
Double Policy Estimation for Importance Sampling in
Sequence Modeling Based Reinforcement Learning

Hanhan Zhou
The George Washington University

hanhan@gwu.edu

Tian Lan
The George Washington University

tlan@gwu.edu

Vaneet Aggarwal
Purdue University

vaneet@purdue.edu

Abstract

Offline reinforcement learning aims to utilize datasets of previously gathered
environment-action interaction records to learn a policy without access to the
real environment. Recent work has shown that offline reinforcement learning
can be formulated as a sequence modeling problem and solved via supervised
learning with approaches such as decision transformer. While these sequence-based
methods achieve competitive results over return-to-go methods, especially on tasks
that require longer episodes or with scarce rewards, importance sampling is not
considered to correct the policy bias when dealing with off-policy data, mainly due
to the absence of behavior policy and the use of deterministic evaluation policies.
To this end, we propose an RL algorithm that blends offline sequence modeling and
offline reinforcement learning with Double Policy Estimation (DPE) in a unified
framework with statistically proven properties on variance reduction. We validate
our method in multiple tasks of OpenAI Gym with D4RL benchmarks. Our method
brings performance improvements on selected methods and outperforms state-of-
the-art baselines in several tasks, demonstrating the advantages of enabling double
policy estimation for sequence-modeled reinforcement learning.

1 Introduction

Offline reinforcement learning (RL) algorithms provide a promising approach for sequential decision-
making tasks without the need for online interactions with an environment[Mei et al., 2023a, Zhou
et al., 2022, Chen et al., 2021a]. This approach is particularly appealing when online interactions are
costly or when there is an abundance of offline experiences available. Recent works have demonstrated
that generative models [Chen et al., 2020, Brown et al., 2020, Radford et al., 2018, Zhou et al., 2021,
He et al., 2023, Chen et al., 2023a,b] that are widely used in language and vision tasks can be
applied to maximize the likelihood of trajectories in an offline dataset without temporal difference
learning [Janner et al., 2021], notably, Decision Transformer (DT) [Chen et al., 2021b], which uses
the transformer architecture [Vaswani et al., 2017] for decision-making. Such a pertaining paradigm
in a supervised learning manner for RL can be considered known as Reinforcement learning via
Supervised Learning (RvS) [Emmons et al., 2021, Schmidhuber, 2019, Srivastava et al., 2019]. Instead
of learning a value-based algorithm for decision-making, RvS-based methods often consider the
learning task as a prediction problem: to predict an action that will lead to a certain outcome or reward
when given a sequence of past states and actions (e.g., using causal transformer architectures). These
methods have gained significant attention due to their algorithmic and implementation simplicity
while bringing a robust performance on several offline-RL benchmarks.
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Learning an RvS policy πe requires off-policy learning since we need to estimate the expected return
of the learned policy πe during training, from offline experiences/trajectories that are generated using
a different behavior policy πb. We note that online policy evaluation is usually expensive, risky, or
even unethical for many real-world problems [Jiang and Li, 2016]. When the actual environment is
not accessible, these trajectories sampled by πb can be used to evaluate πt, also known as off-policy
evaluation (OPE) [Sutton and Barto, 2018]. An accurate OPE is crucial to evaluate and optimize a
policy during training from offline datasets, the concept of importance sampling (IS) rectifies the
discrepancy between the distributions of the behavior policy πb and the evaluation policy πe [Precup
et al., 2000]. IS-based off-policy evaluation methods have also seen lots of interest recently, especially
for short-horizon problems [Hirano et al., 2003, Murphy et al., 2001], including contextual bandits
[Wang et al., 2017]. However, the application of IS to sequence modeling-based methods is difficult
due to a number of challenges. The behavior policies for collecting experience/trajectory data
are often not available, while the evaluation policies in RvS methods are typically deterministic,
making reweighting different experience/trajectories inaccessible. Further, the variance of IS-based
approaches tends to be too high to provide informative results, for long-horizon problems, since
the variance of the product of importance weights may grow exponentially as the horizon goes
long[Gottesman et al., 2019, Hanna et al., 2019, Zhou et al., 2023, Zhao et al., 2023].

In this paper, we study a problem that when given a dataset of trajectories sampled by a behavior
policy and trajectories generated with sequence-modeling-based evaluation policy (in this paper we
select Decision Transformer to demonstrate our approach), to estimate both behavior policy and target
policy and then compute the importance sampling estimate which we call double policy estimation
importance sampling. We further provide a theoretical analysis of the properties of such estimators
and show that this double policy estimation will reduce the variance of the target policy learned.

Specifically, we propose to introduce an asymptotic estimation for both behavior policy πb, which
is used to sample and generate the dataset, and target evaluation policy, πt, which is the policy we
are in an attempt to learn and correct, as double policy estimation, to calculate the likelihood ratio
for all state-action pairs in the off-policy data. Although it may seem that such an estimation would
bring even worse performance as it introduces more uncertainties, recent research in several domains
including multi-armed bandits [Li et al., 2015, Narita et al., 2019], Monte Carlo integration [Delyon
and Portier, 2016], and causal inference [Hirano et al., 2003] has shown this estimating behavior
could potentially improve the mean squared error of importance sampling policy evaluation which
partially motivates this design. Another direct motivation is that specifically for many sequence
modeling models based methods using generative models like decision transformer in an offline
reinforcement an often scenario is that both πb and πt are inaccessible, which promotes a design
for double policy estimation. In this paper we prove that DPE can statistically lower the mean
squared error of importance sampling OPE with lower variance. We implement the proposed DPE
on D4RL environments and compare DPE with SOTA baselines including DT [Chen et al., 2021b],
RvS [Emmons et al., 2021], CQL [Kumar et al., 2020], BEAR [Kumar et al., 2019], UWAC [Wu et al.,
2021], BC [Wu et al., 2019], and IQL [Kostrikov et al., 2021]. We empirically found double policy
estimation based on importance sampling also brings an improvement to the off-policy evaluation of
the D4RL environment, where DPE achieves better performance than the original decision transformer
on almost all datasets and outperforms the state-of-the-art baselines over several datasets with further
analysis discussing the effects and properties of the proposed double policy estimator.

