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Abstract

Medical imaging faces significant challenges in
single-domain generalization (SDG) due to the
diversity of imaging devices and the variability
among data collection centers. To address these
challenges, we propose TinyMIG, a framework
designed to transfer generalization capabilities
from vision foundation models to medical imag-
ing SDG. TinyMIG aims to enable lightweight
specialized models to mimic the strong general-
ization capabilities of foundation models in terms
of both global feature distribution and local fine-
grained details during training. Specifically, for
global feature distribution, we propose a Global
Distribution Consistency Learning strategy that
mimics the prior distributions of the foundation
model layer by layer. For local fine-grained de-
tails, we further design a Localized Representa-
tion Alignment method, which promotes seman-
tic alignment and generalization distillation be-
tween the specialized model and the foundation
model. These mechanisms collectively enable the
specialized model to achieve robust performance
in diverse medical imaging scenarios. Extensive
experiments on large-scale benchmarks demon-
strate that TinyMIG, with extremely low com-
putational cost, significantly outperforms state-
of-the-art models, showcasing its superior SDG
capabilities. All the code and model weights will
be publicly available.
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Figure 1. The proposed TinyMIG significantly surpasses the SDG
capabilities of SOTAs with extremely low computational cost and
model parameter size.

1. Introduction
In the field of medical imaging analysis, Domain Adaptation
(DA) (Kouw & Loog, 2021; Guan & Liu, 2021a) and Do-
main Generalization (DG) (Zhou et al., 2022a; Yoon et al.,
2023; Huang et al., 2020) address the critical challenge of
managing variations in data distributions that deviate from
the conventional assumption of independent and identically
distributed (IID) data (Carlucci et al., 2019). Among these,
Single-source Domain Generalization (SDG) tackles the
practical problem of developing methods capable of gener-
alizing from a single source to multiple out-of-distribution
(OOD) target domains (Liu et al., 2022b; Xu et al., 2023).
This task is especially relevant in medical imaging, where
data availability is often limited, and privacy requirements
are stringent (Price & Cohen, 2019). In recent years, key
approaches in SDG have been proposed include Data Aug-
mentation (Liu et al., 2024; Zhou et al., 2021; Su et al.,
2022b), Regularization (Chen et al., 2022; Zhang et al.,
2022), and Self-supervised Learning (Zhou et al., 2022b),
each of which aims to improve model robustness and adapt-
ability to unseen domains. Despite these advancements, sig-
nificant challenges remain in comprehensively addressing
the SDG problem, such as limited generalization capabil-
ities and high computational complexity, highlighting the
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ongoing need for further research in this area.

Regarding model generalization capabilities, one of the most
notable recent advancements in computer vision (CV) and
natural language processing (NLP) has been the develop-
ment of Foundation Models (FMs) or Large Models (LMs),
such as CLIP (Radford et al., 2021), SAM (Kirillov et al.,
2023b), and GPT (Brown et al., 2020). In this work, we
prefer to use the term Vision Foundation Models VFMs to
refer to these methods. Leveraging large-scale parameters
and extensive pre-training datasets, these models demon-
strate superior generalization capabilities across a range of
downstream tasks. The latest developments in these areas
inspire us to reflect on two key questions: i): Whether the
generalization capabilities of VFMs can enhance smaller
specialized models, particularly in specialized fields such as
medical imaging. ii): Additionally, how to design effective
knowledge transfer methods to facilitate the improvement of
specialized models by leveraging VFMs.

In this work, we propose TinyMIG as shown in Fig. 2, a
method to transfer generalization proficiency from VFMs
to medical imaging SDG. The core objective of this frame-
work is to enable smaller specialized models to mimic the
strong generalization capabilities of large foundation models
in terms of both global feature distribution and local fine-
grained details during training, so that the specialized mod-
els can independently handle domain shifts in unseen target
domains during testing. Specifically, for global feature dis-
tribution, we propose a feature redistribution consistency
learning strategy that mimics the prior distributions of the
VFMs layer by layer. For local fine-grained details, to fur-
ther enhance the specialized model’s learning of fine-grained
features from the foundation model, we design a localized
representation transfer method, which promotes semantic
alignment and generalization distillation between the spe-
cialized model and the VFMs. TinyMIG framework offers
the following advantages: i) Computational efficiency: elim-
inates the need to incur the substantial computational over-
head of foundation models during the inference phase; ii)
Structural flexibility: Seamlessly integrates various founda-
tion models to enhance the performance of domain-specific
models; iii) Superior performance: achieving exceptional
results with minimal parameters and faster inference speeds,
as shown in Fig. 1. The contributions of this work are
summarized as follows:

• We propose an efficient framework for transferring the
generalization capabilities of large-scale Foundation
Models to lightweight specialized models. This frame-
work maintains robust SDG in medical imaging while
requiring only minimal computational overhead.

• For global feature distribution, we propose a feature
distribution consistency learning strategy that encour-
ages the specialized model to hierarchically mimic the
prior distributions of the foundation model.

• For local fine-grained details, we design a domain-
invariant representation transfer method, which
achieves improved localized representation alignment
through frequency-domain discriminative content en-
hancement.

• Extensive experiments on public datasets demonstrate
that TinyMIG significantly outperforms existing meth-
ods with minimal model size and computational cost.

2. Related Work
Domain Generalization (DG). DG has been a prominent re-
search focus in the medical imaging field (Wang et al., 2020;
Guan & Liu, 2021b; Su et al., 2022a; Butoi et al., 2023). Var-
ious approaches have been proposed, including image-level
data augmentation techniques like style diversification (Liu
et al., 2020b; Su et al., 2021a; Zhang et al., 2020; Su et al.,
2022b), and feature space manipulation methods based on
adversarial learning or statistical randomization (Chen et al.,
2022; Zhou et al., 2022b; Chen et al., 2023; Ouyang et al.,
2022a). Moreover, disentanglement-based strategies have
been explored to promote cross-domain feature invariance
(Hu et al., 2023; Gu et al., 2023). Recently, spectral de-
composition has been shown to effectively capture style and
content information, which are closely associated with am-
plitude and phase spectra (Liu et al., 2021; Xu et al., 2021;
Wang et al., 2023b), in the context of DG. This observation
motivates our investigation into the efficient transfer of gen-
eralization features from VFMs to lightweight specialized
models within the frequency domain.

