual rea-
soning capabilities, where even tasks considered
trivial by humans can prove challenging for state-
of-the-art models. For concrete examples of these
challenges, we present representative error cases in
Figures 31 to 47.

6 Related Work

Benchmarks Involving Diagrams: Prior work
on multimodal benchmarks can be categorized into
several groups: (1) General-purpose multimodal
evaluation benchmarks (Yue et al., 2024; Liu et al.,

2023; Yu et al., 2023; Li et al., 2023; Ying et al.,
2024; Chen et al., 2024a) that assess models’ broad
multidisciplinary capabilities; (2) Scientific dia-
gram understanding (Lu et al., 2022; Kembhavi
et al., 2016); (3) Mathematical visual reasoning (Lu
et al., 2023; Wang et al., 2024a; Zhang et al., 2024);
(4) Data visualization comprehension (Masry et al.,
2022; Wang et al., 2024c; Chollet, 2019) that focus
on plots and charts; (5) Abstract reasoning (Zhang
et al., 2019; Jiang et al., 2024; Nie et al., 2020;
Chia et al., 2024); and (6) Specialized diagram
understanding including abstract symbol interpre-
tation and geometric spatial reasoning (Lu et al.,
2021; Rahmanzadehgervi et al., 2024). While these
benchmarks cover various aspects of visual under-
standing, they do not address the complex diagrams
in the coding context.

Multimodal Code Generation: Recent work in
multimodal code generation has focused on two
main Categories. In the first category, researchers
have explored derendering web pages into func-
tional code (Si et al., 2024; Laurencon et al., 2024)
and converting scientific figures into their corre-
sponding plotting code (Shi et al., 2024; Wu et al.,
2024). The second category includes Program-
based VQA approaches, where models leverage
pre-defined modules to answer visual questions
(Suris et al., 2023; Subramanian et al., 2023). MM-
Code (Li et al., 2024b) is the most related coding
benchmark to ours, evaluating LMMs’ coding abil-
ities using problems with visual demonstrations
from competition platforms. However, our bench-
mark differs in its dedicated focus on assessing
the visual capabilities of LMMs. We provide a de-
tailed discussion in Appendix F, highlighting the
differences between HumanEval-V and MMCode
in terms of visual indispensability, task complexity,
and evaluation design.

7 Conclusion

In this paper, we introduced HumanEval-V, a novel
benchmark designed to evaluate LMMs’ capabili-
ties in understanding and reasoning over diagrams
in programming contexts. Through comprehensive
experiments, we demonstrated that current LMMs,
while showing promising performance, still face
significant challenges in complex diagram under-
standing and reasoning. Our extensive experimen-
tal results and analysis provide valuable insights
for the future development of more sophisticated
visual reasoning abilities in Al systems.

8 Limitations

Despite the valuable contributions of our bench-
mark, several limitations remain that we aim to
address in future work:

Limited Benchmark Size: The size of our
benchmark is constrained by the significant cost
of human annotation, as we prioritize high-
quality task design to ensure meaningful insights,
with each annotator dedicating over 200 hours
to constructing HumanEval-V. Nevertheless, our
benchmark includes 253 tasks, comparable to
many well-established human-annotated bench-
marks in academia and industry, such as Hu-
manEval (Chen et al., 2021) with 164 tasks,
MM-Vet (Yu et al., 2023) with 218, and Vibe-
Eval (Padlewski et al., 2024) with 269. No-
tably, none of the current popular multimodal
benchmarks feature manually drawn diagrams,
further distinguishing HumanEval-V. Furthermore,
HumanEval-V offers a diverse and balanced set of
task types covering a wide range of capability as-
pects, enabling us to uncover unique insights into
the limitations of current LMMs.

Limited Model Coverage: While our exper-
iments evaluate a representative set of top-
performing LMMs, the rapid pace of model devel-
opment means newly released models may not be
covered in our current evaluation. To address this,
we plan to publicly release our evaluation toolkit
and dataset, along with an up-to-date leaderboard
to track ongoing advancements. This will enable
benchmarking of new models as they become avail-
able, ensuring HumanEval-V remains relevant and
continuously updated.

Limitations in Exploring Advanced Methods:
While our experiments cover various evaluation set-
tings, including chain-of-thought (CoT), iterative
refinement, and long-CoT-enhanced LMMs, our ex-
ploration of more advanced CoT techniques is lim-
ited. Methods such as supervised fine-tuning (Chen
et al., 2024b), reinforcement learning (Snell et al.,
2024), or more complex CoT approaches (Yao
et al., 2024; Mitra et al., 2024) could further en-
hance LMM reasoning capabilities. However, these
techniques are challenging to apply to diagram rea-
soning due to the lack of high-quality training data
in this domain. As our primary objective is to
bridge the gap in diagram reasoning benchmarks,
we leave the exploration of more sophisticated
reasoning-enhancing methods to future work.

References

Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna,
Baptiste Bout, Devendra Chaplot, Jessica Chud-
novsky, Diogo Costa, Baudouin De Monicault,
Saurabh Garg, Theophile Gervet, et al. 2024. Pixtral
12b. arXiv preprint arXiv:2410.07073.

Anthropic. 2024. Claude 3.5 sonnet.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang
Zang, Zehui Chen, Haodong Duan, Jiagi Wang,
Yu Qiao, Dahua Lin, et al. 2024a. Are we on the
right way for evaluating large vision-language mod-
els? arXiv preprint arXiv:2403.20330.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao
Xu, and Wanxiang Che. 2024b. M3cot: A novel
benchmark for multi-domain multi-step multi-modal
chain-of-thought. arXiv preprint arXiv:2405.16473.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu,
Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye,
Hao Tian, Zhaoyang Liu, et al. 2024c. Expanding
performance boundaries of open-source multimodal
models with model, data, and test-time scaling. arXiv
preprint arXiv:2412.05271.

Yew Ken Chia, Vernon Toh Yan Han, Deepanway
Ghosal, Lidong Bing, and Soujanya Poria. 2024.
Puzzlevqa: Diagnosing multimodal reasoning chal-
lenges of language models with abstract visual pat-
terns. arXiv preprint arXiv:2403.13315.

Francois Chollet. 2019. On the measure of intelligence.
arXiv preprint arXiv:1911.01547.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini,
et al. 2024. Molmo and pixmo: Open weights and
open data for state-of-the-art multimodal models.
arXiv preprint arXiv:2409.17146.

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu
Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
Zang, Pan Zhang, Jiaqi Wang, Dahua Lin, and Kai
Chen. 2024. VImevalkit: An open-source toolkit for
evaluating large multi-modality models. Preprint,
arXiv:2407.11691.

Geoffrey K Gill and Chris F Kemerer. 1991. Cyclo-
matic complexity density and software maintenance
productivity. IEEE transactions on software engi-
neering, 17(12):1284—-1288.

https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2407.11691
https://arxiv.org/abs/2407.11691
https://arxiv.org/abs/2407.11691

Google. 2024a. Introducing gemini 1.5, google’s next-
generation ai model.

Google. 2024b. Llama 3.2: Revolutionizing edge ai and
vision with open, customizable models.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian,
Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen,
Furong Huang, Yaser Yacoob, et al. 2023. Hallu-
sionbench: An advanced diagnostic suite for en-
tangled language hallucination and visual illusion
in large vision-language models. arXiv preprint
arXiv:2310.14566.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Yifan Jiang, Jiarui Zhang, Kexuan Sun, Zhivar Sourati,
Kian Ahrabian, Kaixin Ma, Filip Ilievski, and Jay
Pujara. 2024. Marvel: Multidimensional abstraction
and reasoning through visual evaluation and learning.
arXiv preprint arXiv:2404.13591.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min-
joon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
2016. A diagram is worth a dozen images. In
Computer Vision—-ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11—
14, 2016, Proceedings, Part IV 14, pages 235-251.
Springer.

Hugo Laurengon, Léo Tronchon, and Victor Sanh. 2024.
Unlocking the conversion of web screenshots into
html code with the websight dataset. arXiv preprint
arXiv:2403.09029.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang,
Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. 2024a. Llava-
onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023. Seed-bench: Bench-
marking multimodal llms with generative compre-
hension. arXiv preprint arXiv:2307.16125.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiy-
ong Huang, and Jing Ma. 2024b. Mmcode: Bench-
marking multimodal large language models for code
generation with visually rich programming problems.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 736-783.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi

10

Wang, Conghui He, Ziwei Liu, et al. 2023. Mm-
bench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2023.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. Advances in Neural Information
Processing Systems, 35:2507-2521.

Pan Lu, Liang Qiu, Jiagi Chen, Tony Xia, Yizhou Zhao,
Wei Zhang, Zhou Yu, Xiaodan Liang, and Song-Chun
Zhu. 2021. Iconqga: A new benchmark for abstract di-
agram understanding and visual language reasoning.
arXiv preprint arXiv:2110.13214.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. Chartqa: A benchmark
for question answering about charts with visual and
logical reasoning. arXiv preprint arXiv:2203.10244.

Microsoft. 2024. Discover the new multi-lingual, high-
quality phi-3.5 slms.

Chancharik Mitra, Brandon Huang, Trevor Darrell, and
Roei Herzig. 2024. Compositional chain-of-thought
prompting for large multimodal models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 14420-14431.

Weili Nie, Zhiding Yu, Lei Mao, Ankit B Patel, Yuke
Zhu, and Anima Anandkumar. 2020. Bongard-logo:
A new benchmark for human-level concept learning

and reasoning. Advances in Neural Information Pro-
cessing Systems, 33:16468-16480.

OpenAl. 2024a. Hello gpt-4o.
OpenAl. 2024b. Introducing openai ol.
OpenAl. 2024c. tiktoken.

Piotr Padlewski, Max Bain, Matthew Henderson,
Zhongkai Zhu, Nishant Relan, Hai Pham, Donovan
Ong, Kaloyan Aleksiev, Aitor Ormazabal, Samuel
Phua, et al. 2024. Vibe-eval: A hard evaluation suite
for measuring progress of multimodal language mod-
els. arXiv preprint arXiv:2405.02287.

Pooyan Rahmanzadehgervi, Logan Bolton, Moham-
mad Reza Taesiri, and Anh Totti Nguyen. 2024. Vi-
sion language models are blind. In Proceedings of
the Asian Conference on Computer Vision, pages 18—
34.

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie
Wang, Mohan Jing, Linran Xu, Xinyu Zhu, Siheng Li,
Yuxiang Zhang, et al. 2024. Chartmimic: Evaluating
Imm’s cross-modal reasoning capability via chart-to-
code generation. arXiv preprint arXiv:2406.09961.

https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/
https://github.com/openai/tiktoken

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo
Liu, and Diyi Yang. 2024. Design2code: How far are
we from automating front-end engineering? arXiv
preprint arXiv:2403.03163.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Sanjay Subramanian, Medhini Narasimhan, Kushal
Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia
Schmid, Andy Zeng, Trevor Darrell, and Dan Klein.
2023. Modular visual question answering via code
generation. arXiv preprint arXiv:2306.05392.

Didac Suris, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 11888—
11898.

Chameleon Team. 2024a. Chameleon: Mixed-modal
early-fusion foundation models. arXiv preprint
arXiv:2405.09818.

Qwen Team. 2024b. Qvq: To see the world with wis-
dom.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie
Zhan, and Hongsheng Li. 2024a. Measuring mul-
timodal mathematical reasoning with math-vision
dataset. arXiv preprint arXiv:2402.14804.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024b. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen,
Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu,
Haotian Liu, Sadhika Malladi, et al. 2024¢. Charxiv:
Charting gaps in realistic chart understanding in mul-
timodal llms. arXiv preprint arXiv:2406.18521.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Wikipedia. 2024. Pylint — Wikipedia, the free en-
cyclopedia. http://en.wikipedia.org/w/index.
php?title=Pylint&0ldid=1191495734. [Online;
accessed 24-October-2024].

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang,
Zhixuan Liang, Zeyu Lu, Ying Shan, and Ping Luo.
2024. Plot2code: A comprehensive benchmark for
evaluating multi-modal large language models in
code generation from scientific plots. arXiv preprint
arXiv:2405.07990.

11

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Kaining Ying, Fanqing Meng, Jin Wang, Zhiqgian Li,
Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi
Lin, Shuo Liu, et al. 2024. Mmt-bench: A compre-
hensive multimodal benchmark for evaluating large
vision-language models towards multitask agi. arXiv
preprint arXiv:2404.16006.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2023. Mm-vet: Evaluating large multimodal
models for integrated capabilities. arXiv preprint
arXiv:2308.02490.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
Weiming Ren, Yuxuan Sun, et al. 2024. Mmmu: A
massive multi-discipline multimodal understanding
and reasoning benchmark for expert agi. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9556-9567.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and
Song-Chun Zhu. 2019. Raven: A dataset for rela-
tional and analogical visual reasoning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5317-5327.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun
Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu,
Kai-Wei Chang, Yu Qiao, et al. 2024. Mathverse:
Does your multi-modal llm truly see the diagrams in
visual math problems? In European Conference on
Computer Vision, pages 169-186. Springer.

https://qwenlm.github.io/blog/qvq-72b-preview/
https://qwenlm.github.io/blog/qvq-72b-preview/
https://qwenlm.github.io/blog/qvq-72b-preview/
http://en.wikipedia.org/w/index.php?title=Pylint&oldid=1191495734
http://en.wikipedia.org/w/index.php?title=Pylint&oldid=1191495734
http://en.wikipedia.org/w/index.php?title=Pylint&oldid=1191495734

Appendix

A

Comparison with Other Benchmarks
A.1 Correlation Analysis
A.2 Diagrams in Other Benchmarks . .
A.3 Diagrams in HumanEval-V

More Details on Data Annotation
B.1 Data Collection and Screening . .
B.2 Recreation and Diversification

More details on Experimental Setup

C.1 Evaluated Models
C.2 Prompt Templates
C.3 Ablation on Temperature

Deeper Analysis on HumanEval-V

D.1 Co-occurrence of Capability Aspects
D.2 Comparison of Strong Coder Models
D.3 The Effect of Diversified Tasks . .

More Detailed Error Analysis
E.1 Error Patterns and Taxonomy . . .
E.2 Error Analysis by Task Difficulty .

More Discussion on MM Code

Other Considerations

12
12
12
13

14
14
15

15
15
15
16

16
16

19
19
19

19

20

12

A Comparison with Other Benchmarks

A.1 Correlation Analysis

To assess whether HumanEval-V identifies specific
weaknesses not captured by existing benchmarks,
we select seven widely used multimodal bench-
marks that cover a range of multidisciplinary abili-
ties. These include AI2D (Kembhavi et al., 2016),
MMVet (Yu et al., 2023), MMBench (Liu et al.,
2023), MathVista (Lu et al., 2023), MMMU (Yue
et al., 2024), MMStar (Chen et al., 2024a), and
HallusionBench (Guan et al., 2023). Performance
results for the 22 LMMs evaluated in this paper are
collected from the OpenVLM Leaderboard (Duan
et al., 2024), as well as corresponding papers and
reports. These results are shown alongside the
pass@3 scores for HumanEval-V under the V2T2C
w/ GPT-4o setting in Table 2.

From the analysis, we observe that open-weight
LMMs with more than 70B parameters generally
perform well on the selected benchmarks, with
models like Pixtral, InternVL 2.5, and Qwen2 VL
even outperforming proprietary models such as
GPT-40 and Claude 3.5 Sonnet in several cases.
Llama-3.2-V also shows competitive performance.
However, open-weight LMMs exhibit significantly
lower performance on HumanEval-V, suggesting
that our benchmark uncovers model weaknesses
that may not be apparent in other benchmarks.

