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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promis-
ing framework to enhance the reasoning capabilities of Large Language Models
(LLMs), yet the samples from the policy model are not fully exploited during
training. We propose Momentum-Aware Policy Optimization (MAPO), a critic-
free, drop-in framework that preserves the simplicity of GRPO while improving
exploration and stability. MAPO introduces (i) a Momentum Group Baseline
that yields non-vanishing learning signals under group-standardized rewards; (ii)
confidence-based prioritized replay that reuses verified successes to increase sam-
ple efficiency; and (iii) entropy-weighted token updates that concentrate gradient
mass on uncertain decision points. Evaluated on math reasoning benchmarks,
MAPO outperforms strong baselines—including GRPO and DAPO—in best-of-N
accuracy (pass@N ), demonstrating superior exploration and discovery of correct
reasoning trajectories. Ablation studies attribute the primary gains to the momen-
tum advantage, which reduces the steps required to reach the target, alleviates
stalls on homogeneous reward groups, and reduces across-seed variance. The
replay and entropy components provide complementary improvements in sample
utilization and gradient allocation. Overall, MAPO achieves target performance in
fewer optimization steps while maintaining training stability, offering a practical
enhancement to group-based RLVR methods.

1 INTRODUCTION

Large language models have demonstrated remarkable capabilities in complex reasoning tasks, yet
achieving reliable performance in domains requiring precise logical steps remains challenging(Jaech
et al., 2024; Guo et al., 2025; Bai et al., 2023). The key insight driving recent progress is that these
domains offer access to automated verification: unlike subjective human preferences, mathematical
proofs and code execution provide objective, binary feedback that can guide model improvement at
scale(Lightman et al., 2024).

Reinforcement learning with verifiable rewards (RLVR) leverages these programmatic signals to
guide policy optimization (Mroueh, 2025; Su et al., 2025). However, two fundamental obstacles
persist in practice. First, low reward variance emerges when models uniformly succeed or fail on
similar problems, causing normalized advantages to collapse and weakening policy gradients. Both
empirical and theoretical analyses demonstrate that small reward standard deviation leads to flat
objectives that stall learning progress (Razin et al., 2025). While subsequent remedies—including
variance-boosting heuristics and adaptive baselines—provide partial relief, they fail to address the
underlying pathology (Li et al., 2025; Wang et al., 2025a). Second, token-level credit assignment
presents an inherent challenge: sequence-level rewards are distributed uniformly across all tokens
despite only a subset being causally critical to the outcome, particularly in extended chains of
reasoning.

We introduce Momentum-Aware Policy Optimization (MAPO), a framework that addresses these
challenges through three key innovations: (1)Momentum Group Baseline maintains learning
signals even when current samples show low reward variance by incorporating historical context,
(2) Confidence-Based Prioritized Replay preserves valuable successful trajectories for repeated
learning while preventing regression, and (3) Entropy-Weighted Token Updates allocates gradient
updates proportionally to local uncertainty, focusing learning on critical decision points.
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Extensive evaluation on mathematical reasoning benchmarks demonstrates that MAPO consistently
outperforms strong baselines including GRPO and DAPO across both pass@1 and pass@N metrics.
Ablation studies reveal that the momentum baseline provides the primary performance gains, while
replay and entropy weighting offer complementary improvements in sample efficiency and gradient
allocation. These results establish MAPO as an effective drop-in enhancement for verifiable reward
settings.

2 RELATED WORK

Reinforcement Learning for LLM Alignment. The dominant paradigm for LLM alignment
follows reinforcement learning from human feedback (RLHF), typically implemented via PPO with
learned value functions and KL penalties to reference models (Ziegler et al., 2019; Stiennon et al.,
2020; Ouyang et al., 2022). While effective, PPO’s critic dependence and token-level clipping
mechanisms become brittle when scaled to large models (Schulman et al., 2017). This has motivated
research into reinforcement learning with verifiable rewards (RLVR), where automated checkers
provide objective signals for domains like mathematics and coding (Lightman et al., 2024; Yu et al.,
2023; Setlur et al., 2024).

Group-Based Policy Optimization. To eliminate critic dependencies, group-based methods sample
multiple completions per prompt and use group statistics to construct advantages. Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) exemplifies this approach: for prompt x, the policy
πθold samples a group of G responses {yi}Gi=1 with sequence rewards {ri}Gi=1 . Let the group mean
and standard deviation be

µ =
1

G

G∑
j=1

rj , σ =

√√√√ 1

G

G∑
j=1

(rj − µ)2.

GRPO assigns the same scalar advantage to every token of response yi

Âi,t =
ri − µ

σ + ε
, t = 1, . . . , |yi| , (1)

where ε > 0 ensures numerical stability. With PPO-style clipping and KL regularization, this
eliminates value function learning while proving effective for mathematical reasoning tasks.

However, GRPO’s group normalization suffers when reward variance is low: if all samples succeed
or fail similarly,σ ≈ 0 and advantages vanish, stalling learning. Additionally, the group-normalized
advantage depends on empirical statistics from finite groups of size G and we quantify how G
affects estimator bias and reliability under Bernoulli rewards in Appendix B. This analysis explains
why momentum baselines and prioritized replay mitigate gradient collapse when groups are nearly
homogeneous.

Extensions and Alternatives. Recent scaling efforts emphasize token-level refinements: DAPO
decouples clipping and employs dynamic sampling to stabilize long-CoT training (Yu et al., 2025),
while Dr.,GRPO corrects bias in GRPO to improve token efficiency (Liu et al., 2025). Complementary
work shows that high-entropy minority tokens disproportionately drive RLVR gains (Wang et al.,
2025b). Experience replay adaptations include RLEP, which collects verified trajectories and replays
high-quality successes (Zhang et al., 2025), and off-policy corrections that reduce PPO complexity
(Ahmadian et al., 2024). Our confidence-based prioritized replay operates online and is conceptually
aligned with prioritized experience replay from deep RL (Schaul et al., 2016) and recent LLM
replay variants (Dou et al., 2025). Preference-optimization methods like DPO and KTO offer stable
alternatives (Rafailov et al., 2023; Ethayarajh et al., 2024), but cannot directly exploit automated
verifiers, limiting RLVR applicability.