2 Background

2.1 Markov Decision Process and Sequence-Based Method in Reinforcement Learning

We assume that the environment is a Markov decision process with a finite horizon and episodic
nature, where the state space is denoted as S, the action space as A, and the environment possesses
transition probabilities represented by P , a reward function denoted as R, a horizon length of H , a
discount factor of γ, and initial state distribution of d0 [Puterman, 2014, Li et al., 2015, Chen et al.,
2023c]. A policy, denoted as π, is considered Markovian if it maps the current state to a probability
distribution over actions. In contrast, a policy is classified as non-Markovian if its action distribution
is dependent on past actions or states [Agarwal et al., 2022, Chen and Lan, 2023]. We assume S and
A are finite for simplicity and probability distributions are probability mass functions.
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In off-policy policy evaluation, we are given a fixed evaluation policy, πe, and a data set of m
trajectories and the policies that generated them: D{ωi, π(i)

b }mi=1 where ωi ∼ π
(i)
b . We assume that

∀{ωi, π(i)
b } ∈ D, π(i)

b is Markovian, i.e., actions in D are independent of past states and actions gave
the immediately preceding state. Sequence-based methods in reinforcement learning, which is trained
in reinforcement learning via supervised learning (RvS) manner such as Decision Transformer, train
a model using supervised learning on a dataset with respect to trajectories to predict pD(a|s,R), i.e.,
given a cumulative reward R =

∑
t γ

trt to predict the probability of next action conditioning the
current state. Then at the deployment stage, the model takes actions conditioned on a desired target
return value. Our goal is to design an off-policy estimator that takes D as input and estimates both
behavior policy πb and evaluation policy πe for enabling importance sampling in sequence modeling
methods.

Decision Transformer processes a trajectory ω as a sequence consisting of 3 types of input to be
tokenized: the states, actions selected, and the return-to-go. Specifically, it learns a deterministic
model πDT(at|a−K,t,s−K,t,r−K,t) where −K denotes the past K sequences and is trained to predict the
action token at timestamp t. During the evaluation, DT is given a desired reward g0 and the initial
stage s0 at the beginning and executes the action it generates. Once an action at is generated and
then executed, the next state st+1 ∼ P (·|st, at) and reward rt = R(st, at) are observed, together
with the return-to-go gt+1 = rt − gt: this new sequence will be appended to the previous input.
The process is repeated until the terminal state. DT is then trained under standard l2 loss as
∇θJ(πDT ) =

1
K

∑
k∇θDT

(ak − â)2 in a supervised learning way.

2.2 Importance Sampling in Reinforcement Learning

Importance Sampling (IS) is a method for reweighting returns generated by a behavior pol-
icy πb, such that they are unbiased returns from the evaluation policy. Assuming there is a
family of sampling distributions, p(x; η), with parameter η, that generates a random trajectory
ω := (s0, a0, r0, · · · , sL−1, aL−1, rL−1) from p(x; η0), where g(ω) :=

∑L−1
t=0 γ

trt be the dis-
counted return with preliminary fixed η0: an ordinary importance sampling (OIS) method provides
an estimator of θ in the form of θ̃ = 1

n

∑n
i=1

f(xi)
p(x;η0)

. Then θ̃ is an unbiased estimator of θ and θ̃ is
guaranteed to converge to θ as n goes to infinity according to the strong law of large numbers [Henmi
et al., 2007].

In Monte Carlo problems with high-dimensional x, the target density p(x) can be writing in a chain-
like decomposition as p(x) = p(x1)

∏d
t=2 p(x1|x1:t−1), where x[1:t] = (x1, · · · , xt). With a set of

m trajectories and the policy that generated each trajectory, the IS off-policy estimate of v(πe) is:

IS(πe,D) := 1
m

∑m
i=1 g(ω

(i))
∏L−1
t=0

πe(a
(i)
t |s(i)t )

πb(a
(i)
t |s(i)t )

.

We refer to the above as the ordinary importance sampling (OIS) estimator which uses the true
behavior policy and refer to πe(a|s)

πb(a|s) as the OIS weight for action a in state s. A standard approach
to dealing with off-policy data is to correct the policy using importance sampling (IS) by applying
cumulative density ratios ν0:t [Kallus and Uehara, 2020, Hanna and Stone, 2018]. Then the policy
gradient Z(θ) can be rewritten as an expectation over pπb

and further estimated using an equivalent
empirical expectation. The off-policy version of the classic REINFORCE algorithm [Williams,
1992] recognizes Z(θ) = E[ν0:H

∑H
t=0 rt

∑H
t=0 gt] (recall that E is understood as Ep

πb
) and uses the

estimated policy gradient given by replacing E with En. Later works obtained a policy gradient in
terms of Q-function as Z(θ) = E[

∑H
t=0 ν0:tgtqt] [Chen and Jiang, 2019, Mei et al., 2023b].

3 Related Work

3.1 Sequence-Based method in Reinforcement Learning

Much recent progress has been on formulating the offline decision-making procedure in offline
reinforcement learning as a context-conditioned sequence modeling problem [Janner et al., 2021,
Chen et al., 2021b, Yang et al., 2023, Jin and Ataman, 2022, Yang et al., Xu et al., 2023, Xiao et al.,
2022, Yang et al., 2020]. Compared to the temporal difference methods, these works consider a
paradigm that utilizes predictive models to generate desired actions from the observation sequence
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and the task specification like a supervised learning problem [Schmidhuber, 2019, Srivastava et al.,
2019, Emmons et al., 2021] rather than learning a Q-function or policy gradients. Specifically, the
Decision Transformer model [Chen et al., 2021b] trains the transformer architecture [Vaswani et al.,
2017] as a model-free context-conditioned policy that takes the encoded reward-to-go, state, and
action sequence as input to predict the action for the next step, and the Trajectory Transformer
[Janner et al., 2021] trains transformer that first discretizes each dimension of the input sequence and
shows that beam search can be used to improve upon the model-free performance. Various attempts
have also been made to improve transformers in multi-agent RL and other areas including meta RL,
and multi-task RL[Chen et al., 2023d, Jin et al., 2022]. However, these works do not consider the
importance of sampling for offline reinforcement learning. Our work extended this area with the
proposed double policy estimation and further improved the asymptotic variance of the ordinary
method using the true sampling distribution.

