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Abstract
Understanding and reasoning over diagrams001
is a fundamental aspect of human intelligence.002
While Large Multimodal Models (LMMs) have003
demonstrated impressive capabilities across004
various tasks, existing benchmarks lack com-005
prehensive evaluation of their diagram interpre-006
tation and reasoning abilities, particularly in007
coding contexts. We present HumanEval-V, a008
rigorous benchmark of human-annotated cod-009
ing tasks that spans six task types and evaluates010
diverse visual reasoning capabilities. Each task011
features carefully crafted diagrams paired with012
function signatures and test cases, employing013
novel code generation tasks to thoroughly as-014
sess models’ diagram comprehension. Through015
extensive experiments with 22 LMMs, we find016
that even top-performing models achieve mod-017
est success rates, with Claude 3.5 Sonnet reach-018
ing only 36.8% pass@1, highlighting substan-019
tial room for improvement. Our analysis re-020
veals that current LMMs struggle with spatial021
transformations, topological relationships, and022
dynamic patterns that humans find intuitive.023
These findings provide valuable insights for024
advancing LMMs’ visual reasoning abilities.1025

1 Introduction026

High-level intelligence, whether in humans or ad-027

vanced AI systems, requires the ability to under-028

stand and reason over visual information repre-029

sented in diagrams. Diagrams are essential in many030

domains, including science, engineering, and math-031

ematics, as they serve as a powerful medium for032

abstracting and communicating complex data, re-033

lationships, and processes, encoding rich informa-034

tion in a visual and structured format. The abilities035

required to comprehend diagrams extend beyond036

simple pattern recognition; they necessitate sophis-037

ticated cognitive capabilities, including interpret-038

ing transformation patterns, recognizing hierarchi-039

cal structures, and integrating multiple visual cues040

1Data and code available at this anonymous repository

Figure 1: A task example from HumanEval-V. LMMs
are required to figure out the facts and patterns in the
diagram and complete the function body.

such as arrows, symbols, and their relative posi- 041

tions to perform spatial or logical reasoning. The 042

rapid development of Large Multimodal Models 043

(LMMs) has led to the creation of various bench- 044

marks designed to assess the alignment between 045

LMMs’ capabilities and human intelligence. How- 046

ever, there remains a significant gap in benchmarks 047

that specifically evaluate the ability to understand 048

and reason over complex diagrams. 049

Popular multimodal benchmarks, such as 050

MMMU (Yue et al., 2024), MathVista (Lu et al., 051

2023), and ChartQA (Masry et al., 2022), focus 052

primarily on scientific, mathematical, and chart- 053

based analytical questions over various domains of 054

images, testing LMMs’ multidiscipline knowledge 055

rather than diagram understanding. While abstract 056

visual reasoning tasks (Zhang et al., 2019; Nie et al., 057

2020) from IQ tests typically feature static patterns 058

based on visual analogies or numerical inference 059

over diagrams, they often lack the complexity and 060

diversity in visual patterns and diagram types. This 061

gap highlights the need for benchmarks that assess 062

more intricate diagram reasoning abilities. The 063

field of coding presents an underexplored oppor- 064

tunity, as developers frequently use various dia- 065

grams to illustrate data structures, algorithms, and 066

problem constraints. A recent study, MMCode (Li 067

et al., 2024b), evaluated LMMs on coding prob- 068

1

https://anonymous.4open.science/r/ARR-HumanEval-V-8FF6


Figure 2: The six task categories in HumanEval-V, along with their
quantitative distribution and representative diagram examples.

Figure 3: Core knowledge required for un-
derstanding diagrams in HumanEval-V.

lems with visual contexts directly crawled from069

competition platforms. However, competition cod-070

ing problems often include comprehensive textual071

descriptions, making the visual information sup-072

plementary. Their results, which showed similar073

LMM performance with and without visual infor-074

mation, further underscore the gap in evaluating075

genuine diagram understanding abilities.076

To address this gap, we introduce HumanEval-V,077

a novel benchmark designed to provide a focused078

evaluation of complex diagram understanding and079

reasoning abilities in programming contexts. Un-080

like MMCode, our benchmark is dedicated to as-081

sessing visual capabilities through a rigorous anno-082

tation pipeline that creates coding tasks capturing083

the essence of real-world problems. Each task fea-084

tures an indispensable, self-explanatory diagram085

with minimal textual clues, as demonstrated by our086

experiments where top LMMs failed all tasks with-087

out the provided diagrams. HumanEval-V consists088

of 253 human-annotated coding tasks. Each task089

features (1) a diagram encoding the problem con-090

text, (2) a function signature defining the task’s091

input-output structures, and (3) test cases to verify092

solution correctness. Figure 1 provides an example093

task, where the diagram illustrates spatial transfor-094

mation patterns, requiring the model to compre-095

hend fine-grained visual elements such as matrices,096

arrow directions, and spatially ordered data points.097

This task aligns with the ARC-AGI (Chollet, 2019)098

benchmark in inferring transformation patterns099

from limited visual examples. However, unlike100

ARC’s matrix-formatted diagrams, HumanEval-V101

offers a more diverse and complex set of diagrams102

spanning six task types (Figure 2), demanding ver-103

satile capabilities (Figure 3) for diagram under- 104

standing and reasoning. For a comparison of di- 105

agrams from existing benchmarks and ours, see 106

Figures 21 and 22. 107

Another novelty of HumanEval-V lies in using 108

code generation tasks for evaluation instead of the 109

multiple-choice or short-answer questions com- 110

monly used in other multimodal benchmarks. This 111

approach offers compelling benefits: code genera- 112

tion is more challenging, requiring comprehensive 113

logical thinking and visual understanding with min- 114

imal chance of correct guesses, and test cases could 115

rigorously verify whether the model captures all 116

critical visual information, rather than relying on 117

similarity matching with ground truth. Addition- 118

ally, we utilize a two-stage evaluation pipeline that 119

supports LMMs with limited coding abilities by 120

first prompting them to generate a structured dia- 121

gram description summarizing the visual context, 122

then using a more capable coder model to imple- 123

ment the solution, ensuring the evaluation priori- 124

tizes visual understanding over coding proficiency. 125

Through extensive experiments with 22 LMMs, 126

we observe the following key findings: (1) Our 127

benchmark presents unique challenges not ad- 128

dressed by other multimodal benchmarks. The top- 129

performing model, Claude 3.5 Sonnet, achieves 130

36.8% pass@1, while the best open-weight model, 131

Pixtral 124B, reaches 21.3%. (2) Current LMMs 132

exhibit stronger vision-to-language alignment than 133

vision-to-code. Their best performance occurs 134

when they serve as diagram describers, with GPT- 135

4o acting as the coder model. (3) LMMs’ perfor- 136

mance can be further enhanced through sampling 137

or iterative self-refinement. For instance, Claude 138
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3.5 Sonnet achieves a 74.3% pass rate with 100139

samples, and it can reach 55.3% pass@1 with four140

self-refining iterations based on test case execution141

feedback. (4) Current LMMs still have difficulty142

understanding diagrams that are trivial for humans,143

particularly understanding spatial transformations,144

topological relationships, and dynamic patterns.145

2 Benchmark Construction146

Task Definition: As shown in Figure 1, each cod-147

ing task in HumanEval-V includes: (1) a single di-148

agram D providing visual context, (2) a Python149

function signature σ with input parameters, return150

type, and brief instructions, and (3) a set of test151

cases T = t1, t2, . . . , tn to validate the correctness152

of the generated output O, a complete Python func-153

tion produced by the LMM.154

Annotation Standards: We establish rigorous155

standards to ensure high-quality coding tasks: (1)156

The visual context must be essential for solving the157

task, with all relevant information contained in a158

single image; (2) Tasks should be designed around159

the visual context with minimal textual description;160

(3) Unnecessary programming complexities, such161

as recursion, intricate constraints, or complex data162

structures, should be avoided.163

Task Annotation Pipeline: We define the task164

annotation pipeline with four steps as in Figure 4.165

In the first step, we collect a large set of cod-166

ing problems from prominent Q&A and coding167

challenge platforms that incorporate images, then168

screen them to exclude questions that (1) require169

specific programming frameworks or libraries, or170

contain images that (2) are not illustrative diagrams,171

(3) provide no useful information for solving the172

problem, or (4) require extensive textual context173

for interpretation. For the second step, we distill174

the screened problems to identify critical visual el-175

ements, along with the data structures, operations,176

transformations, or conditional rules involved, cat-177

egorizing them into six task types (Figure 2) and178

outlining the key capabilities needed for diagram179

understanding. For the third step, we design new180

coding tasks based on these distilled ideas, eliminat-181

ing unnecessary complexities, refining input/output182

structures and function signatures, and creating vi-183

sual objects and layouts using basic shapes and a184

consistent color scheme in PowerPoint. We also185

generate tailored test cases, resulting in 100 newly186

crafted seed tasks after excluding tasks with de-187

Figure 4: HumanEval-V task construction pipeline.