3 METHOD

In this section, we introduce our method, MAPO, which augments the group-based policy optimization
with momentum-based baselines, prioritized replay, and entropy-guided updates. We index outer
optimization iterations by k, within groups by i, and token positions by t.

2
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Figure 1: MAPO architecture and workflow. Given prompt q, the policy model generates candidate
responses evaluated by a reward model. MAPO addresses three key challenges in group-based
RLVR: (1) sample inefficiency via confidence-based experience replay of high-quality trajecto-
ries {e1, e2, . . .}, (2) vanishing advantages under uniform rewards via Momentum Group Base-
line {µt−1, σt−1}, and (3) suboptimal credit assignment via entropyguided advantage weighting
{∆H1,∆H2, . . . ,∆HG}. The method computes group advantages {A1, A2, . . . , AG}, applies
entropy-based token reweighting for stable policy updates.

3.1 MOMENTUM ADVANTAGE WITH MOMENTUM GROUP BASELINE

Group-based RLVR suffers from vanishing advantages when batch rewards are homogeneous, which
leads to the elimination of gradient signals. This occurs frequently as models consistently solve easy
prompts or fail uniformly on hard ones. We address this issue with a momentum-based baseline that
carries information from past batches.

For each trajectory i, we maintain an exponential moving average (EMA) baseline

b
(k)
i = αµ

(k)
−i + (1− α) b

(k−1)
i , b

(0)
i = µ

(0)
−i . (2)

where µ(k)
−i denotes the group mean reward at iteration k excluding trajectory i and α ∈ (0, 1] controls

the decay rate. The momentum advantage is

A
(k)
i =

r
(k)
i − b

(k)
i

σ(k) + ε
+ η∆b

(k)
i , (3)

where ∆b
(k)
i := b

(k)
i − b

(k−1)
i is the baseline change and η ≥ 0 is a small weighting hyperparameter.

The first term in A
(k)
i generalizes the advantage estimation in GRPO by using the EMA baseline b(k)i .

The second term η∆b
(k)
i rewards positive baseline drift (if the group’s performance is improving over

time, ∆b > 0, it boosts the advantage) and penalizes regressions (∆b < 0 yields a negative term).
Intuitively, this momentum term pushes the policy to continually outperform its historical average for
that prompt, thus providing a learning signal even in batches where ri ≈ µ.

Bias–variance properties. Within a group, let r(k)j
i.i.d.∼ Bernoulli(pk) and denote the leave-one-

out mean and std by (µ
(k)
−i , σ

(k)) with σ
(k)
ε := σ(k)+ε. The group-normalized term (r

(k)
i −µ

(k)
−i )/σ

(k)
ε

is approximately unbiased, with residual bias of order O(G−1) due to the random denominator; its
variance is also O(G−1) under non-degenerate rewards.

Introducing the EMA baseline b
(k)
i = αµ

(k)
−i + (1− α)b

(k−1)
i yields geometric bias decay in k (as

b
(k−1)
i → pk) and preserves the O(G−1) variance scaling. For the momentum-augmented advantage

A
(k)
i =

r
(k)
i − b

(k)
i

σ
(k)
ε

+ η ∆̃b
(k)

i , ∆̃b
(k)

i := ∆b
(k)
i − E

[
∆b

(k)
i

]
, ∆b

(k)
i := b

(k)
i − b

(k−1)
i ,

3
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a standard variance decomposition shows that, for the empirically typical negative covariance between
the two centered terms, some η ∈ [0, 1] achieves net variance reduction relative to the non-momentum
case. Formal expansions for the finite-G bias and the full variance bound appear in Appendix B, and
Appendix C respectively.

Non-vanishing signal under uniform rewards. When all responses in a group share the same
reward r

(k)
j ≡ c ∈ {0, 1}, GRPO collapses to a null update because µ

(k)
−i = c and σ(k) = 0, hence

(c− µ
(k)
−i )/σ

(k)
ε = 0 (with stabilization). In contrast, MAPO maintains a bounded, non-zero learning

signal:

A
(k)
i =

c− b
(k)
i

ε
+ η∆b

(k)
i =

(
1−α
ε + ηα

)(
c− b

(k−1)
i

)
,

so long as b
(k−1)
i ̸= c. In practice we apply standard clipping on 1/ε (or on A

(k)
i ), to avoid

pathological spikes, so the momentum term η∆b
(k)
i = η α(c− b

(k−1)
i ) alone already guarantees a

stable non-vanishing signal that pushes b(k)i toward c.

3.2 CONFIDENCE-BASED PRIORITIZED EXPERIENCE REPLAY

RLVR faces sample inefficiency challenges—each trajectory is computationally expensive to obtain,
yet standard on-policy training uses it only once. Without retaining high-value trajectories, the
learning process wastes valuable signals and may forget rare successful strategies. Correct solutions
to complex problems are found infrequently, making it beneficial to reinforce them repeatedly rather
than rediscover by chance.

We incorporate a prioritized experience replay buffer that preferentially retains high-confidence
successes. For each prompt q, we maintain a small buffer B[q] that stores at most one “best”
trajectory —the verified success with highest model confidence.

Confidence score. For a response y = (y1:ym) generated by πθk , we define

C(y|θk) :=
1

m

m∑
t=1

log πθk(yt|y<t, q), (4)

A higher C(y|θk) indicates indicates greater model confidence during generation, identifying trajec-
tories the policy can reliably reproduce.

Buffer management. When response y achieves r > 0 with confidence C(y| θk) ≥ C (y⋆|θk⋆)
(where y⋆ is the current buffer entry), we update B[q]← (y, θk). During batch construction, if all G
on-policy samples fail for prompt q, we replace one failure with the buffered trajectory, maintaining
fixed batch size while ensuring at least one positive example per prompt when available.

Bias control. Let ∇̂Lon(θ) denote the on-policy Monte Carlo policy gradient estimator and
∇̂Lmix(θ) the estimator when replacements occur with probability λk ∈ [0, 1]. Assuming (i) bounded
importance ratios for replaced items and (ii) Lipschitzness of the per-token loss, a standard mixture
argument yields ∥∥∥E [∇̂Lmix (θ)

]
− E

[
∇̂Lon (θ)

]∥∥∥ ≤ λkB (5)

for a constant B independent of k. As training progresses, λk decays rapidly since the policy solves
more prompts on-policy, yielding controlled vanishing bias with substantial stability gains.