3.2 Importance Sampling in Reinforcement Learning

The use of off-policy samples within reinforcement learning is a popular research area [Silver et al.,
2014, Levine and Koltun, 2013]. Many of them rely on OIS or variants of OIS to correct for bias.
The use of importance sampling ensures unbiased estimates, but at the cost of considerable variance,
as quantified by the ESS measure [Jie and Abbeel, 2010]. The problem of sampling error applies
to any variant of importance sampling using OIS weights, e.g., weighted importance sampling and
per-decision importance sampling [Precup et al., 2000], the doubly robust estimator [Jiang and Li,
2016], and the MAGIC estimator [Thomas and Brunskill, 2016]. On-policy Monte Carlo policy
evaluation is also subject to sampling error, as it is a specific case of ordinary importance sampling
where the behavior policy and the evaluation policy are identical[Mei et al., 2022]. Among these
important sampling methods, [Hanna et al., 2019] is the closest work but considers estimated behavior
policy where their behavior policy estimate comes from the same set of data used to compute the
importance sampling estimate; while we estimate the behavior policy prior to the training phase from
the dataset and estimate the target policy from data generated from the target policy.

4 Methodology

In this section, we present the primary focus of our work: double policy estimation (DPE) importance
sampling that corrects for sampling error in sequence modeling-based reinforcement learning. The
key idea is to obtain the maximum likelihood estimate of both behavior and evaluation policies
π̂ηb and π̂ψt and use them for computing the DPE cumulative density ratio. We further analyze the
theoretical properties of DPE and prove that it is guaranteed to reduce the asymptotic variance of
policy parameters.

4.1 DPE for sequence modeling-based reinforcement learning

Let D be a set of off-policy trajectories of length H + 1 collected by a behavior policy πb, denoted
by D = {ωi, ∀i} with each trajectory ωi = {(s0(i), a0(i), r0(i), · · · , sH (i), aH

(i), rH
(i))). For

known behavior policy πb and evaluation policy πθe , OIS leverages the cumulative density ratio
ν0:t =

∏t
k=0 vk (with density ratio vk = πθe(ak|sk)/πb(ak|sk)) to reweight the policy scores

gt = ∇θ log π
θ
e(at|st), such that they are unbiased estimates of the evaluation policy πθe . In the

off-policy version of the classic REINFORCE algorithm [Williams, 1992], the policy gradient under
OIS is recognized as Z(θ) = E[ν0:Hq0:H

∑H
t=0 gt], where qt:H =

∑H
s=t rs is the return-to-go from

step t to step H in trajectory ω (generated from behavior policy πb). OIS can be easily extended to
its step-wise form [Deisenroth et al., 2013, Chen and Jiang, 2019] with Z(θ) = E[

∑H
t=0 ν0:tqt:Hgt].

OIS has been commonly used in off-policy reinforcement learning.

We note that when RL is recast as an offline sequence modeling problem (such as Decision Trans-
former [Chen et al., 2021b] and RvS [Emmons et al., 2021]), it also relies on off-policy learning.
However, there are three challenges preventing OIS from being directly applied to sequence modeling-
based RL. First, offline RL datasets often do not provide the actual behavior policy for collecting
trajectories, making it impossible to access πb in importance sampling. Second, sequence modeling-
based RL usually are trained using a transformer structure to represent evaluation policy and to
generate deterministic action outputs [Chen et al., 2021b]. We need to extend them to stochastic
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policies to obtain πe in importance sampling. Finally, Meanwhile, OIS is known to have a high
variance [Rasmussen and Ghahramani, 2003], also known as high sampling error in importance
sampling[Hanna et al., 2019]. Methods to reduce importance-sampling variance are needed for
sequence modeling-based RL.

To this end, we propose two maximum likelihood estimators of (stochastic) behavior and evaluation
policies in sequence modeling-based RL, denoted by π̂ηb and π̂ψe . A baseline return bξt is further
estimated (using a mean-square error loss) in sequence modeling-based RL and is leveraged to
mitigate the variance in policy learning. Given a set D of m trajectories, the proposed DPE with
respect to the off-policy version of classic REINFORCE algorithm [Williams, 1992] is defined as:

ZDPE(θ|η, ψ, ξ,D) = E

[(
q0:H − bξ0

) H∏
t=0

πψe (at|st)
πηb (at|st)

(
H∑
t=0

gt

)]
(1)

DPE can also be applied to the step-wise form [Deisenroth et al., 2013, Chen and Jiang, 2019], by
replacing the density ratio vk with its estimator v̂k = πθe(ak|sk)/πb(ak|sk) and by subtracting the
return baseline bξt , i.e.,

ZDPE(θ|η, ψ, ξ,D) = E

[
H∑
t=0

(qt:H − bξt )v̂0:tgt

]
. (2)

The key idea of our DPE estimator for importance sampling is to leverage the maximum likelihood
estimate of behavior and evaluation policies, denoted by π̂ηb and π̂ψt respectively. We introduce the
proposed maximum likelihood estimators for π̂ηb and π̂ψe and minimum-mean-square estimator for bξ
as following:

Maximum likelihood estimator for behavior policy π̂ηb . We consider estimating the π̂b , with
maximum likelihood as π̂ηb := argmaxπb

∑
ω∈D

∑
t logπb(a|ωt−n:t), so that it could provide a

behavior policy action probability estimation while the training of DT. Specifically, in this work, for
policy network estimator we consider learning πb from D as a Gaussian distribution over actions with
mean and standard deviation estimated from a neural network.

