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Abstract

Adversarial attacks on graphs have posed a major threat to the robustness of
graph machine learning (GML) models. Naturally, there is an ever-escalating
arms race between attackers and defenders. However, the strategies behind both
sides are often not fairly compared under the same and realistic conditions. To
bridge this gap, we present the Graph Robustness Benchmark (GRB) with the
goal of providing a scalable, unified, modular, and reproducible evaluation for the
adversarial robustness of GML models. GRB standardizes the process of attacks
and defenses by 1) developing scalable and diverse datasets, 2) modularizing
the attack and defense implementations, and 3) unifying the evaluation protocol
in refined scenarios. By leveraging the GRB pipeline, the end-users can focus
on the development of robust GML models with automated data processing and
experimental evaluations. To support open and reproducible research on graph
adversarial learning, GRB also hosts public leaderboards across different scenarios.
As a starting point, we conduct extensive experiments to benchmark baseline
techniques. GRB is open-source and welcomes contributions from the community.
Datasets, codes, leaderboards are available at https://cogdl.ai/grb/home.

1 Introduction

Graph machine learning (GML) models, from network embedding [1, 2, 3] to graph neural networks
(GNNs) [4, 5, 6, 7, 8, 9], have shown promising performance in various domains, such as social
network analysis [1], molecular graphs [5], and recommender systems [10]. However, GML models
are known to be vulnerable to adversarial attacks [11, 12, 13, 14, 15, 16, 17, 18]. Attackers can modify
the original graph by adding or removing edges [11, 19, 20], perturbing node attributes [12, 13, 14, 15],
or injecting malicious nodes [16, 17, 18] to conduct adversarial attacks. Despite the relatively minor
changes to the graph, the performance of GML models can be impacted dramatically.

Threatened by adversarial attacks, a line of attempts have been made to have robust GML models.
For example, recent GNN architectures such as RobustGCN [21], GRAND [22], and ProGNN [23]
are designed to improve the adversarial robustness of GNNs. In addition, pre-processing based
methods, such as GNN-SVD [24] and GNNGuard [25], alleviate the impact of attacks by leveraging
the intrinsic graph properties and thus improve the model robustness. Despite various efforts in this
direction, there are several common limitations from both the attacker and the defender sides:

*Jie Tang is the corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://cogdl.ai/grb/home


Figure 1: An example of GRB’s attack vs. defense (graph injection) scenario: Black-box: attackers
only have access to the attributed graph but not the target models; Inductive: target models are
trained in an inductive setting (test nodes are unseen during training); Injection: attackers are allowed
to inject new nodes without modifying the existing ones; Evasion: attacks happen during model
inference. All attacks and defenses are evaluated under unified settings to be fairly compared.

1. Unrealistic Attack/Defense Scenarios. The existing attack and defense setups are often am-
biguously defined with unrealistic assumptions, such as ignoring the real-world capabilities of
attackers and defenders, resulting in less practical applications.

2. Lack of A Unified Evaluation Protocol. Previous works often use different settings (e.g.,
datasets, data splittings, attack constraints) in their experiments, resulting in biases in the evalua-
tion and thus making it difficult to fairly compare different methods.

3. Lack of Scalability. Most existing attacks and defenses are performed on very small-scale graphs
(e.g., <10,000 nodes) without considering different levels of attack/defense difficulties, which are
far from the scale and complexity of real-world applications.

To date, there exist several well-established GML benchmarks. For example, the Open Graph Bench-
mark (OGB) [26] offers abundant datasets and a unified evaluation pipeline for GML. Benchmarking
GNNs [27] is a standardized benchmark with consistent experimental settings. However, they mainly
focus on evaluating the performance of GML models, regardless of their robustness. DeepRobust [28]
is a toolkit with implementations of attacks and defenses on both image and graph data, which by
design is not a GML benchmark. Therefore, to address the aforementioned limitations, there is an
urgent need for public benchmarks on evaluating the adversarial robustness of GML models.

In this paper, we propose the Graph Robustness Benchmark (GRB)—the first attempt to benchmark
the adversarial robustness of GML models. The goal of GRB is to provide a reproducible framework
that enables a fair evaluation for both adversarial attacks & defenses on GML models under unified
settings. To achieve this, GRB is designed to have the following properties:

1. Refined Attack/Defense Scenarios. GRB includes two refined attack scenarios: graph modifica-
tion and graph injection, covering the majority of works in the field. By revisiting the limitations
of previous works, we formalize precise definitions for both attackers’ and defenders’ capabilities,
including available information to use and allowed actions, forming more realistic evaluations.

2. Scalable and Unified Evaluations. GRB contains various datasets of different orders of magni-
tude in size, with a specific robustness-focused splitting scheme for various levels of attacking/de-
fending difficulties. It also provides a unified evaluation pipeline that calibrates all experimental
settings, enabling fair comparisons for both attacks and defenses.

3. Reproducible and Public Leaderboards. GRB offers a modular code framework* that supports
the implementations of a diverse set of baseline methods covering GML models, attacks, and
defenses. Additionally, it hosts public leaderboards across all evaluation scenarios, which will be
continuously updated to track the progress in this community.

Overall, GRB serves as a scalable, unified, modular, and reproducible benchmark on evaluating the
adversarial robustness of GML models. It is designed to facilitate the robust developments of graph
adversarial learning, summarizing existing progress, and generating insights into future research.