Single-source Domain Generalization (SDG). SDG meth-
ods (Fan et al., 2021; Liu et al., 2022b) focus on extracting
robust and invariant features solely from source data. Tra-
ditional approaches include image transformations (Zhang
et al., 2020), adversarial learning (Jing et al., 2023; Su et al.,
2021b), model-driven augmentation (Yue et al., 2019), and
feature-level augmentation (Zhou et al., 2022a). To miti-
gate overfitting risks caused by domain shifts, a variety of
data augmentation strategies have been proposed (Xu et al.,
2020; Huang et al., 2020; Zhou et al., 2021). Adversarial
techniques (Zhong et al., 2022; Chen et al., 2020; Qiao et al.,
2020) leverage domain synthesizers to generate interpolated
domains while maintaining semantic consistency through
mutual information regularization.

Vision Foundation Model (VFM). Foundation models such
as SAM (Kirillov et al., 2023b), DINOV2 (Oquab et al.,
2023), CLIP (Radford et al., 2021), GIT (Wang et al., 2022),
and Coca (Yu et al., 2022) represent notable breakthroughs.
These large-scale foundation models, pre-trained on diverse
datasets, have attracted considerable attention for their flex-
ibility in adapting to a wide range of tasks (Devlin et al.,
2018; Touvron et al., 2023; Brown et al., 2020). Their re-
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markable generalization abilities have inspired extensive
research into their potential for specialized applications,
demonstrating their transformative influence across various
domains (Ji et al., 2023; Ma & Wang, 2023; Wang et al.,
2023a; Osco et al., 2023). This inspires us to consider how
to fully leverage these properties during the training phase.

3. Method
The proposed TinyMIG framework leverages VFMs such as
SAM (Kirillov et al., 2023a), Dinov2 (Oquab et al., 2023),
and SAMed (Ma et al., 2024) during the training phase to
guide and enhance the single-domain medical image seg-
mentation capabilities of lightweight models. The overall
framework comprises two key components: Global Distri-
bution Consistency Learning and Localized Representation
Alignment. All strategies are implemented during the train-
ing phase, ensuring no additional computational overhead
during the inference phase.

3.1. Global Distribution Consistency Learning

Pre-training on large-scale datasets with diverse styles en-
dows VFMs with superior generalization capabilities in
global feature distribution, enabling them to adapt to a wide
variety of patterns. To leverage this advantage, we design the
Universal Feature Distribution Modulation (UFDM), which
adjusts the feature distribution of the lightweight model
using the prior distribution of the foundation model. Ad-
ditionally, we propose the Cross-Distribution Consistency
Loss (LCDC ) to optimize the consistency of the lightweight
model’s feature distribution during the inference.

Universal Feature Distribution Modulation (UFDM). We
observe that the statistical properties of feature maps, such
as mean and variance within a deep network, serve as strong
indicators for features with varying styles and content. In-
spired by the instance normalization strategy in AdaIN
(Huang & Belongie, 2017), we propose the UFDM module
to modulate the feature distributions within the specialized
model, as demonstrated in Fig. 3 (a). Specifically, for a
given intermediate feature XR

i and XS
i ∈ RH×W×C from

the i-th block of the specialized and foundation models, H ,
W , and C denote the height, width, and number of channels,
respectively, and XR

i , which is obtained by reprogramming
the original foundation model features XF

i through the FRM
module, as detailed in Section 3.4.

AdaIN(f, γm, βm) = γm(f − µ(f))/σ(f) + βm, (1)

where µ(·), σ(·) ∈ RB×C correspond to the spatially com-
puted mean and standard deviation for each channel across
the features f , γm and βm can determine the direction of
style transfer. We begin by sampling Q ∈ RB×C from a
Beta distribution, Q ∼ Beta(α, α), where α is empirically
set to 0.1 (Zhou et al., 2021). The sampled Q is then used as

the probability parameter to define a Bernoulli distribution,
from which we draw λ ∈ RB×C , i.e., λ ∼ Bern(Q). To
ensure a better imitation of global features, we randomly
sample the augmented statistics σs, µs ∈ RB×C from a
uniform distribution and mix them with the feature distribu-
tion of the foundation model. This distribution spans most
feature statistics: σs ∼ U(0, 1), µs ∼ U(0, 1). Then, the
mixed statistics are computed as follows:

γmix = λσs+(1−λ)σ(XR
i ), βmix = λµs+(1−λ)µ(XR

i ).
(2)

Finally, the mixed feature statistics is applied to mimic the
global distribution of the foundation features XR

i :

UFDM(XS
i ) = γmix

XS
i − µ(XS

i )

σ(XS
i )

+ βmix. (3)

Cross-Distribution Consistency Loss (CDCL). We intro-
duce the LCDC loss, which enhances domain-invariant fea-
ture extraction by aligning the soft predictions of the original
and UFDM-modulated samples. Specifically, we adopt the
logit pairing method, where CDCL enforces consistency by
aligning segmentation logit outputs before and after distri-
bution modulation during training. Formally, we minimize
the bidirectional KL divergence between the probabilistic
distributions of the semantic predictions, Yufdm

i and Yori
i ,

ensuring that the specialized model maintains distributional
consistency under different styles:

LCDC =
1

N

N−1∑
i=0

(
KL

(
Yori
i ∥Yufdm

i

))
+

1

N

N−1∑
i=0

(
KL

(
Yufdm
i ∥Yori

i

))
.