Maximum likelihood estimator for target policy π̂ψt . One key insight in this paper is that when
assuming a Gaussian policy for target policy estimation, the estimator would be minimizing the mean-
square error of action predictions, thus it is identical to sequence modeling-based RL like DT with
MSE loss where its variance is this MSE specifically to each timestep while training. When obtaining
the target policy estimator, although for decision transformer πb is often not directly available and
πb(a|s,R) cannot be served as this estimator, also estimating an ongoing learning method might be
unstable and inefficient, we point out that this weight at specific timestep t can be considered as a
Gaussian distribution with a mean of ât and variance of the corresponding MSE. We explain why
this can serve as target policy estimation later in the main theorem in detail.

Minimum-mean-square estimator for baseline bξ. Since bξ is trained to predict return-to-go by

minimizing loss
∑m
i=1

[
qt:H − bξt

]2
. This can be easily incorporated into sequence modeling-based

Reinforcement Learning like Decision Transformer.

Training sequence modeling based RL using DPE. We summarize the general architecture of
the learning pipeline on Algorithm 1 of applying DPE to the sequence-modeling-based target policy
(Decision Transformer). We first obtain an empirical estimator of the behavior policy πb prior to the
training of the Decision Transformer in a warm-up phase. Then during the training phase, we acquire
the target policy estimator as a Gaussian distribution âηt ∼ N (ât, σ

2) where ât is the mean generated
from the decision transformer, σ̂2 is the MSE that serves as variance from the loss calculated at a
specific timestamp.
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4.2 Problem formulation and DPE Objective

In offline sequence modeling-based reinforcement learning, we are given a data set of m offline
trajectories ω = {(s0, a0, r0...)}, and the behavior policy π that is collected them. We denote the
trajectories that are generated by the decision transformer as ω̂ = {(ŝ0, â0, r̂0...)}
Note that DPE objective can also be written as :

DPE :=
1

m

n∑
i=1

q(ht)

L−1∏
t=0

π̂
(i)
t (a

(i)
t |s(i)t )

π̂
(i)
b (a

(i)
t |s(i)t )

=
1

m

n∑
i=1

ŵπt(ht)

ŵπb
(ht)

q(ht) (3)

The variance of θ̃ is given by δ2(f)/n, where δ2 = δ2(f) =
∫
{ f(x)
p(x;η0)−θ}

2p(x; η0)dx, thus the

distribution of
√
n(θ̃ − θ) converges to Normal distribution N (0, δ2) as n increases to infinity

according to central limit theorem.

4.3 Theoretical Properties of DPE

We analyze the asymptotic properties of the maximum likelihood estimator of behavior policy
πη̂b (with optimal parameters η̂), the maximum likelihood estimator of evaluation policy πψ̂e (with
optimal parameters ψ̂), and the minimum mean-square error estimators of baseline bξt (with optimal
parameters ξ̂). We show that these estimators are able to reduce the variance of policy gradient
estimates ZDPE. More precisely, for a given set of m off-policy trajectories D = {ωi, ∀i}, we
consider the gradient estimate ZDPE with DPE (in both per-episode form as Eq. (1) and per-step
form as Eq. (2)), i.e.,

ZDPE =
1

m

m∑
i=1

(q
(i)
0:H − bξ̂0)v̂

(i)
0:H

(
H∑
t=0

g
(i)
t

)
andZDPE =

1

m

m∑
i=1

H∑
t=0

(q
(i)
t:H − bξ̂t )v̂

(i)
0:tg

(i)
t . (4)

We show that the variance Var(ZDPE) using optimal estimators ψ̂, η̂ and ξ̂ is lower than the variance
Var(ZOIS) using some ground truth ψ0, η0 and ξ0.

We begin with recognizing that both per-episode and per-step DPE can be consolidated using a
general form:

ZDPE =
1

n

n∑
i=1

f(ωi; ψ̂)[G(ωi)− b(ξ̂)]

P (ωi; η̂)
(5)

Next, we show a few lemmas demonstrating some properties of the estimators ψ̂, η̂, and ξ̂ and then
prove the variance reduction lemma.
Lemma 1. Let Fη = − 1

m

∑m
i=1 ∂

2
η logP (ωi; η̂0) be the Fisher Information Matrix. We have

√
m(η̂ − η0) =

1√
m
F−1
η ·

m∑
i=1

∂η logP (ωi; η0) +O(1) (6)

Proof Sketch. Since η̂ is the maximum likelihood estimator that optimizes P (ωi; η), we have
∂η
∑m
i=1 logP (ωi; η) = 0 at η = η̂. Expanding the left-hand side from η = η0 toward η = η̂, we

have 0 =
∑m
i=1 ∂η logP (ωi; η0) +

∑m
i=1 ∂

2
η logP (ωi; η̂0) · (η̂ − η0) + o(||η̂ − η0||2), which yields

the desired result by rearranging the terms and leveraging Fisher Information Matrix Fη .

Lemma 2. Let Fξ = 1
m

∑m
i=1[∂ξb(ξ))]

T · ∂ξb(ξ)). For linear baseline estimators b(ξ), we have

√
m(ξ̂ − ξ0) =

1√
m
F−1
ξ ·

m∑
i=1

[G(ωi)− b(ξ0)] · ∂ξb(ξ0) +O(1) (7)

Proof Sketch. Since ξ̂ is the minimum mean-square-error estimator optimizing∑m
i=1 [G(ωi)− b(ξ)]

2, we have ∂ξ
∑m
i=1 [G(ωi)− b(ξ)]

2
= 0. Expanding the left-hand side from
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ξ = ξ0 toward ξ = ξ̂, we have 0 = ∂ξ
∑m
i=1 [G(ωi)− b(ξ0)]

2
+ ∂2ξ

∑m
i=1 [G(ωi)− b(ξ)]

2
(ξ̂ −

ξ0) + o(||ξ̂ − ξ0||2. It yields the desired result using the fact that b(ξ) is linear (thus ∂2ξ b(ξ) = 0) and
using the definition of Fξ.

Theorem 1: The asymptotic variance of ZDPE, using optimal estimators ψ̂, η̂, and ξ̂, is always less
than that of ZOIS using some ψ0, η0 and ξ0, i.e.,

var(ZDPE) = var(ZOIS)− var(VA)− var(VB) (8)

where VA and VB are projections of {µi = f(ωi; ψ̂)[G(ωi)− b(ξ̂)]/P (ωi; η̂), ∀i} onto the row
space of Sη = ∂ηlogP (ωi; η0) and Sξ = ∂ξb(ξ0), respectively.