sign or formulation challenges. For the fourth step, 188

we expand the task set by diversifying the seed 189

tasks using a hybrid approach with GPT-4o. GPT- 190

4o identifies relevant capability aspects for each 191

seed task and suggests modifications involving new 192

spatial transformations, mathematical operations, 193

dynamic patterns, or variations in data structures 194

and object attributes. Human annotators then re- 195

fine and annotate these new tasks and diagrams, 196

creating 0 to 2 diversified versions per seed task 197

based on complexity, culminating in 253 tasks in 198

HumanEval-V and finalizing the capability aspects 199

shown in Figure 3. Further details and examples 200

of the data collection and diversification processes 201

are provided in Appendix B.1 and Appendix B.2. 202

Quality Assurance: Our annotation team com- 203

prises four experienced programmers, each with 204

over four years of Python programming experience. 205

Initially, each annotator independently annotates 206

their assigned tasks following pre-defined guide- 207

lines. Subsequently, all annotators review each 208

other’s work by annotating ground truth code solu- 209

tions and diagram descriptions to ensure tasks are 210

visually grounded, solvable with the provided in- 211

formation, and free of design or conceptual errors. 212

Any identified issues are resolved collaboratively, 213
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(a) Diagram Size (b) Test Cases Count

(c) Description Length (d) Coding Complexity

Figure 5: Distribution analysis of the benchmark data.

with tasks finalized only after consensus is reached.214

Additionally, one annotator ensures consistent for-215

matting and style across all visual representations216

and coding tasks. Each annotator contributes over217

200 hours to the annotation process.218

Benchmark Statistics: To further demonstrate219

the quality of our benchmark, we conduct statis-220

tical analyses on several key aspects and present221

the distribution of these statistics in Figure 5. First,222

we strictly control diagram sizes, capping the max-223

imum width or height at 1024 pixels to eliminate224

the need for high-resolution perception. Second,225

each task includes at least five test cases, with226

the majority containing ten, ensuring full state-227

ment and branch coverage over human-annotated228

code solutions. Third, the token length of human-229

annotated diagram descriptions is predominantly230

around 400 (measured using tiktoken (OpenAI,231

2024c)), demonstrating that our diagrams encap-232

sulate rich visual context. Lastly, our human-233

annotated code solutions exhibit cyclomatic com-234

plexity (Gill and Kemerer, 1991) levels compara-235

ble to HumanEval (Chen et al., 2021), a widely236

used coding benchmark designed for entry-level237

programming tasks.238

3 Benchmarking Setup239

Models: We evaluate 22 state-of-the-art LMMs,240

including a representative mix of leading pro-241

prietary and open-weight models. Our evalua-242

tion covers five of the latest proprietary mod-243

els: Claude 3.5 Sonnet, GPT-4o, GPT-4o-mini,244

Gemini 1.5 Pro, and Gemini 1.5 Flash. We245

Figure 6: Evaluation pipelines employed in the experi-
ments: (1) Direct translation of visual context into code
(V2C), (2) with an optional Chain-of-Thought prompt
(V2C w/ CoT); (3) Translation of visual context into a
textual description, which is then processed to generate
code (V2T2C); and (4) A variant of the third pipeline,
where a stronger coder model is used to generate the
code solution (V2T2C w/ SC).

also assess 17 top-performing open-weight mod- 246

els spanning various parameter sizes, including In- 247

ternVL 2.5 (4/8/26/78B), Qwen2-VL (7/72B), Pix- 248

tral (12/124B), LLaVA-OV (7/72B), Llama-3.2-V 249

(11/90B), Molmo-D (7/72B), Chameleon (7/30B), 250

and Phi-3.5-V (4B). Further details are in Table 4. 251

Prompting: we employ multiple strategies for 252

our evaluation pipelines as illustrated in Figure 6, 253

where LMMs may encounter four different prompt- 254

ing scenarios: (1) Direct Code Generation. The 255

model directly generates code based on the given 256

diagram D and function signature σ, denoted as 257

PV 2C(D,σ); (2) Chain of Thought (CoT). This 258

variant enhances the V2C pipeline by incorporat- 259

ing a zero-shot CoT instruction ICoT (Wei et al., 260

2022), prompting the model to outline its reason- 261

ing process before generating the code. This is de- 262

noted as PV 2C(D,σ, ICoT ); (3) Intermediate Tex- 263

tual Representation. The model first produces a 264

structured textual problem specification PS based 265

on D and σ, denoted as PV 2T (D,σ). The problem 266

specification consists of three key sections: Prob- 267

lem Restatement, Visual Facts, and Visual Patterns. 268

This structured representation is derived from our 269

benchmark annotation process, which we found to 270

be effective in capturing a comprehensive descrip- 271

tion of the problem context; (4) Code Generation 272

from Text. The model generates code based on 273

PS rather than the original diagram D, denoted 274

as PT2C(PS, σ). The corresponding prompt tem- 275

plates are shown in Figure 27, with further details 276

on prompt design available in Appendix C.2. 277
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Models V2C V2C w/ CoT V2T2C V2T2C w/ GPT-4o

pass@k k=1 k=3 k=1 k=3 k=1 k=3 k=1 k=3 5

Proprietary LMMs
Claude 3.5 Sonnet 28.1 37.9 36.8↑8.7 47.9↑10.0 33.2↑5.1 43.6↑5.7 31.6↑3.5 43.7↑5.8

GPT-4o 24.1 33.8 27.7↑3.6 40.0↑6.2 26.5↑2.4 40.5↑6.7 26.5↑2.4 40.5↑6.7

Gemini 1.5 Pro 23.3 26.9 22.9↓0.4 34.1↑7.2 28.5↑5.2 36.4↑9.5 26.9↑3.6 37.3↑10.4

Gemini 1.5 Flash 15.4 20.5 17.4↑2.0 24.9↑4.4 15.8↑0.4 22.0↑1.5 18.6↑3.2 27.2↑6.7

GPT-4o-mini 9.90 16.0 15.8↑5.9 21.1↑5.1 14.2↑4.3 22.7↑6.7 18.2↑8.3 24.6↑8.6

Open-weight LMMs with more than 70B parameters
Pixtral 124B 12.6 20.3 16.6↑4 28.1↑7.8 21.3↑8.7 29.9↑9.6 21.3↑8.7 31.6↑11.3

InternVL 2.5 78B 12.3 19.7 13.4↑1.1 27.3↑7.6 17.8↑5.5 25.7↑6 21.7↑9.4 31.4↑11.7

Qwen2 VL 72B 9.10 15.7 14.2↑5.1 19.4↑3.7 10.7↑1.6 19.1↑3.4 16.6↑7.5 25.1↑9.4

LLaVA-OV 72B 6.70 7.70 6.30↓0.4 11.4↑3.7 10.7↑4 13.1↑5.4 13.8↑7.1 19.7↑12

Molmo-D 72B 3.20 4.80 3.20↑0.0 8.80↑4.0 1.60↓1.6 7.00↑2.2 5.10↑1.9 14.2↑9.4

Llama-3.2-V 90B 4.30 6.10 4.00↓0.3 8.20↑2.1 5.90↑1.6 10.9↑4.8 4.70↑0.4 11.0↑4.9

Open-weight LMMs with fewer than 70B parameters
Pixtral 12B 4.0 5.9 6.3↑2.3 12.2↑6.3 5.5↑1.5 12.6↑6.7 13.8↑9.8 21.3↑15.4

InternVL 2.5 26B 3.6 6.6 4.3↑0.7 6.8↑0.2 2.8↓0.8 6.7↑0.1 8.3↑4.7 16.7↑10.1

Qwen2 VL 7B 0.8 3.3 1.6↑0.8 3.9↑0.6 2.4↑1.6 6.3↑3.0 6.3↑5.5 14.7↑11.4

InternVL 2.5 8B 0.8 2.0 0.8↑0.0 3.7↑1.7 1.2↑0.4 3.3↑1.3 5.1↑4.3 13.6↑11.6

InternVL 2.5 4B 1.2 4.1 3.2↑2.0 3.4↓0.7 3.2↑2.0 5.8↑1.7 5.9↑4.7 13.5↑9.4

LLaVA-OV 7B 2.0 1.9 1.6↓0.4 2.4↑0.5 2.0↑0.0 3.2↑1.3 5.1↑3.1 10.2↑8.3

Phi-3.5-V 4B 0.0 0.0 0.0↑0.0 0.0↑0.0 0.0↑0.0 0.0↑0.0 5.9↑5.9 9.40↑9.4

Llama-3.2-V 11B 2.0 2.0 1.6↓0.4 3.9↑1.9 2.0↑0.0 5.2↑3.2 4.0↑2.0 8.80↑6.8

Molmo-D 7B 1.2 1.0 0.4↓0.8 1.8↑0.8 0.8↓0.4 1.0↑0.0 2.8↑1.6 8.40↑7.4

Chameleon 7B 0.0 0.0 0.0↑0.0 0.2↑0.2 0.0↑0.0 0.0↑0.0 1.2↑1.2 2.20↑2.2

Chameleon 30B 0.0 0.0 0.0↑0.0 0.2↑0.2 0.4↑0.4 0.0↑0.0 0.0↑0.0 1.90↑1.9

Table 1: Performance of LMMs across different settings. Models are ranked based on
the 5 column. The best and second-best performances in each column are highlighted.
The numerical values are color-coded to indicate performance changes relative to the
corresponding pass@k values in the V2C column: green represents improvement, red
indicates decline, and yellow denotes minimal change.

Figure 7: Comparison
of LMM performance
on HumanEval-V and
other popular multi-
modal benchmarks.

