Under review as a conference paper at ICLR 2026

MAPO: MOMENTUM-AWARE POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promis-
ing framework to enhance the reasoning capabilities of Large Language Models
(LLMs), yet the samples from the policy model are not fully exploited during
training. We propose Momentum-Aware Policy Optimization (MAPO), a critic-
free, drop-in framework that preserves the simplicity of GRPO while improving
exploration and stability. MAPO introduces (i) a Momentum Group Baseline
that yields non-vanishing learning signals under group-standardized rewards; (ii)
confidence-based prioritized replay that reuses verified successes to increase sam-
ple efficiency; and (iii) entropy-weighted token updates that concentrate gradient
mass on uncertain decision points. Evaluated on math reasoning benchmarks,
MAPO outperforms strong baselines—including GRPO and DAPO—in best-of-N
accuracy (pass@ NN), demonstrating superior exploration and discovery of correct
reasoning trajectories. Ablation studies attribute the primary gains to the momen-
tum advantage, which reduces the steps required to reach the target, alleviates
stalls on homogeneous reward groups, and reduces across-seed variance. The
replay and entropy components provide complementary improvements in sample
utilization and gradient allocation. Overall, MAPO achieves target performance in
fewer optimization steps while maintaining training stability, offering a practical
enhancement to group-based RLVR methods.

1 INTRODUCTION

Large language models have demonstrated remarkable capabilities in complex reasoning tasks, yet
achieving reliable performance in domains requiring precise logical steps remains challenging(Jaech
et al.l 2024} |Guo et al.| [2025; Ba1 et al.| [2023). The key insight driving recent progress is that these
domains offer access to automated verification: unlike subjective human preferences, mathematical
proofs and code execution provide objective, binary feedback that can guide model improvement at
scale(Lightman et al.,|[2024).

Reinforcement learning with verifiable rewards (RLVR) leverages these programmatic signals to
guide policy optimization (Mroueh, 2025} |Su et al.l [2025). However, two fundamental obstacles
persist in practice. First, low reward variance emerges when models uniformly succeed or fail on
similar problems, causing normalized advantages to collapse and weakening policy gradients. Both
empirical and theoretical analyses demonstrate that small reward standard deviation leads to flat
objectives that stall learning progress (Razin et al.,|2025). While subsequent remedies—including
variance-boosting heuristics and adaptive baselines—provide partial relief, they fail to address the
underlying pathology (Li et al., 2025} |Wang et al., [2025a). Second, token-level credit assignment
presents an inherent challenge: sequence-level rewards are distributed uniformly across all tokens
despite only a subset being causally critical to the outcome, particularly in extended chains of
reasoning.

We introduce Momentum-Aware Policy Optimization (MAPO), a framework that addresses these
challenges through three key innovations: (1)Momentum Group Baseline maintains learning
signals even when current samples show low reward variance by incorporating historical context,
(2) Confidence-Based Prioritized Replay preserves valuable successful trajectories for repeated
learning while preventing regression, and (3) Entropy-Weighted Token Updates allocates gradient
updates proportionally to local uncertainty, focusing learning on critical decision points.
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Extensive evaluation on mathematical reasoning benchmarks demonstrates that MAPO consistently
outperforms strong baselines including GRPO and DAPO across both pass@1 and pass@N metrics.
Ablation studies reveal that the momentum baseline provides the primary performance gains, while
replay and entropy weighting offer complementary improvements in sample efficiency and gradient
allocation. These results establish MAPO as an effective drop-in enhancement for verifiable reward
settings.

2 RELATED WORK

Reinforcement Learning for LLM Alignment. = The dominant paradigm for LLM alignment
follows reinforcement learning from human feedback (RLHF), typically implemented via PPO with
learned value functions and KL penalties to reference models (Ziegler et al., 2019; |Stiennon et al.|
2020; (Ouyang et al.l 2022). While effective, PPO’s critic dependence and token-level clipping
mechanisms become brittle when scaled to large models (Schulman et al.,2017). This has motivated
research into reinforcement learning with verifiable rewards (RLVR), where automated checkers
provide objective signals for domains like mathematics and coding (Lightman et al., [2024;|Yu et al.|
2023 Setlur et al., [2024]).

