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Abstract

In recent years, NLP models have dramatically001
improved by utilizing user data, enabling com-002
mercial products such as chat bots and smart003
voice agents. However, data collected for train-004
ing such models may suffer from sampling bi-005
ases, conditioned on the dataset collection pro-006
tocol. Additionally, a practitioner may not al-007
ways obtain datasets of the desired volumes,008
particularly given the emerging privacy con-009
siderations (e.g. relying on a user to donate010
their data for model-building purposes). In011
this paper, we simulate various scenarios under012
which one may obtain biased training datasets013
for the task at hand. We build baselines simu-014
lating various biased data sampling conditions015
and present observations such a biased data016
collection that obtains data-points away from017
class centroids offer more value. We also test018
two sets of data augmentation algorithms: (i)019
pseudo-labeled data through semi-supervised020
learning, assuming availability of unlabeled021
data and, (ii) data augmentation through syn-022
thetic data generation. We observe that while023
the best performing data augmentation method024
depends on the biased setting and the dataset,025
simple data augmentation algorithms (such as026
Easy Data Augmentation) are still largely ef-027
fective.028

1 Introduction029

Data collection is an integral part of training any030

ML system and the data collection protocol can031

significantly impact the performance of the ML032

model. While, arguably, an unrestricted access033

to the data source for unbiased data collection in034

large volumes is desirable, it may not always be035

the case. For example, under certain conditions,036

data collection protocols may dictate separate data037

collection per label of interest (e.g., requesting a038

study group to generate variants of music request039

to build a spoken language understanding model,040

which otherwise also supports other non-music re-041

quests). Similarly, data collection may be restricted042

to offer only a biased sub-sample of the data (e.g., 043

in another scenario, while building a spoken lan- 044

guage understanding system, a biased section of 045

user population may donate their data). Addition- 046

ally, gathering labeled data in large volumes may 047

not always be feasible given increasing emphasis 048

on user data privacy. In this work, we study the 049

impact of such biases introduced during the dataset 050

collection protocol on the model performance. 051

Researchers have investigated biases in training 052

datasets (Tommasi et al., 2015), and its impact on 053

the model performance. However, impact of var- 054

ious types of sampling biases in NLU modeling 055

is not well studied. Particularly, given current ad- 056

vances in NLU modeling, where task-specific mod- 057

els are fine-tuned on top of pre-trained models, the 058

impact of sampling biases has not been evaluated. 059

We simulate settings that mimic different kinds 060

of biases that can be introduced during data collec- 061

tion. In addition to a random downsampling, our 062

simulations introduce biases under data collection 063

protocols that either collect data independently the 064

supported set of labels or, collect data for all the 065

labels together. Furthermore, we simulate these 066

biases in a low data volume setup when only tens 067

or hundreds of data-points are available for each 068

class. We focus on biases in low data settings as the 069

impact of biases is expected to be more pronounced 070

and, low availability of data is an increasing realis- 071

tic scenario in building industrial ML systems given 072

emerging privacy considerations (Bender and Fried- 073

man, 2018). Furthermore, we benchmark two sets 074

of data augmentation methods: (i) semi-supervised 075

learning assuming availability of unlabeled data 076

and, (ii) synthetic data generation, to assess their 077

value in recovering from low-data and biased train- 078

ing data. We discuss observations such as while 079

the best performing data augmentation method is 080

a function of the bias setting, simple method such 081

as Easy Data Augmentation (Wei and Zou, 2019) 082

generally perform well. 083
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2 Related Works084