Hyper-parameters & Post-processing: We ap-278

ply two distinct decoding strategies for both code279

and description generation. First, we use greedy280

decoding to produce a single deterministic output,281

assessing model performance in a constrained set-282

ting. Additionally, we employ a sampling method283

with Top_p = 0.95, Top_k = 20, and a temper-284

ature of 0.8 to generate diverse outputs, allowing285

us to evaluate the models’ ability to produce cor-286

rect solutions when given multiple attempts. We287

set the maximum output length to 2048 tokens for288

both code and description generation. To facilitate289

extraction, we prompt the models to encapsulate290

their generated code within Markdown-style code291

blocks. We then apply an abstract syntax tree parser292

to detect and retrieve generated import statements,293

class definitions, and function definitions. These294

components are concatenated to form the final code295

solution. An additional ablation study on the tem-296

perature setting is presented in Appendix C.3.297

Evaluation Metrics Following established prac- 298

tices in code generation evaluation (Chen et al., 299

2021, 2022), we use the pass@k metric to assess 300

functional correctness. A task is considered solved 301

if at least one of the k selected solutions passes all 302

test cases, and pass@k is the percentage of solved 303

tasks. We report results for k = 1, 3. In the V2C 304

setting, we generate n code samples per task and 305

randomly select k for evaluation. For greedy decod- 306

ing, n = 1 for pass@1, while for sampling-based 307

evaluation, n = 6 for pass@3. In the V2T2C set- 308

ting, we first sample six problem specifications per 309

task, then use greedy decoding to generate one code 310

solution per PS, resulting in six solutions per task 311

for pass@3 computation. 312

4 Benchmarking Results 313

Main Results: We present the benchmarking re- 314

sults of 22 LMMs in Table 1, covering the four 315

evaluation pipelines introduced in Figure 6. Ad- 316

ditionally, Figure 7 provides a correlation analy- 317
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Figure 8: Iterative evaluation pipelines. Figure 9: Performance of LMMs under the iterative evaluation settings.

sis to illustrate the performance gap between the318

evaluated LMMs on HumanEval-V and other pop-319

ular benchmarks (more details on the correlation320

analysis are in Appendix A.1). Based on these re-321

sults, we highlight the following key findings: (1)322

Our benchmark presents unique challenges not cap-323

tured by other benchmarks. As shown in Figure 7,324

most evaluated LMMs exhibit significantly larger325

performance gaps on HumanEval-V compared to326

other benchmarks. While MMMU demonstrates327

the highest correlation with our benchmark, its re-328

sults still lack sufficient discrimination between329

models. (2) LMMs generally achieve their best330

performance under the V2T2C w/ GPT-4o setting.331

This is particularly evident for LMMs with fewer332

than 70B parameters, which struggle to complete333

tasks in the V2C setting. These findings validate334

the importance of decoupling visual understanding335

from coding abilities. Additionally, CoT prompt-336

ing and the decoupled V2T2C pipeline show sim-337

ilar performance distributions, with more capable338

LMMs benefiting more from these enhancements339

than smaller models. (3) Open-weight LMMs still340

lag behind top proprietary models. Although high-341

capacity open-weight LMMs (e.g., Pixtral 124B)342

outperform the mini/flash versions of proprietary343

models, they still fall short of the most capable pro-344

prietary LMMs. For smaller-scale models, Pixtral345

12B, Qwen2 VL 7B, and InternVL 2.5 4B demon-346

strate a high performance-to-size ratio. (4) Cer-347

tain LMMs exhibit anomalously poor performance.348

Models such as Molmo-D, Llama-3.2-V, and the349

Chameleon series perform significantly worse than350

other LMMs of similar scale. Another case is Phi-351

3.5-V, which appears to lack coding ability, achiev-352

ing a performance score of 0 in the V2C settings,353

compared to 9.4% pass@3 when assisted by GPT-354

4o for code generation. (5) Additional Results of o1 355

and QVQ: We also evaluated reasoning-enhanced 356

LMMs that leverage test-time scaling by generat- 357

ing long chain-of-thought (CoT) reasoning. Specif- 358

ically, we assessed OpenAI o1 (OpenAI, 2024b) 359

and QVQ-72B-Preview (Team, 2024b) under the 360

V2C w/ CoT setting, achieving pass@1 scores of 361

40.6% and 19.0%, respectively. Our case study 362

reveals that both models still struggles with visual 363

understanding, often failing to identify rules or pat- 364

terns in the diagrams. Meanwhile, QVQ primarily 365

fails due to excessively long CoT reasoning, with 366

35% of cases unable to generate a valid code so- 367

lution within the 20k token limit. These results 368

underscore the complexity of the diagrams in our 369

benchmark. Example cases for o1 and QVQ are 370

shown in Figures 34, 39, 44 and Figures 35, 40, 45. 371

Iterative Benchmarking: We introduce an iter- 372

ative benchmarking pipeline to evaluate LMMs’ 373

ability to reason over environmental feedback and 374

perform self-refinement—an essential skill for real- 375

world problem-solving. Figure 8 illustrates two 376

types of iterative pipelines derived from the V2C 377

and V2T2C w/ SC settings. In these pipelines, 378

LMMs must refine either their generated code so- 379

lutions or textual descriptions based on feedback 380

from the execution environment. To support this 381

process, we design new prompt templates (Fig- 382

ure 28) that guide the refinement steps. Specifi- 383

cally, for each task, LMMs perform an additional 384

iteration if the generated code contains syntax er- 385

rors or fails to pass all test cases. The feedback 386

includes detailed error messages or the failed test 387

cases’ inputs and expected outputs. 388

For the iterative evaluation, we select the most 389

capable LMMs across different parameter scales, 390
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Figure 10: Performance with in-
creased sample size.

Figure 11: LMMs’ performance
with human problem specifications.

Figure 12: LLM-as-Judge ratings
for LMMs in the V2T2C setting.

using greedy decoding and the pass@1 metric. Fig-391

ure 9 presents the results, where iter 0 represents392

the first round of generation without feedback. We393

observe that LMMs generally improve across itera-394

tions, with more capable models achieving larger395

performance gains. Notably, some models, such as396

Claude and QVQ, exhibit stronger self-refinement397

capabilities. We also investigate the cases that398

are corrected after iterations and find that approxi-399

mately 90% of these cases are corrected due to the400

models’ improved understanding of the diagram401

and task. The remaining 10% are cases that fix edge402

conditions highlighted by the test case feedback.403

None of these corrections result from hard-coding404

the exposed test cases into the code solutions.405

5 Experimental Analysis406

This section presents our analysis of model perfor-407

mance under various settings, including increased408

sampling sizes, human-annotated problem specifi-409

cations, the use of GPT-4o judge for rating LMMs’410

diagram descriptions, and error pattern analysis.411

Our goal is to examine both the potential and lim-412

itations of the LMMs on HumanEval-V. Further413

analysis is provided in Appendix D, where we ex-414

plore the co-occurrence of capability aspects re-415

quired in our benchmark tasks, the stability of us-416

ing QwenCoder-32B as a strong coder instead of417

GPT-4o, and experimental evidence supporting the418

value of tasks diversified from the seed tasks.419

Performance with Increased Sample Size: We420

scale up the number of samples for five proprietary421

LMMs to explore their potential performance. We422

increase the sampling number n to 200, using the423

same Top_p, Top_k, and max token limitations424

outlined in Section 3 to calculate the pass@100425

score under the V2C w/ CoT setting. As shown426

in Figure 10, we observe a consistent performance 427

improvement across all models with larger sample 428

sizes. Notably, Claude 3.5 Sonnet achieves a sig- 429

nificant improvement, reaching 74.3% pass@100, 430

underscoring the strong potential for these models 431

when scaling up sample sizes. 432

Coding Performance with Human-Annotated 433

Problem Specifications: We evaluate all LMMs 434

on a new task where they generate code based on 435

human-annotated problem specifications, without 436

direct access to the diagrams. This setup isolates 437

their ability to perform visual reasoning and gen- 438

erate code. We also calculate the success parsing 439

rate using Pylint (Wikipedia, 2024), which mea- 440

sures the syntactic correctness of the generated 441

code, independent of its functional accuracy. The 442

results, presented in Figure 11, show that most 443

LMMs demonstrate strong coding capabilities, gen- 444

erally outperforming their best results from Table 1. 445

Notably, GPT-4o achieves 96.5% pass@3, a signif- 446

icant improvement over its 40.5% pass@3 in the 447

V2T2C setting. Smaller models, such as InternVL 448

2.5 4B, also show substantial improvement. 449

We also evaluate a setting where LMMs generate 450

code based solely on the function signature, with- 451

out access to diagrams or descriptions, and find 452

that none of the five proprietary models are able 453

to pass any tasks. This underscores the necessity 454

of visual context in our benchmark. These results 455

suggest that current LMMs face more challenges 456

in visual reasoning than coding on HumanEval-V. 457

LLM-as-Judge Ratings: We evaluate the prob- 458

lem specifications (PS) generated by LMMs in the 459

V2T2C setting using GPT-4o as the judge. GPT-4o 460

rates the PS in three dimensions: Basic-Level Per- 461

ception (identifying basic visual elements), High- 462

Level Comprehension (understanding objects, pat- 463
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terns, transformations, and operations), and Contex-464