To quantify the relationship between
HumanEval-V and the other five benchmarks,
we visualize the performance of the 22 LMMs
across all benchmarks using regression plots for
each benchmark pair in Figure 20. The plots
reveal low correlations between HumanEval-V and
the other benchmarks, with notable differences
in performance across models. Overall, the
performance of all models remains lower on
HumanEval-V compared to the other benchmarks.

A.2 Diagrams in Other Benchmarks

Figure 21 presents a comprehensive comparison of
five distinct categories of diagrams commonly used
in various benchmarks and coding platforms, show-
casing the diverse range of visual reasoning chal-
lenges in the open world. The first category con-
sists of real-world images from benchmarks such as
MMMU, MMBench, and MM-Vet, encompassing
everyday photographs of food, sports, architecture,
art, and wildlife in both color and monochrome for-
mats. These images test general visual recognition
and understanding capabilities, contrasting sharply

Models ARD MM-Vet MMBench MathVista MMMU MMStar Eval-V &
Proprietary LMMs
Claude 3.5 Sonnet 81.2 66.0 81.7 67.7 659 65.1 55.1 43.7
GPT-40 849 69.1 84.3 61.3 69.2 65.1 56.2 40.5
Gemini 1.5 Pro 79.1 64.0 82.8 57.5 60.6 59.1 45.6 37.3
Gemini 1.5 Flash ~ 78.5 63.2 76.9 51.2 582 558 48.5 27.2
GPT-40-mini 77.8 66.9 76.0 52.4 60.0 54.8 46.1 24.6
Open-Weight LMMs
Pixtral 124B 93.8 - - 69.4 64.0 - - 31.6
InternVL 2.578B 89.2 644 87.7 65.6 583 721 574 314
Qwen2 VL 72B 83.0 74.0 81.0 70.5 64.5 259 58.7 25.1
LLaVA-OV 72B 86.2 63.7 82.6 67.5 56.6 65.8 47.9 19.7
Molmo-D 72B 83.4 61.1 79.5 55.2 52.8 63.3 46.4 14.2
Llama-3.2-V90B 92.3 64.1 77.3 57.3 60.3 55.3 44.1 11.0
Pixtral 12B 774 58.5 72.7 56.3 441 54.5 47.0 21.3
InternVL 2.526B 86.2 60.0 84.6 59.4 50.7 66.5 55.8 16.7
Qwen2 VL 7B 88.3 62.0 85.9 58.2 54.1 16.3 50.4 14.7
InternVL 2.5 8B 84.6 543 82.5 58.3 512 63.2 49.0 13.6
InternVL 2.5 4B 81.4 509 78.2 58.1 48.3 58.7 46.6 13.5
LLaVA-OV 7B 82.8 57.5 80.9 63.2 46.8 61.9 31.6 10.2
Phi-3.5-V 4B 77.8 432 67.4 432 44.6 475 40.5 9.4
Llama-3.2-V 11B 91.1 57.6 65.8 51.5 50.7 498 40.3 8.8
Molmo-D 7B 79.6 533 76.5 46.9 48.7 54.4 47.4 8.4
Chameleon 7B 46.0 8.3 19.8 22.5 224 31.1 17.1 2.2
Chameleon 30B 537 9.7 32.7 23.8 38.8 32.7 18.6 1.9

Table 2: A performance comparison of 22 LMMs across HumanEval-V and seven popular multimodal benchmarks.
Models are ranked according to the @ column. Results for HumanEval-V correspond to the V2T2C w/ GPT-40
setting from Table 1. The top two results for each column are highlighted in bold.

with the more structured representations found in
other categories.

The second and third categories focus on ana-
lytical and scientific visualization. Analytical ta-
bles and charts, evaluated through benchmarks like
ChartQA (Masry et al., 2022) and Charxiv (Wang
et al., 2024c¢), comprise business and scientific data
visualizations including bar charts, line graphs, and
frequency tables. Scientific diagrams featured in
MMMU (Yue et al., 2024), MMBench (Liu et al.,
2023), and ScienceQA (Lu et al., 2022) present
technical illustrations of molecular structures, par-
ticle dynamics, and ecosystem relationships. While
both categories deal with data representation, they
differ in their approach: analytical charts empha-
size quantitative interpretation, whereas scientific
diagrams focus on conceptual understanding.

Mathematical diagrams, assessed through bench-
marks such as MathVista (Lu et al., 2023) and
Math-Vision (Wang et al., 2024a), represent an-
other crucial category that bridges pure mathemat-
ics with practical applications. These include func-
tion graphs, geometric constructions, and physics
diagrams, demonstrating complex mathematical

13

concepts through visual means. This category
shares some common ground with programming-
related diagrams, particularly in their emphasis on
logical relationships and systematic thinking.

The fifth category encompasses visual abstract
reasoning, evaluated through benchmarks like
ARC-AGI (Chollet, 2019), RAVEN (Zhang et al.,
2019), and Bongard (Nie et al., 2020). These tests
feature grid-based patterns and geometric trans-
formations that assess abstract thinking and pat-
tern recognition skills. This category bears the
closest resemblance to programming-related dia-
grams in terms of logical abstraction and systematic
problem-solving approaches.

A.3 Diagrams in HumanEval-V

Figure 22 presents six fundamental task types in
the HumanEval-V benchmark, each representing
distinct cognitive challenges in visual reasoning.
Our benchmark employs a rich variety of visual
elements including geometric shapes, symbolic no-
tations, matrices, and directed graphs. These repre-
sentations are enhanced through connecting lines,
arrows, color-coding, and numerical annotations

codeforces - 65.0%
leetcode - 13.0%
stack overflow - 8.0%
geeksforgeeks - 6.0%
hackerrank - 2.0%
projecteuler - 2.0%
open kattis - 2.0%
codechef - 1.0%
atcode - 1.0%

COCNENEDN

Figure 13: Sources of the screened tasks for annotation.

to effectively capture relationships and transforma-
tions between components. The visual representa-
tions maintain clarity across all categories while
scaling in complexity to accommodate different dif-
ficulty levels. Through careful design of visual ele-
ments and systematic progression of patterns, each
task type provides a clear framework for evaluating
specific aspects of visual reasoning and problem-
solving abilities.

The six task categories demonstrate diverse
problem-solving requirements: Aggregation tasks
(18% of the benchmark) introduce new grouping
and aggregation rules for input data; Validation
tasks (17%) define conditional rules to verify or
classify input data; Expansion tasks (16%) focus on
defining new patterns that evolve or extend data el-
ements; Rearrangement tasks (17%) establish new
traversal patterns to reorganize data; Iteration tasks
(17%) define new iterative operations applied to
input data; and Computation tasks (20%) introduce
new computational rules and operations.

What distinguishes our benchmark is not only its
balanced distribution across task types but also the
wide interconnection between categories. While
each category emphasizes specific problem-solving
skills, real-world scenarios often require combin-
ing multiple approaches. For instance, computation
tasks may incorporate iterative processes, while ag-
gregation problems might require validation steps.
This interconnected design reflects the complexity
of practical problem-solving scenarios where multi-
ple cognitive skills must be applied simultaneously.

B More Details on Data Annotation

B.1 Data Collection and Screening

Our data collection process involves two primary
sources: coding challenge platforms, such as Code-
Forces, and the Q&A platform Stack Overflow
(S0). Each coding problem undergoes a rigorous
screening process to ensure it aligns with the stan-
dards of HumanEval-V. Annotators are instructed
to exclude problems that: (1) require knowledge

14

of specific programming frameworks or libraries,
(2) contain images that are not abstract diagrams,
(3) provide no useful information for solving the
problem, or (4) require excessive textual context
for interpretation.

The majority of our tasks are sourced from cod-
ing challenge platforms, especially CodeForces, as
shown in Figure 13, where we display the distri-
bution of screened tasks by platform. For coding
challenge platforms, we use the open-source MM-
Code dataset (Li et al., 2024b), which includes cod-
ing problems from various platforms with visual
elements in the problem descriptions. However,
we find that most of these problems are unsuitable
for HumanEval-V. Many images are non-essential,
as they can be inferred from the textual problem
descriptions. Some problems, though containing
relevant visual information, are overly complex and
require lengthy textual descriptions to interpret, vi-
olating our requirement for self-explanatory visual
content. After careful screening, less than 5% of
the viewed problems pass our standards.

We select SO for its extensive repository of real-
world programming problems. To identify relevant
posts, we first filter questions from 2020 that have
non-negative votes and accepted answers. Then,
we focus on posts that include images in the ques-
tion body and code blocks in the corresponding
answers, narrowing down further to those tagged
with Python. After this automated filtering, we
manually review the remaining posts, excluding
topics related to front-end, mobile, or UI develop-
ment, as these often require external frameworks
and libraries that do not align with the goals of
our benchmark. We also exclude posts where the
images provide information in textual nature, such
as code snippets, error messages, or execution out-
puts. Ultimately, we identified suitable questions
primarily covering topics like geometry, plotting,
and image processing.

To further illustrate our screening process, we
present two negative examples that do not meet our
standards in Figure 23: (1) The first example is a
coding problem from CodeForces, where the task is
to determine an optimal stacking method for a set of
books with identical heights, given their thickness
and width, in order to minimize the total thickness.
While the provided image shows a possible stack-
ing configuration, it lacks critical information, such
as constraints on the stacking method and precise
book dimensions. Moreover, the core problem-
solving details are conveyed primarily through text,

making the image non-essential for understanding
the solution. (2) The second example is a cod-
ing problem from GeeksForGeeks, which involves
traversing a 2D matrix according to a specified
pattern, starting from the top-left corner and iden-
tifying the traversal endpoint. Although the im-
age offers a basic representation of the matrix, the
traversal pattern is too complex to be effectively
captured visually and requires significant textual
explanation. As a result, the textual description
carries more problem-solving information than the
image itself, violating our requirement for the vi-
sual context to be self-explanatory and serve as the
primary source of information.

B.2 Recreation and Diversification

We present three examples in Figure 24, Figure 25,
and Figure 26 to demonstrate our recreation and
diversification process. Each figure is divided into
three parts: the original problem that meets our
screening criteria (top), the recreated coding task
based on the distilled ideas (middle), and the diver-
sified variant (bottom). Below are detailed expla-
nations of each example:

Figure 24 showcases a Stack Overflow problem
where a developer needs to draw a parallelogram us-
ing four specified points. The image illustrates the
connection between these points, providing the es-
sential information needed to solve the task. Since
the text merely restates the geometric properties
shown in the image, we significantly reduce the
textual content without losing crucial details. For
recreation, we transform this into a five-pointed star
problem, enriching the visual information with four
examples showing different point connection pat-
terns. The new function signature clearly defines
the implementation requirements, including objec-
tives, input parameters, and return value constraints.
Instead of generating a parallelogram image, our
task focuses on determining whether two specific
points should be connected, simplifying the imple-
mentation while maintaining emphasis on visual
reasoning. For diversification, we modify the vi-
sual pattern from a five-pointed to a six-pointed
star while maintaining the same function signature.

Figure 25 presents a CodeForces problem involv-
ing polygon folding and area calculation. The im-
age demonstrates the folding process along dashed
lines, showing both initial and final states. For
recreation, we simplify this into a matrix fold-
ing task where overlapping sections produce color
changes. The input matrix uses two initial colors

15

(white and light blue), which can result in three
distinct outcomes after folding (white, light blue,
and dark blue). Three illustrative examples clarify
the folding mechanics. For diversification, we re-
place the color addition rule with numeric addition,
requiring models to process numerical changes be-
fore and after folding.

Figure 26, also from CodeForces, involves grid
reduction following a specific pattern. The image
effectively communicates the step-by-step transfor-
mation process. For recreation, we enhance the
complexity by removing the reduction factor k as a
parameter, requiring models to deduce that k = 2
from the provided examples. We transform the
original binary scaling operation into a statistical
pooling operation (e.g., minimum value computa-
tion), demanding both OCR capabilities and ad-
vanced visual reasoning. For diversification, we
increase the pooling stride from 2 to 3, requiring
models to analyze larger matrices. Test cases are
adjusted accordingly to maintain consistency with
the modified patterns.

In addition to the three examples above, we pro-
vide further examples of how we perform diversifi-
cation across specific capability aspects in Table 3.

C More details on Experimental Setup

C.1 Evaluated Models

In Table 4, we provide a detailed list of Large Mul-
timodal Models (LMMs) used in our experiments.
For each model, we specify the number of parame-
ters and include direct links to relevant reports or
Huggingface repositories for further reference.

C.2 Prompt Templates

We designed three main sets of prompts for the
experiments. The first set is used for the evaluation
pipelines in the main benchmarking experiments,
covering scenarios such as Vision-to-Code, Vision-
to-Code with Chain-of-Thought (CoT), Vision-to-
Text, and Text-to-Code, as described in Section 3.
The corresponding prompts for these scenarios are
listed in Figure 27. The second set of prompts is
used in the iterative refinement experiments, intro-
duced in Section 4. These prompts address sce-
narios where code or previously generated textual
problem specifications are refined based on feed-
back from the execution environment. The rele-
vant prompts for this scenario are provided in Fig-
ure 28. The third scenario involves using GPT-40
as a judge to rate the diagram descriptions gen-

Modification Aspects Examples

Spatial Transformation
Mathematical Operations
Dynamic Patterns

Object Attributes

Object Relations

Data Structure

Adjust concatenation, swapping, grouping, or stacking order; modify the direction of translation, flipping, rotation, or folding.
Alter arithmetic operations, sorting order, or aggregation rules.

Reverse alternation sequences; switch increments to decrements; change the direction of spirals or zigzags; adjust layer layouts.
Change the color, size, shape, angle or position of objects.

Reverse nesting or overlap order; modify connection, intersection, or adjacency rules; adjust boundary interaction conditions.
Modify graph direction, data type in array, matrix dimensions.

Table 3: Examples of modifications applied to diversify seed tasks. Modifications of a task may span many aspects.

erated by LMMs. The prompt used is shown in
Figure 29.

Our prompt design has undergone multiple
rounds of optimization to address specific issues we
encountered. For instance, we instruct the model
to follow a markdown format code block for gen-
eration and avoid generating multiple code blocks
to streamline post-processing and improve parsing
success rates. We also provide detailed instructions
for prompting LMMs to generate diagram descrip-
tions in a structured problem specification format,
including Problem Restatement, Visual Facts, and
Visual Patterns, ensuring a comprehensive capture
and expression of the visual context. In the iter-
ative refinement setting, we specifically instruct
LMMs not to hardcode test cases into their gener-
ated code to ensure that improvements stem from
an enhanced understanding of the problem. Ad-
ditionally, for LLLM-as-Judge experiments, we list
clear steps for rating the LMMSs’ outputs, promot-
ing more robust and reliable rating results.

C.3 Ablation on Temperature

As described in Section 3, we set the sampling
temperature to 7' = (.8 for generating multiple
predictions, following established practices in code
generation benchmarking (Chen et al., 2021, 2022).
Given that LMMs may exhibit varying performance
at different temperatures, we conduct an ablation
study to assess the rationale behind this choice.
Specifically, we evaluated all 22 LMMs under the
V2T2C w/ GPT-4o setting across a range of temper-
atures from 0.4 to 1.0. The results are presented
in Table 5, which indicate that LMMs generally
demonstrate consistent performance across these
settings, with a few models showing slight varia-
tions, further validating the rationale for our chosen
temperature setting.