2.1 Bias in Dataset Collection085

The quality and real-world utility of datasets used086

to train and evaluate machine learning models is087

highly sensitive to biases in the processes used to088

create them (Bender and Friedman, 2018). Bias can089

appear in all parts of the dataset-creation pipeline,090

including the curation methods used to select which091

examples to include in a dataset (Zhou et al., 2021;092

Tommasi et al., 2015), the design of the annotation093

guidelines and prompts (Schwartz et al., 2017), the094

subjective judgements made by individual anno-095

tators (Geva et al., 2019; Wich et al., 2020; Gu-096

rurangan et al., 2018), and the decisions about097

how to split a dataset into training, validation, and098

test sets (Zhou et al., 2021). Models trained on099

these biased datasets may then learn to exploit100

dataset-specific artifacts (Gururangan et al., 2018;101

Tsuchiya, 2018), achieving strong performance on102

similarly-biased test sets, but not generalizing well103

to other examples from the task’s real-world data104

distribution.105

In recent years, there have been many related ef-106

forts to mitigate the effects of these hidden dataset107

biases through improved dataset creation and anno-108

tation procedures (Geva et al., 2019; Schwartz et al.,109

2017; Wich et al., 2020; Zhou et al., 2021; Stasaski110

et al., 2020; Bender and Friedman, 2018), data111

augmentation methods (Zhou and Bansal, 2020;112

Park et al., 2018; Min et al., 2020; Shinoda et al.,113

2021), and bias-aware learning algorithms (Jiang114

and Nachum, 2020; Clark et al., 2020; He et al.,115

2019; Li and Vasconcelos, 2019; Khosla et al.,116

2012; Zhao et al., 2017). In this work, we pro-117

pose novel methods to create biased datasets from118

existing, publicly-available datasets through selec-119

tive downsampling. We then use these methods120

to 1) create several benchmark text classification121

datasets with different types of bias; 2) evaluate the122

performance of several techniques to mitigate these123

biases, including semi-supervised learning (Ouali124

et al., 2020), off-the-shelf data augmentation tech-125

niques (Wei and Zou, 2019), and paraphrase gener-126

ation with large language models (Witteveen and127

Andrews, 2019). We further elaborate on the state128

of research in data augmentation methods used in129

this paper below.130

Semi-supervised learning In many ML appli-131

cations, it is relatively easy to collect unlabeled132

data points from public sources such as the Inter-133

net, while high quality human labels are harder and134

more expensive to obtain in large scale (Zhu, 2005). 135

In these cases, semi-supervised learning (Van En- 136

gelen and Hoos, 2020) is a commonly employed 137

strategy where a large unlabeled set of data sam- 138

ples are used along with a small labeled set. The 139

unlabeled data can be used either in pre-training, 140

as a part of the training objective, or by generating 141

new pseudo-labels for the unlabeled samples, fol- 142

lowed by direct augmentation to the training data 143

(Van Engelen and Hoos, 2020). Of these, pseudo- 144

labeling (Lee et al., 2013) is considerably simple as 145

it needs minimal changes to existing training rou- 146

tines, and is frequently used in literature (Triguero 147

et al., 2015). Generating the labels can be done 148

using a seed model initially trained only on the 149

labeled dataset, or by clustering the labeled and 150

unlabeled samples and assigning majority labels 151

obtained from the labeled examples. In this work, 152

we experiment with both strategies. 153

Data generation by distorting existing data 154

This form of augmentation is commonly applied 155

in computer vision where images or frames are 156

cropped, flipped or their RGB channels suitably 157

noised. However, simple alterations such as these 158

may not translate well to NLP and have been re- 159

ported to create meaningless utterances (Liu et al., 160

2020). More recent works instead try to gener- 161

ate new data by introducing word level changes 162

(Kobayashi, 2018; Wang and Yang, 2015), by gen- 163

erating semantically similar paraphrases (Gupta 164

et al., 2018a), or by employing large language mod- 165

els such as GPT-2 to generate new utterances (Liu 166

et al., 2020). Easy Data Augmentation (EDA) (Wei 167

and Zou, 2019) introduces word level distortions 168

and includes four simple operations (synonym re- 169

placement, random insertion, swap and deletion) 170

to generate new data, and has found considerable 171

acceptance due to its simplicity. In this work, we 172

experiment with both EDA and paraphrase based 173

data augmentations to generate new data. 174

3 Creating datasets with sampling biases 175

Conditioned on the dataset collection protocol or 176

other aforementioned factors, different biases may 177

creep into the obtained data. We discuss three such 178

scenarios below. 179

Scenario 1: Unbiased data collection. In this 180

scenario, the practitioner is capable of sampling 181

data from the real world distribution. This scenario 182

is likely, for example, when the practitioner has 183

unrestricted access to the process governing data 184
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generation.185