Group-Based Policy Optimization. To eliminate critic dependencies, group-based methods sample
multiple completions per prompt and use group statistics to construct advantages. Group Relative
Policy Optimization (GRPO) (Shao et al., [2024) exemplifies this approach: for prompt z, the policy
g, samples a group of G responses {y; }%, with sequence rewards {r;}$ , . Let the group mean
and standard deviation be

GRPO assigns the same scalar advantage to every token of response y;
~ T, — M
Ay = = t=1,....y 1
7, 0’+E’ ) 7|yl|a ()

where € > 0 ensures numerical stability. With PPO-style clipping and KL regularization, this
eliminates value function learning while proving effective for mathematical reasoning tasks.

However, GRPO’s group normalization suffers when reward variance is low: if all samples succeed
or fail similarly,c ~ 0 and advantages vanish, stalling learning. Additionally, the group-normalized
advantage depends on empirical statistics from finite groups of size G and we quantify how G
affects estimator bias and reliability under Bernoulli rewards in Appendix [B] This analysis explains
why momentum baselines and prioritized replay mitigate gradient collapse when groups are nearly
homogeneous.

Extensions and Alternatives. Recent scaling efforts emphasize token-level refinements: DAPO
decouples clipping and employs dynamic sampling to stabilize long-CoT training (Yu et al.} [2025),
while Dr.,GRPO corrects bias in GRPO to improve token efficiency (Liu et al.L|2025). Complementary
work shows that high-entropy minority tokens disproportionately drive RLVR gains (Wang et al.,
2025b). Experience replay adaptations include RLEP, which collects verified trajectories and replays
high-quality successes (Zhang et al., 2025), and off-policy corrections that reduce PPO complexity
(Ahmadian et al.| 2024). Our confidence-based prioritized replay operates online and is conceptually
aligned with prioritized experience replay from deep RL (Schaul et al., |2016) and recent LLM
replay variants (Dou et al., |[2025)). Preference-optimization methods like DPO and KTO offer stable
alternatives (Rafailov et al., 2023} [Ethayarajh et al., [2024), but cannot directly exploit automated
verifiers, limiting RLVR applicability.

3 METHOD

In this section, we introduce our method, MAPO, which augments the group-based policy optimization
with momentum-based baselines, prioritized replay, and entropy-guided updates. We index outer
optimization iterations by &, within groups by 4, and token positions by ¢.
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Figure 1: MAPO architecture and workflow. Given prompt ¢, the policy model generates candidate
responses evaluated by a reward model. MAPO addresses three key challenges in group-based
RLVR: (1) sample inefficiency via confidence-based experience replay of high-quality trajecto-
ries {e1,e2,...}, (2) vanishing advantages under uniform rewards via Momentum Group Base-
line {p¢—1,0:—1}, and (3) suboptimal credit assignment via entropyguided advantage weighting
{AH,,AHs,,...,AHg}. The method computes group advantages {A;, As,..., Ac}, applies
entropy-based token reweighting for stable policy updates.

3.1 MOMENTUM ADVANTAGE WITH MOMENTUM GROUP BASELINE

Group-based RLVR suffers from vanishing advantages when batch rewards are homogeneous, which
leads to the elimination of gradient signals. This occurs frequently as models consistently solve easy
prompts or fail uniformly on hard ones. We address this issue with a momentum-based baseline that
carries information from past batches.