D Deeper Analysis on HumanEval-V

D.1 Co-occurrence of Capability Aspects

As illustrated in Figure 3, the diagrams in
HumanEval-V encompass a wide range of capabil-

16

® pass@3 Performance %
40 4 ’
m pass@1 Performance £

= = pass@3 Trendline P

== pass@1 Trendline /‘
@ o’

’
S 30
o
Q
c
[
3
O 50
-
H
O
o
[
o
> 10 A
oA
0 10 20 30 40

V2T2C w/ GPT-40

Figure 14: Performance comparison between GPT-40
and QwenCoder-32B as strong coders under the V272C
w/ SC setting.

ity aspects that require human-level intelligence
for interpretation. Each diagram typically involves
multiple capability aspects to be fully understood.
To explore the relationships between these capa-
bility aspects, we conduct a co-occurrence anal-
ysis based on the aspect labels assigned by hu-
man annotators during task annotation. The re-
sults, presented in Figure 30, show a heatmap
where each value represents the number of tasks in
HumanEval-V that involve both corresponding as-
pect labels. Our analysis reveals that the diagrams
in HumanEval-V exhibit a diverse distribution of
capability aspects. Among them, adjacency, grid,
matrix, and sequence are the most frequently oc-
curring labels. Common co-occurrences include
matrix-adjacency, grid-boundary, grid-path, and
sequence-linear increment, highlighting the funda-
mental spatial and structural relationships embed-
ded in these diagrams.

D.2 Comparison of Strong Coder Models

We use GPT-40 as the primary strong coder for our
benchmarking experiments, leveraging its superior
coding capabilities to translate problem specifica-
tions generated by LMMs into code. This allows us

Models Params Links
Proprietary LMMs

OpenAl ol (OpenAl, 2024b) - OpenAl ol

GPT-40 (0806) (OpenAl, 2024a) - OpenAl GPT-40

GPT-40-mini (0718) (OpenAl, 2024a)

Claude 3.5 Sonnet (1022) (Anthropic, 2024)

Gemini 1.5 Pro (002) (Google, 2024a)
Gemini 1.5 Flash (002) (Google, 2024a)

OpenAl GPT-40-mini
Anthropic Claude
Google Gemini 1.5 Pro
Google Gemini 1.5 Flash

Open-weight LMMs with more than 70B parameters

Pixtral (Agrawal et al., 2024) 124B
Llama-3.2-V 90B (Google, 2024b) 88.8B
InternVL 2.5 78B (Chen et al., 2024c¢) 78.4B
Owen2 VL 72B (Wang et al., 2024b) 73.4B
QVQ-72B-Preview (Team, 2024b) 73.4B
Molmo-D 72B (Deitke et al., 2024) 73.3B
LLaVA-OV 72B (Li et al., 2024a) 73.2B

mistralai/Pixtral-Large-Instruct-2411
meta-llama/Llama-3.2-90B-Vision-Instruct
OpenGVLab/InternVL2-5-78B
Qwen/Qwen2-VL-72B-Instruct
Qwen/QVQ-72B-Preview
allenai/Molmo-72B-0924
llava-hf/llava-onevision-qwen2-72b-ov-chat-hf

Open-weight LMMs with fewer than 70B parameters

facebook/chameleon-30b
OpenGVLab/InternVL2-5-26B
mistralai/Pixtral-12B-2409
meta-llama/Llama-3.2-11B-Vision-Instruct
Qwen/Qwen2-VL-7B-Instruct
OpenGVLab/InternVL2-5-8B
llava-hf/llava-onevision-qwen2-7b-ov-chat-hf
allenai/Molmo-7B-D-0924
facebook/chameleon-7b

Chameleon 30B (Team, 2024a) 34.3B
InternVL 2.5 26B (Chen et al., 2024c¢) 25.5B
Pixtral 12B (Agrawal et al., 2024) 12.0B
Llama-3.2-V 11B (Google, 2024b) 10.7B
Qwen2 VL 7B (Wang et al., 2024b) 8.3B
InternV12.5 8B (Chen et al., 2024c¢) 8.1B
LLaVA-OV 7B (Li et al., 2024a) 8.03B
Molmo-D 7B (Deitke et al., 2024) 8.02B
Chameleon 7B (Team, 2024a) 7.04B
Phi-3.5-V 4B (Microsoft, 2024) 4.2B
InternVL 2.5 4B (Chen et al., 2024c¢) 3.7B

microsoft/Phi-3.5-vision-instruct
OpenGVLab/InternVL2-5-4B

Open-Weight Code LLM

Qwen2.5 Coder 32B (Hui et al., 2024)

32.8B

Qwen/Qwen2.5-Coder-32B-Instruct

Table 4: List of LMMs with their parameter sizes and links to the official reports or Huggingface repositories.

Claude 3.5 Sonnet [——] T —
GPT-4o | —
Gemini 1.5 Pro
Gemini 1.5 Flash
GPT-40-mini
Pixtral 124B
InternVL 2.5 78B
Qwen2 VL 72B
LLaVA-OV 72B
Molmo-D728 | 0+
——————————

Llama-3.2-V 90B
Pixtral 128 | ———

—
 E— —
Iy B ———
Iy B E—
ey B ——
Iy E——
Iy EE——

InternVL 2.5 268 | © ———
Qwen2VL7B | O +————— o —
InternVL 2588 | O — i
InternVL2.54B | O ——————
LLaVA-OV 7B ————
Phi-3.5-V 4B o)
Llama-3.2-V11B | O —
Molmo-D78 | © o o o
Chameleon 7B Hl o
Chameleon 30B L
0.0 0.1 0.2 0.3 04 0.5

Standard Deviation of pass@3 for Diversified Task Variants

Figure 15: Effect of task diversification on performance
variation across models in the V2T2C w/ SC setting.

to focus on the evaluation of LMMs’ visual under-
standing ability in a more controllable manner. Our
evaluation pipeline is designed to be robust, accom-
modating different strong coders. To test the sta-
bility of our results, we perform an ablation study
by replacing GPT-40 with an open-weight LLM,

17

Qwen2.5-Coder-32B-Instruct (Hui et al., 2024),
referred to as QwenCoder-32B. QwenCoder-32B
demonstrates comparable coding performance to
GPT-40, as evidenced by LiveCodeBench (Jain
et al., 2024). This ablation allows us to explore
whether switching to a different strong coder leads
to deviations in our findings.

The ablation is conducted under the V272C w/
SC setting, where QwenCoder-32B replaces GPT-
40 to generate code based on the problem specifi-
cations provided by LMMs. The results, shown in
Figure 14, reveal that GPT-40 and QwenCoder-32B
exhibit near-perfect correlations, demonstrating the
strong stability of our evaluation methodology.

D.3 The Effect of Diversified Tasks

As outlined in Section 2 and Section B.2, our
task annotation pipeline includes a crucial step to
create diversified versions of the seed tasks, ex-
panding both the volume and variety of tasks in
HumanEval-V. To evaluate whether these diversi-

https://openai.com/o1/
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://docs.anthropic.com/claude/docs
https://ai.google.dev/gemini-api/docs/models/gemini
https://ai.google.dev/gemini-api/docs/models/gemini
https://huggingface.co/mistralai/Pixtral-Large-Instruct-2411
https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct
https://huggingface.co/OpenGVLab/InternVL2_5-78B
https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct
https://huggingface.co/Qwen/QVQ-72B-Preview
https://huggingface.co/allenai/Molmo-72B-0924
https://huggingface.co/llava-hf/llava-onevision-qwen2-72b-ov-chat-hf
https://huggingface.co/facebook/chameleon-30b
https://huggingface.co/OpenGVLab/InternVL2_5-26B
https://huggingface.co/mistralai/Pixtral-12B-2409
https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
https://huggingface.co/OpenGVLab/InternVL2_5-8B
https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-chat-hf
https://huggingface.co/allenai/Molmo-7B-D-0924
https://huggingface.co/facebook/chameleon-7b
https://huggingface.co/microsoft/Phi-3.5-vision-instruct
https://huggingface.co/OpenGVLab/InternVL2_5-4B
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct

Validation

Aggregation

Expansion

Direct Calculation

Iterative Calculation

Transformation

0.0 0.1 0.2 0.3 0.4 0.5
Averaged pass@3

Figure 16: Pass rates of LMMs
across different task types.

Mathematical Operations

Dynamic Patterns

Topological Relations

Spatial Transformations

OjO 0.1 0.2 03 0.4 0.5
Averaged pass@3

Figure 17: Pass rates of LMMs
across main capability dimensions.

Scaling
Swapping
Mapping
Shifting
Intersection
Folding
Adjacency
Concentric Arrangement
Cyclic Motion
Nesting
Zigzag
Splitting
Rotation
Circular Motion
Translation
Circular Arrangement I
Sorting
Absolute Value
Stacking
Spiral
0.0 0.1 0.2 0.3
Averaged pass@3

Figure 18: Pass rates of LMMs

across specific capability aspects.

Models T=04 T=0.6 T=0.8 T=1 ofogmme o o[@ ogugmoc
Proprietary LMMs os/00880 0° g o sl Cumed e

Claude 3.5 Sonnet 483 469 481 479 o | © e

GPT-40 449 422 436 449 Foo| 0d® o° o o] S S° .

Gemini 1.5 Pro 411 392 394 416 5 loS8® o © oo o

Gemini 1.5 Flash 27.1 30 284 29.1 R04,9@ © © 04 ©@° @ ©

GPT-40-mini 279 29 299 321 : |°0%%0 e e Ce
Open-weight LMMs %2lesce0 @ © o °21 aveses®@oo

Pixtral 124B 35.6 39.8 342 37

InternVL 25788 372 361 359 362 i Secerteaatiuac BRI Bl e

Qwen2 VL 72B 31.1 290.1 28.7 31.5 Code Cyclomatic Complexity Description Length

LLaVA-OV 72B 25 22.7 24.1 222

Molmo-D 72B 16.9 13.2 144 145

Llama-3.2-V 90B 12.5 10.7 124 137 Figure 19: Correlation Between LMM Pass Rates and

Pixtral 12B 21.2 23.4 232 211 Task Difficulty in Coding and Diagram Descriptions.

InternVL 2.5 26B 20.9 21 20.7 218

Qwen2 VL 7B 13.3 17.2 16.6 18.5

InternVL 2.5 8B 13.6 16.6 173 163 Lo .

InternVL 2.5 4B 16.9 176 152 205 rate of 0. The standard deviation for each group is

LLaVA-OV 7B 15.1 15.2 13 152 computed as:

Phi-3.5-V 4B 5.6 9.3 9.1 8.7

Llama-3.2-V 11B 7.5 10.2 9.6 9.9

Molmo-D 7B 9.2 10 11.2 112

Chameleon 7B 1 2.5 2.5 2.1

Chameleon 30B 2 0.5 3.3 2

Table 5: Ablation on LMMs’ sampling temperature for
the pass @3 results under the V2T2C w/ GPT-4o settings.

fied tasks introduce different challenges compared
to the original seed tasks, we analyze the standard
deviation of pass rates across the seed tasks and
their diversified versions.

Specifically, we use the results of the 22 LMMs
under the V2T2C w/ SC setting. We group tasks
based on whether they are seed tasks or their vari-
ants, resulting in 100 task groups (since we have
100 seed tasks). We then calculate the standard
deviation of the pass@3 results within each group,
excluding groups where all tasks have a pass@3

18

N
1
SDgroup = N E (paSS@?’i - ;U/group)2
=1

where N is the number of tasks in the group,
pass@3; is the pass rate of task ¢, and pigroup 1S
the mean pass@3 for the group. The resulting
distribution of pass@3 standard deviations (SD) is
shown in Figure 15 as box plots.

The results reveal that the 25th percentile of most
models has an SD greater than 0.2, and the median
SD is around 0.4. This demonstrates a notable per-
formance gap between tasks within the same group,
validating the effectiveness of our task diversifica-
tion process.

E More Detailed Error Analysis

E.1 Error Patterns and Taxonomy

To better understand where current LMMs fall short
in solving the coding tasks in HumanEval-V, we
conduct a statistical analysis examining the correla-
tion between pass rates and three key factors: task
type, general capability dimensions, and specific
capability aspects (illustrated in Figure 3) required
for understanding diagrams in HumanEval-V. The
results are presented in Figure 16, Figure 17, and
Figure 18. The pass rate in our analysis is the aver-
aged pass@3 for the five proprietary models under
the V2T2C w/ SC setting.

The analysis reveals that LMMs perform partic-
ularly poorly on tasks involving Transformation
and Iterative Calculation, both achieving a pass@3
of approximately 32%. This suggests that these
models struggle with understanding spatial trans-
formations and tracking state changes over itera-
tive steps. In terms of general capability dimen-
sions, the difference in pass rates across various
categories is minimal. Specifically, Spatial Trans-
formation, Topological Relations, and Dynamic
Fatterns all yield an average pass@3 of 38%.

When examining specific capability aspects, we
find that LMMs exhibit notable difficulty with dia-
grams involving dynamic patterns such as Spirals,
Circular Arrangements, and Zigzags. Additionally,
tasks requiring spatial transformations like Stack-
ing, Translation, and Splitting, as well as mathemat-
ical operations such as Sorting and Absolute Value
computations, pose significant challenges. We il-
lustrate concrete error cases that highlight these
challenges in Figure 31 to 45.

E.2 Error Analysis by Task Difficulty

We also investigate the correlation between LMM
performance and task difficulty, using two key
metrics. The first metric is the cyclomatic com-
plexity (Gill and Kemerer, 1991) of the human-
annotated solution code for each task, which re-
flects the complexity of programming logic. The
second metric is the token length of the human-
annotated diagram descriptions, which indicates
the difficulty of understanding the diagram from a
textual perspective. These two metrics represent
human-perceived difficulty in both visual compre-
hension and programmatic reasoning.

For measuring LMM performance, we use the
averaged pass@3 score of the top five proprietary
models under the V2T2C w/ SC setting, with corre-

19

lation results presented in Figure 19. Interestingly,
the results suggest that LMM performance has little
correlation with human-perceived difficulty, either
in coding complexity or in visual description length,
except for tasks with very high programming com-
plexity or exceptionally long diagram descriptions.

Through a detailed case study, we find that many
tasks in HumanEval-V are relatively easy for hu-
mans but remain challenging for LMMs, primar-
ily because these models struggle to comprehend
diagrams at a fundamental level. This limitation
stems from their lack of basic visual perception and
reasoning abilities, making it difficult to develop
a precise metric that accurately captures LMM-
perceived difficulty in our benchmark.

The error cases in Figures 46 and 47 further il-
lustrate this challenge. Tasks that appear trivial to
humans often prove insurmountable for even the
top-performing LMMs, highlighting the fundamen-
tal gap in their ability to interpret diagrams and
reason visually.

F More Discussion on MMCode

MMCode (Li et al., 2024b) presents a coding
dataset for evaluating LMMs’ algorithmic problem-
solving capabilities in visual contexts, compris-
ing 3.5k questions crawled from competitive pro-
gramming platforms. However, as explained in
Appendix B.1, the visual content in most coding
challenges is redundant, with image information
largely inferrable from textual descriptions. This
redundancy is evident in MMCode’s reported re-
sults, where performance on "language-only" in-
puts closely matches that of "vision + language"
inputs. In contrast, HumanEval-V is specifically
designed to evaluate visual understanding and rea-
soning capabilities rather than general coding pro-
ficiency. Our benchmark ensures that visual con-
text is integral to problem-solving. Experiments
with five proprietary LMMs demonstrate a striking
contrast: while providing only function signatures
without diagrams or diagram descriptions results in
0% pass rates across all models, the same models
achieve over 90% pass rates (Figure 11) when given
human-annotated diagram descriptions. This dra-
matic performance difference confirms the essen-
tial role of visual information in HumanEval-V. Fur-
thermore, our difficulty analysis (Figure 5) shows
that the coding tasks maintain moderate complex-
ity, enabling a focused assessment of visual rea-
soning abilities. Our evaluation pipeline also in-

troduces a two-stage code generation process, al-
lowing LMMs with lower coding proficiency to
generate diagram descriptions while delegating the
coding implementation to more capable models.
These deliberate design choices clearly distinguish
HumanEval-V from MMCode by placing visual rea-
soning at the forefront of evaluation.