Proof Sketch.

Step 1: Define auxiliary function µi = µ(ωi; η, ψ, ξ) =
f(ωi)[G(ωi)−b(ξ0)]

P (ωi;η)
, such that ZDPE (which

is θ̂ in the notes with ZOIS being θ) can be written in
∑n
i=1 µ(xi; θ, ξ, η) − θ = 0. Then expand

it from η0, ψ0, ξ0 to η̂, ψ̂, ξ̂, to obtain
√
n(θ̂ − θ) = 1√

n

∑n
i=1 µ(ωi; θ, ξ0, η0) + E(∂ηµ)(η̂ − η) +

E(∂ξµ)
√
n(ξ̂ − ξ) +O(1).

Step 2: Rearranging the terms, plugging in Lemma 1 and Lemma 2, and using the fact of∑n
i=1 Sη

′F−1
η Sη = 1 and

∑n
i=1 w

2
i Sξ

′F−1
ξ Sξ = 1, we obtain the equation below, where define Sξ

and Seta here. Note that we use weights wi = 1 throughout the proof.

Step 3, Recognize that Sξ and Sη are orthogonal. The two terms in C (i.e., A and B) can
be viewed as projecting µi onto orthogonal row spaces of Sξ and Sη, respectively. Define
these as VA and VB The first term on the right hand side in

√
n(θ̂ − θ) = 1√

n

∑n
i=1{µi −

E(µiSη
′)F−1

η · Sη︸ ︷︷ ︸
VA

−E(µiSξ
′) · w2

iF
−1
ξ }︸ ︷︷ ︸

VB

+O(1) is indeed OIS since
√
n(θ̂ − θ) = 1√

n

∑n
i=1 µi.

Then from Pythagorean relationship, we prove var(ZDPE) = var(ZOIS)− var(VA)− var(VB). The
theorem shows that the use of the DPE estimator always reduces the asymptotic variance of the
estimator of OIS.

5 Experiments

In this section, we present an empirical study of applying Double Policy Estimator on Decision
Transformer to verify the feasibility and effectiveness of our proposed method. We evaluate the
performance of our proposed algorithm on the continuous control tasks from the D4RL benchmark
and compare it with several popular SOTA baselines. Furthermore, we analyze some critical properties
to confirm the rationality of our motivation.

5.1 Experiment Setup

We empirically evaluate the performance of our proposed algorithm on the Gym Locomotion v2:
a series of continuous control tasks consisting of HalfCheetah, Hopper, and Walker2d
datasets from the D4RL offline reinforcement learning benchmark [Fu et al., 2020] with medium,
medium-replay, and medium-expert datasets which include mixed and suboptimal trajectories. Specif-
ically, Medium dataset includes 1 million timesteps generated by a “medium” policy that achieves
approximately one-third of the score of an expert policy; Medium-Replay includes 25k-400k
timesteps that are gathered from the replay buffer of an agent trained to the performance of a medium
policy; Medium-Expert includes 1 million timesteps generated by the medium policy and then
concatenated with 1 million timesteps generated by an expert policy.

5.2 Baseline Selection

We compare our proposed algorithm to the following SOTA methods, where they aim to tackle the
current challenges in offline reinforcement learning from different perspectives: Decision Transformer
(DT) [Chen et al., 2021b], reward-conditioned behavioral cloning (RvS) [Emmons et al., 2021],
Conservative Q-Learning (CQL) [Kumar et al., 2020], BEAR [Kumar et al., 2019], UWAC [Wu et al.,
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2021], behavior cloning (BC), and Implicit Q Learning (IQL)[Kostrikov et al., 2021]. CQL and IQL
represent the state-of-the-art in model-free offline RL; RvS and DT represent the state-of-the-art in
sequence-modeling-based supervised learning.

5.3 DPE weights implementation

Note when proposing double policy estimation, there is no specific limitation on how πb and πt are
estimated and how DPE weights are calculated. In this empirical section, we consider the following
as one possible implementation: (1) We first apply CQL to train a neural network that generates
mean and variances for Gaussian distributions as maximum likelihood estimation to obtain the
estimated behavior policy π̂b. (2) Then for each trajectory ωi we can calculate the estimated behavior
weights as ŵπb

i = π̂b(ai|ωi) (3) Next we train DT using l2 loss for updating each timestep, but
we record the MSE (ai − âi)

2 as the variance, and âi as the mean for the Gaussian distribution,
i.e. N (ai, (ai − âi)

2) as target policy estimation. (4) There are multiple ways to calculate these
target weights, e.g. cumulative distribution function (CDF): P (ai − β < âi ≤ ai + β) where β is a
probability offset, or probability density function (PDF). In this empirical result, we consider using
exponentiated clipped log-likelihood: exp(la(â, (ai − âi)

2)) with lâ clipped at 0.05 and 0.995.

5.4 General Performance

Dataset Environment DPE DT RvS CQL BEAR UWAC BC IQL

medium
HalfCheetah 45.4±0.3 42.6±0.1 41.6 44.4 41.7 42.2 43.1 47.4

Hopper 69.8±1.9 67.6±1.0 60.2 58.8 52.1 50.9 63.9 66.3
Walker 77.9±0.8 74.0±1.4 71.7 79.2 59.1 75.4 77.3 78.3

medium-
replay

HalfCheetah 40.5±1.5 36.6±0.8 38.0 46.2 38.6 35.9 4.3 44.2
Hopper 94.6±0.7 79.4±7.0 73.5 48.6 33.7 25.3 30.9 94.5
Walker 83.5±1.2 66.6±3.0 60.6 26.7 19.2 23.6 36.9 73.9

medium-
expert

HalfCheetah 82.5±5.8 87.8±2.6 92.2 62.4 53.4 42.7 59.9 86.7
Hopper 108.2±1.6 107.6±1.8 101.7 104.6 96.3 44.9 79.6 91.5
Walker 93.7±6.2 108.1±0.2 106.0 108.1 40.1 96.5 36.6 109.6

average 77.34 74.60 71.72 64.33 48.24 48.60 48.06 76.93
Table 1: Overall performance of the normalized score of selected baselines on D4RL benchmark. All
results are evaluated on ’v2’ environments and datasets.