tual Interpretation (clear description without vague-465

ness or hallucinations) as outlined in the prompt466

template shown in Figure 29. Ratings are on a 1-3467

scale, where 1 indicates severe errors and 3 reflects468

near perfection in the capability dimension. The re-469

sults, shown in Figure 12, reveal that while LMMs470

generally excel in basic perceptual abilities, they471

struggle with high-level comprehension and clar-472

ity of expression. Notably, the performance gap473

between models is small. We also find the differ-474

ence in ratings between passed and failed tasks is475

minimal. For example, GPT-4o scores 2.9, 2.0, and476

1.3 across the three dimensions on passed tasks,477

compared to average ratings of 2.8, 1.6, and 1.2478

across all tasks, highlighting the limitations of us-479

ing LLM-as-judge as an evaluation tool. This lack480

of robustness may stem from rigid comparisons481

to human-annotated PS, further emphasizing the482

importance of pass rates as the evaluation metric.483

Error Analysis: We conducted a comprehensive484

error analysis to understand the limitations of cur-485

rent LMMs in HumanEval-V, as detailed in Ap-486

pendix E. Our analysis examined correlations be-487

tween model performance and three key factors:488

task types, general capability dimensions, and spe-489

cific capability aspects. The results reveal that490

LMMs particularly struggle with tasks involving491

Transformation and Iterative Calculation. And492

models show notable difficulties with specific ca-493

pabilities such as understanding dynamic patterns494

(e.g., spirals, circular arrangements) and spatial495

transformations (e.g., stacking, translation). Inter-496

estingly, our investigation of task difficulty metrics497

shows that LMM performance correlates poorly498

with human-perceived difficulty measures, includ-499

ing both programming complexity (measured by500

cyclomatic complexity) and visual comprehension501

difficulty (measured by description length). This502

suggests a fundamental gap in LMMs’ visual rea-503

soning capabilities, where even tasks considered504

trivial by humans can prove challenging for state-505

of-the-art models. For concrete examples of these506

challenges, we present representative error cases in507

Figures 31 to 47.508

6 Related Work509

Benchmarks Involving Diagrams: Prior work510

on multimodal benchmarks can be categorized into511

several groups: (1) General-purpose multimodal512

evaluation benchmarks (Yue et al., 2024; Liu et al.,513

2023; Yu et al., 2023; Li et al., 2023; Ying et al., 514

2024; Chen et al., 2024a) that assess models’ broad 515

multidisciplinary capabilities; (2) Scientific dia- 516

gram understanding (Lu et al., 2022; Kembhavi 517

et al., 2016); (3) Mathematical visual reasoning (Lu 518

et al., 2023; Wang et al., 2024a; Zhang et al., 2024); 519

(4) Data visualization comprehension (Masry et al., 520

2022; Wang et al., 2024c; Chollet, 2019) that focus 521

on plots and charts; (5) Abstract reasoning (Zhang 522

et al., 2019; Jiang et al., 2024; Nie et al., 2020; 523

Chia et al., 2024); and (6) Specialized diagram 524

understanding including abstract symbol interpre- 525

tation and geometric spatial reasoning (Lu et al., 526

2021; Rahmanzadehgervi et al., 2024). While these 527

benchmarks cover various aspects of visual under- 528

standing, they do not address the complex diagrams 529

in the coding context. 530

Multimodal Code Generation: Recent work in 531

multimodal code generation has focused on two 532

main Categories. In the first category, researchers 533

have explored derendering web pages into func- 534

tional code (Si et al., 2024; Laurençon et al., 2024) 535

and converting scientific figures into their corre- 536

sponding plotting code (Shi et al., 2024; Wu et al., 537

2024). The second category includes Program- 538

based VQA approaches, where models leverage 539

pre-defined modules to answer visual questions 540

(Surís et al., 2023; Subramanian et al., 2023). MM- 541

Code (Li et al., 2024b) is the most related coding 542

benchmark to ours, evaluating LMMs’ coding abil- 543

ities using problems with visual demonstrations 544

from competition platforms. However, our bench- 545

mark differs in its dedicated focus on assessing 546

the visual capabilities of LMMs. We provide a de- 547

tailed discussion in Appendix F, highlighting the 548

differences between HumanEval-V and MMCode 549

in terms of visual indispensability, task complexity, 550

and evaluation design. 551

7 Conclusion 552

In this paper, we introduced HumanEval-V, a novel 553

benchmark designed to evaluate LMMs’ capabili- 554

ties in understanding and reasoning over diagrams 555

in programming contexts. Through comprehensive 556

experiments, we demonstrated that current LMMs, 557

while showing promising performance, still face 558

significant challenges in complex diagram under- 559

standing and reasoning. Our extensive experimen- 560

tal results and analysis provide valuable insights 561

for the future development of more sophisticated 562

visual reasoning abilities in AI systems. 563
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8 Limitations564

Despite the valuable contributions of our bench-565

mark, several limitations remain that we aim to566

address in future work:567

Limited Benchmark Size: The size of our568

benchmark is constrained by the significant cost569

of human annotation, as we prioritize high-570

quality task design to ensure meaningful insights,571

with each annotator dedicating over 200 hours572

to constructing HumanEval-V. Nevertheless, our573

benchmark includes 253 tasks, comparable to574

many well-established human-annotated bench-575

marks in academia and industry, such as Hu-576

manEval (Chen et al., 2021) with 164 tasks,577

MM-Vet (Yu et al., 2023) with 218, and Vibe-578

Eval (Padlewski et al., 2024) with 269. No-579

tably, none of the current popular multimodal580

benchmarks feature manually drawn diagrams,581

further distinguishing HumanEval-V. Furthermore,582

HumanEval-V offers a diverse and balanced set of583

task types covering a wide range of capability as-584

pects, enabling us to uncover unique insights into585

the limitations of current LMMs.586

Limited Model Coverage: While our exper-587

iments evaluate a representative set of top-588

performing LMMs, the rapid pace of model devel-589

opment means newly released models may not be590

covered in our current evaluation. To address this,591

we plan to publicly release our evaluation toolkit592

and dataset, along with an up-to-date leaderboard593

to track ongoing advancements. This will enable594

benchmarking of new models as they become avail-595

able, ensuring HumanEval-V remains relevant and596

continuously updated.597

Limitations in Exploring Advanced Methods:598

While our experiments cover various evaluation set-599

tings, including chain-of-thought (CoT), iterative600

refinement, and long-CoT-enhanced LMMs, our ex-601

ploration of more advanced CoT techniques is lim-602

ited. Methods such as supervised fine-tuning (Chen603

et al., 2024b), reinforcement learning (Snell et al.,604

2024), or more complex CoT approaches (Yao605

et al., 2024; Mitra et al., 2024) could further en-606

hance LMM reasoning capabilities. However, these607

techniques are challenging to apply to diagram rea-608

soning due to the lack of high-quality training data609

in this domain. As our primary objective is to610

bridge the gap in diagram reasoning benchmarks,611

we leave the exploration of more sophisticated612

reasoning-enhancing methods to future work.613
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A Comparison with Other Benchmarks 885

A.1 Correlation Analysis 886

To assess whether HumanEval-V identifies specific 887

weaknesses not captured by existing benchmarks, 888

we select seven widely used multimodal bench- 889

marks that cover a range of multidisciplinary abili- 890

ties. These include AI2D (Kembhavi et al., 2016), 891

MMVet (Yu et al., 2023), MMBench (Liu et al., 892

2023), MathVista (Lu et al., 2023), MMMU (Yue 893

et al., 2024), MMStar (Chen et al., 2024a), and 894

HallusionBench (Guan et al., 2023). Performance 895

results for the 22 LMMs evaluated in this paper are 896

collected from the OpenVLM Leaderboard (Duan 897

et al., 2024), as well as corresponding papers and 898

reports. These results are shown alongside the 899

pass@3 scores for HumanEval-V under the V2T2C 900

w/ GPT-4o setting in Table 2. 901

From the analysis, we observe that open-weight 902

LMMs with more than 70B parameters generally 903

perform well on the selected benchmarks, with 904

models like Pixtral, InternVL 2.5, and Qwen2 VL 905

even outperforming proprietary models such as 906

GPT-4o and Claude 3.5 Sonnet in several cases. 907

Llama-3.2-V also shows competitive performance. 908

However, open-weight LMMs exhibit significantly 909

lower performance on HumanEval-V, suggesting 910

that our benchmark uncovers model weaknesses 911

that may not be apparent in other benchmarks. 912

To quantify the relationship between 913

HumanEval-V and the other five benchmarks, 914

we visualize the performance of the 22 LMMs 915

across all benchmarks using regression plots for 916

each benchmark pair in Figure 20. The plots 917

reveal low correlations between HumanEval-V and 918

the other benchmarks, with notable differences 919

in performance across models. Overall, the 920

performance of all models remains lower on 921

HumanEval-V compared to the other benchmarks. 922

A.2 Diagrams in Other Benchmarks 923

Figure 21 presents a comprehensive comparison of 924

five distinct categories of diagrams commonly used 925

in various benchmarks and coding platforms, show- 926

casing the diverse range of visual reasoning chal- 927

lenges in the open world. The first category con- 928

sists of real-world images from benchmarks such as 929

MMMU, MMBench, and MM-Vet, encompassing 930

everyday photographs of food, sports, architecture, 931

art, and wildlife in both color and monochrome for- 932

mats. These images test general visual recognition 933

and understanding capabilities, contrasting sharply 934
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Models AI2D MM-Vet MMBench MathVista MMMU MMStar HallusionBench HumanEval-V 5