3.3 ENTROPY-GUIDED ADVANTAGE WEIGHTING

Standard policy gradients assign uniform advantages across all tokens, which is inefficient for
complex reasoning where tokens vary in importance and uncertainty. In multi-step mathematical
derivations, models may be confident about routine algebraic steps but uncertain about critical
problem-solving decisions. Uniform weighting dilutes learning signals by allocating equal gradient
budget to both trivial and crucial steps. We modulate token-level advantages based on model

4
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Figure 2: Entropy-guided advantage weighting mechanism. (a) Shows how entropy deviations ∆H
(k)
i,t

relative to EMA baselines are converted to normalized weights via softmax, with high-uncertainty
tokens receiving amplified attention. (b) Demonstrates the resulting advantage redistribution where
critical reasoning steps (marked with triangles) receive 1.5-1.7× more learning signal compared to
uniform weighting.

uncertainty, using entropy as a proxy. The approach redistributes sequence advantage proportionally
to token uncertainty—higher entropy tokens receive larger advantage portions.

For token t in sequence i, let H(k)
i,t denote the entropy under πθk . To identify unusually uncertain

tokens, we compare against a reference entropy H̄
(k)
i,t computed from a baseline policy. The entropy

delta ∆H
(k)
i,t := H

(k)
i,t − H̄

(k)
i,t captures deviations from typical uncertainty. Positive deltas indicate

higher-than-usual uncertainty, suggesting more critical decision points that warrant increased learning
focus. We convert deltas to normalized weights via temperature-scaled softmax

w
(k)
i,t =

exp
(
γ∆H

(k)
i,t

)
∑mi

u=1 exp
(
γ∆H

(k)
i,u

) , (6)

where γ > 0 controls concentration around high-uncertainty tokens. The entropy-weighted advantage
becomes

Ã
(k)
i,t = w

(k)
i,t A

(k)
i

This reallocates the sequence advantage A
(k)
i to emphasize uncertain tokens while preserving total

learning signal (
∑

t wi,t = 1).Figure 4 illustrates the complete entropy-guided weighting mechanism
and its effects on advantage distribution.

Variance reallocation. For normalized weights {wi,t} with
∑

t wi,t = 1, the weighted gradient
satisfies

Var

(∑
t

wi,tgi,t

)
≤
∑
t

wi,t Var (gi,t) ,
∑
t

wi,tE [gi,t] = E
[
A

(k)
i

]
· si,

for sequence-level constant si. Thus entropy weighting redistributes gradient mass without inflating
variance or expected magnitude.

3.4 UNIFIED TRAINING OBJECTIVE

MAPO keeps components through a token-level clipped surrogate loss with KL regularization. Let
ri,t(θ) = πθ (yi,t|yi,<t, q) /πθk (yi,t|yi,<t, q) denote importance ratios. The loss function is

L(θ) = Eq∼D,y∼πθk

[
1∑
i mi

∑
i

mi∑
t=1

min
(
ri,tÃ

(k)
i,t , clip[1−ϵ,1+ϵ] (ri,t) Ã

(k)
i,t

)]
−βDKL (πθ∥πref)

(7)

where clip[a,b](x) = min(max(x, a), b) prevents large policy updates. The advantages Ã(k)
i,t com-

puted by equation 2–equation 3 with entropy reweighting equation 6, and batches incorporate
confidence-based replay when needed, providing stable learning signals even under challenging
reward conditions.

5
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4 EXPERIMENTS

We evaluate our method on math–reasoning benchmarks under a unified verifier–reward setting. This
section details the training details, main results against strong baselines, ablations isolating each
component, and a qualitative case study. All runs use identical data, compute budget, and decoding
unless otherwise noted.

4.1 SETTINGS

Models and Datasets. We conduct experiments with three models: Qwen2.5-Math-1.5B-Instruct,
Qwen2.5-Math-7B (math-specialized base)(Yang et al., 2024), and Qwen2.5-14B (general base)
(Qwen et al., 2025). Training is performed exclusively on the DAPO-Math-17K corpus (Yu et al.,
2025), with all instances formatted via the Qwen-Math prompt template for both training and
evaluation.

Evaluation. We evaluate our models on four widely-adopted mathematical reasoning benchmarks:
MATH500 (Hendrycks et al., 2021), AMC23 (Ouyang et al., 2022), AIME24 (Li et al., 2024), and
AIME25 (Balunović et al., 2025). Owing to its larger scale (500 instances), MATH500 is assessed
only with Pass@1. For the smaller sets AMC23 (40 problems), AIME24 (30 problems), and AIME25
(30 problems), we report both Pass@1 and Best to ensure a thorough evaluation.

• Pass@1: Accuracy obtained via greedy decoding; reflects the model’s single-shot capability.

• Best: The proportion of problems for which at least one solution is correct among 32 independently
sampled responses (temperature=1.0, top-p = 1.0), characterizing the robustness of the learned
policy.

Training Details. Training was conducted for 660 steps with a batch size of 256 for response
generation and a minibatch size of 64 for parameter update. We used a temperature equal to 1 and
top-p equal to 1 to generate G=16 responses for each problem, while the prompt max length was
set to 2048 and the response max length was set to 4096, which is much smaller than the maximum
length of 20k used in the original DAPO. For the Momentum Group Baseline component, we set the
hyper-parameters α and η to 0.9 and 0.1 to incorporate historical information.

4.2 MAIN RESULTS

We benchmark MAPO against the Base Model, GRPO, and DAPO across four mathematical reasoning
datasets: MATH500, AMC23, AIME24, and AIME25, reporting both greedy decoding (Pass@1)
and majority-vote accuracy over 32 samples (Best). MAPO integrates momentum-based baselines,
confidence-driven replay, and entropy-weighted policy updates to improve the stability and efficiency
of large-scale RL training for LLMs (Table 1).