(4)

The LCDC is designed to enhance the specialized model’s
ability to capture high-quality feature representations,
thereby improving its performance in domain-specific tasks
without relying on the foundation model during inference.

3.2. Localized Representation Alignment (LRA)

As shown in Fig. 3 (b), we design the Frequency-based
Discriminative Content Enhancement and the Localized
Representation Alignment Loss. These components work
together to refine local feature representations, ensuring
improved robustness in unseen domains.

Frequency-based Discriminative Content Enhancement
(FDCE). To enhance domain-invariant and discriminative
content in the frequency domain, we employ the Fourier
Transform (FFT) to decompose feature representations from
both the foundation and specialized models, followed by
learnable filtering operations on amplitude and phase com-
ponents. Specifically, given a pair of intermediate fea-
ture representations XS

i and reprogrammed features XR
i ∈
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Figure 2. Illustration of the Proposed TinyMIG Framework. UFDM is integrated into certain layers of the specialized model to generate
style samples. LRA enhances content features of both models in the frequency domain. The model is further optimized with LCDC

and LLRA, promoting the global and local transfer of generalized features to the specialized model. Segmentation loss constrains the
outputs of both original LSo

seg and UFDM-stylized features LSa
seg , while the foundation model LF

seg is incorporated via co-training. During
inference, only the low-cost specialized model is used, ensuring a balance between generalization performance and efficiency.

RH×W×C extracted from the i-th block of the specialized
and foundation models via the FRM module, we first apply
a 2D FFT (Chi et al., 2020) to obtain the corresponding
frequency representations XSf

i and XRf
i . As shown in the

following equations, these frequency representations are
then decomposed into amplitude and phase components:

[XRA
i ,XSA

i ] = A([XRf
i ,XSf

i ]), (5)

[XRP
i ,XSP

i ] = P([XRf
i ,XSf

i ]). (6)

To selectively enhance the domain-invariant and discrimi-
native frequency components, we introduce two learnable
filters, WA and WP (denoted as FDCE-A and FDCE-P),
which are applied separately to the amplitude and phase
spectra. The filtering operations are defined as follows:

[X̂RP
i , X̂SP

i ] = Sigmoid(WP)⊗ [XRP
i ,XSP

i ], (7)

[X̂RA
i , X̂SA

i ] = Sigmoid(WA)⊗ [XRA
i ,XSA

i ], (8)

where ⊗ denotes element-wise multiplication, and the en-
hanced phase and amplitude representations are denoted
as X̂RP

i and X̂RA
i , respectively. The learnable filters

are initialized with all elements set to one, ensuring that
Sigmoid(W∗) ∈ [0, 1]. Finally, the enhanced amplitude and
phase spectra are reconstructed into feature maps using the

inverse Fourier Transform (F−1), allowing the specialized
model to leverage the enriched frequency-domain represen-
tations:

{X̂R
i , X̂S

i } = F−1{[X̂RP
i , X̂RA

i ], [X̂SP
i , X̂SA

i ]}. (9)

After applying spectral filters for content enhancement at
the spatial locations, we further propose a phase spectrum-
based Adaptive Channel Refiner to enhance content along
the channel dimension. The key idea is that amplitude
reflects style, whereas phase represents content. Thus, the
phase component is assumed to be consistent between the
foundation and specialized features XR

i and XS
i due to its

stable representation. Subsequently, we obtain the refined
channel weight CR

P and CS
P through applying SE blocks (Hu

et al., 2018) to the phase element of the content enhanced
features X̂S

i and X̂R
i , as shown below:

CR
P = SE(X̂RP

i ), CS
P = SE(X̂SP

i ). (10)

Then we product the channel attention with XS
i and XR

i to
obtain the final refined feature map X̃S

i and X̃R
i :

X̃R
i = ϕex(CR

P )⊙ X̂R
i , X̃S

i = ϕex(CS
P)⊙ X̂S

i , (11)

where ⊙ denotes the Hadamard product, and ϕex(·) adapts
the weights to align with the spatial dimensions of the fea-
ture map, i.e., ϕex : Rc×1×1 → Rc×h×w.
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Figure 3. (a) The proposed Universal Feature Distribution Modulation (UFDM) module, by extracting feature distributions XR
i and XS

i

from the foundation model and specialized model, UFDM generates the redistributed samples. (b) Frequency-based Discriminative
Content Enhancement (FDCE) module utilizes Fourier transforms combined with learnable frequency-domain filters WA and WP to
enhance the discriminative content features.

Localized Representation Alignment Loss. We imple-
ment the FDCE strategy across multiple feature scales to
enhance feature representations at different hierarchical lev-
els. Specifically, we select a set of intermediate feature maps
from both the foundation model and the specialized model:

X̃R = {X̃R
i | i ∈ IR}, X̃S = {X̃S

j | j ∈ IS}, (12)

where IR and IS represent the selected sets of feature layers
from the foundation and specialized models, respectively.
To enforce consistency between the feature representations,
we introduce an L2-norm loss that minimizes the discrep-
ancy between corresponding feature maps:

LLRA =
1

N

C∑
c=1

H∑
h=1

W∑
w=1

(
X̃R

i (c, h, w)− X̃S
j (c, h, w)

)2

.

(13)

3.3. PEFT for Foundation Model

To enhance the adaptability of vision foundation models
(VFMs) to the medical domain and improve feature align-
ment with the specialized model, we adopt a two-step ap-
proach. First, we employ the Adapter technique, as used
in DAPSAM (Wei et al., 2024b), which enables Parameter-
Efficient Fine-Tuning at each layer of the foundation model.
Second, we propose the Feature Reprogramming Module
(FRM) to further refine the extracted features, making them
more suitable for downstream tasks and specialized models.
At its core, FRM utilizes residual blocks to perform feature
dimension transformation and alignment, ensuring effective
adaptation of foundation model representations.