Proprietary LMMs
Claude 3.5 Sonnet 81.2 66.0 81.7 67.7 65.9 65.1 55.1 43.7
GPT-4o 84.9 69.1 84.3 61.3 69.2 65.1 56.2 40.5
Gemini 1.5 Pro 79.1 64.0 82.8 57.5 60.6 59.1 45.6 37.3
Gemini 1.5 Flash 78.5 63.2 76.9 51.2 58.2 55.8 48.5 27.2
GPT-4o-mini 77.8 66.9 76.0 52.4 60.0 54.8 46.1 24.6

Open-Weight LMMs
Pixtral 124B 93.8 - - 69.4 64.0 - - 31.6
InternVL 2.5 78B 89.2 64.4 87.7 65.6 58.3 72.1 57.4 31.4
Qwen2 VL 72B 83.0 74.0 81.0 70.5 64.5 25.9 58.7 25.1
LLaVA-OV 72B 86.2 63.7 82.6 67.5 56.6 65.8 47.9 19.7
Molmo-D 72B 83.4 61.1 79.5 55.2 52.8 63.3 46.4 14.2
Llama-3.2-V 90B 92.3 64.1 77.3 57.3 60.3 55.3 44.1 11.0
Pixtral 12B 77.4 58.5 72.7 56.3 44.1 54.5 47.0 21.3
InternVL 2.5 26B 86.2 60.0 84.6 59.4 50.7 66.5 55.8 16.7
Qwen2 VL 7B 88.3 62.0 85.9 58.2 54.1 16.3 50.4 14.7
InternVL 2.5 8B 84.6 54.3 82.5 58.3 51.2 63.2 49.0 13.6
InternVL 2.5 4B 81.4 50.9 78.2 58.1 48.3 58.7 46.6 13.5
LLaVA-OV 7B 82.8 57.5 80.9 63.2 46.8 61.9 31.6 10.2
Phi-3.5-V 4B 77.8 43.2 67.4 43.2 44.6 47.5 40.5 9.4
Llama-3.2-V 11B 91.1 57.6 65.8 51.5 50.7 49.8 40.3 8.8
Molmo-D 7B 79.6 53.3 76.5 46.9 48.7 54.4 47.4 8.4
Chameleon 7B 46.0 8.3 19.8 22.5 22.4 31.1 17.1 2.2
Chameleon 30B 53.7 9.7 32.7 23.8 38.8 32.7 18.6 1.9

Table 2: A performance comparison of 22 LMMs across HumanEval-V and seven popular multimodal benchmarks.
Models are ranked according to the 5 column. Results for HumanEval-V correspond to the V2T2C w/ GPT-4o
setting from Table 1. The top two results for each column are highlighted in bold.

with the more structured representations found in935

other categories.936

The second and third categories focus on ana-937

lytical and scientific visualization. Analytical ta-938

bles and charts, evaluated through benchmarks like939

ChartQA (Masry et al., 2022) and Charxiv (Wang940

et al., 2024c), comprise business and scientific data941

visualizations including bar charts, line graphs, and942

frequency tables. Scientific diagrams featured in943

MMMU (Yue et al., 2024), MMBench (Liu et al.,944

2023), and ScienceQA (Lu et al., 2022) present945

technical illustrations of molecular structures, par-946

ticle dynamics, and ecosystem relationships. While947

both categories deal with data representation, they948

differ in their approach: analytical charts empha-949

size quantitative interpretation, whereas scientific950

diagrams focus on conceptual understanding.951

Mathematical diagrams, assessed through bench-952

marks such as MathVista (Lu et al., 2023) and953

Math-Vision (Wang et al., 2024a), represent an-954

other crucial category that bridges pure mathemat-955

ics with practical applications. These include func-956

tion graphs, geometric constructions, and physics957

diagrams, demonstrating complex mathematical958

concepts through visual means. This category 959

shares some common ground with programming- 960

related diagrams, particularly in their emphasis on 961

logical relationships and systematic thinking. 962

The fifth category encompasses visual abstract 963

reasoning, evaluated through benchmarks like 964

ARC-AGI (Chollet, 2019), RAVEN (Zhang et al., 965

2019), and Bongard (Nie et al., 2020). These tests 966

feature grid-based patterns and geometric trans- 967

formations that assess abstract thinking and pat- 968

tern recognition skills. This category bears the 969

closest resemblance to programming-related dia- 970

grams in terms of logical abstraction and systematic 971

problem-solving approaches. 972

A.3 Diagrams in HumanEval-V 973

Figure 22 presents six fundamental task types in 974

the HumanEval-V benchmark, each representing 975

distinct cognitive challenges in visual reasoning. 976

Our benchmark employs a rich variety of visual 977

elements including geometric shapes, symbolic no- 978

tations, matrices, and directed graphs. These repre- 979

sentations are enhanced through connecting lines, 980

arrows, color-coding, and numerical annotations 981
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Figure 13: Sources of the screened tasks for annotation.

to effectively capture relationships and transforma-982

tions between components. The visual representa-983

tions maintain clarity across all categories while984

scaling in complexity to accommodate different dif-985

ficulty levels. Through careful design of visual ele-986

ments and systematic progression of patterns, each987

task type provides a clear framework for evaluating988

specific aspects of visual reasoning and problem-989

solving abilities.990

The six task categories demonstrate diverse991

problem-solving requirements: Aggregation tasks992

(18% of the benchmark) introduce new grouping993

and aggregation rules for input data; Validation994

tasks (17%) define conditional rules to verify or995

classify input data; Expansion tasks (16%) focus on996

defining new patterns that evolve or extend data el-997

ements; Rearrangement tasks (17%) establish new998

traversal patterns to reorganize data; Iteration tasks999

(17%) define new iterative operations applied to1000

input data; and Computation tasks (20%) introduce1001

new computational rules and operations.1002

What distinguishes our benchmark is not only its1003

balanced distribution across task types but also the1004

wide interconnection between categories. While1005

each category emphasizes specific problem-solving1006

skills, real-world scenarios often require combin-1007

ing multiple approaches. For instance, computation1008

tasks may incorporate iterative processes, while ag-1009

gregation problems might require validation steps.1010

This interconnected design reflects the complexity1011

of practical problem-solving scenarios where multi-1012

ple cognitive skills must be applied simultaneously.1013

B More Details on Data Annotation1014

B.1 Data Collection and Screening1015

Our data collection process involves two primary1016

sources: coding challenge platforms, such as Code-1017

Forces, and the Q&A platform Stack Overflow1018

(SO). Each coding problem undergoes a rigorous1019

screening process to ensure it aligns with the stan-1020

dards of HumanEval-V. Annotators are instructed1021

to exclude problems that: (1) require knowledge1022

of specific programming frameworks or libraries, 1023

(2) contain images that are not abstract diagrams, 1024

(3) provide no useful information for solving the 1025

problem, or (4) require excessive textual context 1026

for interpretation. 1027

The majority of our tasks are sourced from cod- 1028

ing challenge platforms, especially CodeForces, as 1029

shown in Figure 13, where we display the distri- 1030

bution of screened tasks by platform. For coding 1031

challenge platforms, we use the open-source MM- 1032

Code dataset (Li et al., 2024b), which includes cod- 1033

ing problems from various platforms with visual 1034

elements in the problem descriptions. However, 1035

we find that most of these problems are unsuitable 1036

for HumanEval-V. Many images are non-essential, 1037

as they can be inferred from the textual problem 1038

descriptions. Some problems, though containing 1039

relevant visual information, are overly complex and 1040

require lengthy textual descriptions to interpret, vi- 1041

olating our requirement for self-explanatory visual 1042

content. After careful screening, less than 5% of 1043

the viewed problems pass our standards. 1044

We select SO for its extensive repository of real- 1045

world programming problems. To identify relevant 1046

posts, we first filter questions from 2020 that have 1047

non-negative votes and accepted answers. Then, 1048

we focus on posts that include images in the ques- 1049

tion body and code blocks in the corresponding 1050

answers, narrowing down further to those tagged 1051

with Python. After this automated filtering, we 1052

manually review the remaining posts, excluding 1053

topics related to front-end, mobile, or UI develop- 1054

ment, as these often require external frameworks 1055

and libraries that do not align with the goals of 1056

our benchmark. We also exclude posts where the 1057

images provide information in textual nature, such 1058

as code snippets, error messages, or execution out- 1059

puts. Ultimately, we identified suitable questions 1060

primarily covering topics like geometry, plotting, 1061

and image processing. 1062

To further illustrate our screening process, we 1063

present two negative examples that do not meet our 1064

standards in Figure 23: (1) The first example is a 1065

coding problem from CodeForces, where the task is 1066

to determine an optimal stacking method for a set of 1067

books with identical heights, given their thickness 1068

and width, in order to minimize the total thickness. 1069

While the provided image shows a possible stack- 1070

ing configuration, it lacks critical information, such 1071

as constraints on the stacking method and precise 1072

book dimensions. Moreover, the core problem- 1073

solving details are conveyed primarily through text, 1074
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making the image non-essential for understanding1075