*https://github.com/THUDM/grb
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2 Adversarial Robustness in Graph Machine Learning

2.1 Problem Definition

In graph machine learning, adversarial robustness refers to the ability of GML models to maintain
their performance under potential adversarial attacks. Take the task of node classification as an
instance, for an undirected attributed graph G = (A,F) where A ∈ RN×N represents the adjacency
matrix of N nodes and F ∈ RN×D denotes the set of node features with D dimensions. Define a
GML modelM : G → Z where Z ∈ [0, 1]

N×L, which maps a graph G to probability vectors with L
classes. Generally, the objective of adversarial attacks on GML models can be formulated as:

max
G′
| arg max
l∈[1,...,L]

M(G′) 6= arg max
l∈[1,...,L]

M(G)| s.t. dA(A′,A) ≤ ∆A and dF (F ′,F) ≤ ∆F (1)

where G′ = (A′,F ′) is the attacked graph, and dA and dF are distance metrics in the metric space
(A, dA) and (F , dF ). The attacker tries to maximize the number of incorrect predictions by GML
models, under the constraints ∆A and ∆F . For instance, ∆A can be the limited number of modified
edges and ∆F can be the limited range of modified features (Cf. Section 3 for detailed discussions).

2.2 Revisiting Adversarial Attacks and Defenses in GML

Table 1: A categorization of graph adversarial
attacks. There are mainly two scenarios: graph
modification and graph injection. GRB supports
the implementation of all types of methods. †

Adversarial Knowledge Objective Approach ScalabilityAttack Black. White. Poi. Eva. Mod. Inj.

DICE [19] " – " – " – "

FGA [11] " – " – " – %

FLIP [29] " – " – " – "

NEA [29] " – " – " – %

FGSM [12] " " " – " – "

Nettack [12] " " " – " – %

RL-S2V [30] " " " – " – %

Metattack [13] " – " – " – %

STACK [31] " – " – " – %

AFGSM [16] " – " – – " "

SPEIT [17] " – – " – " "

TDGIA [18] " – – " – " "

GRB Mod. Scenario " – – " " – "

GRB Inj. Scenario " – – " – " "

GRB Support " " " " " " "

† The table represents the original settings, while methods can be adapted to
other settings by using GRB’s modualr coding framework.

In the work of Szegedy et al. [32], the existence
of adversarial examples was revealed for ML
models in image classification—imperceptible
perturbations on inputs have ineligible impact
on outputs of models. Recent works (in Ta-
ble 1) show that GML models are no exception.
Graph adversarial attacks can mainly be cate-
gorized into two types according to the attack
approach: graph modification attack and graph
injection attack. Graph modification attacks di-
rectly modify the existing graph, by adding or
removing edges (e.g., DICE [19], FGA [11],
FLIP [29], NEA [29], STACK [31]), or fur-
ther modifying node features (e.g., Nettack [12],
FGSM [12], RL-S2V [30], Metattack [13]). Dif-
ferently, graph injection attacks add new ma-
licious nodes without modifying the original
graph (e.g., AFGSM [16], SPEIT [17], TD-
GIA [18]). Facing the problem of scalability,
some attacks are not applicable to large graphs due to their high time complexity [12, 13, 30] or
expensive memory consumption [11, 29].

Defenses can mainly be categorized into two types: preprocess-based defense and model-based
defense. The first type regards the attacked graphs as noisy ones and defenders can preprocess the
adjacency matrix (e.g., GNN-SVD [24], GNN-Jaccard [33]) or the features of nodes (e.g., feature
transformation [17]), to alleviate the effect of perturbations. The second type achieves robustness
through model enhancement, either by robust training schemes (e.g., adversarial training [34, 35]) or
new model architectures (e.g., RobustGCN [21], GNNGuard [25]). Some defenses also suffer from
the problem of scalability, due to the need of calculation on large dense matrices [24, 33, 25].

Notwithstanding the significant progress, existing works share some common limitations: (1) Lack
of scalability: Most works only consider very small graphs and cannot be scaled up to larger ones
due to time/memory complexity. (2) Lack of generalization: Most attacks/defenses are evaluated
on very basic GML models, but not on other variants. Meanwhile, some methods are only effective
for specific models with ad-hoc designs, which makes the results less generalized and practical.
(3) Ill-defined scenarios: The scenarios and assumptions proposed in some previous works are not
realistic, e.g., the unnoticeability under poisoning setting ignores the real capability of the defenders
(Cf. Appendix A.3 for details). Besides, there are no unified standards on evaluating the adversarial
robustness. Different settings (e.g., the choice of datasets, random splitting, different constraints)
introduce biases, which makes it hard to compare the effectiveness of different methods. In light of
these challenges, there is an urgent need for benchmarking the adversarial robustness of GML.
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3 GRB: Graph Robustness Benchmark

3.1 Overview of GRB

Figure 2: GRB Framework.

To overcome the limitations of previous works,
we propose the Graph Robustness Benchmark
(GRB)—a standardized benchmark for evaluat-
ing the adversarial robustness of GML. To en-
sure GRB’s scalability, we include datasets of
different sizes with scalable attack/defense base-
lines. To have a unified process, we standardize
the evaluation scenarios with precise constraints
and realistic assumptions on attackers and de-
fenders. To make GRB easy-to-use, we provide
a modular pipeline that facilitates the implemen-
tation of GML models, attacks, and defenses. To
guarantee the reproducibility, we open-source
and maintain the GRB public leaderboards that
are continuously updated to track the progress of the community.

Altogether, GRB serves as a scalable, unified, modular, reproducible benchmark on evaluating the
adversarial robustness of GML models. We present the solutions to achieve these goals for GRB.

3.2 The Unified Evaluation Scenario of GML Adversarial Robustness

To evaluate the adversarial robustness, it is essential to be aware of the capabilities of potential
attackers. We categorize attacks into the following aspects (as shown in Table 1):

1. Knowledge. Black-box: Attackers do NOT have access to the targeted model (including its
architecture, parameters, defense mechanism, etc.). However, they can access the graph data
(structure, features, labels of training data, etc.). Additionally, they have limited chances to query
the model to get outputs. White-box: Attackers have access to ALL information. However, if the
targeted model has a random process, the run-time randomness is still preserved.

2. Objective. Poisoning: Attackers generate corrupted graph data and assume that the targeted
model is (re)trained on these data to get a worse model. Evasion: The target model has already
been trained, and attackers can generate corrupted graph data to affect its inference.