For each trajectory ¢, we maintain an exponential moving average (EMA) baseline
bz(.k) a H( ) 4 (1-a) b(k 1) bgo) _ #(Oz) 2)
*) denotes the group mean reward at iteration k excluding trajectory ¢ and « € (0, 1] controls

where (127}
the decay rate. The momentum advantage is

ROBIE
(k) _ —b; (k)
Al TJF n Ab, (3)

where Ab b,(k) bfk U is the baseline change and 1 > 0 is a small weighting hyperparameter.
The first term in A( ) generalizes the advantage estimation in GRPO by using the EMA baseline b( )
The second term nAbg ) rewards positive baseline drift (if the group’s performance is improving over
time, Ab > 0, it boosts the advantage) and penalizes regressions (Ab < 0 yields a negative term).

Intuitively, this momentum term pushes the policy to continually outperform its historical average for
that prompt, thus providing a learning signal even in batches where r; ~ pu.

(k) i1 Bernoulli(py ) and denote the leave-one-

(B) _ (0} /)

Bias—variance properties. Within a group, let r;

out mean and std by (u(_kl), o®)) with o) = o) ¢ The group -normalized term (r;

is approximately unbiased, with residual bias of order O(G 1) due to the random denominator; its
variance is also O(G~!) under non-degenerate rewards.

Introducing the EMA baseline bgk) = au(fi) +(1- oz)bgk*l) yields geometric bias decay in k (as

bgk_l) — py.) and preserves the O(G~!) variance scaling. For the momentum-augmented advantage

(k) _ (k) —(k —(k
nooh s &

AW = - = Ap®) _E[Abgk)} , AP = ) plk-D)
O¢
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a standard variance decomposition shows that, for the empirically typical negative covariance between
the two centered terms, some 7 € [0, 1] achieves net variance reduction relative to the non-momentum
case. Formal expansions for the finite-G bias and the full variance bound appear in Appendix B and
Appendix [C]respectively.

Non-vanishing signal under uniform rewards. When all responses in a group share the same
k) — ¢ ¢ {0, 1}, GRPO collapses to a null update because u(k)

reward 7 ") = cand ¢®) = 0, hence

(c— u(fi)) / o¥) = 0 (with stabilization). In contrast, MAPO maintains a bounded, non-zero learning
signal:

e
qm _ € Ebl +pap® = (p?a +7704) (c— D),

7

(k

)

-b # c. In practice we apply standard clippin% 01; 1/e (or on Agk)), to avoid
—1
)

so long as b

pathological spikes, so the momentum term 7 Abz(.k) =nalc— bg
)

alone already guarantees a

stable non-vanishing signal that pushes bEk toward c.

3.2 CONFIDENCE-BASED PRIORITIZED EXPERIENCE REPLAY

RLVR faces sample inefficiency challenges—each trajectory is computationally expensive to obtain,
yet standard on-policy training uses it only once. Without retaining high-value trajectories, the
learning process wastes valuable signals and may forget rare successful strategies. Correct solutions
to complex problems are found infrequently, making it beneficial to reinforce them repeatedly rather
than rediscover by chance.

We incorporate a prioritized experience replay buffer that preferentially retains high-confidence
successes. For each prompt ¢, we maintain a small buffer Bg] that stores at most one “best”
trajectory —the verified success with highest model confidence.

Confidence score. For a response y = (y1:y) generated by mp, , we define

m

1
Cylox) = — > log o, (yily<i, ), 4)
t=1

A higher C(y|0}) indicates indicates greater model confidence during generation, identifying trajec-
tories the policy can reliably reproduce.

Buffer management. When response y achieves r > 0 with confidence C(y| 8i) > C (y*|0+)
(where y* is the current buffer entry), we update B[q] < (y, 0 ). During batch construction, if all G
on-policy samples fail for prompt g, we replace one failure with the buffered trajectory, maintaining
fixed batch size while ensuring at least one positive example per prompt when available.