the solution. (2) The second example is a cod-1076

ing problem from GeeksForGeeks, which involves1077

traversing a 2D matrix according to a specified1078

pattern, starting from the top-left corner and iden-1079

tifying the traversal endpoint. Although the im-1080

age offers a basic representation of the matrix, the1081

traversal pattern is too complex to be effectively1082

captured visually and requires significant textual1083

explanation. As a result, the textual description1084

carries more problem-solving information than the1085

image itself, violating our requirement for the vi-1086

sual context to be self-explanatory and serve as the1087

primary source of information.1088

B.2 Recreation and Diversification1089

We present three examples in Figure 24, Figure 25,1090

and Figure 26 to demonstrate our recreation and1091

diversification process. Each figure is divided into1092

three parts: the original problem that meets our1093

screening criteria (top), the recreated coding task1094

based on the distilled ideas (middle), and the diver-1095

sified variant (bottom). Below are detailed expla-1096

nations of each example:1097

Figure 24 showcases a Stack Overflow problem1098

where a developer needs to draw a parallelogram us-1099

ing four specified points. The image illustrates the1100

connection between these points, providing the es-1101

sential information needed to solve the task. Since1102

the text merely restates the geometric properties1103

shown in the image, we significantly reduce the1104

textual content without losing crucial details. For1105

recreation, we transform this into a five-pointed star1106

problem, enriching the visual information with four1107

examples showing different point connection pat-1108

terns. The new function signature clearly defines1109

the implementation requirements, including objec-1110

tives, input parameters, and return value constraints.1111

Instead of generating a parallelogram image, our1112

task focuses on determining whether two specific1113

points should be connected, simplifying the imple-1114

mentation while maintaining emphasis on visual1115

reasoning. For diversification, we modify the vi-1116

sual pattern from a five-pointed to a six-pointed1117

star while maintaining the same function signature.1118

Figure 25 presents a CodeForces problem involv-1119

ing polygon folding and area calculation. The im-1120

age demonstrates the folding process along dashed1121

lines, showing both initial and final states. For1122

recreation, we simplify this into a matrix fold-1123

ing task where overlapping sections produce color1124

changes. The input matrix uses two initial colors1125

(white and light blue), which can result in three 1126

distinct outcomes after folding (white, light blue, 1127

and dark blue). Three illustrative examples clarify 1128

the folding mechanics. For diversification, we re- 1129

place the color addition rule with numeric addition, 1130

requiring models to process numerical changes be- 1131

fore and after folding. 1132

Figure 26, also from CodeForces, involves grid 1133

reduction following a specific pattern. The image 1134

effectively communicates the step-by-step transfor- 1135

mation process. For recreation, we enhance the 1136

complexity by removing the reduction factor k as a 1137

parameter, requiring models to deduce that k = 2 1138

from the provided examples. We transform the 1139

original binary scaling operation into a statistical 1140

pooling operation (e.g., minimum value computa- 1141

tion), demanding both OCR capabilities and ad- 1142

vanced visual reasoning. For diversification, we 1143

increase the pooling stride from 2 to 3, requiring 1144

models to analyze larger matrices. Test cases are 1145

adjusted accordingly to maintain consistency with 1146

the modified patterns. 1147

In addition to the three examples above, we pro- 1148

vide further examples of how we perform diversifi- 1149

cation across specific capability aspects in Table 3. 1150

C More details on Experimental Setup 1151

C.1 Evaluated Models 1152

In Table 4, we provide a detailed list of Large Mul- 1153

timodal Models (LMMs) used in our experiments. 1154

For each model, we specify the number of parame- 1155

ters and include direct links to relevant reports or 1156

Huggingface repositories for further reference. 1157

C.2 Prompt Templates 1158

We designed three main sets of prompts for the 1159

experiments. The first set is used for the evaluation 1160

pipelines in the main benchmarking experiments, 1161

covering scenarios such as Vision-to-Code, Vision- 1162

to-Code with Chain-of-Thought (CoT), Vision-to- 1163

Text, and Text-to-Code, as described in Section 3. 1164

The corresponding prompts for these scenarios are 1165

listed in Figure 27. The second set of prompts is 1166

used in the iterative refinement experiments, intro- 1167

duced in Section 4. These prompts address sce- 1168

narios where code or previously generated textual 1169

problem specifications are refined based on feed- 1170

back from the execution environment. The rele- 1171

vant prompts for this scenario are provided in Fig- 1172

ure 28. The third scenario involves using GPT-4o 1173

as a judge to rate the diagram descriptions gen- 1174
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Modification Aspects Examples

Spatial Transformation Adjust concatenation, swapping, grouping, or stacking order; modify the direction of translation, flipping, rotation, or folding.
Mathematical Operations Alter arithmetic operations, sorting order, or aggregation rules.
Dynamic Patterns Reverse alternation sequences; switch increments to decrements; change the direction of spirals or zigzags; adjust layer layouts.
Object Attributes Change the color, size, shape, angle or position of objects.
Object Relations Reverse nesting or overlap order; modify connection, intersection, or adjacency rules; adjust boundary interaction conditions.
Data Structure Modify graph direction, data type in array, matrix dimensions.

Table 3: Examples of modifications applied to diversify seed tasks. Modifications of a task may span many aspects.

erated by LMMs. The prompt used is shown in1175

Figure 29.1176

Our prompt design has undergone multiple1177

rounds of optimization to address specific issues we1178

encountered. For instance, we instruct the model1179

to follow a markdown format code block for gen-1180

eration and avoid generating multiple code blocks1181

to streamline post-processing and improve parsing1182

success rates. We also provide detailed instructions1183

for prompting LMMs to generate diagram descrip-1184

tions in a structured problem specification format,1185

including Problem Restatement, Visual Facts, and1186

Visual Patterns, ensuring a comprehensive capture1187

and expression of the visual context. In the iter-1188

ative refinement setting, we specifically instruct1189

LMMs not to hardcode test cases into their gener-1190

ated code to ensure that improvements stem from1191

an enhanced understanding of the problem. Ad-1192

ditionally, for LLM-as-Judge experiments, we list1193

clear steps for rating the LMMs’ outputs, promot-1194

ing more robust and reliable rating results.1195

C.3 Ablation on Temperature1196

As described in Section 3, we set the sampling1197

temperature to T = 0.8 for generating multiple1198

predictions, following established practices in code1199

generation benchmarking (Chen et al., 2021, 2022).1200

Given that LMMs may exhibit varying performance1201

at different temperatures, we conduct an ablation1202

study to assess the rationale behind this choice.1203

Specifically, we evaluated all 22 LMMs under the1204

V2T2C w/ GPT-4o setting across a range of temper-1205

atures from 0.4 to 1.0. The results are presented1206

in Table 5, which indicate that LMMs generally1207

demonstrate consistent performance across these1208

settings, with a few models showing slight varia-1209

tions, further validating the rationale for our chosen1210

temperature setting.1211

D Deeper Analysis on HumanEval-V1212

D.1 Co-occurrence of Capability Aspects1213

As illustrated in Figure 3, the diagrams in1214

HumanEval-V encompass a wide range of capabil-1215

Figure 14: Performance comparison between GPT-4o
and QwenCoder-32B as strong coders under the V2T2C
w/ SC setting.

ity aspects that require human-level intelligence 1216

for interpretation. Each diagram typically involves 1217

multiple capability aspects to be fully understood. 1218

To explore the relationships between these capa- 1219

bility aspects, we conduct a co-occurrence anal- 1220

ysis based on the aspect labels assigned by hu- 1221

man annotators during task annotation. The re- 1222

sults, presented in Figure 30, show a heatmap 1223

where each value represents the number of tasks in 1224

HumanEval-V that involve both corresponding as- 1225

pect labels. Our analysis reveals that the diagrams 1226

in HumanEval-V exhibit a diverse distribution of 1227

capability aspects. Among them, adjacency, grid, 1228

matrix, and sequence are the most frequently oc- 1229

curring labels. Common co-occurrences include 1230

matrix-adjacency, grid-boundary, grid-path, and 1231

sequence-linear increment, highlighting the funda- 1232

mental spatial and structural relationships embed- 1233

ded in these diagrams. 1234

D.2 Comparison of Strong Coder Models 1235

We use GPT-4o as the primary strong coder for our 1236

benchmarking experiments, leveraging its superior 1237

coding capabilities to translate problem specifica- 1238

tions generated by LMMs into code. This allows us 1239
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Models Params Links

Proprietary LMMs
OpenAI o1 (OpenAI, 2024b) - OpenAI o1
GPT-4o (0806) (OpenAI, 2024a) - OpenAI GPT-4o
GPT-4o-mini (0718) (OpenAI, 2024a) - OpenAI GPT-4o-mini
Claude 3.5 Sonnet (1022) (Anthropic, 2024) - Anthropic Claude
Gemini 1.5 Pro (002) (Google, 2024a) - Google Gemini 1.5 Pro
Gemini 1.5 Flash (002) (Google, 2024a) - Google Gemini 1.5 Flash