Scenario 2: Biased data collection per-class. In186

certain scenarios, practitioners are obligated to187

gather data per class. For example, in an indus-188

trial setting, one may launch ML models with a189

pre-defined class support (e.g. a model that classi-190

fier utterances into PlayMusicIntent and GetWeath-191

erIntent). To launch models with the given class192

support, the practitioner may be required to collect193

representative utterances per class (by requesting194

paid users to make either requests to play music195

or get weather to get coverage for PlayMusicIntent196

and GetWeatherIntent, respectively). The distribu-197

tion of such utterances within each class, however,198

may not conform to the real-world distribution.199

Scenario 3: Biased data collection across200

classes. In this scenario, the practitioner first col-201

lects data for the pre-defined class support and then202

trains a model on the collected data. However, they203

are not able to collect data as per the real world dis-204

tribution. For example, given the full class support,205

the practitioners may only be able to get represen-206

tative datapoints from a set of users who agree to207

donate their data.208

We further introduce operating with reduced data209

volumes in all the scenarios above as motivated ear-210

lier. We also note that we enforce that at least one211

data point is available per class in each simulation.212

This is important as unconstrained severe under-213

sampling may lead to a reduced class support, as214

datapoints from some classes may not be sampled.215

We discuss our setup for simulating above scenar-216

ios in the next section.217

3.1 Simulating dataset collection218

Motivated by the aforementioned scenarios, we219

discuss simulations to mimic them below.220

221

Scenario 1: Uniform random down-sampling.222

In this method, we randomly downsample the223

available dataset to a fraction of its original size.224

This method is expected to provide a smaller225

number of datapoints available, but does not226

introduce any bias in the sampled data.227

228

Scenario 2: Class dependent bias injection. In229

this bias injection method, we under-sample data-230

points per class. In particular, when requesting a set231

of users to generate datapoints specific to a class,232

they may tend to produce similar set of requests233

(e.g. given a task to generate data for PlayMusicIn-234

tent, a user may provide pop music requests, while 235

another user may provide classical music requests). 236

Using this as a motivation, given a class, we obtain 237

K seed datapoints from amongst the datapoints be- 238

longing to that class. Given the seed datapoints, we 239

select utterances proximal to the seeds (as defined 240

through a chosen embedding space) to obtain the 241

undersampled data. Following the example above, 242

each seed can be seen as a prototype of requests 243

a user makes and the proximal utterances can be 244

expected to provided by the same user. 245

We propose multiple ways of selecting the 246

seed datapoints. In our experiments, we use 247

the following settings: (i) K = 1, seed close 248

to class centroid, (ii) K = 1, seed away from 249

class centroid, (iii) K > 1 seeds away from class 250

centroid and, (iv) K > 1, seeds randomly chosen. 251

The class centroid is again computed based on all 252

the available datapoins for the class at hand, as 253

defined on the chosen embedding space. 254

255

Scenario 3: Class agnostic bias injection. In this 256

method, we obtain K seed datapoints and select 257

utterances proximal to the seed datapoint without 258

factoring in the class assignments. This leads to 259

semantically similar utterances finding prevalence 260

in the under-sampled data, without considering the 261

class. This dataset creation mechanism mimics 262

a scenario where a biased set of datapoints are 263

selected from the real distribution, which are then 264

annotated for class labels for training a classifier. 265

For each of the methods described above, we 266

operate in an utterance embedding space com- 267

puted based on the smooth inverse frequency (SIF) 268

method (Sanjeev Arora, 2017). SIF embeddings 269

have been shown as a strong, yet simple method 270

to obtain sentence embeddings. We select seed ut- 271

terances in the SIF embeddings space and select 272

proximal utterances based on the L2 norm. We also 273

note that in the real world the process for biased 274

data generation is unlikely to be available to the 275

modeler. Therefore, we do not use SIF based em- 276

beddings in any of our methods to benchmark im- 277

provements on the biased data samples. We show 278

crafted visual demonstrations of the simulations for 279

selected scenarios in the Figure 1. 280

3.2 Datasets used 281

We use three English datasets for our experiments, 282

as summarized below. 283

ATIS Intent Classification Dataset (Chen, 284
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Figure 1: This figure demonstrates sampling the data
under different bias settings. Assuming the span of a
chosen class is shown using the blue ellipse, (a) shows
sampling with a single seed (K = 1) with the seed
selected away from the class centroid. Similarly, (b)
shows sampling with multiple seeds (K > 1) with
seeds away from centroid. (c) shows sampling with
several randomly selected seeds, and (d) shows sam-
pling with seeds selected randomly irrespective of the
class (green ellipse denotes a class separate to the one
denoted by the blue ellipse).

2019): This dataset consists of 4952 utterances285

in training set and 878 in test set, split across 18286

intents.287

Semantic Parsing for Task Oriented Dia-288

log using Hierarchical Representations (TOP)289

(Gupta et al., 2018b): TOP contains 31279 utter-290

ances in the training set and 9042 in test set, across291

19 intents.292

SNIPS Natural Language Understanding293

benchmark (Alice Coucke, 2018): SNIPS294

contains 13784 utterances in the training set and295

700 in test set, across 7 intents.296

3.3 Performance baselines297

Given the created datasets, we train intent classi-298

fiers on them and report our findings in Table 1.299

For the random down-sampling, we obtain datasets300

sized to 1%, of its original volume (we report num-301

bers on sampling 5% and 10% of the data in the302

Appendix X). We continue selecting nearest utter-303

ances to the selected seed utterances until we cover304

1% of the overall data volume (same heuristic is ap-305

plied for sampling 5% and 10% of the traffic). We306

fine-tune a BERT base model(110M parameters)307

on the available labeled data for all our classifi-308

cation tasks. We create 10 versions of datasets309

in biased setting and present average performance310

across them.311

Setting ATIS TOP SNIPS
Random down-sampling, 1% data

Random 66.52% 83.50% 85.81%
Class dependent bias injection, 1% data

(K = 1 close to
centroid)

70.59% 73.45% 68.51%

(K = 1 away
from centroid)

72.30% 72.22% 75.22%

(K > 1 away
from centroid)

80.77% 77.65% 80.77%

(K > 1) 73.69% 74.39% 75.04%
Class independent bias injection, 1% data

(K > 1) 72.21% 72.76% 34.40%

Table 1: Baseline results, trained with 1% labelled data

3.4 Observations 312

We discuss various observations on the baseline 313

performances below. 314

315

1. While random down-sampling performs the 316

best in TOP and SNIPS, it is the worst perform- 317

ing baseline in ATIS. We expected that random 318

down-sampling to perform the best given that it 319

preserves class distribution across data-samples. 320

However, this is not the case in the ATIS dataset 321

sampled down to 1% of its size. We identify that 322

in a few shot learning scenario, it is hard to sam- 323

ple data that matches the true distribution. Severe 324

under-sampling in ATIS leaves room for 1-2 sam- 325

ples per class, as shown in Table 2. We also ob- 326

serve that gathering biased data per-class yields 327

more samples for under-represented classes (e.g. 328

capacity/distanc), leading to better accuracy. This 329

implies that during few shot learning, it is better 330

to have more representative data-points from each 331

class, as opposed to a more matched class distri- 332

bution. We observe that as the number of random 333

samples increase (from 1% to 10%), the perfor- 334

mance of random baseline improves (please see 335

Appendix for numbers on datasets with size 5% 336

and 10%). 337

338

2. (K > 1 away from centroid) performs the 339

best in biased settings. We observe that gathering 340

diverse set of data per-class that is distant from 341

class centroid yield the most value in terms of 342

determining class boundaries. Datapoints away 343

from centroid are more likely to be close to the 344

decision boundary and data sampling methods 345

such as active learning rely on a similar heuristic 346
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Intent/Ratio 10% 1% 10% 1%
abbreviation 11 2 12 3
aircraft 8 1 9 2
airfare 41 5 42 6
airline 15 2 16 3
airport 2 1 3 2
capacity 2 1 3 2
cheapest 1 1 1 1
city 2 1 4 2
distance 3 1 4 2
flight 343 35 340 30
flight_no 2 1 4 2
flight_time 6 1 7 2
ground_fare 2 1 3 2
ground_service 24 3 25 4
meal 1 1 2 2
quantity 5 1 6 2
restriction 1 1 2 2