Training Objective. In this work, two distinct loss functions
are employed: auxiliary segmentation loss LF

seg for the
VFM and the segmentation loss LS

seg for the specilized
model. Lseg comprises a combination of Dice loss and
Cross-Entropy loss. Thus, our overall optimization objective
can be expressed by the following equation:

L = λ1LF
seg + λ2LSa

seg + λ3LSo
seg + λ4LLRA + λ5LCDC ,

(14)

where [λ1,...,λ5] are hyperparameters. A detailed discussion
of loss term hyperparameters is in the Appendix.

4. Experiment
To validate the effectiveness of our TinyMIG framework, we
conduct extensive experiments on two medical image DG
benchmark tasks. These include two medical segmentation
tasks: the 2D joint optic disc (OD) and cup (OC) segmen-
tation task (Almazroa et al., 2018a; Chen et al., 2023), as
well as a 3D medical image segmentation task: the prostate
MRI segmentation task (Chen et al., 2023). The Dice score
metric (DSC) and Average Surface Distance (ASD) are uti-
lized for evaluation on fundus and prostate task. We closely
follow the implementation of (Hu et al., 2023) and use a
U-shaped segmentation network with a modified ResNet-
34 encoder as the specialized model and backbone for all
competing approaches, ensuring a fair comparison. Further
details on the dataset and model architecture are provided
in the appendix.

4.1. Experimental Results

Experiment Setting. In our experiments, we adopt the
leave-one-domain-out strategy commonly used in DG re-
search. The model is trained on the single source domain
and tested on the remaining K − 1 unseen target domains.
We compare with several recent state-of-the-art domain gen-
eralization approaches, including: feature-space domain
randomization Methods: MixStyle (Zhou et al., 2021), TriD
(Chen et al., 2023), and DSU (Li et al., 2022); Adversar-
ial noise synthesis method: MaxStyle (Chen et al., 2022);
Image augmentation methods for SDG in Medical Imag-
ing: SLAug (Su et al., 2022b) and VPTTA (Chen et al.,
2024). Advanced DG methods based on vision foundation
models (e.g., fine-tuned VFs): Rein (Wei et al., 2024a) and
DAPSAM (Wei et al., 2024b).

Comparison results: Tab. 1 and Tab. 2 present the quan-
titative comparison results of our TinyMIG and other DG
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Table 1. Performance Comparison of our TinyMIG with SOTA methods on Fundus segmentation task.

Methods Optical Disc / Cup Segmentation (DSC ↑) Avg. ↑ Optical Disc / Cup Segmentation (DSC ↑) Avg. ↑D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

Optical Disc DSC ↑ Optical Cup DSC ↑
ERM (Ronneberger et al., 2015) 74.89 81.72 78.12 74.79 74.36 76.78 59.21 63.27 71.96 57.23 58.88 62.11

MixStyle (ICLR2021) (Zhou et al., 2021) 75.67 83.35 82.86 68.86 79.54 78.06 60.84 62.60 73.77 61.44 66.79 66.73
CSDG (TMI 2022) (Ouyang et al., 2022a) 78.40 82.02 81.46 75.51 81.09 79.70 65.11 70.79 76.19 65.26 65.28 68.53

MaxStyle (MICCAI2022) (Chen et al., 2022) 77.40 80.95 79.59 76.69 81.95 79.32 65.44 67.62 74.52 66.05 64.84 67.10
EFDM (CVPR 2022) (Zhang et al., 2022) 78.83 84.83 82.25 82.13 81.45 81.90 62.75 65.94 72.20 61.62 63.02 64.10

DSU (ICLR2022) (Li et al., 2022) 76.88 82.17 81.12 82.36 83.09 81.12 61.26 70.16 74.10 63.19 59.65 65.67
SLAug (AAAI2023) (Su et al., 2022b) 79.83 83.42 83.18 81.17 83.57 82.23 64.53 71.30 75.94 64.52 67.12 68.28

TriD (MICCAI 2023) (Chen et al., 2023) 78.35 82.19 83.62 80.18 81.65 81.12 66.67 70.85 74.13 67.53 66.96 69.23
MAD (CVPR2023) (Qu et al., 2023) 80.63 82.10 80.37 82.08 80.31 81.10 67.14 66.57 72.40 68.38 69.37 68.77

VPTTA (CVPR2024) (Chen et al., 2024) 79.41 84.86 80.01 62.01 80.85 77.43 68.41 73.86 69.01 51.01 69.85 66.43
DAPSAM (MICCAI2024) (Wei et al., 2024b) 85.36 89.01 85.45 87.29 90.38 88.27 76.38 76.80 77.14 72.62 72.01 74.99
SAMed (Nat. Commun2024) (Ma et al., 2024) 80.63 82.10 80.37 82.08 80.31 81.10 67.14 66.57 72.40 68.38 69.37 68.77

90.83 89.38 90.01 88.86 91.36 90.09 82.60 79.14 81.35 76.83 79.26 79.84Tiny-MIG(Ours) +5.47 +0.37 +4.56 +1.57 +0.98 +1.82 +6.22 +2.34 +4.21 +4.21 +7.25 +4.85

Table 2. Performance Comparison of our TinyMIG with SOTA methods on Prostate segmentation task.