For Qwen2.5-Math-1.5B-Instruct, MAPO achieves the highest Average Best accuracy among all
methods, while ranking second in Pass@1. The relatively weaker base performance of the smaller
model makes correct trajectories rarer during RL training, limiting the potential advantage of MAPO’s
exploration. Nevertheless, when such correct samples are found, MAPO’s replay and entropy-guided
weighting can fully exploit them for policy improvement.

On Qwen2.5-Math-7B, MAPO surpasses both GRPO and DAPO in Pass@1 and Best. Compared to
GRPO, MAPO achieves relative improvements of 13.94% in Pass@1 and 6.97% in Best accuracy.
Compared to DAPO, MAPO shows relative improvements of 7.21% in Pass@1 and 10.38% in Best
accuracy. The stronger mathematical reasoning capability of the 7B base policy yields more correct
answers during sampling, which benefits MAPO’s entropy-guided advantage weighting component
by guiding updates toward informative high-confidence trajectories.

For Qwen2.5-14B, MAPO delivers higher Best accuracy than DAPO, while slightly lower in Pass@1.
We attribute this to DAPO’s tendency toward rapid entropy collapse, which can overfit the reward
signal and reduce exploration capacity, leading to premature convergence. In contrast, MAPO controls
entropy updates to avoid overconvergence, thereby maintaining sampling diversity while achieving
strong final performance.

6
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Table 1: Performance comparison across benchmarks. Pass@1: accuracy with greedy decoding;
Best: best accuracy among 32 sampled outputs. Boldface marks the best result per column within
each model scale. Best Acc maxima are additionally shaded.

Model MATH500
Pass@1/Best

AMC23
Pass@1/Best

AIME24
Pass@1/Best

AIME25
Pass@1/Best

Average
Pass@1/Best

Qwen2.5-Math-1.5B-Instruct
Base 64.0/70.8 47.5/55.0 10.0/16.7 3.3/20.0 31.20/40.62
GRPO 64.4/74.2 57.5/62.5 16.7/33.3 13.3/33.3 37.98/50.83
DAPO 63.6/76.6 52.5/65.0 10.0/40.0 10.0/30.0 34.03/52.90
MAPO 67.0/80.4 55.0/70.0 16.7/36.7 10.0/30.0 37.18/54.28

Qwen2.5-Math-7B
Base 58.0/67.8 52.5/67.5 13.3/33.3 10.0/26.7 33.45/48.83
GRPO 74.4/93.2 62.5/87.5 20.0/53.3 10.0/43.3 41.73/69.33
DAPO 75.8/93.8 55.0/95.0 33.3/50.0 13.3/30.0 44.35/67.20
MAPO 76.0/95.0 67.5/95.0 30.0/66.7 16.7/40.0 47.55/74.18

Qwen2.5-14B
Base 60.4/71.2 45.0/60.0 10.0/13.3 6.7/23.3 30.53/41.95
GRPO 75.0/79.4 62.5/72.5 13.3/26.7 13.3/26.7 41.03/51.33
DAPO 79.6/83.0 70.0/77.5 20.0/30.0 16.7/30.0 46.58/55.13
MAPO 77.8/86.4 65.0/82.5 16.7/36.7 13.3/36.7 43.20/60.58

0 100 200 300 400 500 600
Steps

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pa
ss

@
1

GRPO
MAPO
DAPO
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Figure 3: Comparison of GRPO, DAPO, and our proposed MAPO on MATH500 and AMC23, based
on Qwen2.5-Math-7B. MAPO outperforms both GRPO and DAPO in terms of performance at the
same number of training steps.

As illustrated in Figure 3, MAPO reaches the inflection point of accuracy substantially earlier than
competing methods, reflecting a faster and more stable convergence during RL training. Moreover,
continued scaling of the computation, periodic refresh of the query set, and longer generation horizons
sustain steady improvement well beyond the early plateau, yielding robust gains without signs of
saturation.

4.3 IMPACT OF HISTORICAL REWARD INFORMATION

We investigate how historical rewards shape group advantage estimation by comparing three baseline
strategies: (i) GRPO using the current-batch mean, (ii) History (Full) using the unwindowed cumu-
lative mean, and (iii) MAPO (EMA) using the momentum-aware EMA baseline from the Method
section.

As shown in Fig. 4a, on MATH-500 , MAPO rises more steeply in the early phase and sustains a
higher plateau, indicating faster progress under fixed compute. While the full-history variant narrows
the gap to GRPO, it consistently trails MAPO, suggesting that recency weighting and the momentum
increment—rather than simply aggregating more past data—are responsible for the gains.
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with Full History, and Momentum Group Baseline. (b) Momentum Group Baseline tracking during
training; shaded regimes mark distribution shifts.

To understand the mechanism, we instrument the EMA baseline over nonstationary training in Fig. 4b.
The EMA tracks shifts in the underlying reward trend with small lag across initial→ improvement
→ regression → recovery phases, while the momentum increment ∆b (red whiskers) provides a
persistent learning signal when batch rewards are nearly uniform. This behavior matches our analysis:
the EMA term reduces batch noise, and the momentum term mitigates vanishing advantages and
expedites recovery after regressions, yielding more stable and sample-efficient policy updates.

4.4 ABLATIONS

We conduct a comprehensive ablation study to analyze the contribution of each MAPO component on
the Qwen2.5-Math-7B model across three mathematical reasoning benchmarks, AMC23, AIME24,
and MATH500. Table 2 presents the results of our systematic component removal analysis. The
reinforcement baseline uses GRPO.

Component Analysis Adding a Momentum Group Baseline further improves scores on AMC23
(92.50) and especially AIME24 (66.7), suggesting that variance reduction and more stable gradient
directions benefit convergence on challenging problems. Introducing Experience Replay maintains
high performance on AMC23 (92.50) and slightly boosts MATH500 (93.10), though AIME24 de-
creases marginally to 63.33. This indicates better reuse of past high-quality solutions can enhance
robustness, while distribution shifts in replayed samples may cause small fluctuations for certain
datasets. Applying Batch-Entropy Weighting preserves accuracy on AMC23 (92.50) and MATH500
(92.80), but lowers AIME24 to 56.67. This suggests entropy-based weighting can encourage explo-
ration and stabilize easy tasks, yet may require careful tuning for small or high-difficulty benchmarks
to avoid overweighting noisy trajectories.