3. Approach. Modification: Attackers modify the original graph (the same one used by defenders
for training) by adding/removing edges or perturbing node features. Injection: Attackers do not
modify the original graph but inject new malicious nodes to influence a set of targeted nodes.

In practice, the most common real-world case is that the GML models have already been trained for
specific tasks and deployed in a secret way, i.e., black-box and evasion settings. Thus, in GRB, we
propose two unified evaluation scenarios under these settings, graph modification and graph injection.

Graph Modification. This has been the most studied scenario, in which attackers can directly modify
the graph (by adding/removing edges or perturbing node attributes) to attack the GML models. Under
real-world conditions, this is theoretically possible but practically difficult, as the modification attacks
require the authority to access the target nodes in order to to change their contents. Nevertheless, this
scenario enables us to understand how the GML models behave under intended modifications.

Graph Injection. This scenario was first introduced in the KDDCUP 2020 task of Graph Adversarial
Attacks & Defenses†, which targeted at injecting new nodes to a large-scale academic graph. It is
more realistic than the modification one since injecting new nodes is more practically possible than
modifying the existing ones. However, the task in KDDCUP 2020 considers a transductive setting,
i.e., test nodes (except for their labels) are available during training. In this case, defenders can simply
memorize benign nodes and identify the injected nodes, making it an imperfect setting.

Thus, to further GRB’s practical usage (Cf. Appendix A.3 for detailed discussions), we make the
following assumptions for both scenarios: (1) Black-box: Both attackers and defenders do not have

†https://www.biendata.xyz/competition/kddcup_2020_formal/
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knowledge about the methods each other applied. (2) Inductive: The GML models are trained in
trusted data and used to classify unseen data (e.g., new users), i.e., the validation and test data is unseen
during training. (3) Evasion: Attacks will only happen during the inference phase. Furthermore, we
clarify attackers’ and defenders’ capabilities in GRB:

1. For attackers: (a) They have knowledge about the entire graph (including all nodes, edges and
labels but excluding the labels of the test nodes), but do not have knowledge about the target
model or defense mechanism. (b) For graph modification, following the most common setting in
previous works, attackers are allowed to perturb a limited number of edges in the graph (∆A: the
number of modified edges less than a ratio γe of all edges). (c) For graph injection, we follow
the heuristic setting of KDDCUP 2020, attackers are allowed to inject new nodes with limited
edges (∆A: less than Nn injected nodes each with less than Ne edges; ∆F : constrained range of
features [Fmin,Fmax].). (d) They are not allowed to modify the original graph for training. (e)
They are allowed to get predictions from the target model through a limited number of queries.

2. For defenders: (a) They have knowledge about the graph excluding the test nodes to be attacked.
(b) They are allowed to use any method to increase the adversarial robustness, but do not have
prior knowledge about the edges/nodes that are modified/injected.

3. For both sides: Attackers/defenders can of course make assumptions even in the black-box
scenario. For instance, attackers can assume that the target system deploys a certain type of GML
models, then it can be used as the surrogate model to conduct transfer attacks. Moreover, it is not
reasonable to assume that the defense mechanism can be completely held secretly, known as the
Kerckhoffs’ principle [36]. If a defense wants to be general and universal, it should guarantee
part of the robustness even when attackers have some knowledge about it. In GRB, we evaluate
an attack vs. multiple defenses (vice versa), thus the assumptions can hardly violate the black-box
conditions. As a result, the objective for both sides is to be generally effective against all potential
methods rather than just a single one.

By following the above rules, we provide unified evaluation scenarios for attacks and defenses in a
principled way. It is worth noting that these unified scenarios are not the only valid ones, GRB will
include more scenarios as this field eveloves over time.

3.3 The Modular GRB Pipeline

GRB offers a modular pipeline, which is based on PyTorch [37] as well as other popular GML
libraries like CogDL [38] and DGL [39]. Specifically, it contains the following modules: (1) Dataset:
GRB provides data-loaders for GRB datasets and applies necessary preprocessing including splitting
and feature normalization; it also supports external datasets like OGB [26] or user-defined datasets.
(2) Model: The GML models are implemented based on PyTorch, CogDL, and DGL and GRB can
automatically transform inputs to compatible formats. (3) Attack: We implement adversarial attacks
by abstracting the attack process to different components, e.g., graph injection attacks are decomposed
to node injection and feature generation. (4) Defense: GRB engages defense mechanisms to GML
models, including preprocess-based and model-based ones. (5) Evaluator: The attack or defense
methods are evaluated under unified settings and metrics. Essentially, GRB unifies and modularizes
the entire process, including loading datasets, training/loading models, applying attacks/defenses, and
generating the evaluation results; it also helps to reproduce the exact results on GRB leaderboards.
In addition to these modules, GRB also offers other functions including Trainer for model training,
AutoML for automatic parameter search, and Visualise for visualizing the attack process.

The GRB framework has the following features: (1) Easy-to-use: the baseline methods are easy to
use by only a few lines of codes, as shown in Figure 3. (2) Fair-to-compare: all methods are fairly
compared under unified settings. (3) Up-to-date: the leaderboards for each dataset are maintained to
continuously track the progress in the domain. (4) Reproducible: GRB prioritizes reproducibility. All
necessary materials are made public to reproduce results on leaderboards, including the trained models,
generated attack results, etc. Users can reproduce results by a single command line (Cf. Appendix A.5
for GRB reproducibility rules). All codes are available in https://github.com/THUDM/grb, where
the implementation details and examples can be also found. The API documentations are covered in
https://grb.readthedocs.io/en/latest/.
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Figure 3: GRB usage examples. Left: Train GCNs on the grb-cora dataset. Right: Apply the TDGIA
attack on the trained model. GRB facilitates the usage of GML models, attacks,and defenses.

3.4 The GRB Baselines

Currently, GRB covers a rich set of baselines for the GML models, attacks, and defenses.