Table 2: Number of Utts in each intent of Atis with
random sampling

to gather valuable annotated data.347

348

3. The class independent bias injection setting349

(K > 1) severely under-performs for SNIPS.350

We observe an average performance of 34.4% for351

class independent bias injection in SNIPS (we em-352

phasize that this performance is average across 10353

samples of the data and thus, not a one off obser-354

vation). However, we observe a good recovery in355

case of using 5% or 10% of the data (results in356

Appedix X). We show the number of datapoints357

per class 1% and 10% data volume setting for ran-358

dom down sampling and a biased sampling setting359

in Table 3 (sampled from one of the 10 versions).360

We observe that severe under-sampling in SNIPS361

leads to a skew in the training data with intents362

like ‘GetWeather’/‘SearchScreeningEvent’ observ-363

ing far fewer datapoints (note that these classes364

otherwise are fairly frequent as seen in 10% and365

5% sampled data). [Check this] This is due to the366

fact that this intent while very frequent are tightly367

clustered in the embedding space. If a seed is not368

chosen close to the cluster, they are likely to be369

severely under-represented. In a real world setting,370

this setting is analogous to a case where a very371

similar set of users may provide most data for a372

frequent class, but they refrain from donating their373

data.374

Table 4 shows the skewed distribution caused375

Intent/Ratio 10% 5% 1%
AddToPlaylist 28 11 10
BookRestaurant 396 137 79
GetWeather 234 164 2
PlayMusic 50 20 1
RateBook 283 191 36
SearchCreativeWork 83 13 11
SearchScreeningEvent 290 147 1

Table 3: Number of Utts in each intent of Snips with
cross intent biased sampling

by cross intent biased sampling in Snips, which 376

originally has same amount data within each intent. 377

4 Methods for Benchmarking 378

Given the methods to generate under-sampled 379

datasets as described above, we benchmark two 380

broad categories of data augmentation methods on 381

each baseline: (i) Data augmentation through semi- 382

supervised learning and, (ii) Data augmentation 383

through data generation. We describe them below. 384

(all the computing works take around 1 week of an 385

AWS p3 instance, with 8 nVidia Tesla V100) 386

4.1 Semi Supervised Learning 387

In this setting, we assume availability of unlabeled 388

datapoints for the dataset at hand. Furthermore, we 389

assume that the available unlabeled data follows the 390

real world distribution. We then use two ways of 391

label-propagation on the unlabeled data to generate 392

pseudo-labeled data. The pseudo-labeled data is 393

then augmented with the labeled data to train a 394

classifier. We expect that the unlabeled data that 395

follows the real distribution can correct for biases 396

in the labeled data. 397

4.1.1 Self-learning based SSL 398

In this method, we train a seed model on the labeled 399

data and pseudo-label the unlabeled data with the 400

seed model. For both, the seed and the model 401

trained on augmented data, we use a BERT based 402

pre-trained model trained from ConSert and fine- 403

tune it on the labeled data. 404

4.1.2 Clustering based SSL 405

In this method, we propagate labels from the la- 406

beled datapoints to neighboring un-labeled data- 407

points. Similar to (Aharoni and Goldberg, 2020), 408

we use a pre-trained LM to first produce sentence 409

embeddings for both labeled and unlabeled data- 410

points. The unlabeled data helps the model to learn 411
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the overall data pattern in the dataset while the la-412