We first evaluate and compare the performance of the proposed method with all selected baselines in
terms of average reward in Table 1, where 0 represents a random policy and 100 represents an expert
policy, with reward normalized per [Fu et al., 2020]. All results are averaged over 3 different seeds
over the final 10 evaluations, we put the full results including the error bar of all baselines in the
appendix. Overall, we find DPE applied DT achieves better performance than the original decision
transformer on almost all datasets, and outperforms the state-of-the-art baselines over several datasets.
Especially, in ‘medium-replay’ datasets that include mixed optimal and sub-optimal trajectories, our
method could bring a significant advancement in terms of reward. The finding that our proposed
method attains competitive results stands in contrast to Decision Transformer which emphasizes the
direct improvements brought by applying double policy estimation.

5.5 Discussions

To demonstrate the actual effectiveness of reducing the variance, we also record the MSE from
the final evaluation stage of both DPE and DT for off-policy evaluation in Fig. 2, the results show
that using DPE weights could bring a generally lower MSE on all environments selected compared
to DT, validating our efficiency on variance reduction. To visualize the source of effectiveness in
the double importance weights estimation we record the distribution of πb and πt on the ‘hopper’
environment and provide a kernel density estimate plot in Fig. 3. The drastic difference from the
two distributions could mean that the behavior policy estimated are acting as a correction weight to
offset the probability sampling from the target policy distribution, leading to improved performance
and reduced variance. As an example, an occasional sub-optimal trajectory that the target trajectory
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Figure 1: MSE comparison with DT and DPE
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Figure 2: Comparing Kernel Density Estimate of estimated πb and πt on Hopper datasets.

learned with high probability could be corrected by the low probability from the estimated behavior
policy, making this a low-weight trajectory to learn from.

5.6 Ablation Studies
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PDF
PDF-Clipped

Figure 3: Ablations results on compar-
ing different probability sampling meth-
ods on estimated πb

According to the object of DPE, the estimation of πb
still determines the target policy weights. In this sec-
tion, we evaluate and compare several different ways to
calculate the exact probability generated from the esti-
mated behavior distribution marking as CDF ±0.1, CDF
±0.2, PDF, clipped PDF, and demonstrate the results over
medium-replay datasets in terms of MSE in Figure 3.
We see that despite some cases, most of the settings are
similar regarding their prospective MSE, indicating that
when a proper estimation of this Gaussian distribution is
obtained, their method of sampling probability is not a
major concern. Nevertheless, we find that using a clipped
PDF for behavior probability selection brings the lowest
MSE in general.

6 Limitations and Social Impact

There are several opportunities for future work. First, our approach requires a warm-up phase prior
to the training of the decision transformer to obtain the estimated behavior policy. Also, as RvS
methods perform poorly in stochastic environments as pointed out in [Paster et al., 2022], the currently
proposed method cannot resolve such issues. We only considered comparing the performance of
applying DPE to decision transformer in this paper, although theoretically guaranteed to reduce the
variance of sequence-modeling based decision making, the actual performance improvements on
other designs remain further investigation.
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7 Conclusion

In this paper, we present DPE, a double policy estimation for importance sampling methods that are
proven statistically efficient for variance reduction for Off-Policy Evaluation in Sequence-Modeled
Reinforcement Learning. Computing both the behavior policy estimate and target estimate from the
same set of data allows DPE to correct for the sampling error inherent to importance sampling with
the true behavior policy in the offline dataset. We evaluated DPE applied decision transformer across
several benchmarks against popular works. We demonstrated its competitive performances while
improving the evaluation results of the Decision Transformer, especially on the dataset filled with
sub-optimal trajectories, and confirming the effect of variance reduction through MSE comparison.
Finally, we studied the possible cause for such improvements by visualizing the density of the
estimated target policy and behavior policy, providing potential insights on future designs.
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A Mathematical Details1

A.1 Notations and Explanations2

We use Table 1 to summarize the notations introduced in this paper and their corresponding explana-3

tions, more explanations can be found when first introduced in the main paper.4

Notation Definition
s state space
a action space
P environment transition probabilities
r reward, reward function
D offline dataset
ω a trajectory
H Horizon length
πe evaluation policy
πb behaviour policy
πt target policy
ν density ratio
Z importance weighed policy gradient
g policy score
q return-to-go
π̂b estimated behavior policy
π̂t estimated target policy
bη baseline predicted return-to-go

N (a, σ2) Gaussian distribution, with mean of a and std of σ
Var Variance Operator
ξ̂, η̂, ψ̂ estimators

Table 1

A.2 DPE for sequence modeling-based reinforcement learning5

Let D be a set of off-policy trajectories of length H + 1 collected by a behavior policy πb, denoted6

by D = {ωi, ∀i} with each trajectory ωi = {(s0(i), a0(i), r0(i), · · · , sH (i), aH
(i), rH

(i))).7

We first denote the approximated behavior policy with a Gaussian distribution as πb =8

argmaxπP (π|ω), and the approximated target policy as πt = ât + σ̂2 ∗ nk, where ât and σ̂2is the9

mean and variance generated from the decision transformer, nk is Gaussian noise.10

A.3 Proof For Lemma 111

Lemma 1. Let Fη = − 1
m

∑m
i=1 ∂

2
η logP (ωi; η̂0) be the Fisher Information Matrix. We have12

√
m(η̂ − η0) =

1√
m
F−1
η ·

m∑
i=1

∂ηlogP (ωi; η0) +O(1) (1)

Proof. Since η̂ is the maximum likelihood estimator that optimizes P (ωi; η), we have13

∂η
∑m

i=1 logP (ωi; η) = 0 at η = η̂:14

1



0 =

n∑
i=1

∂ηlogP (ωi; η0) +

n∑
i=1

∂2η logP (ωi; η̂0)(η̂ − η0) +O(||η̂ − η||2)