Seven GML models: GCN [4], GAT [6], GIN [7], APPNP [8], TAGCN [20], GraphSAGE [5],
SGCN [9]. Note that these models are not originally designed to increase robustness.

Twelve Attacks: Seven modification attacks—RND [12], DICE [19], FGA [11], FLIP [29],
NEA [29], STACK [31], and PGD [34]—and five injection attacks—RND, FGSM [40], PGD [34],
SPEIT [17], and TDGIA [18]. More details can be found in Appendix A.4.2.

Five Defenses: GRB adopts RobustGCN (R-GCN) [21], GNN-SVD [24], and GNNGuard [25].
Additionally, we find that techniques like layer normalization (LN) [41] and adversarial training
(AT) [34], if properly used in the proposed evaluation scenarios, can significantly increase the
robustness of various GML models. The LN can be applied on the input features and after each
graph convolutional layer (except for the last one). The idea is to stabilize the dynamics of input and
hidden states to alleviate the impact of adversarial perturbations. The AT uses modification/injection
attacks during training to make GML models more robust. Note that most of previous works only use
AT to perturb the existing graph, however, we find that AT also works well by injecting new nodes
during training. These two defenses are general and scalable, and the experiment results show that
they outperform previous dedicated methods. Thus, we include them in GRB as strong baselines for
defenses. More details can be found in Appendix A.4.3.

3.5 The GRB Datasets

Table 2: Statistics of five GRB datasets covering from small- to large-scale graphs.

Dataset Scale #Nodes #Edges #Feat. #Classes Feat. Range
(original)

Feat. Range
(normalized)

grb-cora Small 2,680 5,148 302 7 [-2.30, 2.40] [-0.94, 0.94]
grb-citeseer Small 3,191 4,172 768 6 [-4.55, 1.67] [-0.96, 0.89]
grb-flickr Medium 89,250 449,878 500 7 [-0.90, 269.96] [-0.47, 1.00]
grb-reddit Large 232,965 11,606,919 602 41 [-28.19, 120.96] [-0.98, 0.99]
grb-aminer Large 659,574 2,878,577 100 18 [-1.74, 1.62] [-0.93, 0.93]

Scalability. GRB includes five datasets of different scales, grb-cora, grb-citeseer, grb-flickr, grb-
reddit, and grb-aminer. The original datasets are gathered from previous works [42, 43, 18] and are
reprocessed for GRB. The basic statistics of these datasets are shown in Table 2. More details about
datasets can be found in Appendix A.1.

Data Splitting. GRB introduces a new splitting data scheme designed for evaluating the GML
adversarial robustness. Its key idea is based on the assumption that nodes with lower degrees are
easier to attack, as demonstrated in [18]. If a target node has few neighbors, it is more likely to be
influenced by adversarial perturbations aggregated from its neighbors. Thus, we construct test subsets
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Figure 4: GRB’s splitting scheme. Difficulties are related to the average degree of test nodes.

with different average degrees to represent different difficulties. First, we rank all nodes by their
degrees. Second, we filter out 5% nodes with the lowest degrees (e.g., isolated nodes that are too easy
to attack) and 5% nodes with the highest degrees (e.g., nodes connected to hundreds of other nodes
that are too hard to attack). Third, we divide the rest of nodes into three equal partitions without
overlapping, and randomly sample 10% nodes (without repetition) from each partition. Finally, we
get three test subsets with different degree distributions as shown in Figure 4, which are defined as
Easy/Medium/Hard/Full (‘E/M/H/F’) with ‘F’ containing all test nodes. For the rest of nodes, we
divide them into the training set (60%) and validation set (10%).

Feature Normalization. Initially, the features in each dataset have various ranges. To unify their
constraints and to have values in the same scale (e.g., range [−1, 1]), we apply a standardization
followed by an arctan transformation: F = 2

π arctan(F−mean(F)
std(F) ). The statistics of datasets after the

splitting scheme and the feature normalization can be found in Appendix A.1.

4 Experiments

With the support of GRB’s modular framework, we conduct extensively experiments to evaluate the
adversarial robustness of GML models under the unified evaluation protocol, from which insights are
generated into the developments of the field.

4.1 Experimental Settings

Baselines. (1) For GML models, we include 7 baselines: GCN [4], GAT [6], GIN [7], APPNP [8],
TAGCN [20], GraphSAGE [5], SGCN [9]. All models are salable to large graphs. (2) For modification
attacks, we include 7 baselines: RND, DICE [19], FGA [11], FLIP [29], NEA [29], STACK [31], and
PGD [34], among which RND, DICE, FLIP, and PGD are scalable to large graphs. FGA, NEA, and
PGD need to train a surrogate model to conduct transfer attacks. (3) For injection attacks, we include
5 baselines: RND, FGSM [40], PGD [34], SPEIT [17], TDGIA [18]. They are all scalable and FGSM,
PGD, SPEIT, TDGIA need to train a surrogate model to conduct transfer attacks. (4) For defenses,
we include R-GCN [21], GNN-SVD [24], GNNGuard [25]. Among which only R-GCN is scalable,
since the other two methods require calculation on dense adjacency matrix. Thus, we also adapt two
general defense methods, layer normalization (LN) [41] and adversarial training (AT) [34] to the
proposed scenarios. More details and hyper-parameter settings can be found in Appendix A.4 A.5.

Evaluation Metrics. For attacks: (1) Avg.: Average accuracy of all defenses (including vanilla GML
models). (2) Avg. 3-Max: Average accuracy for the 3 most robust methods. (3) Weighted: Weighted
accuracy, calculated by:sATK

w =
∑n
i=1 wisi, wi = 1/i2∑n

j=1(1/j
2) , si = (SDEF

descend)i where SDEF
descend is

the set of defense scores in a descending order. The metric attaches more weight to more robust
methods. For defenses: (1) Avg.: Average accuracy of all attacks. (2) Avg. 3-Min: Average accuracy
of the 3 most effective attacks. (3) Weighted: Weighted accuracy across various attacks, calculated
by:sDEF

w =
∑n
i=1 wisi, wi = 1/i2∑n

j=1(1/j
2) , si = (SATK

ascend)i where SATK
ascend is the set of attack scores

in an ascending order. The metric attaches more weight to more effective attacks.