beled data helps the model to label the unlabeled413

data. Our proposed method runs clustering with414

large amount of unlabelled data and only select415

the most confident clusters to ensure the quality416

of pseudo-labels. We summarize the steps used in417

this method below: (i) We first use an LM (BERT)418

to obtain sentence representations. (ii) We use K-419

means clustering on the LM representations ob-420

tained for labeled and unlabeled data to identify421

clusters. We expect that each cluster represents a422

set of semantically similar sentences. To ensure423

fine granularity of clustering, the number of clus-424

ters is set much larger than the number of classes425

(e.g., number of domains or intents) (Mahon and426

Lukasiewicz, 2021). (iii) We then pseudo-label427

unlabeled datapoints in selected clusters based on428

the set of labeled datapoints in the cluster. Recent429

work showed that pseudo-labels perform poorly430

mainly because of low accuracy in clustering (Di-431

vam Gupta and Sivathanu, 2020). Consequently,432

similar to (Ishii, 2021), we only keep the most433

“pure” clusters, as we define next. A pure cluster434

has the following properties (a) At least 1% of the435

datapoints in a given cluster need to be labeled, (b)436

the majority class amongst the labeled datapoints437

needs to account for at least 80% of the labeled dat-438

apoints. All unlabeled datapoints in each pure clus-439

ter is assigned the label same as the majority class440

in the respective cluster. Once a set of unlabeled441

datapoints are pseudo-labeled, we train a classifier442

on the combined set of labeled and pseudo-labeled443

data.444

4.2 Data augmentation445

In this setting, we assume that no unlabeled data is446

available for the task of interest and we focus on447

generating more data from the labeled data using448

the following set of methods.449

4.2.1 Easy Data Augmentation450

EDA (Wei and Zou, 2019) is a data augmentation451

technique that uses synonym replacement/ random452

synonym insertion/ random two words swap and453

random word removal to synthesize new training454

examples. It creates 9 generated utterances per la-455

belled utterance using these four techniques. While456

the heuristic behind EDA is simple, it has shown457

to outperform several strong data generation base-458

lines.459

4.2.2 Back-translation 460

Back-translation (BT) (Sennrich et al., 2016) is 461

a commonly used approach for paraphrasing text: 462

a machine translation (MT) system is applied to 463

translate text from the source language to a target 464

pivot language, then back again. By using n-best in 465

both directions, BT can produce a large number of 466

paraphrases. We fine-tune an internal 5B parameter 467

seq2seq model on WMT 2014 data(Bojar et al., 468

2014), using a single model for en→fr and fr→en, 469

with an instruction prompt to control the language 470

direction: “Translate to French:” and “Translate 471

to English:”, respectively. We decode with beam 472

search using M=10 forward and N=10 backward 473

translations, to produce up to 100 variations of 474

each original sentence. After heuristic cleaning 475

(removing invalid punctuation like “!” and “?.”) and 476

de-deduplication, the average number of outputs 477

per input is 41 for ATIS, 51 for SNIPS, and 36 for 478

TOP. 479

4.2.3 In-context Learning 480

Given the recent emergence of in-context learning 481

as a way to generate quality data from large 482

models, we use this as another baseline. We use a 483

20B parameter language model to generate data by 484

setting the handful of labeled data for the task at 485

hand as context. In particular, for each dataset and 486

each intent, we give the model 3 utterances of that 487

with a prompt (e.g., in the form Example with 488

[flight] intent: do you have an 489

early morning direct flight from 490

philadelphia to pittsburgh?) and 491

generate 27 samples of the same intent by 492

letting the model continue generation after the 493

final prompt(e.g.,Example with [flight] 494

intent:). For generation, we use nucleus 495

sampling with p = 0.5, 0.7, 0.9. 496

We augment various baselines discussed in Sec- 497

tion 3 (that cover up to 1% of the training data) with 498

data obtained through the semi-supervised learning 499

and data augmentation methods (results for 5% and 500

10% settings are presented in Appendix). For SSL 501

methods, we use data not selected during biased 502

sampling as the unlabeled data. Same BERT-base 503

architecture is used for fine-tuning on augmented 504

datasets and the test set is consistent with the base- 505

lines presented in Section 3.3. Table 4 summarizes 506

the results. 507
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Dataset: ATIS
Full data baseline 97.94

Baseline SSL Clustering EDA Gen_20Bp5 Gen_20Bp7 Gen_20Bp9 Gen_5B
Random down-sampling 66.5 68.1 78.4 82.4 83.6 85.8 87.3 82.5
Class dependent bias injection:
(K = 1 close to centroid) 70.6 70.4 50.3 80.2 77.7 76.9 78.5 78.9
(K = 1 away from centroid) 72.3 72.8 46.8 78.7 79.1 80.9 83.7 75
(K > 1 away from centroid) 76.5 81.5 58.8 84 84.7 86.3 85 83.2
(K > 1) 76.7 77.6 52.5 80.5 82.4 85.4 86.8 81
Class independent bias injection:
(K > 1) 72.2 73 72.5 78.6 81 85.9 86.6 79.9

Dataset: Top
Full data baseline 94.16

Baseline SSL Clustering EDA Gen_20Bp5 Gen_20Bp7 Gen_20Bp9 Gen_5B
Random down-sampling 83.5 83.8 83.8 86.9 84.5 84.6 84.4 87.5
Class dependent bias injection:
(K = 1 close to centroid) 73.5 74 59.3 75.7 67.2 69.9 73.8 75.4
(K = 1 away from centroid) 72.2 72.6 56.8 74.5 70.9 72.9 74.6 73.8
(K > 1 away from centroid) 77.3 78.1 69.4 80.6 73.2 75.6 78.5 78.9
(K > 1) 74.9 77.8 63.3 77.8 73 76 79.4 80.1
Class independent bias injection:
(K > 1) 72.8 73.4 72.1 76 77.7 76.9 77.6 78.1

Dataset: Snips
Full data baseline 98.86

Baseline SSL Clustering EDA Gen_20Bp5 Gen_20Bp7 Gen_20Bp9 Gen_5B
Random down-sampling 85.8 88.5 94 91.8 94.1 94.9 94.2 93.8
Class dependent bias injection:
(K = 1 close to centroid) 68.5 71.2 86.1 79.8 82.1 85.9 89.7 87.2
(K = 1 away from centroid) 75.2 76.9 83 80.5 81.7 86.9 90.6 85.1
(K > 1 away from centroid) 75.2 82.5 88 87.2 87.1 90.9 92 91
(K > 1) 79.3 82.4 88.2 84.4 90 89.7 93.3 91.8
Class independent bias injection:
(K > 1) 34.4 33.9 73.5 47 56.1 69 69.5 57.4

Table 4: Performance(accuracy in test sets) of models, trained with 1% of labelled data and augmented data from
each method