Open-weight LMMs with more than 70B parameters
Pixtral (Agrawal et al., 2024) 124B mistralai/Pixtral-Large-Instruct-2411
Llama-3.2-V 90B (Google, 2024b) 88.8B meta-llama/Llama-3.2-90B-Vision-Instruct
InternVL 2.5 78B (Chen et al., 2024c) 78.4B OpenGVLab/InternVL2-5-78B
Owen2 VL 72B (Wang et al., 2024b) 73.4B Qwen/Qwen2-VL-72B-Instruct
QVQ-72B-Preview (Team, 2024b) 73.4B Qwen/QVQ-72B-Preview
Molmo-D 72B (Deitke et al., 2024) 73.3B allenai/Molmo-72B-0924
LLaVA-OV 72B (Li et al., 2024a) 73.2B llava-hf/llava-onevision-qwen2-72b-ov-chat-hf

Open-weight LMMs with fewer than 70B parameters
Chameleon 30B (Team, 2024a) 34.3B facebook/chameleon-30b
InternVL 2.5 26B (Chen et al., 2024c) 25.5B OpenGVLab/InternVL2-5-26B
Pixtral 12B (Agrawal et al., 2024) 12.0B mistralai/Pixtral-12B-2409
Llama-3.2-V 11B (Google, 2024b) 10.7B meta-llama/Llama-3.2-11B-Vision-Instruct
Qwen2 VL 7B (Wang et al., 2024b) 8.3B Qwen/Qwen2-VL-7B-Instruct
InternVl 2.5 8B (Chen et al., 2024c) 8.1B OpenGVLab/InternVL2-5-8B
LLaVA-OV 7B (Li et al., 2024a) 8.03B llava-hf/llava-onevision-qwen2-7b-ov-chat-hf
Molmo-D 7B (Deitke et al., 2024) 8.02B allenai/Molmo-7B-D-0924
Chameleon 7B (Team, 2024a) 7.04B facebook/chameleon-7b
Phi-3.5-V 4B (Microsoft, 2024) 4.2B microsoft/Phi-3.5-vision-instruct
InternVL 2.5 4B (Chen et al., 2024c) 3.7B OpenGVLab/InternVL2-5-4B

Open-Weight Code LLM
Qwen2.5 Coder 32B (Hui et al., 2024) 32.8B Qwen/Qwen2.5-Coder-32B-Instruct

Table 4: List of LMMs with their parameter sizes and links to the official reports or Huggingface repositories.

Figure 15: Effect of task diversification on performance
variation across models in the V2T2C w/ SC setting.

to focus on the evaluation of LMMs’ visual under-1240

standing ability in a more controllable manner. Our1241

evaluation pipeline is designed to be robust, accom-1242

modating different strong coders. To test the sta-1243

bility of our results, we perform an ablation study1244

by replacing GPT-4o with an open-weight LLM,1245

Qwen2.5-Coder-32B-Instruct (Hui et al., 2024), 1246

referred to as QwenCoder-32B. QwenCoder-32B 1247

demonstrates comparable coding performance to 1248

GPT-4o, as evidenced by LiveCodeBench (Jain 1249

et al., 2024). This ablation allows us to explore 1250

whether switching to a different strong coder leads 1251

to deviations in our findings. 1252

The ablation is conducted under the V2T2C w/ 1253

SC setting, where QwenCoder-32B replaces GPT- 1254

4o to generate code based on the problem specifi- 1255

cations provided by LMMs. The results, shown in 1256

Figure 14, reveal that GPT-4o and QwenCoder-32B 1257

exhibit near-perfect correlations, demonstrating the 1258

strong stability of our evaluation methodology. 1259

D.3 The Effect of Diversified Tasks 1260

As outlined in Section 2 and Section B.2, our 1261

task annotation pipeline includes a crucial step to 1262

create diversified versions of the seed tasks, ex- 1263

panding both the volume and variety of tasks in 1264

HumanEval-V. To evaluate whether these diversi- 1265
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Figure 16: Pass rates of LMMs
across different task types.

Figure 17: Pass rates of LMMs
across main capability dimensions.

Figure 18: Pass rates of LMMs
across specific capability aspects.

Models T=0.4 T=0.6 T=0.8 T=1

Proprietary LMMs
Claude 3.5 Sonnet 48.3 46.9 48.1 47.9
GPT-4o 44.9 42.2 43.6 44.9
Gemini 1.5 Pro 41.1 39.2 39.4 41.6
Gemini 1.5 Flash 27.1 30 28.4 29.1
GPT-4o-mini 27.9 29 29.9 32.1

Open-weight LMMs
Pixtral 124B 35.6 39.8 34.2 37
InternVL 2.5 78B 37.2 36.1 35.9 36.2
Qwen2 VL 72B 31.1 29.1 28.7 31.5
LLaVA-OV 72B 25 22.7 24.1 22.2
Molmo-D 72B 16.9 13.2 14.4 14.5
Llama-3.2-V 90B 12.5 10.7 12.4 13.7
Pixtral 12B 21.2 23.4 23.2 21.1
InternVL 2.5 26B 20.9 21 20.7 21.8
Qwen2 VL 7B 13.3 17.2 16.6 18.5
InternVL 2.5 8B 13.6 16.6 17.3 16.3
InternVL 2.5 4B 16.9 17.6 15.2 20.5
LLaVA-OV 7B 15.1 15.2 13 15.2
Phi-3.5-V 4B 5.6 9.3 9.1 8.7
Llama-3.2-V 11B 7.5 10.2 9.6 9.9
Molmo-D 7B 9.2 10 11.2 11.2
Chameleon 7B 1 2.5 2.5 2.1
Chameleon 30B 2 0.5 3.3 2

Table 5: Ablation on LMMs’ sampling temperature for
the pass@3 results under the V2T2C w/ GPT-4o settings.

fied tasks introduce different challenges compared1266

to the original seed tasks, we analyze the standard1267

deviation of pass rates across the seed tasks and1268

their diversified versions.1269

Specifically, we use the results of the 22 LMMs1270

under the V2T2C w/ SC setting. We group tasks1271

based on whether they are seed tasks or their vari-1272

ants, resulting in 100 task groups (since we have1273

100 seed tasks). We then calculate the standard1274

deviation of the pass@3 results within each group,1275

excluding groups where all tasks have a pass@31276

Figure 19: Correlation Between LMM Pass Rates and
Task Difficulty in Coding and Diagram Descriptions.

rate of 0. The standard deviation for each group is 1277

computed as: 1278

SDgroup =

√√√√ 1

N

N∑
i=1

(pass@3i − µgroup)2

where N is the number of tasks in the group, 1279

pass@3i is the pass rate of task i, and µgroup is 1280

the mean pass@3 for the group. The resulting 1281

distribution of pass@3 standard deviations (SD) is 1282

shown in Figure 15 as box plots. 1283

The results reveal that the 25th percentile of most 1284

models has an SD greater than 0.2, and the median 1285

SD is around 0.4. This demonstrates a notable per- 1286

formance gap between tasks within the same group, 1287

validating the effectiveness of our task diversifica- 1288

tion process. 1289
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E More Detailed Error Analysis1290