4.2 Experimental Results

We show an example of GRB leaderboard, robust ranking of GML models, and various factors that
affect the adversarial robustness in GML. More results can be found in Appendix and on our website.
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An Example of the GRB Leaderboard. Following the process in Figure 1, we evaluate the perfor-
mance of attacks vs. defenses in graph injection scenario. Table 3 shows an example of leaderboard
for grb-aminer dataset. Each attack is repeated 10 times to report the error bar. Both attacks and
defenses are ranked by the weighted accuracy under ’F’ difficulty, where red and blue indicate the
best results of attacks/defenses in each difficulty. Note that the metric is not fixed and will be updated
when there are more effective methods. For instance, when there are more powerful attacks, the
ranking will change so as the attached weights. It is reasonable that less effective attacks become less
important on the final ranking of defenses, the same for defenses. As a result, GRB leaderboard can
indicate the most robust defenses and the most effective attacks.

Table 3: grb-aminer leaderboard (Top 5 ATK. vs. Top 10 DEF.) in graph injection scenario.
Attacks

Defenses 1 2 3 4 5 6 7 8 9 10 Avg.
Accuracy

Avg. 3-Max
Accuracy

Weighted
AccuracyGAT+AT R-GCN+AT SGCN+LN R-GCN GCN+LN GATLN GIN+LN TAGCN+LN TAGCN+AT GAT

1 TDGIA

E 59.54±0.05 56.83±0.06 56.73±0.06 56.12±0.07 53.51±0.21 43.93±0.41 51.10±0.12 54.63±0.20 49.59±0.50 42.40±0.52 52.44±0.17 57.70±1.31 58.08±0.04

M 68.39±0.02 65.61±0.02 66.11±0.02 65.23±0.03 66.78±0.05 61.84±1.20 64.49±0.10 64.62±0.02 67.27±0.04 62.47±1.01 65.28±0.23 67.48±0.68 67.69±0.02

H 75.83±0.02 72.35±0.02 72.10±0.00 71.94±0.02 73.39±0.02 75.22±0.04 72.92±0.02 68.94±0.03 73.98±0.01 75.03±0.03 73.17±0.01 75.36±0.34 75.33±0.01

F 67.69±0.03 63.62±0.32 62.20±0.15 61.99±0.22 60.38±1.46 59.69±1.57 59.59±0.42 59.06±1.75 57.24±5.04 56.63±6.75 60.81±1.71 64.52±2.32 65.74±0.21

2 SPEIT

E 59.54±0.07 56.80±0.05 56.94±0.10 55.64±0.10 56.15±0.06 56.13±0.07 54.24±0.09 56.61±0.06 56.59±0.08 57.36±0.09 56.60±0.04 57.95±1.14 58.62±0.05

M 68.37±0.03 65.46±0.03 66.20±0.02 65.25±0.05 66.75±0.03 67.49±0.06 65.05±0.06 64.47±0.04 66.95±0.05 66.81±0.04 66.28±0.02 67.60±0.59 67.86±0.03

H 75.94±0.04 72.27±0.03 72.36±0.03 71.86±0.03 73.41±0.01 75.34±0.03 72.87±0.03 68.88±0.05 73.98±0.02 73.83±0.04 73.07±0.01 75.08±0.82 75.33±0.02

F 68.04±0.03 64.05±0.04 64.84±0.04 64.06±0.04 65.51±0.02 64.02±0.04 63.11±0.02 62.59±0.04 63.77±0.06 63.58±0.06 64.36±0.02 66.13±1.38 66.89±0.02

3 RND

E 59.56±0.06 57.53±0.06 57.41±0.06 56.38±0.11 57.76±0.05 58.83±0.10 54.41±0.13 58.07±0.12 58.14±0.04 57.46±0.10 57.55±0.03 58.85±0.57 59.09±0.05

M 68.22±0.04 65.86±0.03 66.29±0.03 65.34±0.06 67.03±0.03 68.62±0.05 65.54±0.06 64.98±0.08 67.34±0.04 67.71±0.06 66.69±0.02 68.18±0.38 68.24±0.03

H 75.75±0.02 72.66±0.02 72.42±0.03 72.00±0.03 73.52±0.02 75.63±0.03 73.36±0.03 69.30±0.06 74.04±0.02 75.36±0.03 73.40±0.01 75.58±0.17 75.39±0.01

F 67.72±0.04 64.98±0.02 65.31±0.04 64.45±0.04 66.17±0.02 67.54±0.04 64.36±0.06 64.33±0.03 66.42±0.03 66.23±0.04 65.75±0.02 67.23±0.58 67.34±0.03

4 PGD

E 59.70±0.06 57.71±0.05 57.73±0.09 57.19±0.07 57.60±0.08 57.05±0.17 54.69±0.09 58.18±0.07 58.27±0.09 58.46±0.11 57.66±0.05 58.81±0.64 59.14±0.05

M 68.40±0.05 66.12±0.02 66.39±0.04 65.67±0.04 67.04±0.03 68.24±0.04 65.64±0.08 65.17±0.05 67.32±0.03 67.85±0.05 66.78±0.02 68.16±0.23 68.12±0.03

H 75.83±0.03 72.91±0.02 72.47±0.04 72.18±0.05 73.52±0.02 75.55±0.05 73.58±0.04 69.64±0.05 73.89±0.02 74.34±0.04 73.39±0.01 75.24±0.65 75.36±0.02