Bias control. Let @LOH(H) denote the on-policy Monte Carlo policy gradient estimator and

@Emix((‘)) the estimator when replacements occur with probability A, € [0, 1]. Assuming (i) bounded
importance ratios for replaced items and (ii) Lipschitzness of the per-token loss, a standard mixture
argument yields

| [V (0)] ~E [VLa (0] || < B )

for a constant B independent of k. As training progresses, A; decays rapidly since the policy solves
more prompts on-policy, yielding controlled vanishing bias with substantial stability gains.

3.3 ENTROPY-GUIDED ADVANTAGE WEIGHTING

Standard policy gradients assign uniform advantages across all tokens, which is inefficient for
complex reasoning where tokens vary in importance and uncertainty. In multi-step mathematical
derivations, models may be confident about routine algebraic steps but uncertain about critical
problem-solving decisions. Uniform weighting dilutes learning signals by allocating equal gradient
budget to both trivial and crucial steps. We modulate token-level advantages based on model
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Figure 2: Entropy-guided advantage weighting mechanism. (a) Shows how entropy deviations AH, Z(li)
relative to EMA baselines are converted to normalized weights via softmax, with high-uncertainty
tokens receiving amplified attention. (b) Demonstrates the resulting advantage redistribution where
critical reasoning steps (marked with triangles) receive 1.5-1.7x more learning signal compared to
uniform weighting.

uncertainty, using entropy as a proxy. The approach redistributes sequence advantage proportionally
to token uncertainty—higher entropy tokens receive larger advantage portions.

For token ¢ in sequence ¢, let H -(li) denote the entropy under 7y, . To identify unusually uncertain

2
k)

tokens, we compare against a reference entropy FI ( + computed from a baseline policy. The entropy

delta AH = H, (k) H (k) captures deviations from typical uncertainty. Positive deltas indicate
higher- than usual uncertamty, suggesting more critical decision points that warrant increased learning
focus. We convert deltas to normalized weights via temperature-scaled softmax

exp (’yAH k))
Y exp (WAHZ-(,'Z)) ’

where v > 0 controls concentration around high-uncertainty tokens. The entropy-weighted advantage
becomes

(6)

%) = ) 4®

z,t

This reallocates the sequence advantage A ) to emphasize uncertain tokens while preserving total
learning signal (3, w;; = 1). Flgureﬂlllustrates the complete entropy-guided weighting mechanism
and its effects on advantage distribution.

Variance reallocation. For normalized weights {w;;} with >, w; ; = 1, the weighted gradient

satisfies
(Z W;,tG; t> < sztvar gzt sz t]E gzt {Agk):|  Sisy

for sequence-level constant s;. Thus entropy weighting redlstrlbutes gradient mass without inflating
variance or expected magnitude.

3.4 UNIFIED TRAINING OBJECTIVE

MAPO keeps components through a token-level clipped surrogate loss with KL regularization. Let
ri.4(8) = mo (Yit|Yi, <, Q) /70, (Yi,t|¥s, <, q) denote importance ratios. The loss function is

1 - . Fk) . ik
L(0) = Eqp,y~roy, lz:m Z Z min (Tz‘,tAz(~7t)7 clip_c 144 (rit) Az(,t)>
7 (2

i t=1

- ﬁDKL (7r0||7rref)

@)

where clip, ;j(z) = min(max(z, a), b) prevents large policy updates. The advantages flgkt) com-
puted by equation 2}-equation [3] with entropy reweighting equation [6] and batches incorporate
confidence-based replay when needed, providing stable learning signals even under challenging
reward conditions.
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4 EXPERIMENTS

We evaluate our method on math-reasoning benchmarks under a unified verifier—reward setting. This
section details the training details, main results against strong baselines, ablations isolating each
component, and a qualitative case study. All runs use identical data, compute budget, and decoding
unless otherwise noted.