4.3 Observations508

Examples of data generated through the data509

augmentation methods are shown in Table 5. We510

make the following observations from the results.511

512

1. Data generations methods are competi-513

tive to SSL methods We observe that the data514

generation methods trained on top of models515

with large volumes of world knowledge (e.g.516

data from web crawl) or simple perturbations517

outperform models trained on a combination of518

labeled and pseudo-labeled data. We attribute519

this observation to the fact that semi-supervised520

techniques use for pseudo-labeling techniques are521

dependent on the seed set of labeled datapoints.522

In absence of a diverse and representative labeled523

datapoints, pseudo-labeling unlabelled data can be524

challenging.525

526

2. EDA emerges as a strong benchmark527

Akin to the claims made in the EDA paper, we 528

observe that their proposed method performs well 529

in our baselines. The in-context based methods 530

beats EDA in the class independent bias injection 531

method, but otherwise EDA either beats or is fairly 532

competitive. 533

534

3. The clustering method yields value on the 535

SNIPS dataset, while hurting the performance 536

in other datasets. While EDA and in-context 537

learning generally perform the best, clustering 538

based SSL outperforms other methods in SNIPS. 539

We, therefore, analyze if a heuristic can capture 540

when to select clustering based method. We look at 541

T-SNE and identfy that there must be clean clusters. 542

We also look at intra-cluster metric. 543

To analyze the reason behind the performance 544

difference of the two pseudo labelling meth- 545

ods(SSL and clustering), we plot the t-SNE(van der 546

Maaten and Hinton, 2008) embeddings of some 547

7



Figure 2: (a) Snips t-SNE with ground truth label (b) Snips t-SNE with ssl label (c) TOP t-SNE with ground truth
label (d) TOP t-SNE with ssl label

random sampled utts from these dataset.548

Figure 4 and 5 shows the situations in Snips,549

where clustering beats SSL. The color of embed-550

dings in Figure 4 represents the ground truth label551

while in Figure 5 they are the pseudo label given552

by SSL. We can see even with well-clustered utts,553

SSL mis-labels a lot of them, SSL pseudo label554

accuracy is 68.9% for singled seeded sampling, 1%555

data retain rate, while in this setting, clustering has556

pseudo label accuracy of 87.1%.557

However, as Figure 6 and 7 shows the situations558

in TOP, where clustering has lower accuracy com-559

pared with SSL. We can see in a dataset where560

the utts are not clustered well by intent, clustering561

cannot give a good help.562

5 Conclusion563

This survey gives an overview over data augmen-564

tation approaches to mitigate reduced annotation565

volumes and biased sampling for intent classifica-566

tion in different domains and dataset.567
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SSL Search for the George and the Big Bang TV show
this current book is worth five

I want to go to the Freight House in Gabon
Give four points to Leven Thumps and the Gateway to Foo

Find the trailer for Seven Year Itch.
Clustering Find a TV show called Union.

I’m looking for the song called Standing for Something.
Please look up The Immortals television show.

Please get me The National Medical Journal of India game.
Find Half Cut Tea.

EDA show the put yourself in his berth place game
show the inwards put yourself in his place game

his the put yourself in show place game
show the put yourself game his place in
show the put yourself in his place gimpy

Paraphrasing Find me the trailer for The Incredible Hulk
Find me the trailer for The Matrix

How can I get a copy of the book The Art of Playing the Game
Where can I find the trailer for The Man Who Fell to Earth

How can I watch the movie The Secret Garden
In-context Learning Add Put Yourself in His Place to Wish List

Add Put Yourself in His Place to Wishlist
Add the game Put Yourself in His Place

Add the game Put Yourself in His Place to your Web browser.
Add the game Put Yourself in His Place to your Web site.

Table 5: Examples of labeled data generated through various data augmentation methods.

A Example Appendix788

789
Setting ATIS TOP SNIPS
Full data 97.94% 94.16% 98.86%

Random down-sampling, 10% data
Random 88.58% 98.08% 91.69%

Class dependent bias injection, 10% data
(K = 1 close to
centroid)

83.68% 82.85% 92.35%

(K = 1 away
from centroid)

87.70% 82.95% 92.85%

(K > 1 away
from centroid)

89.25% 87.16% 93.92%

(K > 1) 89.53% 87.64% 94.28%
Class independent bias injection, 10% data

(K > 1) 85.55% 89.30% 94.12%

790

Table 6: Baseline results, trained with 10% labelled
data791

792

Setting ATIS TOP SNIPS
Random down-sampling, 5% data

Random 85.81% 90.43% 96.08%
Class dependent bias injection, 5% data

(K = 1 close to
centroid)

80.49% 80.47% 90.30%

(K = 1 away
from centroid)

81.47% 79.15% 89.40%

(K > 1 away
from centroid)

86.49% 84.93% 90.44%

(K > 1) 86.00% 83.82% 89.61%
Class independent bias injection, 5% data

(K > 1) 80.84% 85.88% 76.80%

793

Table 7: Baseline results, trained with 5% labelled data 794

B Results with 5% and 10% of datasets 795
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Dataset: ATIS
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 88.6% -0.365% 3.03% 5.3% 5.23% 5.42% 5.21% 3.01%
Class dependent bias injection:
(K = 1 close to centroid) 83.7% 0.205% -1.37% 3.36% 4.92% 5.57% 5.54% 1.04%
(K = 1 away from centroid) 87.7% -0.822% -6.36% -0.308% 1.82% 1.87% 2.13% -5.74%
(K > 1 away from centroid) 89.1% -0.0571% 0.0685% 2.49% 1.44% 2.53% 3.7% -0.331%
(K > 1) 89.3% 1.47% 0.753% 2.68% 2.29% 3.61% 3.47% 1.72%
Class independent bias injection:
(K > 1) 85.6% 0.0114% 4.77% 4.93% 6.08% 6.78% 6.6% 3.48%