Task Prostate Segmentation (DSC ↑) Avg. ↑ Prostate Segmentation (ASD ↓) Avg. ↓Single Seen Site D1 D2 D3 D4 D5 D6 D1 D2 D3 D4 D5 D6

DSC ↑ ASD ↓
ERM (Ronneberger et al., 2015) 71.81 65.56 43.98 71.97 48.39 37.82 56.59 7.54 8.87 13.30 11.97 9.98 7.65 9.89

MixStyle (Zhou et al., 2021) 73.24 58.06 44.75 66.78 49.81 49.73 57.06 4.98 5.77 6.30 5.21 5.98 6.26 5.75
CSDG (Ouyang et al., 2022b) 82.14 67.21 59.11 73.16 67.38 73.23 70.37 3.51 4.08 4.56 3.58 4.46 4.17 4.06

CCSDG (Guo et al., 2023) 80.62 69.52 65.18 67.89 58.99 63.27 67.58 3.76 4.12 4.68 3.61 4.42 4.87 4.24
MaxStyle (Chen et al., 2022) 81.25 70.27 62.09 58.18 70.04 67.77 68.27 3.40 3.80 4.32 3.23 3.67 4.12 3.77
EFDM (Zhang et al., 2022) 80.87 69.78 63.16 65.39 69.84 67.15 69.37 3.45 3.82 4.35 3.37 3.89 4.03 3.82
SLAug (Su et al., 2022b) 81.20 69.32 60.92 73.72 67.15 71.93 70.71 3.31 3.74 4.23 3.22 3.79 3.91 3.70
TriD (Chen et al., 2023) 81.50 70.28 62.89 74.52 72.12 69.11 71.74 3.28 3.69 4.15 3.14 3.67 3.81 3.62
MAD (Qu et al., 2023) 80.87 69.78 63.16 65.39 69.84 67.15 69.37 3.49 3.81 4.33 3.36 3.87 4.01 3.82

VPTTA (Chen et al., 2024) 82.32 71.12 66.89 76.31 76.98 73.87 74.58 3.92 3.43 4.65 3.08 3.59 3.85 3.75
DAPSAM (Wei et al., 2024b) 86.34 81.05 70.81 85.28 82.91 81.48 81.31 3.78 3.49 3.98 2.79 3.12 3.16 3.39

SAMed (Ma et al., 2024) 80.42 81.44 66.75 82.09 80.19 80.17 78.51 4.78 4.49 5.54 4.27 4.34 4.61 4.67
85.82 84.52 76.45 86.61 83.70 81.53 83.09 3.81 3.30 3.52 1.62 3.09 3.02 3.06TinyMIG (Ours) -0.52 +3.47 +5.64 +1.33 +0.79 +0.05 +1.79 -0.03 +0.19 +0.46 +1.17 +0.02 +0.14 +0.33

Figure 4. Comparisons across different SDG Methods: prostate
imaging (The first two rows), fundus imaging (The last two rows)
with ground truth (GT) and predictions (a-g). The subfigures (a) to
(g) correspond to: (a) TinyMIG, (b) DAPSAM (Wei et al., 2024b),
(c) TriD (Chen et al., 2023), (d) VPTTA (Chen et al., 2024), (e)
MAD (Qu et al., 2023), (f) SLAug (Su et al., 2022b), (g) baseline.

methods on the fundus segmentation task and the prostate
MRI segmentation task, respectively. As shown in Tab. 1,
our method achieves the best segmentation performance on
the fundus segmentation task, with an average DSC score
of 84.97% for OD/OC segmentation, surpassing the recent
state-of-the-art DAPSAM by 3.92%, demonstrating the ef-
fectiveness of our approach. Tab. 2 compares prostate MRI
segmentation performance across methodologies. Notably,
foundation model-based fine-tuning approaches (e.g., Rein,

DAPSAM) surpass specialized domain generalization meth-
ods, demonstrating foundation models’ superior capacity to
address cross-domain shifts through enhanced feature rep-
resentations. Our approach delivers consistent gains across
metrics, surpassing DAPSAM (Wei et al., 2024b) (DSC:
+1.78%, ASD: -0.59) and achieving remarkable 5.64% DSC
improvement under Domain 3’s challenging settings. Cru-
cially, while maintaining computational efficiency (22.6
GFLOPs), our framework outperforms foundation model
fine-tuning by eliminating the substantial inference over-
head associated with foundation models, while achieving
an optimal accuracy-efficiency tradeoff (Fig. 1). Fig. 4
presents segmentation results for two cases from unseen
domains across different tasks. Our method accurately de-
lineates organ structures and boundaries in images from
unknown distributions, whereas other methods often con-
fuse organ boundaries with surrounding tissues, leading to
segmentation errors.

Various VFMs in TinyMIG. We select three VFMs: Med-
SAM (base) (Ma et al., 2024), SAM (base) (Kirillov et al.,
2023a), and DINOv2 (vit_base) (Oquab et al., 2023). Tab.
3’s last three rows show that all VFMs significantly boost
segmentation accuracy on medical imaging tasks. MedSAM
outperforms others, likely due to its medical image-specific
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Table 3. Comparison of different TinyMIG variants and fine-
tuning-based methods in terms of segmentation performance (Dice
↑), parameter count (M), throughout (fps), and computational cost
(G-FLOPs) during the testing phase. All experiments are con-
ducted on an NVIDIA RTX 4090 GPU.

Methods prostate fundus Params. throughout FLOPs
DAPSAM 81.31 81.05 98.45M 43.91 58.61
Rein+SAM 79.85 79.36 95.78M 44.10 54.29

Rein+Dinov2 80.07 79.54 86.96M 45.72 50.72
MedSAM 78.51 75.92 93.74M 44.92 52.39

TinyMIG+SAMed 83.09 84.68 22.52M 147.73 22.64
TinyMIG+SAM 82.69 83.57 22.52M 147.73 22.64

TinyMIG+Dinov2 82.53 83.05 22.52M 147.73 22.64

Table 4. Ablation experiments on each component in TinyMIG for
the fundus and prostate tasks.