4.1 SETTINGS

Models and Datasets. We conduct experiments with three models: Qwen2.5-Math-1.5B-Instruct,
Qwen2.5-Math-7B (math-specialized base)(Yang et al.| [2024), and Qwen2.5-14B (general base)
(Qwen et al.| 2025). Training is performed exclusively on the DAPO-Math-17K corpus (Yu et al.|
2025), with all instances formatted via the Qwen-Math prompt template for both training and
evaluation.

Evaluation. We evaluate our models on four widely-adopted mathematical reasoning benchmarks:
MATHS500 (Hendrycks et al., 2021), AMC23 (Ouyang et al.,[2022), AIME24 (L1 et al.,[2024), and
AIME25 (Balunovic et al.} 2025). Owing to its larger scale (500 instances), MATHS00 is assessed
only with Pass@1. For the smaller sets AMC23 (40 problems), AIME24 (30 problems), and AIME25
(30 problems), we report both Pass@1 and Best to ensure a thorough evaluation.

* Pass@1: Accuracy obtained via greedy decoding; reflects the model’s single-shot capability.

* Best: The proportion of problems for which at least one solution is correct among 32 independently
sampled responses (temperature=1.0, top-p = 1.0), characterizing the robustness of the learned
policy.

Training Details. Training was conducted for 660 steps with a batch size of 256 for response
generation and a minibatch size of 64 for parameter update. We used a temperature equal to 1 and
top-p equal to 1 to generate G=16 responses for each problem, while the prompt max length was
set to 2048 and the response max length was set to 4096, which is much smaller than the maximum
length of 20k used in the original DAPO. For the Momentum Group Baseline component, we set the
hyper-parameters o and 7 to 0.9 and 0.1 to incorporate historical information.

4.2 MAIN RESULTS

We benchmark MAPO against the Base Model, GRPO, and DAPO across four mathematical reasoning
datasets: MATH500, AMC23, AIME24, and AIME2S5, reporting both greedy decoding (Pass@1)
and majority-vote accuracy over 32 samples (Best). MAPO integrates momentum-based baselines,
confidence-driven replay, and entropy-weighted policy updates to improve the stability and efficiency
of large-scale RL training for LLMs (Table[T).

For Qwen2.5-Math-1.5B-Instruct, MAPO achieves the highest Average Best accuracy among all
methods, while ranking second in Pass@ 1. The relatively weaker base performance of the smaller
model makes correct trajectories rarer during RL training, limiting the potential advantage of MAPO’s
exploration. Nevertheless, when such correct samples are found, MAPO’s replay and entropy-guided
weighting can fully exploit them for policy improvement.

On Qwen2.5-Math-7B, MAPO surpasses both GRPO and DAPO in Pass@1 and Best. Compared to
GRPO, MAPO achieves relative improvements of 13.94% in Pass@1 and 6.97 % in Best accuracy.
Compared to DAPO, MAPO shows relative improvements of 7.21% in Pass@1 and 10.38 % in Best
accuracy. The stronger mathematical reasoning capability of the 7B base policy yields more correct
answers during sampling, which benefits MAPO’s entropy-guided advantage weighting component
by guiding updates toward informative high-confidence trajectories.

For Qwen2.5-14B, MAPO delivers higher Best accuracy than DAPO, while slightly lower in Pass@1.
We attribute this to DAPO’s tendency toward rapid entropy collapse, which can overfit the reward
signal and reduce exploration capacity, leading to premature convergence. In contrast, MAPO controls
entropy updates to avoid overconvergence, thereby maintaining sampling diversity while achieving
strong final performance.
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Table 1: Performance comparison across benchmarks. Pass@1: accuracy with greedy decoding;
Best: best accuracy among 32 sampled outputs. Boldface marks the best result per column within
each model scale. Best Acc maxima are additionally shaded.