Full MAPO The complete MAPO framework, integrating all components, achieves the highest
scores: 95 (AMC23), 66.7 (AIME24), and 95.0 (MATH500). Compared to the reinforcement learning
baseline, this yields absolute improvements of +7.5, +13.34, and +0.6, respectively. This confirms
that MAPO’s multi-component design is complementary: momentum baseline stabilizes training,
experience replay improves sample efficiency, and entropy weighting guides exploration, jointly
yielding robust performance gains across diverse mathematical reasoning tasks.

4.5 CASE STUDY

For a correct answer sampled from the trained model, Figure 7 presents the token-level entropy
heatmap of Qwen2.5-Math-7B. The figure shows that in its first row, the model exhibits relatively
high uncertainty at most token positions. This suggests that in the early stage of reasoning the model
remains highly uncertain, hindering its ability to infer a clear problem-solving direction from the
preceding context. After the solution approach has been outlined in the preceding context, the model’s
output entropy drops substantially. However, following a segment of reasoning, the connective words
used to bridge into the next reasoning stage exhibit noticeably higher entropy. This indicates that
such positions carry a greater training value.
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Table 2: Ablation study of MAPO components on Qwen2.5-Math-7B.

Setting AMC23 AIME24 MATH500
Initial Policy 67.5 33.3 67.8
+ Reinforcement (baseline) 87.5 53.3 93.2
+ Momentum Group Baseline 92.5 66.7 92.8
+ Experience Replay 92.5 63.3 93.2
+ Batch-Entropy Weighting 92.5 56.7 93.4
MAPO (Full) 95.0 66.7 95.0

After GRPO training (Figure 9), entropy changes concentrate mainly in initial tokens, implying a
clearer direction for answer generation and reduced downstream uncertainty. Tokens with higher
initial entropy tend to undergo larger adjustments than low-entropy positions. In comparison, Figure 8
illustrates the changes in entropy under the MAPO algorithm with the same data and hyperparameters.
Similarly, the entropy of the initial tokens shows substantial variation, but both the magnitude of
changes and the number of affected token positions are greater than in GRPO. Additionally, for key
tokens such as “Now”, “Therefore” and “Since”, MAPO produces larger changes. It suggests that
MAPO leverages the reward signal more effectively for learning at pivotal points in the reasoning
path.

5 CONCLUSION

In this work, we present Momentum-Aware Policy Optimization (MAPO), an effective extension
of group-based reinforcement learning. MAPO addresses key challenges in policy optimization for
reasoning tasks: vanishing advantage estimates under uniform group returns and inefficient credit
assignment across long sequences. MAPO incorporates three complementary components: a baseline
of the momentum group, confidence-driven replay, and entropy-weighted updates that preserve the
simplicity of GRPO while substantially improving the stability of exploration and training.

Empirical contributions. The momentum-based baseline prevents gradient collapse when all
trajectories succeed or fail uniformly, providing non-vanishing learning signals that accelerate
progress in difficult problems. Confidence-weighted replay improves sample efficiency by reusing
verified solutions, while entropy-guided weighting focuses updates on uncertain decision steps.
Across mathematical reasoning benchmarks, MAPO consistently outperforms GRPO and DAPO in
both pass@1 and pass@N metrics, achieving faster convergence with fewer optimization steps.

Broader implications. Our results demonstrate that critic-free policy optimization can be significantly
enhanced through domain-specific inductive biases without requiring learned value functions. This
suggests broader applicability to reinforcement learning settings where binary rewards with low
variability hamper standard algorithms. The general principles may be transferred to other domains
that require stable training signals, including coding challenges and symbolic reasoning tasks with
verifiable feedback.

Limitations and future work. The conservative design of the replay buffer, storing one high
confidence trajectory per prompt, may restrict the diversity of solutions. Future work could explore
multi-trajectory buffers with recency weighting. Moreover, MAPO assumes access to deterministic
and verifiable rewards, limiting direct applicability to settings with subjective or continuous feedback.
Extending the framework to noisy or learned rewards would require integration with reward models
or critics. Finally, stable training still relies on KL-constrained updates, necessitating careful tuning
of the trust-region radius.

In summary, MAPO provides a robust, drop-in solution for scaling reinforcement learning to complex,
multi-step reasoning with large language models. By ensuring persistent learning signals and
intelligent gradient allocation, it addresses core pathologies in group-based policy optimization and
paves the way for more reliable training from verifiable feedback.

9
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Aime 2025 benchmark dataset. https://huggingface.co/datasets/MathArena/
aime_2025, 2025. Accessed: 2025-09-25.

Shihan Dou, Muling Wu, Jingwen Xu, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
Improving RL exploration for LLM reasoning through retrospective replay. arXiv preprint
arXiv:2504.14363, 2025. URL https://arxiv.org/abs/2504.14363.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024. URL
https://arxiv.org/abs/2402.01306.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability
in LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. URL https:
//arxiv.org/abs/2501.12948.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Chen Li, Nazhou Liu, and Kai Yang. Adaptive group policy optimization: Towards stable training
and token-efficient reasoning. arXiv preprint arXiv:2503.15952, 2025.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

10

https://huggingface.co/datasets/MathArena/aime_2025
https://huggingface.co/datasets/MathArena/aime_2025
https://arxiv.org/abs/2504.14363
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Youssef Mroueh. Reinforcement learning with verifiable rewards: Grpo’s effective loss, dynamics,
and success amplification. arXiv preprint arXiv:2503.06639, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, and Chelsea Finn. Direct preference
optimization: Your language model is secretly a reward model. In Advances in Neural Information
Processing Systems (NeurIPS), 2023. URL https://arxiv.org/abs/2305.18290.

Noam Razin, Zixuan Wang, Hubert Strauss, Stanley Wei, Jason D Lee, and Sanjeev Arora.
What makes a reward model a good teacher? an optimization perspective. arXiv preprint
arXiv:2503.15477, 2025.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
International Conference on Learning Representations, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Aditya Setlur, Daniel Nyarko, Daniel Brown, Yuri Burda, and et al. Rewarding progress: Scaling
automated process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146, 2024. URL
https://arxiv.org/abs/2410.08146.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
neural information processing systems, 33:3008–3021, 2020.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. arXiv
preprint arXiv:2503.23829, 2025.