UFDM LCDC FDCE LLRA Co-training Fundus Prostate
✗ ✗ ✗ ✗ ✗ 67.53 48.75
✓ ✗ ✗ ✗ ✓ 81.04 76.25
✓ ✓ ✗ ✗ ✓ 82.52 80.73
✗ ✗ ✓ ✓ ✓ 83.41 78.26
✗ ✗ ✗ ✓ ✓ 80.16 70.32
✓ ✓ ✓ ✓ ✗ 83.78 81.76
✓ ✓ ✓ ✓ ✓ 84.97 83.09

pretraining. While SAM and DINOv2 are trained on nat-
ural images, they still deliver strong segmentation results,
demonstrating TinyMIG’s robust generalization and feature
transfer capabilities. Compared to DAPSAM, TinyMIG not
only achieves superior segmentation performance on unseen
domain samples but also offers significantly better inference
efficiency: fewer model parameters (22.52 v.s. 98.45 M),
faster inference speed (147.73 v.s. 43.92 fps), and reduced
computational cost (22.64 v.s. 58.61 GFLOPs). These ad-
vantages validate the adaptability of TinyMIG method to
different VFMs, demonstrating its generalizability.

4.2. Ablation Studies of TinyMIG

We conduct ablation studies to evaluate the contribution of
each component in our TinyMIG as summarized in Tab. 4.

Effectiveness of UFDM. The UFDM module is the core of
Global Distribution Consistency Learning. When using the
UFDM module only, we directly supervise the stylized sam-
ples with the cross entropy loss. As shown in the second row
of Tab. 4, UFDM significantly improves model performance
even without the proposed knowledge-driven consistency
loss. This highlights the importance of diversifying train-
ing samples. Meanwhile, we compare UFDM with other
style-randomization-based DG methods, such as MixStyle
(Zhou et al., 2021), DSU (Li et al., 2022) and Maxstyle
(Chen et al., 2022), as illustrated in Tab. 5, UFDM achieves
the best segmentation performance, further demonstrating
the effectiveness of redistrbuting style features from vision
foundation models.

Table 5. Ablation study of different style variation methods in
UFDM on prostate MRI task.

Mixstyle CrossNorm DSU Maxstyle TinyMIG
Dice ↑ 81.34 81.78 81.47 81.86 83.09
ASD ↓ 3.52 3.48 3.50 3.34 3.06

Effectiveness of CDCL. CDCL serves as the consistency
learning component in the Global Distribution Consistency
Learning method, aiming to guide the model in learning
style-invariant representations. As shown in the third row of
Tab. 4, compared with only applying UFDM, CDCL signifi-
cantly improves the segmentation performance by 4.3% in
DSC. This demonstrates that the proposed logit pairing over
KL divergence loss effectively enables the model to lever-
age the generalization priors of foundational vision models,
showcasing its superiority in learning domain-invariant rep-
resentations.

Effectiveness of FDCE. As shown in the fourth row of Tab.
4, the absence of FDCE for enhancing domain-invariant
content features leads to a significant performance drop.
We also visualize feature heatmaps, as shown in Fig. 6, to
further evaluate the effectiveness of the LRA module. In
general, LRA in TinyMIG enables a more comprehensive
focus on the organ structures and even edge details during
segmentation. This is attributed to FDCE’s spectral modula-
tion in the frequency domain, which enhances the model’s
attention to details, edges, and richer texture information.

4.3. Further Evaluation

Comparison of different style variation methods with
UFDM. In Tab. 5, we compare UFDM with MixStyle
(Zhou et al., 2021), CrossNorm (Tang et al., 2021), DSU
(Li et al., 2022), Maxstyle (Chen et al., 2022) and Trid
(Chen et al., 2023). MixStyle and CrossNorm, being sim-
ple linear combinations of known source domain samples,
struggle to synthesize rare styles. When using MixStyle
and CrossNorm, their segmentation performance is 81.34%
and 81.78%, respectively. In contrast, our UFDM method
effectively integrates diverse style features from the visual
backbone model, significantly increasing the style diversity
of generated samples, which in turn enhances the model’s
segmentation performance.

Ablation Analysis of FDCE. We conduct the experiments
shown in Tab. 6 to investigate the impact of different mod-
ules within the FDCE. The results indicate that removing
any module negatively affects the segmentation performance
on unseen domains, with FDCE-A having the most signif-
icant impact. This suggests that the amplitude spectrum
enhancement filter plays a crucial role in the FDCE module,
likely because the amplitude spectrum is closely associated
with style and texture information of extracted features. Ad-
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Table 6. Ablation study of LRA modules on prostate MRI task.

FDCE-P FDCE-A ACR Dice ↑ ASD ↓
✗ ✗ ✗ 56.59 9.89
✓ ✗ ✓ 78.43 6.39
✗ ✓ ✓ 81.02 3.81
✓ ✓ ✗ 79.05 5.30
✓ ✓ ✓ 83.09 3.06

Table 7. Comparison of Different Distillation Methods on prostate
MRI task.

ChaKD AttnFD MLKD Ours
Dice ↑ 81.02 81.78 80.56 83.09
ASD ↓ 3.82 3.51 4.03 3.06

ditionally, since the phase spectrum encodes more domain-
invariant content features, the ACR module plays a vital
role in enhancing the content information.

Comparison of Different LRA Methods. We compare
LRA with other distillation methods at the feature and logit
level, including the channel distillation ChaKD (Shu et al.,
2021), the attention-based distillation AttnKD (Komodakis
& Zagoruyko, 2017) and logit distillation method MLKD
(Jin et al., 2023). As shown in Tab. 7, our domain-invariant
feature alignment method achieves the best performance
compared to other approaches. This stems from the ability
of spectral dynamic filtering to facilitate domain-invariant
feature transfer while effectively avoids interference from
domain-specific features in LRA module.