MATHS500 AMC23 AIME24 AIME25 Average

Model Pass@1/Best Pass@1/Best Pass@1/Best Pass@1/Best Pass@1/Best

Qwen2.5-Math-1.5B-Instruct

Base 64.0/70.8 47.5/55.0 10.0/16.7 3.3/20.0 31.20/40.62
GRPO 64.4/74.2 57.5/62.5 16.7/33.3 13.3/33.3 37.98/50.83
DAPO 63.6/76.6 52.5/65.0 10.0/40.0 10.0/30.0 34.03/52.90
MAPO  67.0/80.4 55.0/70.0 16.7/36.7 10.0/30.0 37.18/54.28

Qwen2.5-Math-7B

Base 58.0/67.8 52.5/67.5 13.3/33.3 10.0/26.7 33.45/48.83
GRPO 74.4/93.2 62.5/87.5 20.0/53.3 10.0/43.3 41.73/69.33
DAPO 75.8/93.8 55.0/95.0 33.3/50.0 13.3/30.0 44.35/67.20
MAPO  76.0/95.0 67.5/95.0 30.0/66.7 16.7/40.0 47.55/74.18

Qwen2.5-14B

Base 60.4/71.2 45.0/60.0 10.0/13.3 6.7/23.3 30.53/41.95
GRPO 75.0/79.4 62.5/72.5 13.3/26.7 13.3/26.7 41.03/51.33
DAPO 79.6/83.0 70.0/77.5 20.0/30.0 16.7/30.0 46.58/55.13
MAPO  77.8/86.4 65.0/82.5 16.7/36.7 13.3/36.7 43.20/60.58
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Figure 3: Comparison of GRPO, DAPO, and our proposed MAPO on MATH500 and AMC23, based
on Qwen2.5-Math-7B. MAPO outperforms both GRPO and DAPO in terms of performance at the
same number of training steps.

As illustrated in Figure 3] MAPO reaches the inflection point of accuracy substantially earlier than
competing methods, reflecting a faster and more stable convergence during RL training. Moreover,
continued scaling of the computation, periodic refresh of the query set, and longer generation horizons
sustain steady improvement well beyond the early plateau, yielding robust gains without signs of
saturation.

4.3 IMPACT OF HISTORICAL REWARD INFORMATION

We investigate how historical rewards shape group advantage estimation by comparing three baseline
strategies: (i) GRPO using the current-batch mean, (ii) History (Full) using the unwindowed cumu-
lative mean, and (iii) MAPO (EMA) using the momentum-aware EMA baseline from the Method
section.

As shown in Fig. on MATH-500 , MAPO rises more steeply in the early phase and sustains a
higher plateau, indicating faster progress under fixed compute. While the full-history variant narrows
the gap to GRPO, it consistently trails MAPO, suggesting that recency weighting and the momentum
increment—rather than simply aggregating more past data—are responsible for the gains.
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Figure 4: Effect of historical information.(a) Pass@1 on MATH-500 comparing GRPO, GRPO
with Full History, and Momentum Group Baseline. (b) Momentum Group Baseline tracking during
training; shaded regimes mark distribution shifts.

To understand the mechanism, we instrument the EMA baseline over nonstationary training in Fig. b]
The EMA tracks shifts in the underlying reward trend with small lag across initial — improvement
— regression — recovery phases, while the momentum increment Ab (red whiskers) provides a
persistent learning signal when batch rewards are nearly uniform. This behavior matches our analysis:
the EMA term reduces batch noise, and the momentum term mitigates vanishing advantages and
expedites recovery after regressions, yielding more stable and sample-efficient policy updates.

4.4 ABLATIONS

We conduct a comprehensive ablation study to analyze the contribution of each MAPO component on
the Qwen2.5-Math-7B model across three mathematical reasoning benchmarks, AMC23, AIME24,
and MATHS500. Table 2] presents the results of our systematic component removal analysis. The
reinforcement baseline uses GRPO.