F 68.01±0.02 65.41±0.01 65.54±0.03 65.05±0.03 66.22±0.02 66.49±0.04 64.63±0.04 64.82±0.04 66.32±0.02 66.14±0.04 65.86±0.01 66.94±0.76 67.37±0.02

5 FGSM

E 59.71±0.05 57.69±0.08 57.62±0.06 57.16±0.08 57.60±0.06 56.97±0.09 54.67±0.08 58.20±0.10 58.23±0.06 58.46±0.07 57.63±0.05 58.81±0.65 59.15±0.04

M 68.37±0.02 66.10±0.03 66.38±0.04 65.70±0.05 67.03±0.04 68.27±0.04 65.61±0.08 65.16±0.05 67.30±0.02 67.84±0.07 66.78±0.02 68.16±0.23 68.11±0.02

H 75.82±0.02 72.92±0.04 72.48±0.03 72.18±0.05 73.52±0.02 75.55±0.05 73.60±0.04 69.64±0.04 73.90±0.01 74.34±0.04 73.39±0.01 75.23±0.65 75.35±0.02

F 68.00±0.02 65.41±0.02 65.54±0.04 65.05±0.04 66.22±0.02 66.50±0.06 64.65±0.04 64.82±0.03 66.34±0.03 66.15±0.06 65.87±0.01 66.95±0.75 67.37±0.01

6 W/O Attack

E 59.67±0.00 58.08±0.00 60.22±0.00 58.53±0.00 58.14±0.00 60.78±0.00 56.83±0.00 59.47±0.00 59.62±0.00 59.88±0.00 59.12±0.00 60.29±0.37 60.42±0.00

M 68.28±0.00 66.14±0.00 67.11±0.00 66.35±0.00 67.00±0.00 68.98±0.00 66.26±0.00 65.41±0.00 67.53±0.00 68.41±0.00 67.15±0.00 68.56±0.30 68.59±0.00

H 75.85±0.00 73.05±0.00 72.69±0.00 72.66±0.00 73.46±0.00 75.64±0.00 73.69±0.00 69.84±0.00 74.10±0.00 75.76±0.00 73.67±0.00 75.75±0.09 75.52±0.00

F 67.93±0.00 65.76±0.00 66.68±0.00 65.85±0.00 66.20±0.00 68.47±0.00 65.59±0.00 64.91±0.00 67.08±0.00 68.02±0.00 66.65±0.00 68.14±0.24 68.11±0.00

Avg.
Accuracy

E 59.62±0.02 57.44±0.03 57.77±0.03 56.84±0.04 56.79±0.04 55.62±0.06 54.33±0.04 57.53±0.05 56.74±0.09 55.67±0.10 - - -
M 68.34±0.01 65.88±0.01 66.41±0.01 65.59±0.02 66.94±0.02 67.24±0.19 65.43±0.03 64.97±0.02 67.28±0.01 66.85±0.18 - - -
H 75.84±0.01 72.69±0.01 72.42±0.01 72.14±0.02 73.47±0.01 75.49±0.01 73.33±0.02 69.38±0.02 73.98±0.00 74.78±0.02 - - -
F 67.90±0.01 64.87±0.05 65.02±0.03 64.41±0.04 65.12±0.25 65.45±0.26 63.65±0.07 63.42±0.29 64.53±0.84 64.46±1.13 - - -

Avg. 3-Min
Accuracy

E 59.55±0.03 57.05±0.04 57.02±0.03 56.05±0.07 55.73±0.07 52.33±0.12 53.25±0.07 56.43±0.07 54.77±0.16 52.41±0.17 - - -
M 68.28±0.01 65.64±0.02 66.20±0.01 65.28±0.03 66.84±0.02 65.85±0.40 65.02±0.04 64.69±0.03 67.17±0.02 65.66±0.34 - - -
H 75.80±0.02 72.42±0.02 72.29±0.01 71.93±0.02 73.42±0.01 75.36±0.02 73.05±0.02 69.04±0.03 73.92±0.01 74.17±0.03 - - -
F 67.78±0.02 64.22±0.11 64.12±0.06 63.50±0.08 64.02±0.49 63.39±0.53 62.35±0.14 61.99±0.58 62.44±1.69 62.11±2.26 - - -

Weighted
Accuracy

E 59.53±0.04 56.93±0.04 56.94±0.04 55.93±0.08 54.63±0.14 48.21±0.27 52.23±0.08 55.55±0.14 52.18±0.33 47.45±0.35 - - -
M 68.25±0.02 65.57±0.02 66.17±0.02 65.28±0.02 66.79±0.02 63.85±0.80 64.77±0.07 64.60±0.03 67.06±0.03 64.07±0.68 - - -
H 75.78±0.02 72.37±0.02 72.20±0.01 71.92±0.03 73.41±0.01 75.30±0.02 72.98±0.02 68.99±0.04 73.91±0.01 74.08±0.03 - - -
F 67.73±0.03 63.96±0.21 63.19±0.10 62.80±0.15 62.18±0.98 61.58±1.05 61.00±0.28 60.54±1.18 59.82±3.38 59.37±4.53 - - -

Figure 5: Ranking of vanilla GML models in graph injection scenario for all five datasets.

Figure 6: Ranking of top 10 defensed GML models in graph injection scenario for all five datasets.

Robust Ranking of GML Models. In Figure 5 and 6, we show the rankings of GML models for all
five datasets in graph injection scenario. The ranking is determined by sDEF

w calculated by multiple
attacks, which makes the results more general than previous works (only consider very few attacks
and vanilla GML models). We find that the rankings are different across datasets, indicating that the
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robustness is related to the properties of graph data. Similar situations can be found in other graph
benchmarks. For example in OGB, there is no dominant GML model, the performance of certain
model architecture may vary a lot across datasets. Thus, we suggest that when giving conclusions
about robustness in GML, one should not only consider the model itself but also take the graph data
into account. GRB provides scalable datasets of various domains, which can help to investigate the
robustness of GML models in different situations. Among current vanilla GML models, we find that
GAT and GIN generally perform better under attacks in several datasets, which might be due to the
higher expressiveness of model architecture. Meanwhile, models like APPNP and SGCN that rely on
high-order message propagation seem to be sensible to perturbations on the graph. Besides, GML
models with defense mechanisms (i.e., R-GCN, GNNGuard) are generally more robust. Moreover,
we find simple methods like LN can be applied to all GML models to increase robustness. In the
following, we further analyze some factors that affect the adversarial robustness of GML models.