Hu Wang, Congbo Ma, Ian Reid, and Mohammad Yaqub. Kalman filter enhanced grpo for reinforce-
ment learning-based language model reasoning. arXiv preprint arXiv:2505.07527, 2025a.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025b.

11

https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2410.08146


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Luyu Yu, Shizhe He, Alec Zeng, Pan Yu, Yichong Wang, Xiangru Tang, Weijia Shi, Lei Cui, and
et al. Metamath: Bootstrap your own mathematical questions for large language models. arXiv
preprint arXiv:2309.12284, 2023. URL https://arxiv.org/abs/2309.12284.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, and Guorui Zhou. Rlep:
Reinforcement learning with experience replay for llm reasoning. arXiv preprint arXiv:2507.07451,
2025.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. In
Advances in Neural Information Processing Systems (NeurIPS), 2019. URL https://arxiv.
org/abs/1909.08593.

12

https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A NOTATION

Table3 summarizes the notation used throughout the paper. We use i to index responses in a group, t
to index token positions, and k to index training iterations.

Table 3: Notation.

Symbol Description
Data & Policies
x ∼ D Prompt from distribution D
yi Generated sequence
st = (x, y<t), at = yt State/action at step t
πθ, πold, πref Trainable, old, reference policies

Rewards & Advantages
G Group size
ri Reward for yi
µ, σ Mean/std of group rewards
µ−i LOO mean (excl. ri)
Ât Token advantage (GAE/group-normalized)
Vϕ Critic baseline (PPO)
b
(k)
i Momentum Group Baseline
∆b

(k)
i Baseline increment

A
(k)
i Momentum advantage

α, η, ϵ EMA decay, momentum coeff, stabilizer

Entropy Weighting
H

(k)
i,t Token entropy at t

H̄
(k)
i,t EMA entropy

∆H
(k)
i,t Entropy delta

w
(k)
i,t Token weight (softmax of γ∆H)

Ã
(k)
i,t Weighted advantage

β, γ EMA decay, softmax temp

Replay & Optimization
B Replay buffer (prompt→ best trajectory)
C(y|θ) Confidence score
clip[1−ϵ,1+ϵ] Clipping operator (bounds 1± ϵ)
βKL KL penalty
L(θ) Loss Function

B FINITE-GROUP EFFECTS OF GROUP-NORMALIZED ADVANTAGES

We analyze how the finite group size in GRPO affects advantage estimates, to motivate the momentum
baseline and replay components. Consider a fixed prompt where each of the G sampled trajectories
receives an i.i.d. binary reward ri ∼ Bernoulli(p), i = 1, . . . , G, with true success probability
p ∈ (0, 1). we compute the group mean µ = 1

G

∑
i ri and standard deviation σ =

√
µ(1− µ), and

assign each trajectory a normalized advantage

Ai =
ri − µ

σ + ε
.

where ϵ > 0 is a small stabilizer. This group-normalized advantage is the same for every token in
trajectory i (treating the entire sequence as one decision). In the limit of an infinite group (G→∞),
µ→ p and σ →

√
p(1− p), so one can define the population advantage values for a correct (reward

1) or incorrect (reward 0) trajectory:
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Figure 5: Finite-group effects in group-normalized advantages. (a) Empirical verification of the
G−1/2 deviation predicted by the delta method; (b) qualitative shape of finite-sample advantages and
the collapse at extreme k. Together, these support our design choices: momentum baselines to supply
a non-degenerate signal near µ≈0, 1, and confidence-aware replay to preserve rare successes when
an on-policy group fails.

Aright(p) =
1− p√

p(1− p) + ε
, Awrong(p) =

−p√
p(1− p) + ε

.

These are the ideal normalized advantages as G → ∞. For any finite group of size G, suppose
exactly k out of G trajectories are successful, therefore, µ = k

G . The normalized advantage for a
trajectory in this finite sample will deviate from the population value. In fact, for a randomly chosen
token in the batch, the expected absolute deviation in advantage is

∆(G, k; p) =
k

G

∣∣Aright(k/G)−Aright(p)
∣∣+ G− k

G

∣∣Awrong(k/G)−Awrong(p)
∣∣.

This quantity ∆(G, k; p) measures how much the per-token learning signal is distorted due to
sampling variance in a group of finite size. Averaging over k ∼ Binomial(G, p) yields the exact
expectation

R(G; p, ε) = E
[
∆(G, k; p)

]
=

G∑
k=0

(
G
k

)
pk(1− p)G−k ∆(G, k; p).

Using a second-order delta-method approximation with Var(µ) = p(1− p)/G one obtains

R(G; p, ε) =

√
2

π

√
p(1− p)

G

(
p
∣∣A′

right(p)
∣∣+ (1− p)

∣∣A′
wrong(p)

∣∣)+O(G−1),

implying that the expected advantage deviation scales on the order of G−1/2; the signed bias is
O(G−1). Moreover, the probability that the group is homogeneous (all correct or all incorrect) is

Pr[homogeneous] = pG + (1− p)G,

on which σ = 0 and Âi = 0 for all responses, causing exact gradient collapse. Both effects justify
our momentum baseline (non-degenerate signal when µ≈0 or 1) and confidence-aware replay (retain
rare successes when an on-policy group fails). Empirical evaluations in Fig. 5a–5b match the G−1/2

law and show exponentially vanishing collapse probability away from p∈{0, 1}.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

101 102

Group Size G

10 1

100

101

R
el

at
iv

e 
E

rr
or

 (%
)

High Accuracy
(< 5% error)

Practical Range
(G 16)

Error = |Approx Exact|
|Exact| × 100%

Delta Method Approximation: Convergence Analysis

p = 0.2
p = 0.3
p = 0.5

p = 0.7
p = 0.8
G 1 Reference

(a) Delta–method relative error vs. G. Error < 5% for G≥16.