Dataset: Top
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 91.7% 0.144% 0.0155% 0.772% -1.41% -1.9% -1.97% 0.00221%
Class dependent bias injection:
(K = 1 close to centroid) 82.9% 0.365% -2.62% 3.67% -0.822% 0.653% 2.1% 2.64%
(K = 1 away from centroid) 83% 0.408% -3.38% 3.38% -0.763% -0.487% 1.38% 1.36%
(K > 1 away from centroid) 86.9% 0.449% -2.21% 0.845% -2.94% -2.1% -0.113% 0.332%
(K > 1) 86.6% 0.718% -2% 1.16% -2.87% -2.04% -0.481% 0.426%
Class independent bias injection:
(K > 1) 89.3% 0.177% 0.195% 1.11% -0.323% -0.672% -1.58% 1.03%

Dataset: Snips
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 98.1% 0.0857% -0.0714% 0.329% 0.214% 0.2% 0.214% -0.171%
Class dependent bias injection:
(K = 1 close to centroid) 92.4% 1.06% 2.7% 4.4% 3.94% 4.84% 4.91% 3.63%
(K = 1 away from centroid) 92.9% 0.829% 1.43% 3.21% 3.11% 4% 3.74% 2.69%
(K > 1 away from centroid) 94.6% 0.0857% 1.5% 2.51% 1.94% 2.44% 2.56% 1.97%
(K > 1) 94.6% 0.557% 1.27% 2.63% 2.17% 2.59% 2.54% 1.66%
Class independent bias injection:
(K > 1) 94.1% 0.257% 2.27% 3.1% 2.69% 3.1% 3.04% 2.71%

Table 8: Relative improvement over the baseline model, trained with 10% labelled data
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Dataset: ATIS
Baseline SSL Clustering EDA Gen_20Bp5 Gen_20Bp7 Gen_20Bp9 Gen_5B

Random down-sampling 85.8% -0.525% 4.1% 3.54% 4.04% 5.76% 5.9% 2.51%
Class dependent bias injection:
(K = 1 close to centroid) 80.5% -0.297% -5.29% 3.82% 7.51% 7.68% 8.06% 1.88%
(K = 1 away from centroid) 81.5% 0.103% -16.5% 1.4% 5.87% 7.47% 7.65% -2.17%
(K > 1 away from centroid) 84.9% 2.07% -4.46% 2.42% 3.39% 4.84% 5.47% 1.23%
(K > 1) 87.2% -1.4% -5.32% 1.06% 1.77% 1.54% 2.13% -0.982%
Class independent bias injection:
(K > 1) 80.8% -0.0685% 6.37% 6.53% 7.97% 9.35% 9.47% 5.76%

Dataset: Top
Baseline SSL Clustering EDA Gen_20Bp5 Gen_20Bp7 Gen_20Bp9 Gen_5B

Random down-sampling 90.4% 0.188% -0.0177% 1.06% -1.72% -2.21% -2.04% 0.0122%
Class dependent bias injection:
(K = 1 close to centroid) 80.5% 0.358% -6.9% 1.75% -3.77% -3.24% 0.094% 0.421%
(K = 1 away from centroid) 79.2% 0.374% -6.7% 2.84% -1.6% -1.01% 0.811% 1.39%
(K > 1 away from centroid) 84.7% 0.661% -4.24% 0.841% -3.95% -2.24% -0.583% 0.0343%
(K > 1) 82.7% 0.679% -6.14% 0.543% -2.28% -1.74% 1.24% 0.677%
Class independent bias injection:
(K > 1) 85.9% 0.222% -0.885% 1.68% -0.5% -0.0221% -1.11% 1.66%

Dataset: Snips
Baseline SSL Clustering EDA Gen_20Bp5 Gen_20Bp7 Gen_20Bp9 Gen_5B

Random down-sampling 96.1% 0.171% 1.2% 2.14% 2.07% 1.89% 1.97% 1.64%
Class dependent bias injection:
(K = 1 close to centroid) 90.3% 1.04% 3% 4.1% 5.04% 5.99% 6.27% 4.66%
(K = 1 away from centroid) 89.4% 0.957% 2.73% 4.74% 4.53% 6.26% 6.54% 5.21%
(K > 1 away from centroid) 89.9% 1.84% 3.71% 5.34% 5.47% 5.81% 6.51% 5.31%
(K > 1) 90.2% 2.47% 4.06% 5.13% 4.73% 5.84% 5.93% 5.5%
Class independent bias injection:
(K > 1) 76.8% 0.371% 14.9% 12.5% 16.1% 17.3% 16.4% 14.9%

Table 9: Relative improvement over the baseline model, trained with 5% labelled data
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Dataset: ATIS
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 0.00204 0.00189 0.000155 0.000148 0.000121 1.75e-05
Class dependent bias injection:
(K = 1 close to centroid) 0.000798 0.000999 0.00452 0.00147 0.000381 0.00284
(K = 1 away from centroid) 0.000198 0.000245 0.0178 0.000325 0.000185 0.0055
(K > 1 away from centroid) 0.000177 0.000323 0.000737 0.000547 0.000269 0.000595
(K > 1) 0.000121 0.000219 0.000279 0.000284 0.000438 0.000347
Class independent bias injection:
(K > 1) 0.00115 0.00111 0.000313 0.000267 0.000179 0.000319

Dataset: Top
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 1.23e-05 1.58e-05 1.16e-05 6.18e-07 8.12e-06 1.75e-06
Class dependent bias injection:
(K = 1 close to centroid) 0.00054 0.000612 0.000738 0.000157 0.000333 8.69e-05
(K = 1 away from centroid) 0.000602 0.000585 0.00143 0.000498 0.000832 0.000813
(K > 1 away from centroid) 0.000151 0.000309 0.000732 0.000168 0.000252 8.43e-05
(K > 1) 0.00013 0.000219 0.000303 4.03e-05 0.00016 0.000141
Class independent bias injection:
(K > 1) 8.13e-05 8e-05 5.1e-05 2.91e-05 2.95e-05 1.38e-05