Component Analysis Adding a Momentum Group Baseline further improves scores on AMC23
(92.50) and especially AIME24 (66.7), suggesting that variance reduction and more stable gradient
directions benefit convergence on challenging problems. Introducing Experience Replay maintains
high performance on AMC23 (92.50) and slightly boosts MATHS500 (93.10), though AIME?24 de-
creases marginally to 63.33. This indicates better reuse of past high-quality solutions can enhance
robustness, while distribution shifts in replayed samples may cause small fluctuations for certain
datasets. Applying Batch-Entropy Weighting preserves accuracy on AMC23 (92.50) and MATH500
(92.80), but lowers AIME24 to 56.67. This suggests entropy-based weighting can encourage explo-
ration and stabilize easy tasks, yet may require careful tuning for small or high-difficulty benchmarks
to avoid overweighting noisy trajectories.

Full MAPO The complete MAPO framework, integrating all components, achieves the highest
scores: 95 (AMC23), 66.7 (AIME24), and 95.0 (MATHS500). Compared to the reinforcement learning
baseline, this yields absolute improvements of +7.5, +13.34, and +0.6, respectively. This confirms
that MAPO’s multi-component design is complementary: momentum baseline stabilizes training,
experience replay improves sample efficiency, and entropy weighting guides exploration, jointly
yielding robust performance gains across diverse mathematical reasoning tasks.

4.5 CASE STUDY

For a correct answer sampled from the trained model, Figure [/| presents the token-level entropy
heatmap of Qwen2.5-Math-7B. The figure shows that in its first row, the model exhibits relatively
high uncertainty at most token positions. This suggests that in the early stage of reasoning the model
remains highly uncertain, hindering its ability to infer a clear problem-solving direction from the
preceding context. After the solution approach has been outlined in the preceding context, the model’s
output entropy drops substantially. However, following a segment of reasoning, the connective words
used to bridge into the next reasoning stage exhibit noticeably higher entropy. This indicates that
such positions carry a greater training value.
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Table 2: Ablation study of MAPO components on Qwen2.5-Math-7B.

Setting AMC23 AIME24 MATHS00
Initial Policy 67.5 333 67.8
+ Reinforcement (baseline) 87.5 53.3 93.2
+ Momentum Group Baseline 92.5 66.7 92.8
+ Experience Replay 92.5 63.3 93.2
+ Batch-Entropy Weighting 92.5 56.7 93.4
MAPO (Full) 95.0 66.7 95.0

After GRPO training (Figure [J), entropy changes concentrate mainly in initial tokens, implying a
clearer direction for answer generation and reduced downstream uncertainty. Tokens with higher
initial entropy tend to undergo larger adjustments than low-entropy positions. In comparison, Figure|[§]
illustrates the changes in entropy under the MAPO algorithm with the same data and hyperparameters.
Similarly, the entropy of the initial tokens shows substantial variation, but both the magnitude of
changes and the number of affected token positions are greater than in GRPO. Additionally, for key
tokens such as “Now”, “Therefore” and “Since”, MAPO produces larger changes. It suggests that
MAPO leverages the reward signal more effectively for learning at pivotal points in the reasoning
path.

5 CONCLUSION

In this work, we present Momentum-Aware Policy Optimization (MAPO), an effective extension
of group-based reinforcement learning. MAPO addresses key challenges in policy optimization for
reasoning tasks: vanishing advantage estimates under uniform group returns and inefficient credit
assignment across long sequences. MAPO incorporates three complementary components: a baseline
of the momentum group, confidence-driven replay, and entropy-weighted updates that preserve the
simplicity of GRPO while substantially improving the stability of exploration and training.

Empirical contributions. The momentum-based baseline prevents gradient collapse when all
trajectories succeed or fail uniformly, providing non-vanishing learning signals that accelerate
progress in difficult problems. Confidence-weighted replay improves sample efficiency by reusing
verified solutions, while entropy-guided weighting focuses updates on uncertain decision steps.
Across mathematical reasoning benchmarks, MAPO consistently outperforms GRPO and DAPO in
both pass@1 and pass@N metrics, achieving faster convergence with fewer optimization steps.