G Other Considerations

Environmental Considerations: Our bench-
mark’s challenging tasks typically require larger-
sized multimodal models, which raises environmen-
tal concerns regarding computational costs. How-
ever, we believe the solution lies in improving train-
ing efficiency rather than simply scaling up model
size. Our future work will focus on developing
resource-efficient training methods while maintain-
ing performance on our benchmark.

Language Coverage: Currently, our benchmark
primarily focuses on English and Python, which
may appear limiting. This choice was deliberate,
as these languages are most prevalent in LMMs’
training data and best demonstrate their capabilities.
While this focus allows for deeper analysis, we
acknowledge the importance of linguistic diversity.
Our annotation pipeline is language-agnostic and
can be extended to other programming languages
in future iterations.

License and Distribution: Our benchmark con-
sists of manually created tasks, drawing inspiration
from Stack Overflow discussions and the MMCode
dataset (which includes problems from platforms
like Codeforces and LeetCode). We intend to dis-
tribute our code and data under a research-only
license Creative Commons Non-Commercial (CC
BY-NC) to promote academic advancement.

Data Privacy and Protection: We can conclu-
sively confirm that our dataset contains no person-
ally identifiable information. All tasks were created
from scratch by our team, with careful attention
to privacy considerations. We maintained strict
protocols during the creation process to ensure no
sensitive information was included.

Computing Infrastructure: Our experimental
setup utilized a computing node equipped with 8
NVIDIA A800 GPUs, primarily for LMM infer-
ence. Despite running multiple inference passes
(1 greedy decode and 6 repeated sampling), the

20

computational overhead remained manageable due
to our focused dataset of 253 high-quality tasks.

Demographic of Annotators: The annotation
team consisted of four highly qualified individuals
— postgraduate and doctoral students specializing
in computer science, each with over four years of
Python programming experience. Their participa-
tion is entirely voluntary and research-motivated,
with no monetary compensation involved. All anno-
tators explicitly consented to participate in this aca-
demic endeavor. While this arrangement worked
well for our academic setting, we acknowledge that
paid annotation might be necessary for larger-scale
or commercial projects.

AI2D

- o o o @
gl) P‘.
=
=
.
S YD eoe
@
=
s .
.
. . .
© o' ~. ® e o © y J ‘e) n..
g e ¢ /"5* g .
s) °
k=1
2 § o ® * .
.. © " -, .. ° ° ° °
2 e e o0 Dk .
240 o ° °
S 30
. B . .
. . . .
s o X odd, Qo oo & @ oo

A\
A

HumanEval-V
Lo
°
®
°

6 80 20 60 20 40 60 80 40 60

40 40 60 20
MM-Vet MMBench MathVista MMMU

60 20 30 40 50 600 10 20 30 40

0 40
AI2D MMStar HallusionBench HumanEval-v

Figure 20: Correlations between eight multimodal benchmarks, including HumanEval-V. Each subplot displays
the relationship between two benchmarks, while the diagonal subplots show the performance distribution for the
corresponding benchmark.

21

Real-World Images (MMMU, MMBench, MM-Vet)

Analytical Tables & Charts (ChartQA, Charxiv)

M

Administrative and selling expenses $ 425000 Action Probability Expected Return
Cost of goods sold 1,400,000

Rent on corporate headquarters 75000 Invest in equities —_— 6 $50,000
Marketing and advertising 400,000 a —$30,000
Sales revenue 2,700,000

Straight-line depreciation on office equipment flooogg] '"vest in risk-free Fbills o $ 5,000

e

Aceuracy of different algorithms

ool [
desert .
Tude s e en,
cel
one [.
globe
par I
S S -
hecuracy . * Coutrese e
e e o e e e State of Birth [freq %freq
o w m nwew o e ow || [
Zo. BoEUE B LU R vicora i 1
Sl i Bus B Sapl ¥
s B e om| [NSW 4 B
SELE B M B oEENIH O M
it 1 wo - o b
faad ' W on owm oW B0 owm | wa I
Erat - - W Il
Other HHHH B
Figure 2.8 Liting of stocks traded on the New York Stock Exchange Total

Accuracy of algorthms on HotPotOA (100 distractor tasks)
fferent datasets
10
datasets

8| curb
_ | otrer
g °||mmm atoud
§ of(== desen
2
o Figure 4 We compire Retroformer with basc-

. lines and observe consitentnd ser performance -
> provement interms of succes rte.

Scientific Diagrams (MMMU, MMBench, ScienceQA)

Mathematical Diagrams (MathVista, Math-Vision)

N
ISR eI The spring force does
negative work, decreasing

speed and kinetic energy. Vs

. N
packet-switched *

N
users (

hytoplankton

Visual Abstract Reasoning (ARC, RAVEN, Bongard)

4

¢

RED NG I
D[r[a%)

>
D
&
s
a

C EEE BE
S 0 0@)
OEHEEE] b oo
- =[] EEol0)

Test Input

Test Input

~

.

Figure 21: A comparison between diagrams covered in popular multimodal benchmarks.

22

Validation

-

Aggregation

i o I
-G laErTe sl 2 s o]

012.5.9,-1

“masdgfsgdgsfgdSam’ — FALSE
“19madam91” — TRUE ...
“19madaM91” AL

oSt
MU
5338
0828

el
P —— cmm
03— rm m 5

0580 cm ommime

TTisas67¥ TTrsisers TTTsise7 s

T »

_[Iceee

<>
R e g

TT+T+ Z)/ \s > N\ oot right: <
IH SR Re T
- PRRPPYRR

PrTe——

ROV
50

Iteration

e ;)
02l BB@3.
N i e~

' I
v [A[AT]3]3]

Example 2

“openai” |

Bash &808

Examptez

B EEE - L6

Example 1

Example 2

s="cat”

5= “freedom™

"gidagzt”, output=[6;

crosen Example 1

result = “abcrabeeabeoabe”

%

vouser [1 o | 1]
—
D o 0

11— o011
doror — or01— =

"1 exampte2

NewOparation: (2)

Eampied T
Tannn
i O RO

seaz [3]s]w] |

o (2] 4]
ey @ @ +
s 517 [(o Jo7).,

ok (119

Figure 22: A curated selection of diagrams representing the six task types in HumanEval-V.

23

Image:

This image lacks
essential information.

NN
Input:

1
1
The first line of the input contains an integern, (1 <n < 100). Each of: On the only line of the output print the
1
1
1

Problem Description:

Shaass has n books. He wants to make a bookshelf for all his books. He wants the
bookshelf's dimensions to be as small as possible. The thickness of the i-th book is ¢;
and its pages' width is equal to w;. The thickness of each book is either 1 or 2. All
books have the same page heights.

Shaass puts the books on the bookshelf in the following way. First he selects some of the
books and put them vertically. Then he puts the rest of the books horizontally above the
vertical books. The sum of the widths of the horizontal books must be no more than the
total thickness of the vertical books. A sample arrangement of the books is depicted in
the image.

Help Shaass to find the minimum total thickness of the vertical books that we can achieve.

Fm—mmmmm -~

the next m lines contains two integers t; and w; denoting the thickness ! minimum total thickness of the vertical books
and width of the i-th book correspondingly, (1 < ¢, < 2, 1 < w; < 100). , that we can achieve.

3 y 1
Problem Description: 1+ Image:
1
Given a binary matrix of dimensions with R rows and C columns. Start from cell(®, ! This image requires substantial
1
1

@), moving in the right direction. Perform the following operations: textual explanation to understand

1 OI=|:>1

e

:If the value of matrix[i][j] is @, then traverse in the same direction and check:
Ithe next value. h

. :IF the value of matrix[i][j] is 1, then update matrix[i][j] to © and change the :: 1 0 1 0
Icurrent direction clockwise. ie - up, right, down, or left directions change H
(to right, down, left, and up respectively. 1
"""""""""""""""""""""""""""""""" 010 0

Find the index of the cell where you will be forced to exit the matrix while
performing the given traversal.

1
A two-dimensional matrix matrix[][], and the number of :
rows R and columns C. :

Figure 23: Two negative examples in our data screening process: the first example is sourced from CodeForces
(https://codeforces.com/problemset/problem/294/B), and the second from GeeksforGeeks (https://www.
geeksforgeeks.org/problems/last-cell-in-a-matrix/1).

24

https://codeforces.com/problemset/problem/294/B
https://www.geeksforgeeks.org/problems/last-cell-in-a-matrix/1
https://www.geeksforgeeks.org/problems/last-cell-in-a-matrix/1

{ Original Task {

An array of DataFrame type containing the

coordinates of four points. four points as vertices.

connected

623800
623775
623750
623725
623700
623675

623650

623625

Problem Description: i Image:
I have four coordinates in my table:
latl lonl lat2 lon2 i -
51.07183 | 6.237204 | 51.067183 | 6.237195 : Z:i .
lat3 lon3 lat4 lon4 ! :Z:
51.07183 | 6.237195 | 51.07183 | 6.237204 i :z:.
Based on this data, I want to connect the points | R JP
in such a way that a parallelogram is created.
Input: Output:

An image of a parallelogram in the coordinate system with the input

! Our Recreated Version !

Function Signature:

int) -> bool:
Given a list of points and the index of two points, determine whether the
two points should be connected to form the shape in the figure.

Parameters:
points (list[tuple[int, int]]): An list of tuples, where each tuple
consists of two integers representing the x and y coordinates of a point. The
points are not guaranteed to be in any particular order.
point_a_index (int): The 0-based index of the first point.
point_b_index (int): The @-based index of the second point.

Returns:
bool: True if the two points should be connected, False otherwise.

wun

Test Cases:
assert solution([(2, 5), (4, 7), (3, 2), (5, 2), (6, 5)1, 2, 4)
2), (6, 5)], 2, 3) == False; assert solution(---

def solution(points: list[tuple[int, int]], point_a_index: int, point_b_index:

== True; assert

Image:

—_N e s e ax

Example 1

Example 2

ol

o

— W owa e

12345678

Example 3

12345678

Example 4

Five-pointed Star

8
7
6
: ,
4
3
2
1

12345678

12345678

! Diversified Version {

Function Signature:

int) -> bool:

Given a list of points and the index of two points, determine whether the
two points should be connected

to form the shape in the figure.

Parameters:
points (list[tuple[int, int]]): An list of tuples, where each tuple
consists of two integers repres-
enting the x and y coordinates of a point. The points are not
guaranteed to be in any particular order.
point_a_index (int): The @-based index of the first point.
point_b_index (int): The ©-based index of the second point.

Returns:

bool: True if the two points should be connected, False otherwise.

Test Cases:

assert solution([(2, 5), (4, 7),
5), (5, 2), (3, 1), (1, 2)1, 2, 3) == False; assert solution(-:-

def solution(points: list[tuple[int, int]], point_a_index: int, point_b_index:

Image:

—Nws e g ®

— N e e e

Example 1

Example 2

—e e s e g ®

12345678

Example 3

12345678

Example 4

Six-pointed Star

/,

—ewa e e

12345678

12345678

(6, 5), (5, 2), (3, 1), (1, 2)], 2, 4) == True; assert solution([(2, 5), (4, 7), (6,

Figure 24: Task annotation examples illustrating the recreation and diversification applied to the screened coding
problem. The original problem is sourced from Stack Overflow (https://stackoverflow.com/questions/

69163515).

25

https://stackoverflow.com/questions/69163515
https://stackoverflow.com/questions/69163515

! Original Task {

Problem Description:

Image.'

If you fold the paper along the vertical line x =f, what will be the area of the
resulting shape? When you fold, the part of the paper to the left of the line is
symmetrically reflected on the right side.

Your task is to answer g independent queries for values fi,..,f;.

The first line contains two integers n, q— the number of polygon vertices and
queries, respectively.

Each of the next n lines contains two integers x;, y; — the coordinates of the i-th
point of the polygon.

Each of the next q lines contains a single integer f; — the x-coordinate of the i-th
fold query.

For each query, output the
area A; of the paper if you
fold it along the line x = f;.

U

! Our Recreated Version {

- . 1
Function Signature: 1 Image:
def solution(colors: list[list[int]], line_position: int) -> :
list[list[int]]: : o Ch 2 s W20 3
e 1 Example 1 Output:
Transforms a 1D array based on a given dashed line position. 1 BZZ?."Li:::’}/ | = | | Length 2 Array
: 0 1 2 3 o 1 2
Args: ! 0 1 2 Cf 4 5 42) 5(1) (0)
colors (List[int]): A 1D array representing colors where: : Example 2 Output:
@ = white -1 = light blue 2 = dark blue ! Lengin s Aray = Lengn's Aray
line_position (int): 1 o 1 2 4 5 L
The position of the dashed line used for transformation : """""""""""""""""""""""""""""
i Examples (<P Lo o
Returns: : IBear;g‘trL:‘ ?m | = Lenc;:jh‘ 'C’!u}::rray
List[int]: A new 1D array with transformed colors where: 1 o 1 2 3 4 1 2 3
1
1

@ = white -1 = light blue 2 = dark blue

Test Cases:
assert solution([@, 1, @, 1], 2) == [1, 1]; assert solution([®, 1, @, @], 3) == [0, 1, @]; assert solution(:--

! Diversified Version {

Function Signature: Image:
def solution(matrix: list[list[int]], line_position: int) ->
list[list[int]]: =142
nun o <h 2 3] /’2(0) 3
You are given a list of numbers. Your task is to generate a new ._:.’;T,T;":,:\,y 123 = [3]3] ome,
list based on the given dashed line position. Peshbmeatt e — | am—
Input . [] 1 2 CE_. 4 5 b 42) 501) (0)

of the numbers. Desntineats
- line_position: An integer indicating the position of the
dashed line in the transformation process.

Example 3
LengthdAray | 5 | 6 | 7
Dash Line at 3

Output:

1
]
1
1
1
1
1
1
1
:
. . . L. : Example 2 Output:
- numbers: A 1D list of integers representing the initial state, LenghSAmay | 1 |2 |3 |2 |1 = | 5| 3|1 Lengh3Amay
1
1
:
: 15| 6 | 5 Length 3 Array
Output: 1
- Return a 1D 1list of integers that represents the newly :
generated numbers after the transformation. |

Test Cases:
assert solution([1, 2, 3], 1) == [3, 3]; assert solution([1, 2, 3, 4], 3) == [7, 2, 1]; assert solution(---

Figure 25: Task annotation examples illustrating the recreation and diversification applied to the screened coding
problem. The original problem is sourced from CodeForces (https://codeforces.com/problemset/problem/
1381/E).