Expanding the right-hand side from η = η0 toward η = η̂, we have
√
n(η̂ − η0) =

1√
n
{− 1

n
∂2η logP (ωi; η0)(η̂ − η0)}−1 ·

n∑
i=1

∂ηlogP (ωi; η0) +O(1)

√
n(η̂ − η0) =

1√
n
{− 1

n
∂2η logP (ωi; η0)(η̂ − η0)}−1 ·

n∑
i=1

∂ηlogP (ωi; η0) +O(1)

√
n(η̂ − η0) =

1√
n
F−1
η ·

n∑
i=1

∂ηlogP (ωi; η0) +O(1) (2)

which yields the desired result by rearranging the terms and leveraging the Fisher Information Matrix15

Fη .16

A.4 Proof For Lemma 217

Lemma 2. Let Fξ = 1
m

∑m
i=1[∂ξb(ξ))]

T · ∂ξb(ξ)). For linear baseline estimators b(ξ), we have18

√
m(ξ̂ − ξ0) =

1√
m
F−1
ξ ·

m∑
i=1

[G(ωi)− b(ξ0)] · ∂ξb(ξ0) +O(1) (3)

Proof. Since ξ̂ is the minimum mean-square-error estimator optimizing
∑m

i=1 [G(ωi)− b(ξ)]
2, we19

have:20

∂ξ

m∑
i=1

[G(ωi)− b(ξ)]
2
= 0 (4)

Expanding the right-hand side from ξ = ξ0 toward ξ = ξ̂, we have21

0 = ∂ξ

m∑
i=1

[G(ωi)− b(ξ0)]
2
+ ∂2ξ

m∑
i=1

[G(ωi)− b(ξ)]
2
(ξ̂ − ξ0) + o(||ξ̂ − ξ0||2

0 =

n∑
i=1

∂ξw
2
i [G(ωi)− b(ξ)]2 +

n∑
i=1

∂2ξw
2
i [G(ωi)− b(ξ)]2(ξ̂ − ξ)2 +O(||(ξ̂ − ξ)||2)

0 =

n∑
i=1

(−I) · [G(ωi)− b(ξ)]2w2
i · ∂ξb(ξ0) +

n∑
i=1

[w2
i (∂ξb(ξ0))]

2 − I[G(ωi)− b(ξ0) · w2
i · ∂2ξ b(ξ0)]2(ξ̂ − ξ) +O(1)

√
n(ξ̂ − ξ) =

1√
n
{ 1
n

n∑
i=1

(∂2ξ b(ξ0))
2w2

i }−1 ·
n∑

i=1

[G(ωi)− b(ξ0)] · w2
i ∂ξb(ξ0) +O(1)

√
n(ξ̂ − ξ) =

1√
n
F−1
ξ ·

n∑
i=1

[G(ωi)− b(ξ0)]w
2
i ∂ξb(ξ0) (5)

It yields the desired result using the fact that b(ξ) is linear (thus ∂2ξ b(ξ) = 0) and using the definition22

of Fξ.23

Proof Sketch. Since ξ̂ is the minimum mean-square-error estimator optimizing24 ∑m
i=1 [G(ωi)− b(ξ)]

2, we have ∂ξ
∑m

i=1 [G(ωi)− b(ξ)]
2
= 0. Expanding the left-hand side from25

ξ = ξ0 toward ξ = ξ̂, we have 0 = ∂ξ
∑m

i=1 [G(ωi)− b(ξ0)]
2
+ ∂2ξ

∑m
i=1 [G(ωi)− b(ξ)]

2
(ξ̂ −26

ξ0) + o(||ξ̂ − ξ0||2. It yields the desired result using the fact that b(ξ) is linear (thus ∂2ξ b(ξ) = 0) and27

using the definition of Fξ.28
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A.5 Proof For Theorem 129

Theorem 1. The asymptotic variance of ZDPE, using optimal estimators ψ̂, η̂, and ξ̂, is always less30

than that of ZOIS using some ψ0, η0 and ξ0, i.e.,31

var(ZDPE) = var(ZOIS)− var(VA)− var(VB) (6)

where VA and VB are projections of {µi = f(ωi; ψ̂)[G(ωi)− b(ξ̂)]/P (ωi; η̂), ∀i} onto the row32

space of Sη = ∂ηlogP (ωi; η0) and Sξ = ∂ξb(ξ0), respectively.33

Proof. We define auxiliary function µi = µ(ωi; η, ψ, ξ) =
f(ωi)[G(ωi)−b(ξ0)]

P (ωi;η)
, such that ZDPE (which

is θ̂ in the notes with ZOIS being θ) can be written in
n∑

i=1

µ(ωi; θ, ξ, η)− θ = 0

Then expand it from η0, ψ0, ξ0 to η̂, ψ̂, ξ̂, we have34

0 =
1

n
µ(ωi; θ, ξ0, η0)− (θ̂ − θ) +

1

n

n∑
i=1

∂ηµ(ωi; θ, ξ0, η0)(η − η̂) +
1

n

n∑
i=1

∂ξµ(ωi; θ, ξ0, η0)(ξ − ξ̂)

+
1

n

n∑
i=1

∂ξµ(ωi; θ, ξ0, η0)(ξ̂ − ξ) +O(||θ̂ − θ||2 + ||η̂ − η||2 + ||ξ̂ − ξ||2)

√
n(θ̂ − θ) =

1√
n

n∑
i=1

µ(ωi; θ, ξ0, η0) + E(∂ηµ)(η̂ − η) + E(∂ξµ)
√
n(ξ̂ − ξ) +O(1) (7)

Rearranging the terms, plugging in Lemma 1 and Lemma 2, and using the fact of
∑n

i=1 Sη
′F−1

η Sη =35

1 and
∑n

i=1 w
2
i Sξ

′F−1
ξ Sξ = 1, we obtain the equation below, where define Sξ and Sη here. Note36

that we use weights wi = 1 throughout the proof. Recognize that Sξ and Sη are orthogonal. The37

two terms in VA and VB can be viewed as projecting µi onto orthogonal row spaces of Sξ and Sη,38

respectively. Define these as VA and VB39

√
n(θ̂ − θ) =

1√
n

n∑
i=1

{µi − E(µiSη
′)F−1

η · Sη︸ ︷︷ ︸
VA

−E(µiSξ
′) · w2

iF
−1
ξ }︸ ︷︷ ︸

VB

+O(1)