Figure 7: Effect of dataset difficulties on the performance of graph injection attacks.

Effect of Difficulties. The new splitting scheme investigates the effect of the average degree of target
nodes on the attack performance. In Figure 7, attacks tend to better decrease the performance on
nodes with lower degrees, which confirms the assumption that these low-degree nodes are more
vulnerable. Moreover, according to Figure 5 and 6, the robustness on these nodes is indeed harder to
achieve. This phenomenon encourages future work to deal with these vulnerable nodes to design
more robust GML models.

Figure 8: Effect of constraints on GML models.
Left: graph modification. Right: graph injection.

Figure 9: Effect of constraints on attacks. Left:
graph modification. Right: graph injection.

Effect of Constraints. As shown in Figure 8 and 9, for both graph modification and graph injection
scenarios, the variation of constraints on the ratio of modification/injection affects the effectiveness
of attacks. Meanwhile, the ranking of methods nearly agrees with different constraints. Without loss
of generality, it is reasonable to fix a specific constraint to build GRB leaderboards, where the relative
robustness of GML models will still be indicative.

Effect of General Defenses. Figure 10 and 11 shows the results of the adapted LN and AT for
all five datasets. LN is a node-wise normalization technique, which can alleviate the perturbations
on node features as well as hidden features in each layer of GML models. AT applies adversarial
attacks during training via modification or injection, which changes the decision boundary of models
to tolerate perturbed nodes. The results indicate that these approaches can generally increase the
robustness of various types of GML models, which can serve as simple but strong baselines for future
works. The details of these algorithms can be found in Appendix A.4.3.

5 Conclusion

To improve and facilitate the evaluation of the adversarial robustness in GML, we revisit the limitations
of previous works and present the Graph Robustness Benchmark (GRB), a scalable, unified, modular,
and reproducible benchmark. It has scalable datasets, unified evaluation scenarios, as well as a
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Figure 10: Effect of the adapted LN on the adversarial robustness of vanilla GML models for all five
datasets. Adding LN can generally increase robustness of GML models.

Figure 11: Effect of the adapted AT on the adversarial robustness of vanilla GML models for all five
datasets. Adding AT can generally increase robustness of GML models.

modular coding framework that ensures the reproducibility and promotes the development of future
methods. Extensive experiments with GRB provide insights on the understanding of the adversarial
robustness in GML. We welcome the community to contribute more advanced GML models, attacks
and defenses to further enrich GRB and to promote the research of this field.

6 Broader Impact

Positive Impact. GRB provides a general framework for GML attacks and defenses. On one hand,
it will help researchers to develop more robust GML models against attacks. On the other hand,
it will also help possible attackers to develop better attack methods to turn down defenses. More
public information of potential attacks will make it harder to conduct secret attacks based on private
methods. As a result, more generally robust defense mechanisms can be designed.

Negative Impact. By exposing the attack methods widely, the GML models may face more threats.
Attackers can use the benchmark to design destructive attacks that may cause damage to GML-based
systems. Additionally, GRB has some limitations. For example, it only considers homogeneous
graphs rather than heterogeneous ones for now. It focuses on node classification, while other tasks
like link prediction and graph classification are also vulnerable. We will regularly update GRB (e.g.,
adding task-specific modules, designing related metrics.) to overcome these limitations.

7 Maintenance Plan

Open Source. We host the GRB homepage (https://cogdl.ai/grb/home) with detailed intro-
duction, leaderboards, and documentations. The codes are available in (https://github.com/
THUDM/grb). All materials are accessible to ensure reproducibility.

Submissions of New Methods. GRB will regularly include SOTA methods by updating the "method
zoo". To welcome the contribution of the community, we allow submissions through google form.
There are detailed examples and rules that guide researchers to add new attacks or defenses. Results
will be updated on leaderboards to track the progress of the domain.

Extension of Tasks. Due to the modular design, GRB can be extended to other tasks. It requires
adding task-specific functions in each module (dataset, model, trainer, attack, defense, etc.). Other
common functions in GML can be reused for different tasks. There are online examples (https:
//github.com/THUDM/grb/tree/master/examples) showing how to use GRB for other tasks,
e.g., graph classification. In the future, GRB will support more GML tasks and define related threat
models and metrics to unify the evaluation of adversarial robustness.

10

https://cogdl.ai/grb/home
https://github.com/THUDM/grb
https://github.com/THUDM/grb
https://docs.google.com/forms/d/e/1FAIpQLSfJaUK-SXYFnlSqTEEwTOwsqzA5JnpXyvZe8E24hlLE7scRcA/viewform
https://github.com/THUDM/grb/tree/master/examples
https://cogdl.ai/grb/intro/rules
https://github.com/THUDM/grb/tree/master/examples
https://github.com/THUDM/grb/tree/master/examples


References
[1] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social rep-

resentations. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid
Ghani, editors, The 20th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), pages 701–710, 2014.

[2] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and
Rajeev Rastogi, editors, Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pages 855–864, 2016.

[3] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining (WSDM), pages
459–467, 2018.

[4] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations (ICLR), 2017.

[5] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (NeurIPS), pages 1024–1034,
2017.

[6] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations
(ICLR), 2018.

[7] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations (ICLR), 2019.

[8] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In 7th International Conference on
Learning Representations (ICLR), 2019.

[9] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Wein-
berger. Simplifying graph convolutional networks. In Proceedings of the 36th International
Conference on Machine Learning (ICML), 2019.