26

https://codeforces.com/problemset/problem/1381/E
https://codeforces.com/problemset/problem/1381/E

! Original Task ¢

For example, the following demonstration shows a grid being reduced by Reduced grid

otion: : :
Problem Description: | Image:
Tina has a square grid with n rows and n columns. Each cell in the grid is :
either @ or 1. y, 0001 11
Tina wants to reduce the grid by a factor of k (k is a divisor of n). To do : 000111
this, Tina splits the grid into k xk nonoverlapping blocks of cells such
that every cell belongs to exactly one block. : 0/j0j0j1 11 o
Tina then replaces each block of cells with a single cell equal to the value 111000 |::>
of the cells in the block. It is guaranteed that every cell in the same | 4 ; { g o o 1
block has the same value. 1
; 111 0 0 0
1
factor of 3. l original grid
___ e e e
Input: | Output:
The first line contains t - the number of test cases. :
The first line of each test case contains two integers m and k — the number of rows and | FOr each test case, output
columns of the grid, and the factor that Tina wants to reduce the grid by. 1 the grid reduced by a
Each of the following n lines contain n characters describing the cells of the grid. : factor of k on a new line.

Each character is either @ or 1. It is guaranteed every k by k block has the same value. |
1

4 Our Recreated Version |

Function Signature:

def solution(matrix: list[list[int]]) -> list[list[int]]:

Refer to the example cases illustrated in the figure, identify and implement
the pooling operation on the matrix.

Parameters:

matrix: A 2d list representing the initial matrix. 1 2
Returns:

list[list[int]]: A 2d list representing the resulting matrix after the 2

pooling operation.

Test Cases:
assert solution([[1, 3, 4, 2], [2, 1, 1, 3], [1, 2, 2, 4], [3, 2, 1, @]1]1) == [[1, 1], [1, @]]; assert solution(---

! Diversified Version {

T
Function Signature: I Image:
g | 11216
def solution(matrix: list[list[int]]) -> list[list[int]]: : 3|43
win !
Refer to the example cases illustrated in the figure, identify and implement ! 8
the pooling operation on the :
matrix. 1 21412|7]|9]0
L ll2]el7]s]3
Parameters: 1
matrix: A 2d list representing the initial matrix. ! 4167|372 1 0
1 =4
1 |3(8]9]16|9|83 213
Returns: !
list[list[int]]: A 2d list representing the resulting matrix after the : 4/8[5|7|5|4
pooling operation. 1 819(2|4|9]|8
nnn 1
1

Test Cases:

assert solution([[21, 3, 4, 2, @, 3], [2, 1, 1, 3, 2, 6], [1, 2, 2, 4, 4, 7], [3, 2, 1, @, 1, @], [3, 2, 1, @, 1, @],
[+, 7, 5, 2, 2, e1, [2, 9, 1, 2, 3, 1]]1) == [[1, @], [1, ©]]; assert solution(---

Figure 26: Task annotation examples illustrating the recreation and diversification applied to the screened coding
problem. The original problem is sourced from CodeForces (https://codeforces.com/problemset/problem/
1996/B).

27

https://codeforces.com/problemset/problem/1996/B
https://codeforces.com/problemset/problem/1996/B

You are an exceptionally intelligent coding assistant with a deep understanding of Python programming and a keen ability to
interpret visual data. Your responses are consistently accurate, reliable, and thoughtful.

**Objective: *¥*
You will be presented with a Python programming problem and an accompanying image. Please complete the function based on the
provided image and code context.

Note

- Remember, the signature by itself does not contain the entire problem; the image provides critical details.

- Observe the image closely and determine how its visual elements correspond to the problem's inputs, outputs, operations,
calculations, patterns (static/dynamic), and conditions.

- Please generate the complete code solution, including its function signature and body, formatted in a single Python code
block, **without any additional text or explanation**.

Code Context:
" “python

{function_signature} Scenario: P,,.(D, o)

You are an exceptionally intelligent coding assistant with a deep understanding of Python programming and a keen ability to
interpret visual data. Your responses are consistently accurate, reliable, and thoughtful.

**0Objective: **
You will be presented with a Python programming problem and an accompanying image. Please complete the function based on the
provided image and code context.

kNote

- {problem_category_specification}

- Remember, the signature by itself does not contain the entire problem; the image provides critical details.

- Observe the image closely and determine how its visual elements correspond to the problem's inputs, outputs, operations,
calculations, patterns (static/dynamic), and conditions.

- First summarize the important clues or findings and write a step-by-step analysis.

- Then generate the complete code solution,including the function signature and body,formatted in a single Python code block.

Code Context:

“ “python
{function_signature} .
Scenario: P,,.(D, o, I.;)

**Instructions: **
You will receive a Python programming problem and an accompanying image for analysis:

Code Context:
“* “python
{function_signature}

1. **Analyze the Function Signature**

Examine the provided function signature (its input, output, and goal) and identify any missing context. Remember, the
signature by itself does not contain the entire problem; the image provides critical details.
2. **Examine the Image**

Observe the image closely and determine how its visual elements correspond to the problem's inputs, outputs, operations,
calculations, patterns (static/dynamic), and conditions.

- First, describe the visual elements you see.

- Next, list the important facts from the image that are relevant for understanding the problem.

- Finally, deduce any missing information from the problem based on the image.

Response Format: Scenario: PVZT(DJ 0)
Please structure your response in three main sections (use Markdown H1 headers)
1. **# Problem Restatement**
Provide a concise restatement of the problem, including relevant background and requirements.
2. **# Visual Facts**
List the facts directly observed from the image that are necessary for interpreting or solving the problem.
3. **# Visual Patterns**
Summarize any objects, operations, transformations, patterns, conditions, and relationships inferred from these facts.
Important Note:
- Clearly separate facts (what you directly see in the image) from patterns (what you infer based on those facts).
- If complex visual information is difficult to express in plain language, use formal notation (mathematical or pseudo-code).
- State only what you are sure of; do not introduce assumptions not supported by the image or give vague conclusions.
- *¥Do not** include any code implementation in your response.

Instructions:

You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user
instructions. Please complete the function based on the provided problem specification, code context, and accompanying image
(if provided). Return the complete solution, including the function signature, in a single response, formatted within a
Python code block.

Problem Specification:
*" “markdown
{problem_specification}

Code Context:
© “python

{function_signature} Scenario: PTZC(PSJ 0')

Figure 27: Prompting templates used for the four scenarios introduced in Section 3. {function_signature} and
{problem_specification} serve as placeholders for the respective content.

28

You are an exceptionally intelligent coding assistant with a deep understanding of Python programming and a keen ability to
interpret visual data. Your responses are consistently accurate, reliable, and thoughtful.

0Objective:
You will be presented with a Python programming problem, an accompanying image, and the problem analysis and code you
previously generated. Your task is to refine both the **problem analysis** and the **code solution** based on execution
feedback from the test cases.
Scenario: Iterative V2C

Code Context:

*“python
{function_signature}

previous Problem Analysis and Solution:
" “markdown
{previous_prediction}

Execution Feedback:

{execution_feedback}

Note

- Remember, the signature by itself does not contain the entire problem; the image provides critical details.

- Observe the image closely and determine how its visual elements correspond to the problem's inputs, outputs, operations,
calculations, patterns (static/dynamic), and conditions.

- Carefully review the execution feedback and analyze any errors or issues that arose during testing.

- Based on the feedback, refine your understanding of the problem and make necessary corrections. Ensure you revisit the
previously neglected aspects from the image or problem analysis.

- !lYou must NOT directly include the test cases from the feedback in your code. Doing so is considered cheating and
invalidates the solution.!! Instead, improve the logic to handle all potential scenarios correctly.

Your task is to generate:

1. A revised version of the step-by-step problem analysis with an improved understanding of the visual details, operations,
and conditions.

2. A refined Python code solution, formatted in a single code block, ensuring that it addresses the identified issues and
passes all test cases **without hardcoding specific values from the feedback**.

You are an exceptionally intelligent coding assistant with a deep understanding of Python programming and a keen ability to
interpret visual data. Your responses are consistently accurate, reliable, and thoughtful.

Objective:
You will be presented with a Python programming problem, an accompanying image, and the **problem specification** you
previously generated. Your task is to refine and generate a **new version of the problem specification** based on execution
feedback from test cases.

Scenario: Iterative V2T2C
Code Context:

““python

{function_signature}

Your Previous Version Problem Specification:
" “markdown
{previous_prediction}

Execution Feedback:

{execution_feedback}

Instruction for Refining Problem Specification:
1. **Analyze the Function Signature**
- Examine the provided function signature (its input, output, and goal) and identify any missing context.
- Remember, the signature by itself does not contain the entire problem; the image provides critical details.
2. **Examine the Image**
Observe the image closely and determine how its visual elements correspond to the problem's inputs, outputs, operations,
calculations, patterns (static/dynamic), and conditions.
- First, describe the visual elements you see.
- Next, list the important facts from the image that are relevant for understanding the problem.
- Finally, deduce any missing information from the problem based on the image.
3. **Execution Feedback Analysis**
- Carefully review the execution feedback, especially error messages, or unexpected outputs with the expected results.
- Analyze the issues that arose during testing, and consider how they may relate to aspects of the problem specification
that were previously unclear, overlooked, or incorrectly defined.
- !lYou must NOT directly include the test cases from the feedback into the refined problem specification. Doing so is
considered cheating and invalidates the refinement process.!!
- Instead, generalize your understanding to address all possible cases comprehensively.
4. **Refine the Problem Specification**
Based on the execution feedback, revise your understanding of the problem.
- Clarify or update any ambiguous parts of the specification.
- Address missing or incorrect details in the initial problem specification that were revealed by the test cases.

Response Format:
Please structure your response in three main sections (use Markdown H1l headers):
- Problem Restatement, Visual Facts, and Visual Patterns

Important Note:
- Focus on refining the **problem specification**. **Do not** include any code implementation in your response.
- Ensure your refinement is based on problem understanding. **Do not** hardcode the test case values in your response.

Figure 28: Prompting templates used for the iterative benchmarking scenarios introduced in Section 4. {func-
tion_signature}, {previous_prediction}, and {execution_feedback} serve as placeholders for the respective content.

29

[Task Definition]

Your task is to evaluate and identify the **Root-Cause Error** in a Model-Generated Problem Specification (Gen-PS) by
comparing it to a reference Human-Written Problem Specification (Ref-PS). Specifically, you will:

1. Identify the fundamental error in the Gen-PS that prevents it from accurately reflecting the visual context or programming
requirements.

2. Attribute the error to one or more of the following **capability dimensions**: “Basic-Level Perception”, “High-Level
Comprehension™, or “Contextual Interpretation®. Rate each dimension based on the severity of the error.

3. Label the specific **capability aspects** associated with the error.

4. Provide a clear explanation to justify your evaluation.

[Task Background & Key Terms]
- **Problem Specification**: A detailed analysis of an image's visual content and its alignment with a given Python function
signature to provide problem-solving instructions.
- Root-Cause Error: The most fundamental flaw in the Gen-PS that disrupts its ability to fully capture the problem's context.
- Capability Dimensions: The key areas for assessing the model's performance. Identify any conflicts between the Ref-PS and
Gen-PS in the following dimensions:
- **Basic-Level Perceptin**: Identifying basic visual elements like shapes, colors, text, numbers, layout, positions, etc.
- **High-Level Comprehension**: Understanding the objects, relationships, constraints, patterns, and operations depicted in
the visual context.
- **Contextual Interpretation**: The output contains three sections ("Problem Restatement", "Visual Facts", "Visual
Patterns"). The visual patterns are clearly described without vagueness or hallucinated details.

[Rating Scale]

Use a scale from **1** to **3** ywhere:

- **1**: Severe error in the specific capability dimension.

- ¥¥2%*: Moderate error in the specific capability dimension.
- **3*%*: Nearly perfect in the specific capability dimension.

[Output Format]
Provide your evaluation in the following structure:

1. **Label**: A JSON object indicating the identified error and scores of three capability dimensions.

““json
{
"ratings": {
{
"Basic-Level Perception": 1/2/3,
"High-Level Comprehension": 1/2/3,
"Contextual Interpretation": 1/2/3
}
}
.

2. **Explanation**: A concise justification for the identified root-cause error. Link it to the identified capability
dimensions and aspects.

[Inputs for Evaluation]

Reference Problem Specification (Ref-PS):
" “markdown
{human_annotated_problem_specification}

Model-Generated Problem Specification (Gen-PS):
" “markdown
{model_generated_problem_specification}

[Evaluation Notes]

1. start by carefully comparing the Ref-PS and Gen-PS to identify discrepancies.

2. Determine the Root-Cause Error and assess which capability dimensions were not effectively addressed.
3. Rate each dimension from 1 to 3 based on the severity of the error.

Figure 29: Prompting templates used for the LLM-as-Judge rating experiment introduced in Section 5. {hu-
man_annotated_problem_specification} and {model_generated_problem_specification} serve as placeholders for
the respective content.

30

Line- 24

Point - 12

Triangle- s

Grid- 15

Coordinate System - 10
Matrix - 6

Mapping - 4
Intersection - 6
Connectivity - 9
Linear Increment - &
Propagation- &
Connection- &
Square- 2

Cross Pattern- 1
Concentric Arrangement - 0
Adjacency - 4
Boundary - 9

Circle- 4

Alternation - o

Value Comparison - 3
Arrow - 14

Layered Structure- 1
Directed Graph- 1
Path- &

Rotation - 1

Mirror Symmetry - 3

Basic Arithmetic- 4

Zigzag- s
Grouping - 2
Filtering- o
Rectangle - 3

Cyclic Motion- o

Conditional Branching - o

Sequence- 6
Swapping- 1
Line Segment- 3
Stacking - o
Shifting - 1

Circular Motion - 1

Counting -

Circular Arrangement- 1

Line -
Point -
Triangle- o

©

«

=

w

w

o

w

~

15 10 6

33 35 9

7 4 11
15 13 3
29 17 23

7(8|7
14 10 17
13 8 6
22 9 15
20 7 22

7 9 3
44 18 .
32 26 16
5 11 0
3 3 2
9 7 11
28 10 19
9 11 4
5 3 8
21 9 16

716 |7
5 3 2
6 3 10
12 5 12
8 1 13
4 0 s
18 10 6
6 2 11

11 0
3 0 10
0 0 10
14 10 3
3 5 0
0 0 12
88|83
9 4 7

4

a

o

w

Mapping - ©

14

21

Connectivity - «
Linear Increment -

o

Propagation - <

~

Connection - =

Square - <
Cross Pattern- =

Concentric Arrangement - o

4 32

18 26

30 11

17 2

18 12

Adjacency - ~
Boundary - ©

~

16

Circle -

o 3
a7
0 1
3 9
8| 7
12 1
6 12
[
10 13
112
205
5 8
10
2| 8
3812
1 25
4 14
41
34 6

4 7
6 3
N3
1 5
1 0
[5
2 23
4 0
5 9
1 9
1 16
7 3
7 8
13 32
6 1
0 2
0 4
2 2
1 0
0 5
0 1
c c
o O
2 2
5 2
£ 8
S €
g ©
<3

(]

3

T

s

Arrow - ~

Layered Structure- o

12

13

10

IS

°

Directed Graph- ~

Path - =
Rotation -
Mirror Symmetry - o

®

o

Basic Arithmetic- o

o

Zigzag- ©
Grouping - ~

o

0

w

Rectangle - ~
Cyclic Motion- o

Conditional Branching- o

Sequence - ~

w

°

Swapping - =
Line Segment- o

o

IS

Stacking - <

~

Circular Motion -

Figure 30: Analysis of the capability aspect co-occurrences in HumanEval-V tasks.

31

Counting - ~

Circular Arrangement- %

100

- 40

Image: Function Signature:
istance = (-1P+(0)2 =1 def solution(nums: list[float], idx1: int, idx2: int) -> float:

Example 1 ‘ 3 l 1 I 0 ‘ 2 ‘—9 | —7‘

Calculate the distance between two elements in a list of numbers.