E.1 Error Patterns and Taxonomy1291

To better understand where current LMMs fall short1292

in solving the coding tasks in HumanEval-V, we1293

conduct a statistical analysis examining the correla-1294

tion between pass rates and three key factors: task1295

type, general capability dimensions, and specific1296

capability aspects (illustrated in Figure 3) required1297

for understanding diagrams in HumanEval-V. The1298

results are presented in Figure 16, Figure 17, and1299

Figure 18. The pass rate in our analysis is the aver-1300

aged pass@3 for the five proprietary models under1301

the V2T2C w/ SC setting.1302

The analysis reveals that LMMs perform partic-1303

ularly poorly on tasks involving Transformation1304

and Iterative Calculation, both achieving a pass@31305

of approximately 32%. This suggests that these1306

models struggle with understanding spatial trans-1307

formations and tracking state changes over itera-1308

tive steps. In terms of general capability dimen-1309

sions, the difference in pass rates across various1310

categories is minimal. Specifically, Spatial Trans-1311

formation, Topological Relations, and Dynamic1312

Patterns all yield an average pass@3 of 38%.1313

When examining specific capability aspects, we1314

find that LMMs exhibit notable difficulty with dia-1315

grams involving dynamic patterns such as Spirals,1316

Circular Arrangements, and Zigzags. Additionally,1317

tasks requiring spatial transformations like Stack-1318

ing, Translation, and Splitting, as well as mathemat-1319

ical operations such as Sorting and Absolute Value1320

computations, pose significant challenges. We il-1321

lustrate concrete error cases that highlight these1322

challenges in Figure 31 to 45.1323

E.2 Error Analysis by Task Difficulty1324

We also investigate the correlation between LMM1325

performance and task difficulty, using two key1326

metrics. The first metric is the cyclomatic com-1327

plexity (Gill and Kemerer, 1991) of the human-1328

annotated solution code for each task, which re-1329

flects the complexity of programming logic. The1330

second metric is the token length of the human-1331

annotated diagram descriptions, which indicates1332

the difficulty of understanding the diagram from a1333

textual perspective. These two metrics represent1334

human-perceived difficulty in both visual compre-1335

hension and programmatic reasoning.1336

For measuring LMM performance, we use the1337

averaged pass@3 score of the top five proprietary1338

models under the V2T2C w/ SC setting, with corre-1339

lation results presented in Figure 19. Interestingly, 1340

the results suggest that LMM performance has little 1341

correlation with human-perceived difficulty, either 1342

in coding complexity or in visual description length, 1343

except for tasks with very high programming com- 1344

plexity or exceptionally long diagram descriptions. 1345

Through a detailed case study, we find that many 1346

tasks in HumanEval-V are relatively easy for hu- 1347

mans but remain challenging for LMMs, primar- 1348

ily because these models struggle to comprehend 1349

diagrams at a fundamental level. This limitation 1350

stems from their lack of basic visual perception and 1351

reasoning abilities, making it difficult to develop 1352

a precise metric that accurately captures LMM- 1353

perceived difficulty in our benchmark. 1354

The error cases in Figures 46 and 47 further il- 1355

lustrate this challenge. Tasks that appear trivial to 1356

humans often prove insurmountable for even the 1357

top-performing LMMs, highlighting the fundamen- 1358

tal gap in their ability to interpret diagrams and 1359

reason visually. 1360

F More Discussion on MMCode 1361

MMCode (Li et al., 2024b) presents a coding 1362

dataset for evaluating LMMs’ algorithmic problem- 1363

solving capabilities in visual contexts, compris- 1364

ing 3.5k questions crawled from competitive pro- 1365

gramming platforms. However, as explained in 1366

Appendix B.1, the visual content in most coding 1367

challenges is redundant, with image information 1368

largely inferrable from textual descriptions. This 1369

redundancy is evident in MMCode’s reported re- 1370

sults, where performance on "language-only" in- 1371

puts closely matches that of "vision + language" 1372

inputs. In contrast, HumanEval-V is specifically 1373

designed to evaluate visual understanding and rea- 1374

soning capabilities rather than general coding pro- 1375

ficiency. Our benchmark ensures that visual con- 1376

text is integral to problem-solving. Experiments 1377

with five proprietary LMMs demonstrate a striking 1378

contrast: while providing only function signatures 1379

without diagrams or diagram descriptions results in 1380

0% pass rates across all models, the same models 1381

achieve over 90% pass rates (Figure 11) when given 1382

human-annotated diagram descriptions. This dra- 1383

matic performance difference confirms the essen- 1384

tial role of visual information in HumanEval-V. Fur- 1385

thermore, our difficulty analysis (Figure 5) shows 1386

that the coding tasks maintain moderate complex- 1387

ity, enabling a focused assessment of visual rea- 1388

soning abilities. Our evaluation pipeline also in- 1389
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troduces a two-stage code generation process, al-1390

lowing LMMs with lower coding proficiency to1391

generate diagram descriptions while delegating the1392

coding implementation to more capable models.1393

These deliberate design choices clearly distinguish1394

HumanEval-V from MMCode by placing visual rea-1395

soning at the forefront of evaluation.1396

G Other Considerations1397

Environmental Considerations: Our bench-1398

mark’s challenging tasks typically require larger-1399

sized multimodal models, which raises environmen-1400

tal concerns regarding computational costs. How-1401

ever, we believe the solution lies in improving train-1402

ing efficiency rather than simply scaling up model1403

size. Our future work will focus on developing1404

resource-efficient training methods while maintain-1405

ing performance on our benchmark.1406

Language Coverage: Currently, our benchmark1407

primarily focuses on English and Python, which1408

may appear limiting. This choice was deliberate,1409

as these languages are most prevalent in LMMs’1410

training data and best demonstrate their capabilities.1411

While this focus allows for deeper analysis, we1412

acknowledge the importance of linguistic diversity.1413

Our annotation pipeline is language-agnostic and1414

can be extended to other programming languages1415

in future iterations.1416

License and Distribution: Our benchmark con-1417

sists of manually created tasks, drawing inspiration1418

from Stack Overflow discussions and the MMCode1419

dataset (which includes problems from platforms1420

like Codeforces and LeetCode). We intend to dis-1421

tribute our code and data under a research-only1422

license Creative Commons Non-Commercial (CC1423

BY-NC) to promote academic advancement.1424

Data Privacy and Protection: We can conclu-1425

sively confirm that our dataset contains no person-1426

ally identifiable information. All tasks were created1427

from scratch by our team, with careful attention1428

to privacy considerations. We maintained strict1429

protocols during the creation process to ensure no1430

sensitive information was included.1431

Computing Infrastructure: Our experimental1432

setup utilized a computing node equipped with 81433

NVIDIA A800 GPUs, primarily for LMM infer-1434

ence. Despite running multiple inference passes1435

(1 greedy decode and 6 repeated sampling), the1436

computational overhead remained manageable due 1437

to our focused dataset of 253 high-quality tasks. 1438

Demographic of Annotators: The annotation 1439

team consisted of four highly qualified individuals 1440

– postgraduate and doctoral students specializing 1441

in computer science, each with over four years of 1442

Python programming experience. Their participa- 1443

tion is entirely voluntary and research-motivated, 1444

with no monetary compensation involved. All anno- 1445

tators explicitly consented to participate in this aca- 1446

demic endeavor. While this arrangement worked 1447

well for our academic setting, we acknowledge that 1448

paid annotation might be necessary for larger-scale 1449

or commercial projects. 1450
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Figure 20: Correlations between eight multimodal benchmarks, including HumanEval-V. Each subplot displays
the relationship between two benchmarks, while the diagonal subplots show the performance distribution for the
corresponding benchmark.
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Figure 21: A comparison between diagrams covered in popular multimodal benchmarks.
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Figure 22: A curated selection of diagrams representing the six task types in HumanEval-V.
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Figure 23: Two negative examples in our data screening process: the first example is sourced from CodeForces
(https://codeforces.com/problemset/problem/294/B), and the second from GeeksforGeeks (https://www.
geeksforgeeks.org/problems/last-cell-in-a-matrix/1).
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Figure 24: Task annotation examples illustrating the recreation and diversification applied to the screened coding
problem. The original problem is sourced from Stack Overflow (https://stackoverflow.com/questions/
69163515).
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Figure 25: Task annotation examples illustrating the recreation and diversification applied to the screened coding
problem. The original problem is sourced from CodeForces (https://codeforces.com/problemset/problem/
1381/E).
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Figure 26: Task annotation examples illustrating the recreation and diversification applied to the screened coding
problem. The original problem is sourced from CodeForces (https://codeforces.com/problemset/problem/
1996/B).
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Figure 27: Prompting templates used for the four scenarios introduced in Section 3. {function_signature} and
{problem_specification} serve as placeholders for the respective content.
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Figure 28: Prompting templates used for the iterative benchmarking scenarios introduced in Section 4. {func-
tion_signature}, {previous_prediction}, and {execution_feedback} serve as placeholders for the respective content.
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Figure 29: Prompting templates used for the LLM-as-Judge rating experiment introduced in Section 5. {hu-
man_annotated_problem_specification} and {model_generated_problem_specification} serve as placeholders for
the respective content.
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Figure 30: Analysis of the capability aspect co-occurrences in HumanEval-V tasks.
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Figure 31: Example error case demonstrating LMMs’ challenges with data structure manipulation and mathematical
operations. The case shown for Claude 3.5 Sonnet is under the V2T2C w/ SC setting.
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Figure 32: Example case on the same task in Figure 31, demonstrated by Pixtral 124B under the V2T2C w/ SC
setting.
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Figure 33: Example case on the same task in Figure 31, demonstrated by Pixtral 12B under the V2T2C w/ SC
setting.

34



Figure 34: Example case on the same task in Figure 31, demonstrated by OpenAI o1 under the textitV2C w/ CoT
setting.
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Figure 35: Example case on the same task in Figure 31, demonstrated by QVQ 72B Preview under the textitV2C w/
CoT setting.
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Figure 36: Error case highlighting LMMs’ limitations in understanding dynamic patterns with alternating elements
and linear increments. The case shown for Claude 3.5 Sonnet is under the V2T2C w/ SC setting.
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Figure 37: Example case on the same task in Figure 36, demonstrated by Pixtral 124B under the V2T2C w/ SC
setting.
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Figure 38: Example case on the same task in Figure 36, demonstrated by Pixtral 12B under the V2T2C w/ SC
setting.
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Figure 39: Example case on the same task in Figure 36, demonstrated by OpenAI o1 under the V2C w/ CoT setting.
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Figure 40: Example case on the same task in Figure 36, demonstrated by QVQ 72B Preview under the V2C w/ CoT
setting.

41



Figure 41: Error case illustrating LMMs’ difficulties in recognizing and reasoning about complex geometric
arrangements, particularly spiral and circular patterns. The case shown for Claude 3.5 Sonnet is under the V2T2C w/
SC setting.
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Figure 42: Example case on the same task in Figure 41, demonstrated by Pixtral 124B under the V2T2C w/ SC
setting.
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Figure 43: Example case on the same task in Figure 41, demonstrated by Pixtral 12B under the V2T2C w/ SC
setting.
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Figure 44: Example case on the same task in Figure 41, demonstrated by OpenAI o1 under the V2C w/ CoT setting.
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Figure 45: Example case on the same task in Figure 41, demonstrated by QVQ 72B Preview under the V2C w/ CoT
setting.
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Figure 46: Error case highlighting the gap between human intuition and LMM performance on seemingly straight-
forward visual reasoning tasks. The case shown for Claude 3.5 Sonnet is under the V2T2C w/ SC setting.
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Figure 47: Another case highlighting the gap between human intuition and LMM performance on seemingly
straightforward visual reasoning tasks. The case shown for Claude 3.5 Sonnet is under the V2T2C w/ SC setting.
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