0 5 10 15 20 25 30
Number of Correct Responses (k)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Pr
ob

ab
ili

ty
 M

as
s P

(K
=

k)

Collapse Risk 
 P(k = 0) = 7.96e 08

Collapse Risk 
 P(k = G) = 1.84e 13

High Deviation 
 Region (Low k)

High Deviation
 Region (High k)

Distribution Statistics:
= 12.8, 2 = 7.7
= 2.77, Skewness = 0.072

Total Collapse Risk:
P(k = 0) + P(k = G) = 7.96e 08

Binomial(G = 32, p = 0.4)

Binomial Distribution: Collapse Risk and Deviation Regions

Expected Value: E[k] = Gp = 12.8
95% Confidence Interval: [7.4, 18.2]
Normal Approximation
Probability Mass

(b) Binomial mass illustrating extreme-k regions where gradient collapse occurs.

Figure 6: (a) Accuracy of the delta–method approximation used to derive the G−1/2 scaling; (b)
probability mass near homogeneous groups explaining collapse at µ≈0, 1.

C THEORETICAL ANALYSIS

We provide theoretical guarantees for MAPO’s training objective and further analysis of its compo-
nents. In particular, we show that under standard smoothness and trust-region conditions, MAPO’s
surrogate loss is monotonically non-decreasing, akin to policy gradient methods with trust regions.
We also analyze how the momentum baseline acts as a variance-reducing control variate, how the
replay buffer introduces only a small and vanishing bias, and how entropy-based token weighting
preserves the scale of gradient updates while improving credit assignment.

Theorem 1 (Monotone surrogate improvement under trust region). Suppose (i) the surrogate objective
L in equation 7 is L-smooth in θ, (ii) importance ratios are clipped as in equation 7 with bounds
ensuring DKL(πθk ∥πθ) ≤ δ, and (iii) η, α, β, γ are bounded with σ(k) ≥ σmin > 0. Then for a
sufficiently small step size ηk, the update θk+1 = θk + ηk∇̂L(θk) satisfies

E
[
L(θk+1)− L(θk)

]
≥ ηk E

[
∥∇L(θk)∥22

]
− L

2 η
2
k E
[
∥∇̂L(θk)∥22

]
− λkB,

where λk denotes the fraction of off-policy (replay) data at iteration k, and B is a constant bounding
the replay-induced bias (cf. equation 5). Consequently, for sufficiently small ηk and as λk → 0, the
expected surrogate objective improves, i.e., E

[
L(θk+1)− L(θk)

]
≥ 0.

Proposition 1 (Response utilization and nonzero signal). Let RURk be the fraction of responses in a
batch with non-zero Ã

(k)
i,t . If (a) b(k) uses EMA equation 2 and (b) replay injects a buffer trajectory

whenever an all-failure group appears, then RURk ≥ 1− pG0 , where p0 is the failure rate per sample
under πθk . Thus RURk remains bounded away from zero even when p0 is high.
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Remark. In expectation, 1 − pG0 is the probability that at least one out of G i.i.d. trajectories is
successful. The replay injection rule (b) guarantees that every prompt yields at least one successful
trajectory in the learning batch (unless none exist even in the buffer). Thus the algorithm effectively
behaves as if each prompt has success probability 1− pG0 of providing a learning signal. Even when
p0 is close to 1, the probability of all-G failures is pG0 ; MAPO substitutes a success from memory
when available, ensuring a non-zero advantage in that group.

C.1 EMA CONVERGENCE AND CONTROL VARIATE VIEW

The momentum baseline in MAPO introduces a bias–variance trade-off that reduces gradient variance.
In a stationary regime with pk ≡ p, the EMA baseline satisfies b(k) = αµ(k) + (1− α)b(k−1), hence

E[b(k)]→ p,
∣∣E[b(k)]− p

∣∣ ≤ (1− α)k
∣∣µ(0) − p

∣∣,
so the baseline bias decays geometrically at rate (1− α). For trajectory i,

r
(k)
i − b

(k)
i

σ(k)
=

r
(k)
i − µ

(k)
−i

σ(k)︸ ︷︷ ︸
Z

(k)
i

+
b
(k)
i − µ

(k)
−i

σ(k)︸ ︷︷ ︸
U

(k)
i

.

With E[Z(k)
i ] = 0 and E[U (k)

i ]→ 0, the EMA adds a decaying bias while reducing variance through
Cov(Z

(k)
i , U

(k)
i ) < 0 (empirically typical). The additive momentum term η∆b

(k)
i further acts as a

control variate; variance is minimized for η near −Cov(Z(k)
i ,∆b

(k)
i )/Var(∆b

(k)
i ).

C.2 KL-REGULARIZED OFF-POLICY MIXING

Consider a trajectory (x, ỹ) from the replay buffer B, generated by πθgen . Its importance ratio under
the current policy πθ is

w =
πθ(ỹ | x)

πθgen(ỹ | x)
with logw =

T∑
t=1

∆t,

where ∆t := log πθ(ỹt | ỹ<t, x)− log πθgen(ỹt | ỹ<t, x).

We enforce a tokenwise KL trust region via the chain rule
T∑

t=1

Eπθgen

[
DKL

(
πθ(· | ỹ<t, x)

∥∥πθgen(· | ỹ<t, x)
)]
≤ δ.

Assume

(A1) Local quadratic KL. There exists LKL > 0 such that, for all relevant contexts s,

DKL

(
πθ(· | s)

∥∥πθgen(· | s)
)
≤ LKL

2 ∥θ − θgen∥22.

(A2) Log-probability Lipschitzness. For all θ, θ′, y, s,∣∣ log πθ(y | s)− log πθ′(y | s)
∣∣ ≤ Llog ∥θ − θ′∥2.

Then from (A1) and the trust region, ∥θ − θgen∥2 ≤ Cθ

√
δ/T for some constant Cθ > 0, and by

(A2) the per-token log-ratio is bounded

|∆t| ≤ b, b := Llog Cθ

√
δ

T
.

Define the centered sum

ZT :=

T∑
t=1

(
∆t − Eπθgen

[∆t]
)
.