Parameters:
nums (list[float]): A list of numbers.

idx1 (int): The first index position. (©-indexed)

distance = (PHC2)? =20 e - (2p=4 idx2 (int): The second index position. (@-indexed)

Returns:

l 3' 4‘ 2 ‘4 I'6 ‘6 wmz|45‘ 3‘ 2 I7 ‘3 ‘ float: The calculated distance between the elements at the two index

positions. (round two decimal places)

Example 3: distance = (-6)+(-5)2 +(-1.2) +(-2.5)2 = 68.69

Test Cases:

assert solution([3,-1,0,2,-9,-7], @, 3)==1; assert solution([2,-3,-1,-1,-2,-2,3,-3], @, 6)==19; assert ---
Incorrect Diagram Description Generated by Claude 3.5 Sonnet:

Problem Restatement

The problem requires implementing a function that calculates a "distance" between two elements in a list

of numbers based on their index positions. The distance calculation follows specific rules shown in the
examples, where elements between the two selected indices contribute to the total distance value. The
result should be rounded to 2 decimal places.

Visual Facts
1. Three examples are shown with arrays of different lengths:
- Example 1: [3, -1, @, 2, -9, -7]
- Example 2: [3, -1, @, 2, -2, 7, -3, 1]
- Example 3: [3, -4, -2, 4, -6, -5, -1.2, -2.5, 3, -2, 7, 3]

2. Each example shows distance calculations between different pairs of indices:
- Distance annotations show formulas like (-1)2+(@)2 =1
- Multiple distances can be calculated within the same array
- Some calculations involve multiple terms

3. Distance values shown include:
- Single-step distances = 1 (from (-1)2+(0)2)
- Larger distances = 9 (from (-3)2)
- Complex distances = 68.69 (from (-6)2+(-5)2+(-1.2)2+(-2.5)2)
- Zero distance in some cases

I

Visual Patterns

1. Distance Calculation Rules:

- When elements are adjacent, distance is calculated using the differences squared

- For elements with other numbers between them, all elements in the range contribute

indices Incorrect: The elements shouldn’t include both ends
- Multiple terms are summed when there are multiple elements in the range

2. Mathematical Pattern:
- Distance = %Z(x_1i)2 where x_i are the elements between and including the indexed positions
- For adjacent elements or single elements, it simplifies to the square of the difference
- When indices are the same, the distance is ©

3. Range Consideration:
- The calculation includes both start and end indices
- The order of indices doesn't matter (the distance is the same regardless of which index is first)
- All elements between the two indices contribute to the final distance value

Figure 31: Example error case demonstrating LMMs’ challenges with data structure manipulation and mathematical
operations. The case shown for Claude 3.5 Sonnet is under the V2T2C w/ SC setting.

32

Image: Function Signature:
istance = (-1+(0)? = 1 def solution(nums: list[float], idx1l: int, idx2: int) -> float:

Calculate the distance between two elements in a list of numbers.
distance = (-12H0)2 = 1 distance = (-3)2=9 Parameters:

nums (list[float]): A list of numbers.

idx1 (int): The first index position. (@-indexed)

Example 2

slafof2]-2[7]-8]1]

idx2 (int): The second index position. (@-indexed)

Returns:

l 3‘ 4' 2 [4 lﬁ |6 LLZL15|3 [4 |7 |3 ‘ float: The calculated distance between the elements at the two index

positions. (round two decimal places)

Example 3: distance = (-6)*+(-5) +(-1.2)2 +(-2.5)2 = 68.69 distance = 0

Test Cases:

assert solution([3,-1,0,2,-9,-7], @, 3)==1; assert solution([2,-3,-1,-1,-2,-2,3,-3], @, 6)==19; assert ...
Incorrect Diagram Description Generated by Pixtral 124B:

Problem Restatement

The problem requires calculating a "distance"” between two elements in a list of floating-point numbers.
The function “solution™ accepts a list of numbers and two index positions as inputs. The goal is to

compute and return this distance, rounded to two decimal places.

Visual Facts
1. The image displays multiple examples of numerical lists with annotations explaining the calculations
of "distance."
2. Each example calculates the distance based on selected values from the list.
3. The distance formula used in the examples is the squared sum of selected elements from the list.
4. The index positions chosen for the examples are noted to be zero-indexed.
5. The results of the distance calculations are annotated and matched with specific parts of the list in
each example.
Example 1:
- List: [3, -1, @, 2, -9, -7]
- Selected indices: 1 and 2 (values: -1 and 0)
- Distance = (-1)"2 + (0)"2 =1
Example 2:
- List: [3, -1, o, 2, -2, 7, -3, 1]
- Selected indices: 1 and 2 (values: -1 and 0)
- Distance = (-1)72+ (@)2=1___________
—i%elected indices: 4 and 5 (values: -2 and 7) , L
I~ Distance = (-2)"2 + (7)"2 = 53 ' Hallucination

Example 3: T TTTTTTTTTTTTTT bl
- List: [3, -4, -2, 4, -6, -5, -1.2, -2.5, 3, -2, 7, 3]
- Selected indices: 1 and 2 (values: -4 and -2) //

- Distance = (-4)"2 + (-2)"2 = 20 4

—:Selected indices: 9 and 10 (values: -2 and 7”)/
I- Distance = (-2)"2 + (7)"2 = 53 L

- Distance = (-6)"2 + (-5)72 + (-1.2)"2 + (-2.5)"2 = 68.69
- Selected indices: 11 and 11 (value: 3)
- Distance = (3)"2 = 9

Visual Patterns
1. The distance is calculated as the sum of the squares of selected elements from the list.
2. The selection of elements to calculate the distance depends on the provided indices.

4. If “idx1® equals “idx2", the distance is simply the square of the element at that index.
5. The result should be formatted to two decimal places for precision.

The pattern is:

distance = sum(nums[i]”*2 for i in range(idx1l, idx2 + 1))

Figure 32: Example case on the same task in Figure 31, demonstrated by Pixtral 124B under the V2T2C w/ SC
setting.

33

Image: Function Signature:
istance = (1PH0)2 =1 def solution(nums: list[float], idx1: int, idx2: int) -> float:

,,, Calculate the distance between two elements in a list of numbers.
distance = (-12H0) 2 = 1 distance = (-32=9 Parameters:
nums (list[float]): A list of numbers.

idx1l (int): The first index position. (@-indexed)

istance - (4PH2)? =20 distance - (2y=4 idx2 (int): The second index position. (@-indexed)

Returns:

l 3' * ‘{‘ 4| ® ‘5 MLQst‘s "QI 7' ® ‘ float: The calculated distance between the elements at the two index

Example 3 disiance — (OFHCS) H12) 1) = 65,69 positions. (round two decimal places)

Test Cases:
assert solution([3,-1,0,2,-9,-7], @, 3)==1; assert solution([2,-3,-1,-1,-2,-2,3,-3], O, 6)==19; assert ---

Incorrect Diagram Description Generated by Pixtral 12B:

Problem Restatement

The problem involves calculating a "distance" between two elements in a list of numbers. This distance
is determined using specific mathematical operations defined in the image. The function “solution” takes
three arguments:- “nums : A list of floating-point numbers.

- “idx1': The first index position (@-indexed).
- idx2': The second index position (@-indexed).

The function returns the calculated distance between the elements at the specified index positions,
rounded to two decimal places.

Visual Facts
From the image, the following visual elements and facts are observed:

1. Each example consists of a list of numbers and a distance calculation.

2. The distance is calculated using squared differences between the elements at specific indices.

3. Each example provides a sequence of numbers and corresponding distances calculated using specific
indices.

4. The_calculations are shown in the image as: ___________________

—:Example 1: Distance between elements at indices 1 and 3.
—:Example 2: Distance between elements at indices 1, 3, and 6.

Hallucination

—:Example 3: Distance between elements at indices 1, 3, 5, 7, and 9.
Visual Patterns
From the visual facts, the following patterns and operations are inferred:

Vague Expression: Does not specify how to calculate the distance.

F1.” The distance is calculated using the sum of 'squared differences between the elements at the specified
1indices. !
2. Each example shows the sum of squares for the differences:

- Example 1: “distance = (-1)"2 + (@)"2 = 1°

- Example 2: “distance = (-1)"2 + (©)"2 + (-3)"2 =1+ 1+ 9 = 11"

- Example 3: “distance = (-4)"2 + (-2)"2 = 16 + 4 = 20" and “distance = (-2)"2 = 4°
3. These distances appear to be cumulative sums of squared differences of elements at the specified
indices.
4. For multiple indices, each squared difference is summed to produce the final distance.

This understanding of the operations and calculations helps in implementing the function “solution” as
described in the provided function signature.

Figure 33: Example case on the same task in Figure 31, demonstrated by Pixtral 12B under the V272C w/ SC
setting.

34

Image: Function Signature:
distance = (-1*(0)2=1 def solution(nums: list[float], idx1: int, idx2: int) -> float:

Example 1: ‘ 3|_1 ‘ 0 ‘ 2 |—9|—7‘

Calculate the distance between two elements in a list of numbers.
distance = (-1)+(0)2 =1 distance = (3P =9 Parameters:

nums (list[float]): A list of numbers.

idx1l (int): The first index position. (@-indexed)

ExammeZ:l 3|_1‘0‘2[-2|7‘-3| 1 ‘

fistance - (4)4H(2)1=20 distance - (2= 4 idx2 (int): The second index position. (@-indexed)

Returns:
float: The calculated distance between the elements at the two index

|a‘ - ‘ql 4|re‘75‘41|45‘3 ‘4 |7‘ 3‘

Example 3: distance = (-6)-H-5)> +(-1.2)> +(-2.5)>= 68.69 distance =0 positions. (round two decimal places)

Test Cases:
assert solution([3,-1,0,2,-9,-7], @, 3)==1; assert solution([2,-3,-1,-1,-2,-2,3,-3], @, 6)==19; assert ---
Incorrect Code Solution Generated by OpenAl oil:

Analysis

From the examples in the image:

Incorrect: Fail to understand the aggregation rules.

- They consistently show something like:“distance = (x)2 + (y)2.” |

L e e e e e e e e = - -
- There is no visible square root; the result is simply the *sum of the squares* of the two chosen
elements.

- Finally, we round to two decimal places.

Hence, given a list "nums ™ and two indices “idx1", ~idx2", we compute

\[

\text{distance} = \bigl(\text{nums[idx1]}\bigr)~2 + \bigl(\text{nums[idx2]}\bigr)~2

\]

and round it to two decimals.

T python

def solution(nums: list[float], idx1l: int, idx2: int) -> float:
Calculate the 'distance’ between two elements in a list of numbers,
defined here as the sum of their squares (no square root).

The result is rounded to 2 decimal places.

Parameters:
nums (list[float]): A list of numbers.
idx1l (int): The first index position (©-based).
idx2 (int): The second index position (@-based).

Returns:
float: The calculated distance, rounded to two decimals.
------------------ 1 . .
X = nums[idx1] ! Incorrect: Fail to understand the aggregation rules.
nums[idx2] !
dist = x**2 + y**2 !
1

<
[}

Figure 34: Example case on the same task in Figure 31, demonstrated by OpenAl ol under the textitV2C w/ CoT
setting.

35

Image: Function Signature:
distance = (-1)H0) 2= 1 def solution(nums: list[float], idx1l: int, idx2: int) -> float:

Example 1: ‘ 3| 1 ‘0 ‘ 2 [—9|—7‘

Calculate the distance between two elements in a list of numbers.

distance = (-1y+(0) = 1 distance = (-3 =9 Parameters:
nums (list[float]): A list of numbers.
idx1 (int): The first index position. (@-indexed)

Example 2 | 3|_1‘0‘2[-2|7‘»3‘ 1‘

e piayiem dieeared idx2 (int): The second index position. (@-indexed)

Returns:
float: The calculated distance between the elements at the two index

| 3 ‘—A ‘le 4 | 6 ‘75‘712|725‘ 3 |72| 7 ‘ 3

Example 3: distance = (-6)+H(-5)2+(-1.2)2 +(-2.5)2 = 68.69 distance = 0 positions. (round two decimal places)

Test Cases:

assert solution([3,-1,90,2,-9,-7], @, 3)==1; assert solution([2,-3,-1,-1,-2,-2,3,-3], 0, 6)==19; assert ---
Incorrect Code Solution Generated by 0OVO 72B Preview:

Fipnal Solution

To solve this problem, we need to calculate the distance between two elements in a list of numbers based

on the provided examples.

#i## Approach
1. **Understanding the Problem:**
- We are given a list of floating-point numbers and two indices.
- We need to calculate the "distance" between the elements at these indices.
- The distance is defined based on the sum of squares of the elements at the given indices.
2. **Interpreting the Examples:**
- Example 1: For indices 1 and 2 in "[3, -1, @, 2, -9, -7] , distance is "(-1)"2 + (©)"2 =1 + 0 =

- Example 2: For indices 1 and 2 in “[3, -1, @, 2, -2, 7, -3, 1], distance is “(-1)"2 + (©)"2 =1 +
10 = 1; for indices 6 and 7, distance is (-3)"2 + (1)"2 =9 + 1 =10°, T TTTTTTTTTTTT |
| - Example 3: For indices 4 and 7 in "[3, -4, -2, 4, -6, -5, -1.2, -2.5, 3, -2, 7, 3], distance is |
| (6024 (-2.5)°2=36+2.25=3825. .}

Hallucination

3. **Function Signature:**

- “def solution(nums: list[float], idx1l: int, idx2: int) -> float:~

Solution Code
T python

def solution(nums: list[float], idx1l: int, idx2: int) -> float:

Ensure indices are within bounds

if idx1 < @ or idx1l >= len(nums) or idx2 < @ or idx2 >= len(nums):
Calculate the sum of squares of elements at idxl and idx2
distance = nums[idx1]**2 + nums[idx2]**2
Round to two decimal places

return round(distance, 2)

Incorrect: Fail to understand the aggregation rules.

Explanation
1. **Bounds Check:**
- We ensure that both indices are within the valid range for the list.
2. **Distance Calculation:**
- Compute the square of each element at the given indices and sum them up.
3. **Rounding:**
- Round the final distance to two decimal places to match the problem's requirement.

Figure 35: Example case on the same task in Figure 31, demonstrated by QVQ 72B Preview under the textitV2C w/
CoT setting.

36

Image: Function Signature:

Exarmple 1 _ o Ez def solution(nums: List[int], T: int) -» List[int]:
o [514] | wan
| = [2]0]2]0 Returns the array at a specified time T.
e [as[als] ! Parameters:
1 NNT=2|0[2|0|2|0]|2 . . PP -
AN I nums (List[int]): The initial array of integers
b . T (int): The target time point
S EIGEIGEICIEIC R returns:

| AN List[int]: The array at time T

Test Cases:

assert solution([5,-1], 1) == [-1, 5,-1, 5]; assert solution([9,2], 3) == [2,0,2,90,2,0,2,0]; assert ---

Incorrect Diagram Description Generated by Claude 3.5 Sonnet:
Problem Restatement

Given an initial array of integers and a time point T, the problem requires transforming the array

according to a specific pattern over time steps until reaching time T. Each time step follows a

consistent transformation rule to generate the next
state of the array.