Comparison of different alignment methods in CDCL.
Tab. 8 presents the impact of various consistency losses,
including KL-Divergence (KL-Div), mean squared error
(MSE), and Jensen–Shannon Divergence (JS-Div). The re-
sults indicate that the choice of consistency loss has minimal
influence on our method’s overall performance, demonstrat-
ing its robustness to different loss types.

Feature Discriminability Visualization. Fig. 5 presents
t-SNE visualizations (Van der Maaten & Hinton, 2008) com-
paring feature discriminability between TinyMIG and the
DAPSAM method (Chen et al., 2023). In the first column,
our method effectively clusters samples from different do-
mains within the same category, with well-defined distribu-
tion contours outlined by magenta and violet dashed lines.
In contrast, the DAPSAM method exhibits a noticeable gap
between them. The second column shows that DAPSAM
struggles to distinguish category features effectively, likely
due to its limited adaptability to OOD conditions and large
style variations. In comparison, TinyMIG demonstrates
clear separation across domains and categories, highlighting
its strong generalization capability to unseen domains.

Feature Visualization of LRA module. To investigate the
impact of the LRA module on enhancing domain-invariant
content features, we visualize the heatmaps of segmentation
models with and without the LRA module. As shown in

Table 8. Performance comparisons of different consistence learn-
ing method on prostate task.

MSE KL-div JS-div Ours
Dice ↑ 81.02 81.78 82.56 83.09
ASD ↓ 3.82 3.51 3.21 3.06

Figure 5. The t-SNE visualization uses colors to distinguish cat-
egories in the first column and domains in the second, with the
magenta and violet dashed lines marking the distribution contours
of two categories.

Fig. 6, the LRA module improves semantic focus, as seen
in second column, which highlights more accurate regions.
In contrast, the third column not only overlooks some se-
mantic categories but also attends to irrelevant background
areas. This demonstrates that the LRA module effectively
enhances content features related to semantic categories.

5. Conclusion
We present TinyMIG, a novel framework that effectively
transfers generalization from VFMs to compact architec-
tures for medical imaging. TinyMIG introduces two syner-
gistic components: Global Distribution Consistency Learn-
ing, which establishes hierarchical feature alignment across
domains through multi-scale distribution matching while
preserving essential anatomical structures, and Localized
Representation Alignment, which enhances pathological de-
tail capture through adaptive frequency filtering and discrim-
inative feature refinement. This dual mechanism enables
comprehensive learning of both global tissue organization
and localized lesion patterns with remarkable computational
efficiency. Extensive experiments with different VFMs val-
idate that TinyMIG achieves superior performance while
requiring significantly fewer computational resources than
existing methods, establishing a new paradigm for develop-
ing efficient specialized models in medical image analysis.
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Figure 6. Heatmap visualization of the features from the encoder
of the specilized model enhanced by LRA on two medical samples.
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Figure 7. Feature Similarity Analysis of Backbone Models Across Different Architectures (SAM, DINOv2, and ResNet). We calculate
the cosine similarity between features extracted at different layers of the backbone networks for images from various domains in the
fundus dataset. Scale 1 refers to the first four ViT blocks of SAM (Kirillov et al., 2023a) and DINOv2 (Oquab et al., 2023).

The supplementary materials are organized as follows. In the section A, we analyze the motivation behind our proposed
method. In the section B, we provide a detailed description of the dataset and the data augmentation techniques used.
Section C presents extensive additional experiments to demonstrate the method’s effectiveness.

A. Motivation and Generalization of the Foundation Model.
In this section, we investigate whether the encoded features of vision foundation models trained on large-scale visual image
datasets exhibit properties beneficial for generalization. We select two vision foundation models: SAM-b and Dinov2
(ViT-B), alongside a specialized model, ResUnet34, to evaluate their cosine similarity across different domain data on the
fundus task. We examine the four-layer features from SAM and Dinov2 encoders: [XR

3 , XR
6 , XR

9 , XR
12], and the four-layer

features from the ResUnet34 encoder: [XS
1 , XS

2 , XS
3 , XS

4 ]. To assess the robustness of these features, data from domain1
and domain2−5 are input into the frozen SAM-b, Dinov2, and ResUnet34 encoders, producing the corresponding encoded
features at each scale: Rdomaink

i and Sdomaink
j , where i and j represent the different scale for VFMs (layer 3,6,9,12) and

lightweight specialized models (layer 1,2,3,4), k depends different domains. Cosine similarities between the domain1
features and features from other domains are then computed for each scale. The results, presented in Fig. 7, show that the
cosine similarities of features from SAM and Dinov2 remain highly stable across different domains, with strong similarity
observed even in the deeper scales. In contrast, the lightweight specialized model, ResNet34, demonstrates a decreasing
similarity as the network depth increases. From these findings, we conclude that the features from the VFMs’ encoders are
robust and distortion-invariant, which is crucial for developing transferable models with strong generalization capabilities.

B. Datasets and Experimental Details
B.1. Datasets Details

To validate the effectiveness and versatility of the proposed method, we conduct extensive experiments on three benchmark
tasks: the joint Optic Disc (OD) and Cup (OC) segmentation task, the polyp segmentation task and the prostate segmentation
task.

The OD/OC segmentation task comprises five public datasets collected from different medical centres, denoted as D1

(RIM-ONE-r3 (Orlando et al., 2020)), D2 (REFUGE(Almazroa et al., 2018b)), D3 (ORIGA (Zhang et al., 2010)), D4

(REFUGE-Validation/Test (Almazroa et al., 2018b)), and D5 (Drishti-GS (Sivaswamy et al., 2014)). There are 159, 400,
650, 800, and 101 images from these datasets. We cropped a region of interest (ROI) centering at OD with size of 800×800
for each image following [19], and each ROI is further resized to 256 × 256 and normalized by min-max normalization. The
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Figure 8. (a) The proposed TinyMIG significantly surpasses the SDG capabilities of SOTAs with extremely low computational cost and
model parameter size. (b) Parameter analysis on the location of UFDM. (c) Parameter analysis on the location of LRA.