Dataset: Snips
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 2.42e-05 2.28e-05 6.71e-06 3.04e-06 4.67e-06 4.57e-06
Class dependent bias injection:
(K = 1 close to centroid) 0.00206 0.00119 0.000432 8.57e-05 0.000291 2.02e-05
(K = 1 away from centroid) 0.000584 0.000758 0.000345 0.000228 0.000262 0.000209
(K > 1 away from centroid) 0.000123 0.000166 9.23e-05 3.19e-05 7.8e-05 2.64e-05
(K > 1) 0.000580 0.000173 0.00014 4.61e-05 4.74e-05 5.57e-05
Class independent bias injection:
(K > 1) 0.00262 0.0025 0.000324 6.99e-05 7.23e-05 1.81e-05

Table 10: Variance of results over 10 different runs, trained with 10% labelled data
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Dataset: ATIS
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 0.000714 0.000572 0.000259 2.37e-05 2.72e-05 3.02e-05
Class dependent bias injection:
(K = 1 close to centroid) 0.00128 0.00107 0.00565 0.000599 0.000519 0.0043
(K = 1 away from centroid) 0.00175 0.00137 0.0285 0.000691 0.000185 0.00654
(K > 1 away from centroid) 0.000832 0.000754 0.003 0.000785 0.000735 0.000596
(K > 1) 0.000432 0.000505 0.000845 0.000529 0.00051 0.00184
Class independent bias injection:
(K > 1) 0.0022 0.00221 0.000829 0.000176 0.000281 0.000309

Dataset: Top
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 1.48e-05 1.34e-05 2.19e-05 2.42e-06 1.62e-05 4.26e-06
Class dependent bias injection:
(K = 1 close to centroid) 0.000827 0.000816 0.00184 0.000347 0.00116 0.00047
(K = 1 away from centroid) 0.00148 0.00144 0.00555 0.00098 0.0013 0.00257
(K > 1 away from centroid) 0.000427 0.000393 0.00127 0.000423 0.000659 0.000508
(K > 1) 0.000132 0.000489 0.00078 0.000559 0.00033 0.000393
Class independent bias injection:
(K > 1) 8.28e-05 9.42e-05 0.000149 4.15e-05 0.000101 3.48e-05

Dataset: Snips
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 0.000536 0.00046 6.37e-05 4.98e-06 9.16e-06 1.12e-05
Class dependent bias injection:
(K = 1 close to centroid) 0.000768 0.000614 0.000581 0.000499 0.000529 0.000116
(K = 1 away from centroid) 0.00104 0.000788 0.00106 0.000408 0.000626 0.000257
(K > 1 away from centroid) 0.000124 0.000918 0.000385 0.000104 0.000267 6.91e-05
(K > 1) 0.00524 0.000203 0.00019 0.000143 0.000318 7.71e-05
Class independent bias injection:
(K > 1) 0.0153 0.0149 0.00232 0.0047 0.00165 0.00355

Table 11: Variance of results over 10 different runs, trained with 5% labelled data
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Dataset: ATIS
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 0.0314 0.0249 0.00123 0.000183 2.58e-05 8.35e-05
Class dependent bias injection:
(K = 1 close to centroid) 0.0117 0.0125 0.0204 0.000693 0.00622 0.00349
(K = 1 away from centroid) 0.00103 0.000464 0.0517 0.000679 0.00107 0.00343
(K > 1 away from centroid) 0.000176 0.00122 0.0159 0.000216 0.000358 0.000931
(K > 1) 0.000163 0.00645 0.00957 0.00646 0.00469 0.00498
Class independent bias injection:
(K > 1) 0.00163 0.00114 0.00569 0.000225 0.000391 0.000617

Dataset: Top
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 0.000299 0.000316 5e-05 7.41e-06 4.7e-05 1.52e-05
Class dependent bias injection:
(K = 1 close to centroid) 0.000916 0.000904 0.00683 0.000542 0.00123 0.000852
(K = 1 away from centroid) 0.00146 0.00138 0.00914 0.00214 0.00134 0.00312
(K > 1 away from centroid) 0.000116 0.00148 0.00203 0.000689 0.000759 0.00107
(K > 1) 0.000126 0.000963 0.00262 0.00117 0.000622 0.000568
Class independent bias injection:
(K > 1) 0.00165 0.00157 0.00171 0.00254 0.000505 0.00163

Dataset: Snips
Baseline SSL Clustering EDA Gen_20B Gen_5B

Random down-sampling 0.00187 0.00137 0.000105 0.000651 0.000222 5.56e-05
Class dependent bias injection:
(K = 1 close to centroid) 0.00469 0.00393 0.00171 0.00199 0.00869 0.000947
(K = 1 away from centroid) 0.00403 0.003 0.00141 0.00276 0.00336 0.000746
(K > 1 away from centroid) 0.000576 0.00549 0.00172 0.000786 0.00283 0.000714
(K > 1) 0.000271 0.00473 0.00175 0.00191 0.000665 0.000594
Class independent bias injection:
(K > 1) 0.0172 0.0172 0.011 0.0272 0.0187 0.0174

Table 12: Variance of results over 10 different runs, trained with 1% labelled data
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