Visual Facts
1. Two examples are shown, each starting with different initial arrays:
- Example 1: Initial array [5, -1] at T=0
- Example 2: Initial array [0, 2] at T=0
2. Time steps are labeled as T=0, T=1, T=2, T=3, etc.
3. Example 1 progression:
- T=0: [5, -1]
- T=1: [-1, 5, -1, 5]
- T=2: [5, -1, 5, -1, 5, -1]
- T=3: [-1, 5, -1, 5, -1, 5, -1, 5]
4, Example 2 progression:
- T=0: [0, 2]
- T=1: [2, @, 2, @]
- T=2: [0, 2, 0, 2, 0, 2]

£

Visual Patterns
1. Array Growth Pattern:

- At each time step, the array size doubles
A L. Pl Ay
-l

2. Element Arrangement Pattern:
- Each element in the input array alternates in the output
- For Example 1:

* Elements 5 and -1 alternate throughout INCorrect: The alternation ordervaries based on array size

*:Pattern repeats as: first element, second element, first element, second element...,

- For Example 2:
* Elements @ and 2 alternate throughout
* Same alternating pattern applies
3. Value Transformation Rule:
- No mathematical operations are performed on the values
- Values are simply rearranged in an alternating pattern
- The original values from T=@ are preserved throughout all time steps
4. Consistency:
- The pattern is deterministic
- The transformation rule is consistent across both examples
- Each time step builds upon the previous step's result

Figure 36: Error case highlighting LMMSs’ limitations in understanding dynamic patterns with alternating elements
and linear increments. The case shown for Claude 3.5 Sonnet is under the V2T2C w/ SC setting.

37

Image: Function Signature:

Example1 o Ez def solution(nums: List[int], T: int) -> List[int]:
e [5]4] l won
| = [2]0]2]0 Returns the array at a specified time T.
TrAls|als * | Parameters:
| szl 020202 X) L. .
Ay i nums (List[int]): The initial array of integers
i . T (int): The target time point

EIGEIGEICETEI RN Returns:

| \ List[int]: The array at time T
Test Cases:
assert solution([5,-1], 1) == [-1, 5,-1, 5]; assert solution([®,2], 3) == [2,0,2,0,2,0,2,0]; assert ...

Incorrect Diagram Description Generated by Pixtral 124B:
Problem Restatement
Given an initial array of integers and a time point T, the function is required to return the state of

the array at that specific time point T. The time evolution of the array follows a specific
transformation pattern demonstrated in the image, which needs to be identified and implemented.

Visual Facts
1. **Initial States:**
- Example 1 starts with the array \([5, -1]\) at T=e.
- Example 2 starts with the array \([0, 2]\) at T=0.
2. **Transformation at T=1:**
- In Example 1, the array \([5, -1]\) evolves into \([-1, 5, -1, 5]\).
- In Example 2, the array \([0, 2]\) evolves into \([2, @, 2, @]\).
3. **Transformation at T=2:%%*
- In Example 1, the array \([-1, 5, -1, 5]\) evolves into \([5, -1, 5, -1, 5, -1]\).
- In Example 2, the array \([2, ©, 2, @]\) evolves into \([0, 2, 0, 2, @, 2]\).
4. **Continuation Pattern:**
- The transformations continue for each subsequent time step, producing longer arrays.

Visual Patterns
1. **Transformation Rule:**

- At each time step, the array is transformed by duplicating the array and reversing the order of the
_elements for the second half of the newly formed array. _______________________________

' - Mathematically, for an array \(A_t\) at time \(t\), the array at time \(t+1\) is formed by |
lconcatenating \(A_t\) with a reversed copy of \(A_t\). '

27t\). Incorrect: Length(T) should be 2*(T+1)
3. **General Transformation Formula:**

- If \(A_t\) is the array at time \(t\), then \(A_{t+1} = A_t + \text{reverse}(A_t)\).

- Example: For \(A_@ = [a, b]\), \(A_1 = [a, b, b, a]\) and \(A_2 = [a, b, b, a, a, b, b, al\).
4. **Binary Pattern Expansion:**

- The expansion pattern observed is similar to creating a sequence where each element's position
follows a binary-like doubling pattern in its progression.

By carefully examining the image and understanding the transformation pattern, the problem can be solved

by implementing the transformation logic iteratively or recursively until the desired time point T is
reached.

Figure 37: Example case on the same task in Figure 36, demonstrated by Pixtral 124B under the V2T2C w/ SC
setting.

38

Image: Function Signature:

Example 1 o Ez def solution(nums: List[int], T: int) -> List[int]:
X - 2 won
T-0: a '\.. 1
| = [2]0]2]0 Returns the array at a specified time T.
B i A N | Parameters:
1 T2 0 2(0[2]0]|2 . . e .
N\ 1 nums (List[int]): The initial array of integers
i n . T (int): The target time point

v [a]s]a]s]4]5]1]5] Returns:

| N List[int]: The array at time T
Test Cases:
assert solution([5,-1], 1) == [-1, 5,-1, 5]; assert solution([®,2], 3) == [2,0,2,0,2,0,2,0]; assert ---

Incorrect Diagram Description Generated by Pixtral 12B:

Problem Restatement

The problem involves transforming an initial array of integers over a series of time steps, denoted by
\(T \). Given an initial array and a target time step \(T \), the goal is to return the array at that
specific time step. The transformation rules for each example are shown in the provided image, which

illustrates how the array evolves over time.

Visual Facts
1. **Example 1:**

- Initial array at \(T =0 \): [5, -1]

- Array at \(T =1\): [-1, 5, -1, 5]

- Array at \(T =2\): [5, -1, 5, -1, 5, -1]

- Array at \(T =3 \): [-1, 5, -1, 5, -1, 5, -1]
2. **Example 2:**

- Initial array at \(T =0 \): [0, 2]

- Array at \(T =1 \): [2, @, 2, @]

- Array at \(T =2\): [0, 2, 0, 2, 0, 2]

- Arrays shown for \(T = 3 \) and beyond follow a similar pattern.

3. **Transformation Process:**

- Each subsequent array is generated by duplicating and modifying the current array according to
specific rules.

- Example 1 follows a pattern of adding the same value repeatedly.

- Example 2 follows a pattern of shifting and duplicating values.

Visual Patterns
1. **Example 1:** Incorrect: Fail to understand the transformation rules.

- Each subsequent array is formed by adding the initial array at the beginning and end.
- The pattern involves shifting elements by 1 and inserting the corresponding values from the initial
array.

2. **Example 2:** Incorrect: Fail to understand the transformation rules.

'~ 7= The transformation involves shifting the array to the left and appending the initial array at the,

1end.

' - Each subsequent array is formed by moving all elements of the current array one position to the

yleft and appending the initial array at the end.

- This pattern continues indefinitely, repeating the initial array's elements.
By observing these patterns, one can deduce the rules for transforming the array at each time step \(T

\). The solution involves implementing the identified transformation rules to generate the array at the
desired time point \(T \).

Figure 38: Example case on the same task in Figure 36, demonstrated by Pixtral 12B under the V272C w/ SC
setting.

39

Image: Function Signature:

Erample1 | . Ez def i‘c‘:iution(nums: List[int], T: int) -> List[int]:
| ™ [2]0]2]0] Returns the array at a specified time T.
TS |A]s \\) | Parameters:
! \TZ;BLEiE{j{LQlEJ nums (List[int]): The initial array of integers
T (int): The target time point
Returns:
List[int]: The array at time T
Test Cases:
assert solution([5,-1], 1) == [-1, 5,-1, 5]; assert solution([©,2], 3) == [2,0,2,0,2,0,2,0]; assert ---

Correct Code Solution Generated by OpenAI ol:

Analysis

From the examples, each time step \(T\) corresponds to taking a “window” of length \(2 \times (T+1)\)
from an infinite repetition of the original two-element array, starting at index \(T\). Concretely:

1. We have an initial array of length 2, say \(\bigl[x_0,x_1\bigr]\).

2. Imagine an infinite repeating sequence: \(\dots,x 0,x_1,x 0,x_1,x_0,x_1,\dots\).

3. At time \(T\), we skip the first \(T\) elements of this infinite sequence and then take the next
\(2\times (T+1)\) elements.

Visually, in **Example 1** with “nums=[5, -1] :

- K\ (T=0\)**: offset \(=0\), length \(=2\). We take the first 2 elements from \([5, -1, 5, -1,\dots]\),
yielding \([5, -1]\).

- ¥*\(T=1\)**: offset \(=1\), length \(=4\). We start from index 1 (\(-1\)) and take 4 elements: \([-1,
5, -1, 51\).

- R\ (T=2\)**: offset \(=2\), length \(=6\). From index 2 (which is 5 again), the next 6 elements are
\([5, -1, 5, -1, 5, -1]\). (The figure shows a truncated 5-element snippet, but logically it continues.)

Similarly for **Example 2** (“nums=[@, 2]), the pattern toggles every time step, with lengths 2, 4, 6,
8, etc.

T T python
from typing import List

def solution(nums: List[int], T: int) -> List[int]:
Returns the array at a specified time T by viewing the original two-element
array “nums” as an infinite repeating sequence and taking 2*(T+1) elements
starting at index T.

Parameters:
nums (List[int]): The initial array of exactly two integers.
T (int): The target time point.

Returns:
List[int]: The array of length 2*(T+1), starting from offset T in the
infinite repetition of nums.

The length of the resulting array

length = 2 * (T + 1)

Build the result by indexing into the repeating [nums[@], nums[1]] pattern
result = [nums[(T + i) % 2] for i in range(length)]

return result

Figure 39: Example case on the same task in Figure 36, demonstrated by OpenAl ol under the V2C w/ CoT setting.

40

Image: Function Signature:

Example1 | o Ex;’“”;;z def solution(nums: List[int], T: int) -> List[int]:
o [s]a] N wa
| N - Returns the array at a specified time T.
m [a]s[a]s Parameters:

|
R EIHEIEEY T (int): The target time point

| x\‘ :
v [a]s]4]s]a]5]4]5] Returns:
| ~,

nums (List[int]): The initial array of integers

List[int]: The array at time T

Test Cases:

assert solution([5,-1], 1) == [-1, 5,-1, 5]; assert solution([®,2], 3) == [2,0,2,0,2,0,2,0]; assert ---

Incorrect Code Solution Generated by QV0Q 72B Preview:

Final Solution

To solve this problem, we need to transform an initial array "nums® through a series of steps labeled by
a time parameter “T . The transformation alternates between the original array and its rotation at each
step. The goal

is to generate the array at a specified time step "T .

Approach
1. **Initial Case (T=0):** Return the original array “nums .
2. For subsequent time steps:
- If "T° is even, use the original array “nums’.
- If "T° is odd, use the array rotated by one position to the left.
3. Repeat this base array (T + 1) // 2° times.
Extend this repeated array to the required length “len(nums) * (T + 1) by duplicating the pattern.

Solution Code
“ T python
from typing import List

def solution(nums: List[int], T: int) -> List[int]:
if T == 0:
return nums
Define a function to rotate the array to the left by one position
def rotate_left(arr):
return arr[1:] + arr[:1]
Determine the base array based on the parity of T
if T% 2 ==0:
base_array = nums
else:
base_array = rotate_left(nums)
repeats = (T + 1) // 2
Create the extended array
extended_array = []

1

i Implementation Error: The number of repeats should not
! be (T+1)// 2, as this would produce an array of length 2
1
1
1

for _ in range(repeats): instead of 4 when T =1 (as in Example 1).

i____extended_array.extend(base_array) 1
Ensure the array has the required length
required_length = len(nums) * (T + 1)

return extended_array[:required_length]

Explanation

- **Initial Case (T=0):** The array remains unchanged.

- **For Even T:** The base array is the original array "nums’.

- **For Odd T:** The base array is “nums’ rotated by one position to the left.

- **Repetition:** The base array is repeated (T + 1) // 2" times.

- **Extension:** The repeated array is extended to the required length “len(nums) * (T + 1) by
duplicating the pattern.

This approach ensures that the array transformation follows the observed pattern in the examples
provided.

Figure 40: Example case on the same task in Figure 36, demonstrated by QVQ 72B Preview under the V2C w/ CoT
setting.

41

Image: Function Signature:

def solution(matrix: List[List[int]]) -> List[int]:
1« 2« 3« 4 ‘ 1+2+3+4 ‘ nun
4
5 drg 47 _,é Given an M x N 2D matrix, traverse the matrix according to the spiral pattern
1< 2+ 3« 4 | shown in the image
¢ t P ters:
1424 344 5 | 6+7 |8 arameters:
¥ t 4 t + - matrix (List[List[int]]): A 2D list of integers representing the matrix.
567 |8 910411 | 12 Returns:
4 4
T T
9 110411412 131141516 - A list of integers representing the elements of the matrix in the order as

shown in the image

Test Cases:

assert solution([[1,2]])==[1,2]; assert solution([[1,2],[3,4],[5,61,[7,8]1]1)==[7,8,6,4,2,1,3,5]; assert ---
Incorrect Diagram Description Generated by Claude 3.5 Sonnet:

Problem Restatement

The problem requires implementing a function that traverses a matrix following specific arrow patterns

shown in the image. The function takes a 2D matrix as input and should return a list of integers
representing the elements in the order they are visited according to the arrow patterns demonstrated in
the image.

Visual Facts
1. The image shows four different matrix examples with arrows indicating traversal paths:
- Top left: 2x4 matrix
- Top right: 1x4 matrix
- Bottom left: 3x4 matrix
- Bottom right: 4x4 matrix

2. Each cell contains a sequential number starting from 1

3. Arrows connect adjacent cells indicating the direction of traversal
4. The patterns show both horizontal and vertical movements

5. All examples demonstrate consistent numbering (sequential integers)
Visual Patterns

1. Traversal Pattern Rules:
- Horizontal traversals alternate between left-to-right and right-to-left
- Vertical traversals are consistently upward at the rightmost column
- When multiple rows exist, the leftmost column shows downward traversal

- The pattern creates a spiral-like path through the matrix
2. Common Characteristics: [ncorrect: The traversal starts from the bottom-left cell

- The traversal continues until all cells are visited exactly once
3. Pattern Variations: Incorrect: Vertical movements may occurin any column
- The pattern adapts to different matrix dimensions (1x4, 2x4, 3x4, 4x4)
- The basic rules remain consistent regardless of matrix size
- The number of vertical transitions depends on the matrix height
- The number of horizontal traversals depends on the matrix width
4. Order Properties:
- Each number is visited exactly once
- The traversal creates a continuous path through the matrix
- The pattern ensures complete coverage of all matrix elements
- The order of visited cells follows the arrow directions strictly

Figure 41: Error case illustrating LMMs’ difficulties in recognizing and reasoning about complex geometric
arrangements, particularly spiral and circular patterns. The case shown for Claude 3.5 Sonnet is under the V272C w/
SC setting.

42

Image: Function Signature:

def solution(matrix: List[List[int]]) -> List[int]:
1daodsds ‘ 1+ + + ‘
+
5E 4G o7 48 Given an M x N 2D matrix, traverse the matrix according to the spiral pattern
T+ 2+ 3+ 4 | shown in the image
+ t
14 2< 344 5| 6«7 | 8 Parameters:
4 4 4 1 4 - matrix (List[List[int]]): A 2D list of integers representing the matrix.
5=+6=7 |8 9= 1011 | 12 Returns:
4 4
T T
9 10411412 13514515 16 - A list of integers representing the elements of the matrix in the order as

shown in the image

Test Cases:

assert solution([[1,2]])==[1,2]; assert solution([[1,2],[3,4],[5,6],[7,8]1])==[7,8,6,4,2,1,3,5]; assert ..
Incorrect Diagram Description Generated by Pixtral 124B:

Problem Restatement

Given a 2D matrix (a list of lists of integers), the problem asks us to traverse this matrix in a
specific spiral pattern. The objective is to return a list of integers that represent the elements of
the matrix in the order traversed by this spiral pattern as shown in the image.