Dice Similarity Coefficient (DSC) and Average Surface Distance (ASD) are utilized for evaluation in this task.

The Prostate segmentation task comprises 116 MRI instances from six different clinical centers, aggregated from three
public datasets, including NCI-ISBI13 (Bloch et al., 2015), I2CVB (Lemaître et al., 2015), and PROMISE12 (Litjens
et al., 2014) datasets. Following the methodologies described in (Liu et al., 2020a; 2022a), the dataset is preprocessed to
standardize the field of view for the prostate region and resized to 384× 384 in the axial plane. The assessment of prostate
segmentation performance also employs the Dice Similarity Coefficient (DSC).

B.2. Experimental Details

We employ the AdamW optimizer (Loshchilov & Hutter, 2018) on all three medical image segmentation tasks, with
β = [0.9, 0.999]. The initial learning rates are set as l0 = 0.0001. These rates decay according to the polynomial rule
lt = l0 × (1− t

T )
0.9, where lt denotes the learning rate at epoch t, and T represents the total number of epochs, which are

set to 200 for prostate segmentation and 100 for the joint segmentation of OD/OC and Polyp segmentation, with the batch
size set as 8. All our experiments are conducted on two 4090 GPU computing servers. Based on the experiments, we set
[λ1,λ2,λ3,λ4,λ5] as [1,1,0.5,0.5,0.5] empirically. In addtion, we select the 3-6-9-12 layers in foundation models and 0-1-2-3
layers in the specialized model, i.e., IR = (3, 6, 9, 12), IS = (0, 1, 2, 3) in Eq. 12.

C. Extended Experiments.
Segmentation Performance and Inference Efficiency of TinyMIG on Unseen Domain Samples. As shown in Fig. 8
(a), thanks to the efficiency of the TinyMIG framework, our method achieves significant advantages in both segmentation
performance (Dice) and inference speed (fps) during the testing phase. The horizontal axis represents inference speed, and
the vertical axis represents segmentation performance on unseen domain samples in the prostate task. Compared to the
state-of-the-art methods DPSAM, our TinyMIG not only achieves superior segmentation performance on unseen domain
samples but also offers significantly better inference efficiency: fewer model parameters (22.52M vs. 98.45M), faster
inference speed (147.74 vs. 43.91).

Location of LRA. Fig. 8 (c) examines the impact of inserting the LRA module at different network layers on performance.
Similar to the positions investigated for UFDM, we evaluate the effect of varying insertion points. The results show that
skipping any layer results in a slight performance drop. This demonstrates that the LRA module effectively filters domain-
specific features and enhances domain-invariant features, enabling its integration at all layers to improve the capability of
generalizable representation transferring of the VFM models.

Location of UFDM. We investigated the impact of UFDM insertion at different positions, as shown in Fig. 8 (b). L0
represents UFDM insertion after the first Conv-BN-ReLU layer (Layer 0), while L1 and L3 correspond to insertion after the
first two and all ResNet layers, respectively. L1 yields the best performance, with a slight decline in L0 and L2. However,
we observed a significant performance drop when UFDM was inserted at L3. This may be due to the fact that shallow layers
in deep neural networks capture more style-related channel statistics, whereas deeper layers tend to encode more semantic
information.
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Table 9. Experiments on the Fundus dataset w.r.t different loss terms.
λ1 λ2 λ3 λ4 λ5 Fundus Dataset
1.0 1.0 1.0 1.0 1.0 83.18
1.0 1.0 1.0 1.0 0.5 83.66
1.0 1.0 1.0 0.5 1.0 83.72
1.0 1.0 0.5 1.0 1.0 83.29
1.0 1.0 1.0 1.0 2.0 82.96
1.0 1.0 1.0 2.0 1.0 82.30
1.0 1.0 2.0 1.0 1.0 82.37
1.0 0.5 0.5 0.5 0.5 84.12
0.5 1.0 0.5 0.5 0.5 84.27
1.0 1.0 0.5 0.5 0.5 84.97

Figure 9. Comparisons across different SDG Methods on fundus imaging with ground truth (GT) and predictions (a-g). The subfigures (a)
to (g) correspond to: (a) TinyMIG, (b) DAPSAM (Wei et al., 2024b), (c) TriD (Chen et al., 2023), (d) VPTTA (Chen et al., 2024), (e)
MAD (Qu et al., 2023), (f) SLAug (Su et al., 2022b), (g) baseline.

The impact of hyperparameters for loss terms. We also present the results for detailed weight settings for loss terms to
Tab. 9. Based on these results, our TinyMIG method is not particularly sensitive to the hyperparameters for loss terms. In
this work, we select a set of hyperparameters [λ1, λ2, λ3, λ4, λ5] = [1.0, 1.0, 0.5, 0.5, 0.5] that exhibit the best performance
as the default settings.

More Qualitative results. As shown in Fig. 9 and Fig. 10, we present additional visual results on the fundus and prostate
tasks. Visual comparisons reveal striking advantages: TinyMIG precisely captures anatomical boundaries in unseen domains,
whereas competing methods exhibit tissue confusion and boundary leakage artifacts, particularly in low-contrast regions.
This demonstrates our method’s superior generalization to distribution shifts.
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Figure 10. Comparisons across different SDG Methods on prostate imaging with ground truth (GT) and predictions (a-g). The subfigures
(a) to (g) correspond to: (a) TinyMIG, (b) DAPSAM (Wei et al., 2024b), (c) TriD (Chen et al., 2023), (d) VPTTA (Chen et al., 2024), (e)
MAD (Qu et al., 2023), (f) SLAug (Su et al., 2022b), (g) baseline.
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