[10] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), pages 974–983, 2018.

[11] Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and Qi Xuan. Fast
gradient attack on network embedding. ArXiv preprint, abs/1809.02797, 2018.

[12] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD), pages 2847–2856, 2018.

[13] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In 7th International Conference on Learning Representations (ICLR), 2019.

[14] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Attacking graph convolutional
networks via rewiring. ArXiv preprint, abs/1906.03750, 2019.

[15] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant G. Honavar. Adversarial
attacks on graph neural networks via node injections: A hierarchical reinforcement learning
approach. In The Web Conference 2020 (WWW), pages 673–683, 2020.

[16] Jihong Wang, Minnan Luo, Fnu Suya, Jundong Li, Zijiang Yang, and Qinghua Zheng. Scalable
attack on graph data by injecting vicious nodes. ArXiv preprint, abs/2004.13825, 2020.

11



[17] Qinkai Zheng, Yixiao Fei, Yanhao Li, Qingmin Liu, Minhao Hu, and Qibo Sun. KDD CUP
2020 ML Track 2 Adversarial Attacks and Defense on Academic Graph 1st Place Solution.
https://github.com/Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT, 2020.

[18] Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie
Tang. Tdgia: Effective injection attacks on graph neural networks. Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD), 2021.

[19] Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal Rahwan. Hiding
individuals and communities in a social network. Nature Human Behaviour, 2(2):139–147,
2018.

[20] Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. Topology
adaptive graph convolutional networks. ArXiv preprint, abs/1710.10370, 2017.

[21] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD), pages 1399–1407, 2019.

[22] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. In 33th Advances in Neural Information Processing Systems (NeurIPS), 2020.

[23] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya
Prakash, editors, Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining (KDD), pages 66–74, 2020.

[24] Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E. Papalexakis. All
you need is low (rank): Defending against adversarial attacks on graphs. In The Thirteenth ACM
International Conference on Web Search and Data Mining (WSDM), pages 169–177, 2020.

[25] Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against
adversarial attacks. ArXiv preprint, abs/2006.08149, 2020.

[26] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In 33th Advances in Neural Information Processing Systems (NeurIPS), 2020.

[27] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. ArXiv preprint, abs/2003.00982, 2020.

[28] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial
attacks and defenses. ArXiv preprint, abs/2005.06149, 2020.

[29] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via
graph poisoning. In Proceedings of the 36th International Conference on Machine Learning
(ICML), volume 97 of Proceedings of Machine Learning Research, pages 695–704, 2019.

[30] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack
on graph structured data. In Proceedings of the 35th International Conference on Machine
Learning, (ICML), volume 80 of Proceedings of Machine Learning Research, pages 1123–1132,
2018.

[31] Jiarong Xu, Yizhou Sun, Xin Jiang, Yanhao Wang, Yang Yang, Chunping Wang, and Jiangang
Lu. Query-free black-box adversarial attacks on graphs. ArXiv preprint, abs/2012.06757, 2020.

[32] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In 2nd International
Conference on Learning Representations (ICLR), 2014.

[33] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Ad-
versarial examples on graph data: Deep insights into attack and defense. ArXiv preprint,
abs/1903.01610, 2019.

12



[34] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference
on Learning Representations (ICLR), 2018.

[35] Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial training: Dynamically
regularizing based on graph structure. IEEE Transactions on Knowledge and Data Engineering,
2019.

[36] Auguste Kerckhoffs. La cryptographie militaire. 1883.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In 32th Advances in Neural Information Processing
Systems (NeurIPS), pages 8024–8035, 2019.

[38] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Xingcheng Yao, Aohan Zeng,
Shiguang Guo, Peng Zhang, Guohao Dai, et al. Cogdl: An extensive toolkit for deep learning
on graphs. ArXiv preprint, abs/2103.00959, 2021.

[39] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, et al. Deep graph library: Towards efficient and scalable deep learning on
graphs. 2019.

[40] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing ad-
versarial examples. In 3rd International Conference on Learning Representations (ICLR),
2015.

[41] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. ArXiv preprint,
abs/1607.06450, 2016.

[42] Xu Zou, Qiuye Jia, Jianwei Zhang, Chang Zhou, Zijun Yao, Hongxia Yang, and Jie Tang.
Dimensional reweighting graph convolution networks. 2019.

[43] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In 8th International Conference
on Learning Representations (ICLR), 2020.

[44] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33nd International Conference on Machine
Learning (ICML), volume 48, pages 40–48, 2016.

[45] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics,
pages 4171–4186, Minneapolis, Minnesota, 2019.

[46] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction
and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 990–998, 2008.

[47] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for
efficient numerical computation. Computing in science & engineering, 13(2):22–30, 2011.

[48] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
robustness. ArXiv preprint, abs/1902.06705, 2019.

[49] Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu.
Benchmarking adversarial robustness on image classification. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 318–328, 2020.

13



[50] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion, Mung
Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness
benchmark. ArXiv preprint, abs/2010.09670, 2020.

[51] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. International
Conference on Machine Learning (ICML), 2019.

[52] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations (ICLR), 2014.

14


	Introduction
	Adversarial Robustness in Graph Machine Learning
	Problem Definition
	Revisiting Adversarial Attacks and Defenses in GML

	GRB: Graph Robustness Benchmark
	Overview of GRB
	The Unified Evaluation Scenario of GML Adversarial Robustness
	The Modular GRB Pipeline
	The GRB Baselines
	The GRB Datasets

	Experiments
	Experimental Settings
	Experimental Results

	Conclusion
	Broader Impact
	Maintenance Plan
	Appendix
	Datasets
	Related Works
	Rethinking Ill-defined Evaluation Scenarios in Previous Works
	Methodology
	GML Models
	Adversarial Attacks
	Defenses

	Reproducibility
	Hyper-Parameter Settings

	Detailed Experiment Results