√
n(θ̂ − θ) =

1√
n

n∑
i=1

µi + E{−f(ωi)[G(ωi)− b(ξ0)]

P (ωi; η0)
· ∂ηP (ωi; η0)

P (ωi; η0)
·
√
n(η̂ − η0)}

+E{− f(ωi)

P (ωi; η0)
∂ξb(ξ0)} ·

√
n(ξ̂ − ξ) +O(1)

√
n(θ̂ − θ) =

1√
n

n∑
i=1

µi − E(µi · sη ′) ·
1√
n
F−1
η ·

n∑
i=1

sη

−E{− f(ωi)

P (ωi; η0)
∂ξb(ξ0)} ·

1√
n
F−1
ξ

n∑
i=1

w2
i [G(ωi)− b(ξ0)]∂ξb(ξ0) +O(1)

=
1√
n

n∑
i=1

µi −
1√
n
E(µi · Sη

′) · F−1
η · Sη −

1√
n

n∑
i=1

E(µiSη
′) · w2

iF
−1
η · Sξ +O(1 +

2√
n
)

(8)

Recall that 
∑n

i=1 Sη
′F−1

η Sη = 1,∑n
i=1 w

2
i Sξ

′F−1
ξ Sξ = 1
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We have:40

√
n(θ̂ − θ) =

1√
n

n∑
i=1

{µi − E(µiSη
′)F−1

η · Sη︸ ︷︷ ︸
VA

−E(µiSξ
′) · w2

iF
−1
ξ }︸ ︷︷ ︸

VB

+O(1) (9)

(10)

We note that Sξ
′ and Sη

′ are orthogonal, i.e.,41

n∑
i=1

SηSξ = Sξ

n∑
i=1

Sη = 0

Recognize that Sξ and Sη are orthogonal. The two terms in Eq.(10) can be viewed as projecting µi

onto orthogonal row spaces of Sξ and Sη , respectively. Define these as VA and VB The first term on
the right hand side in

√
n(θ̂ − θ) =

1√
n

n∑
i=1

{µi − E(µiSη
′)F−1

η · Sη︸ ︷︷ ︸
VA

−E(µiSξ
′) · w2

iF
−1
ξ }︸ ︷︷ ︸

VB

+O(1)

is indeed OIS since
√
n(θ̂ − θ) = 1√

n

∑n
i=1 µi. From Pythagorean relationship, we prove42

var(ZDPE) = var(ZOIS) − var(VA) − var(VB). The theorem shows that the use of the DPE es-43

timator always reduces the asymptotic variance of the estimator of OIS.44

From Pythagorean relationship, we prove var(ZDPE) = var(ZOIS) − var(VA) − var(VB). The45

theorem shows that the use of the DPE estimator always reduces the asymptotic variance of the46

estimator of OIS.47

Algorithm 1 pseudocode for DPE

1: Initiate θ̂ for πθ(a|s)
2: for k = 0 to pretrain_steps do
3: Random Sample Trajectories: τ ∼ D
4: Sample time index for each trajectory: h ∼ τi[1, L]

5: Calculate Loss: L(θ̂) =
∑

st,at,h
logπθ(at|st)

6: Update policy parameters: θ̂ = θ̂ + η∇θ(L( ˆtheta))
7: end for
8: initialize π̂t, Decision Transformer
9: for k = 0 to max_train_steps do

10: Random Sample Trajectories: τ ∼ D
11: Sample time index for each trajectory: h ∼ τi[1, L]
12: Generate Trajectories from DT: â = DT(R, s, a, t)
13: Calculate Loss for DT: L(θ̃) = 1

N

∑N
i=1(âi − ai)

2

14: Estimate ∇θJ(πt) =
∑

i,t ∇θt logπt(ai,t|sit)A((ai,t|sit))
15: Update Decision Transformer: θπt

= θπt
+ η∇θtJ(πθt)

16: end for
17: Return Decision Transformer πt

B Experimental Details48

Code for experiments can be found on GitHub(in the supplementary material during review).49

B.1 Implementation Details50

Our code is based on the original Decision Transformer and CQL. We summarize the pseudocode for51

DPE training process in Algorithm 1. The hyperparameters used are shown below.52

We compare with 2 additional baselines here in Table 3.53
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Table 2: Hyperparameters of DPE in experiments for D4RL Dataset.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Nonlinearity function ReLU
Batch size 64
Context length K 20 HalfCheetah, Hopper, Walker
Return-to-go conditioning 6000 for HalfCheetah

3600 for Hopper
5000 for Walker

Dropout 0.1
Learning rate 10−4

Grad norm clip 0.25
Weight decay 10−4

Learning rate decay Linear warmup for first 105 training steps

Dataset Environment DPE DT RvS CQL BEAR TD3+BC MOPO UWAC BC IQL

medium
HalfCheetah 45.4 42.6 41.6 44.4 41.7 48.3 73.1 42.2 43.1 47.4

Hopper 69.8 67.5 60.2 58.8 52.1 59.3 38.3 50.9 63.9 66.3
Walker 77.9 74.0 71.7 79.2 59.1 83.7 41.2 75.4 77.3 78.3

medium-replay
HalfCheetah 40.5 36.6 38.0 46.2 38.6 44.6 69.2 35.9 4.3 44.2

Hopper 94.6 79.4 73.5 48.6 33.7 60.9 32.7 25.3 30.9 94.5
Walker 83.5 66.6 60.6 26.7 19.2 81.8 73.7 23.6 36.9 73.9

medium-expert
HalfCheetah 82.5 89.0 92.2 62.4 53.4 90.7 70.3 42.7 59.9 86.7

Hopper 108.2 107.6 101.7 104.6 96.3 98.0 60.6 44.9 79.6 91.5
Walker 93.7 108.1 106.0 108.1 40.1 110.1 77.4 96.5 36.6 109.6

average

Table 3
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