Visual Facts
The image provides several illustrations of matrices with arrows indicating the order of traversal in a
spiral pattern. Here are the observed facts:
1. **Matrix Dimensions and Elements**:
- The matrices shown are 2x4, 2x4, 3x4, and 4x4 in size.
- Each matrix contains sequential integers starting from 1.
2. **Tpaversal Directions**: Incorrect: The traversal starts from the bottom-left cell

- Arrows indicate the following movements: right, down, left, and up.

- The direction changes each time the edge of the matrix or the previously traversed path is reached.
3. **Traversal Paths**. Ll ___
then left across the bottom row, and Flnally up t?e first column.

- For the 3x4 matrix, the traversal includes tpe rightward movement across the top row, downward
movement in the last column, leftward movement aqross the second row, upward movement in the first
column, and so on. :

- For the 4x4 matrix, the pattern continues s}milarly, with additional inner rows and columns being

traversed in a spiral manner. \ 4
Hallucination
Visual Patterns v
s
Based on the visual facts observed: id

1. **Spiral Traversal Algorithm**: ,”

—.Start from the top-left element.

- WBGé-?IQH%_QEFBEQ-fﬁé_fbﬁ_ﬁiﬂfﬁﬁill the last element of the row is reached.

- Move down the last column until the bottom-most element is reached.

- Move left across the bottom row until the first element of the row is reached.

- Move up the first column until the top-most element of the next inner row is reached.

Repeat this cycle for the inner sub-matrix until all elements are traversed.
2. **Dynamic Boundaries**:

- The boundaries (top, bottom, left, right) of the current sub-matrix are reduced after each complete
traversal of a layer.

- The right boundary decreases after a rightward traversal.

- The bottom boundary decreases after a downward traversal.

- The left boundary increases after a leftward traversal.

- The top boundary increases after an upward traversal.
3. **Edge Conditions**:

- After traversing the outermost layer, the process continues with the next inner layer, reducing the
matrix’s effective size progressively.

- The process ends when all elements have been visited, effectively reducing the matrix boundaries to
converge at a point (if the matrix dimensions are odd) or traversing the last two central elements (if
the matrix dimensions are even).

Figure 42: Example case on the same task in Figure 41, demonstrated by Pixtral 124B under the V2T2C w/ SC
setting.

43

Image: Function Signature:

def solution(matrix: List[List[int]]) -> List[int]:
1 e 2@ 3& 4 ‘ 1+2+ 3+4 ‘ nnn
4
5 4rp 7 _*é Given an M x N 2D matrix, traverse the matrix according to the spiral pattern
T4 24 34 4 | shown in the image
¥ t P t :
1< 2« 3«4 5| 6«7 | 8 arameters:
+ 4 ¢ + 4 - matrix (List[List[int]]): A 2D list of integers representing the matrix.
567 |8 91011 | 12 Returns:
4 4
T T
9 101112 1351415 16 - A list of integers representing the elements of the matrix in the order as

shown in the image

Test Cases:
assert solution([[1,2]])==[1,2]; assert solution([[1,2],[3,4],[5,61,[7,8]1]1)==[7,8,6,4,2,1,3,5]; assert ---

Incorrect Diagram Description Generated by Pixtral 12B:
Problem Restatement

The problem involves traversing a given M x N 2D matrix according to a spiral pattern. The function
“solution® takes a 2D list of integers (matrix) and returns a list of integers in the order specified by
the spiral traversal as shown in the image.

Visual Facts

1. The image shows a matrix divided into a grid of cells with numbers inside each cell.

2. Arrows within each cell indicate the direction of traversal.

3. Each traversal moves from one cell to the next in a spiral pattern: starting from the top-left corner
and moving outward.

4. The numbers inside the cells indicate the sequence in which they will be visited.

5. There are multiple matrices of different sizes shown:

-1A 2x2 matrix.| o
~IA 3x3 matrix.| Hallucination
1
1

-1A 4x4 matrix.
6. Th;if;;;é};;f.battern is consistent across all matrices: top-right, right-bottom, bottom-left, and
left-top.

Visual Patterns Incorrect: The traversal starts from the bottom-left cell in counter-clock order

#

g
1. The traversal pattern follows aiclockwise spiral starting from the top-left corner. |
2
3

Each layer of the spiral is traversed in a specific order:
- Top row from left to right.
- Rightmost column from top to bottom.
- Bottom row from right to left.
- Leftmost column from bottom to top.
4. This pattern continues until all elements in the matrix have been visited.
5. The sequence of numbers collected from the traversal will follow the spiral pattern as depicted.

By understanding these visual facts and patterns, one can implement a function to traverse the matrix in
the specified spiral order.

Figure 43: Example case on the same task in Figure 41, demonstrated by Pixtral 12B under the V272C w/ SC
setting.

44

Image: Function Signature:

def solution(matrix: List[List[int]]) -> List[int]:
14 2« 3¢ 4 ‘ 1+2+ 3+4 ‘ nnn
4
5 4r5 7 _*é Given an M x N 2D matrix, traverse the matrix according to the spiral pattern
1424 34 4 | "shown in the image
+ t
e 2o 344 5| 6e7 | 8 Parameters:
4 + ¥ t t - matrix (List[List[int]]): A 2D list of integers representing the matrix.
567 |8 91011 | 12 Returns:
4 4
T T
9 4101112 1311415 116 - A list of integers representing the elements of the matrix in the order as

shown in the image
Test Cases:
assert solution([[1,2]])==[1,2]; assert solution([[1,2],[3,4],[5,61,[7,8]1]1)==[7,8,6,4,2,1,3,5]; assert ---

Incorrect Code Solution Generated by OpenAI ol:

#i## Step-by-Step Analysis

From the image, the task is to traverse a matrix in a spiral order. The order in which the elements are traversed
can be described as follows: Imcorrect: The traversal starts from the bottom-left cell

. #¥Start from the top-left corner of the matrix*+ (row @, column).1
. **Move right** across the topmost row.

. **Move down** along the rightmost column.

. **Move left** across the bottommost row (if more rows are left).

. **Move up** along the leftmost column (if more columns are left).

O Vv A~ W N R

. **Repeat** this pattern, shrinking the boundary of traversal by excluding the outermost row and column until
all elements are visited.
This spiral order traversal involves the following boundaries:
- “top” (initially 0),
- “bottom™ (initially the last row index),
- “left® (initially o),
- “right® (initially the last column index).
These boundaries are adjusted after each movement:
- After moving right, increment the “top™ boundary.
- After moving down, decrement the “right” boundary.
- After moving left, decrement the “bottom™ boundary.
- After moving up, increment the " left™ boundary.
This loop continues until all elements are visited.
Code Implementation
"7 python
def solution(matrix: List[List[int]]) -> List[int]:
if not matrix:
return []
result = []
top, bottom, left, right = 9, len(matrix) - 1, 0, len(matrix[@]) - 1
while top <= bottom and left <= right:
for i in range(left, right + 1):
result.append(matrix[top][i])
top += 1
for i in range(top, bottom + 1):
result.append(matrix[i][right])
right -= 1
if top <= bottom:
for i in range(right, left - 1, -1):
result.append(matrix[bottom][i])
bottom -= 1
if left <= right:
for i in range(bottom, top - 1, -1):
result.append(matrix[i][left])
left += 1
return result

Figure 44: Example case on the same task in Figure 41, demonstrated by OpenAl ol under the V2C w/ CoT setting.

45

Image: Function Signature:

def solution(matrix: List[List[int]]) -> List[int]:
1 e 2 3@ 4 ‘ ’|+2+ 3+4 ‘ wan
4
5 4rp 7 _*é Given an M x N 2D matrix, traverse the matrix according to the spiral pattern
T4 24 34 4 | shown in the image
¥ t P t :
Ta 2+ 344 5| 6<k7 | 8 arameters:
+ 4 ¢ + 4 - matrix (List[List[int]]): A 2D list of integers representing the matrix.
567 |8 91011 | 12 Returns:
4 4
T T
9 101112 1351415 16 - A list of integers representing the elements of the matrix in the order as

shown in the image
Test Cases:
assert solution([[1,2]])==[1,2]; assert solution([[1,2],[3,4]1,[5,6],[7,8]1]1)==[7,8,6,4,2,1,3,5]; assert ---

Unfinished Code Solution Generated by QV0Q 72B Preview:
[...above is a very long CoT generation process...]

___ -
1

1Alternatively, maybe the traversal is row by row for matrices where the number of rows is greater than or equal to
1

:the number of columns, and spiral otherwise. !
But that also seems arbitrary. Incorrect: The traversal pattern is irrelevant to row/column humbers
Given the confusion, perhaps the best approach is to implement a general spiral traversal algorithm, as initially
thought.
Here's a more detailed implementation:
"7 python
def solution(matrix: List[List[int]]) -> List[int]:
if not matrix or not matrix[@]:
return []
rows, cols = len(matrix), len(matrix[0])
result = []
top, bottom = @, rows - 1
left, right = @, cols - 1
while top <= bottom and left <= right:
for col in range(left, right + 1):
result.append(matrix[top][col])
top += 1
for row in range(top, bottom + 1):
result.append(matrix[row][right])
right -= 1
if top <= bottom:
for col in range(right, left - 1, -1):
result.append(matrix[bottom][col])
bottom -= 1
if left <= right:
for row in range(bottom, top - 1, -1):
result.append(matrix[row][left])
left += 1
return result
But given that the examples show row by row traversal, perhaps the problem expects a row by row traversal.
Alternatively, maybe the spiral traversal is supposed to alternate directions based on the current layer.
I need to make a decision here.
Given the confusion between row by row and spiral traversal, and considering that the examples show row by row
traversal, I will proceed with implementing a row by row traversal.
Here's the final code:
"7 python
def solution(matrix: List[List[int]]) -»> List[int]:
return [num for row in matrix for num in row]
This should satisfy the problem's requirements based on the examples provided.
[...unfinished CoT generation...]

Figure 45: Example case on the same task in Figure 41, demonstrated by QVQ 72B Preview under the V2C w/ CoT
setting.

46

Image: | Example2 Operations =1 Function Signature:
Example 1 Operations = def solution(initial_blocks: List[str], operations: List[int]) -> List[str]:

 Blocks

return the transformed blocks after applying the operations.
,,, Args:

- initial_blocks: List of strings representing the initial blocks

- operations: List of integers representing the operations to be applied

1 Returns:

- List of strings representing the blocks after all operations

Test Cases:

assert solution(["C","B","D","A"],[1,3,2])==["C","A","B","D"];assert solution(["B","C"],[1])==["C","B"];assert ---
Incorrect Diagram Description Generated by Claude 3.5 Sonnet:

Problem Restatement

The problem involves transforming a vertical arrangement of blocks (represented by letters) through a

series of operations. Each operation is specified by an index number that triggers a specific
transformation pattern. The

function needs to calculate the final arrangement of blocks after applying all specified operations in
sequence.

Visual Facts
1. Each example shows blocks arranged vertically with index positions (@ to n-1)
2. Each block contains a single letter (A, B, C, D)
3. Example 1 shows:
- Initial state: [B, A]
- Operations = [1]
- Final state: [A, B]
4, Example 2 shows:
- Initial state: [C, B, A]
- Operations = [1]
- Final state: [B, C, A]
5. Example 3 shows:
- Initial state: [D, C, B, A]
- Operations = [3, 1, 3]
- Final state: [B, D, A, C]
6. Each transformation is shown with:
- Dotted boxes indicating moving blocks
- Blue arrows showing movement direction
- White arrows showing sequence of steps

I

Visual Patterns
1. Operation Pattern:
- When an index i is given in operations:

o S5
-

- ; \
The block at index i moves up i Incorrect: All blocks with index < i moves down,

" . i |
i- The block at index i-1 moves down; not just swappingiand i-1

:— They effectively swap positions

2. Sequential Processing: B
- Operations are applied one at a time /
- Each operation affects exactly two adja%ent blocks
- The result of one operation becomes tp% input for the next
3. Movement Rules: !
_____________________________ .

- Only adjacent blocks can be swapped
- The operation index refers to the lower block in the swap
- Blocks maintain their integrity (don't split or merge)

4. Transformation Properties:
- Each operation preserves all blocks (no deletion/addition)
- Multiple operations can affect the same blocks repeatedly

- The final arrangement depends on the sequence of operations

Figure 46: Error case highlighting the gap between human intuition and LMM performance on seemingly straight-
forward visual reasoning tasks. The case shown for Claude 3.5 Sonnet is under the V272C w/ SC setting.

47

Test Cases:
assert solution([4,2,1,3], [5,5,2,1], @) == 3; assert solution([4,2,1,3], [5,5,2,1], 3) == 2; assert ---

Function Signature:
def solution(a: List[int], b: List[int], t: int) -> int:
Calculate the “diff” value at a specific time.
Parameters:
a (List[int]): A stack, where index @ represents the top element.
b (List[int]): B stack, where index @ represents the top element.
t (int): Time at which to calculate the “diff"
Returns:
int: The "diff value at time t

Incorrect Diagram Description Generated by Claude 3.5 Sonnet:

Problem Restatement

The problem involves calculating the difference between two stacks (A and B) at a specific time point T.
The stacks contain integer values, and we need to track how they change over time and compute their
difference at a given moment. The difference appears to be measured between the topmost elements of both
stacks.

Visual Facts
1. The image shows a sequence of four time steps (T=0 to T=3)
2. There are two stacks in each step:

- Stack A (green blocks)

- Stack B (blue blocks)
3. Initial state (T=0):

- Stack A: [4,2,1,3] (top to bottom)

- Stack B: [5,4,2,1] (top to bottom)

Each state shows a "diff=" value at the top
5. Elements disappear from the top of both stacks over time:

T=1:
T=1:
T=2:
T=2:
T=3:
T=3:

Visual

2. Stack

Stack
Stack
Stack
Stack
Stack
Stack

A

B
A
B
A
B

Patterns

loses top elements, becomes [2,1,3]
loses top element, becomes [4,2,1]
loses more elements, becomes [1,3]
loses elements, becomes [2,1]

has only [3] remaining

has only [1] remaining

: diff=1 (|2-4]=2)
: diff=1 (|1-2]=1)
T=3:

diff=2 (|3-1]=2)
Reduction Pattern:

- Elements are removed from the top of both stacks over time

- The removal rate may vary between stacks

- The process continues until reaching time T or until stacks cannot be reduced further
3. Difference Calculation Rule:

- At any time T, the difference is calculated as the absolute value between the top elements of both
stacks

- The function needs to determine what the stacks look like at time T and calculate this difference

Figure 47: Another case highlighting the gap between human intuition and LMM performance on seemingly
straightforward visual reasoning tasks. The case shown for Claude 3.5 Sonnet is under the V272C w/ SC setting.

48

	Introduction
	Benchmark Construction
	Benchmarking Setup
	Benchmarking Results
	Experimental Analysis
	Related Work
	Conclusion
	Limitations
	Comparison with Other Benchmarks
	Correlation Analysis
	Diagrams in Other Benchmarks
	Diagrams in HumanEval-V

	More Details on Data Annotation
	Data Collection and Screening
	Recreation and Diversification

	More details on Experimental Setup
	Evaluated Models
	Prompt Templates
	Ablation on Temperature

	Deeper Analysis on HumanEval-V
	Co-occurrence of Capability Aspects
	Comparison of Strong Coder Models
	The Effect of Diversified Tasks

	More Detailed Error Analysis
	Error Patterns and Taxonomy
	Error Analysis by Task Difficulty

	More Discussion on MMCode
	Other Considerations