Since |∆t − Eπθgen
[∆t]| ≤ 2b, Azuma–Hoeffding implies that, for any α ∈ (0, 1),

P
(
|ZT | ≥ 2b

√
2T log(2/α)

)
≤ α.
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Because Eπθgen
[logw] = −DKL

(
πθgen

∥∥πθ

)
, we obtain, with probability at least 1− α,

logw ∈
[
−DKL

(
πθgen

∥∥πθ

)
± C

√
δ log(2/α)

]
, C := 2

√
2Llog Cθ.

Hence w concentrates near 1 with | logw| = O(
√
δ) (high probability). For small δ, a Taylor

expansion of ex yields E
[
(w − 1)2

]
= O(δ) under bounded log-ratio increments.

C.3 SCALE PRESERVATION IN ENTROPY-WEIGHTED TOKEN UPDATES

The per-token policy-gradient loss is ℓt = − log πθ(yt | y<t, x)At. MAPO reweights it as

ℓ̃t = wtℓt, wt =
exp(γ∆Ht)∑
u exp(γ∆Hu)

,
∑
t

wt = 1.

The reweighted sequence loss is a convex combination:

L̃ =
∑
t

wtℓt ⇒ min
t

ℓt ≤ L̃ ≤ max
t

ℓt.

Let gt = ∇θℓt and g =
∑

t wtgt. Then

E∥g∥2 =
∑
t,u

wtwu E
[
g⊤t gu

]
≤
∑
t,u

wtwu

√
E∥gt∥2

√
E∥gu∥2 =

(∑
t

wt

√
E∥gt∥2

)2
≤
∑
t

wt E∥gt∥2,

where we used Cauchy–Schwarz and Jensen. In particular, if E∥gt∥2 ≤ σ2
g for all t, then E∥g∥2 ≤ σ2

g .
Hence entropy-based weighting with

∑
t wt = 1 does not inflate the gradient scale; it redistributes

signal across tokens according to uncertainty.

D ALGORITHM

1 summarizes the training progress of our method.

Algorithm1 provides an overview of MAPO’s training procedure, integrating the momentum baseline,
prioritized replay, and entropy weighting into the standard policy optimization loop. For clarity, we
present the update in two conceptual stages:

• Step A computes the momentum advantage and performs a preliminary policy update using
uniform token weights

• Step B then computes entropy-based weights and applies the reweighted objective for a final
update. In implementation, these can be combined or repeated as needed, but separating
them highlights that the entropy weighting can be viewed as an enhancement on top of a
baseline RL update.

E CASE STUDY

For a correct answer sampled from the model, we examine the entropy changes on three different
models: Baseline, GRPO, and MAPO. Figure 7 shows the entropy values of the Baseline model for
this answer. Figure 9 presents the magnitude of entropy changes after GRPO training. In comparison,
Figure 8 contains more dark-colored points, indicating larger entropy changes, and shows greater
variation at key tokens, such as ”Now”, ”Since” and ”Therefore”.
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Algorithm 1 MAPO: Momentum-Aware Advantage Policy Optimization

Require: Policy πθ, reference πref ; group size G; clip ϵ; KL weight β; EMA α ∈ (0, 1]; momentum
η ≥ 0; stabilizer ε > 0; entropy temp τ > 0.

1: Init: πold ← πθ; Bbase ← ∅;M← ∅.
2: while training do
3: Rollout: For each prompt x, sample {yi}Gi=1 ∼ πold(·|x), get rewards ri.
4: Stats: µ = 1

G

∑
i ri, µ−i =

1
G−1

∑
j ̸=i rj , σ2 = 1

G

∑
i(ri − µ)2.

5: EMA baseline: bprev ← Bbase[x] (default = µ);
6: bi ← αµ−i + (1− α)bprev;
7: ∆bi ← bi − bprev;
8: Bbase[x]← 1

G

∑
i bi.

9: Advantages: Âi ←
ri − bi
σ + ε

+ η ·∆bi (optionally center).

10: Replay: If ∀i, ri = 0 and (x, ỹ) ∈M, replace one (x, yi, ri) with (x, ỹ, 1).
11: Step A: si(θ) = exp

{
1

|yi|
∑

t log
πθ(yi,t|·)
πold(yi,t|·)

}
;

12: ℓ
(A)
i = min

(
siÂi, clip(si, 1− ϵ, 1 + ϵ) · Âi

)
;

13: θ′ ← argmaxθ

{
1
G

∑
i ℓ

(A)
i − β ·DKL(πθ∥πref)

}
.

14: Step B: Compute ∆Hi,t; wi,t ← softmaxt(∆Hi,t/τ);
15: ρi,t(θ

′) =
πθ′ (yi,t|·)
πold(yi,t|·) ;

16: Ãi,t = wi,t · Âi;

17: ℓ
(B)
i,t = min

(
ρi,tÃi,t, clip(ρi,t, 1− ϵ, 1 + ϵ) · Ãi,t

)
;

18: θ ← argmaxθ′

{
1
G

∑
i

1
|yi|
∑

t ℓ
(B)
i,t − β ·DKL(πθ′∥πref)

}
.

19: Update: Periodically πold ← πθ; for success (x, yi, 1),
20: store C(x, yi) =

1
|yi|
∑

t log πold(yi,t|·),
21: updateM[x] if C improves.
22: end while
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localhost:63342/金融推理数据集/hotmap-1.html?_ijt=gl5gjsloeg621u1fnfbho7ocke&_ij_reload=RELOAD_ON_SAVE 1/2
Figure 7: Token-level entropy heatmap of a correct answer on Qwen2.5-Math-7B
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localhost:63342/金融推理数据集/hotmap_mapo_delta_entropy.html?_ijt=k0t1d0hh7dcsfnvcf52o0tpdm9&_ij_reload=RELOAD_ON_SAVE 1/2
Figure 8: Entropy change heatmap at each token position for a correct answer before and after MAPO
training of Qwen2.5-Math-7B
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localhost:63342/金融推理数据集/hotmap_grpo_delta_entropy.html?_ijt=nqalcevvd8jaf65l5q88fa2q98&_ij_reload=RELOAD_ON_SAVE 1/2
Figure 9: Entropy change heatmap at each token position for a correct answer before and after GRPO
training of Qwen2.5-Math-7B
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