Broader implications. Our results demonstrate that critic-free policy optimization can be significantly
enhanced through domain-specific inductive biases without requiring learned value functions. This
suggests broader applicability to reinforcement learning settings where binary rewards with low
variability hamper standard algorithms. The general principles may be transferred to other domains
that require stable training signals, including coding challenges and symbolic reasoning tasks with
verifiable feedback.

Limitations and future work. The conservative design of the replay buffer, storing one high
confidence trajectory per prompt, may restrict the diversity of solutions. Future work could explore
multi-trajectory buffers with recency weighting. Moreover, MAPO assumes access to deterministic
and verifiable rewards, limiting direct applicability to settings with subjective or continuous feedback.
Extending the framework to noisy or learned rewards would require integration with reward models
or critics. Finally, stable training still relies on KL-constrained updates, necessitating careful tuning
of the trust-region radius.

In summary, MAPO provides a robust, drop-in solution for scaling reinforcement learning to complex,
multi-step reasoning with large language models. By ensuring persistent learning signals and
intelligent gradient allocation, it addresses core pathologies in group-based policy optimization and
paves the way for more reliable training from verifiable feedback.
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A NOTATION

Tabld3] summarizes the notation used throughout the paper. We use 4 to index responses in a group, ¢
to index token positions, and k to index training iterations.

Table 3: Notation.

Symbol Description

Data & Policies

x~D Prompt from distribution D

Yi Generated sequence

st = (x, y<t), ar =y  State/action at step ¢

Tg, Told, Tref Trainable, old, reference policies
Rewards & Advantages

G Group size

T Reward for y;

W, o Mean/std of group rewards

Wi LOO mean (excl. 7;)

Ay Token advantage (GAE/group-normalized)
Vo Critic baseline (PPO)

bgk) Momentum Group Baseline

Abgk) Baseline increment

Agk) Momentum advantage

a, n, € EMA decay, momentum coeff, stabilizer
Entropy Weighting

H Z(’? Token entropy at ¢

H z(’z) EMA entropy

AH, Z-(fz) Entropy delta

wl(’? Token weight (softmax of yAH)

AE? Weighted advantage

B, v EMA decay, softmax temp

Replay & Optimization

B Replay buffer (prompt — best trajectory)
C(y|0) Confidence score

clip[l_Q1 +e] Clipping operator (bounds 1 = €)

BxL KL penalty

L(6) Loss Function

B FINITE-GROUP EFFECTS OF GROUP-NORMALIZED ADVANTAGES

We analyze how the finite group size in GRPO affects advantage estimates, to motivate the momentum
baseline and replay components. Consider a fixed prompt where each of the G sampled trajectories

receives an i.i.d. binary reward r; ~ Bernoulli(p), i = 1,...,G, with true success probability
p € (0,1). we compute the group mean y« = & Y, r; and standard deviation o = /u(1 — ), and
assign each trajectory a normalized advantage

e

Yoo+’

where € > 0 is a small stabilizer. This group-normalized advantage is the same for every token in
trajectory ¢ (treating the entire sequence as one decision). In the limit of an infinite group (G — 00),

@ — pand o — +/p(1 — p), so one can define the population advantage values for a correct (reward
1) or incorrect (reward 0) trajectory:

13
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Verification of G 12 Scaling Law Finite-Sample vs Population Advantages: Deviation Analysis

==0==_Exact Calculation
== Delta Method Approximation

G~ Scaling

1
0

Expected Absolute Deviation R(G; p, €)
Advantage Value A,

: N
B 10 5 20 25 30
Group Size G Number of Correct Responses (K)

(a) Scaling law. Exact computation and delta—method (b) Finite—group distortion. For G=32, p=0.4, finite-
approximation collapse onto a slope — 35 line confirm- sample advantages for correct/incorrect responses de-

ing E[A(G, k; p)] = ©(G~/?) across representatlve viate from population values; at homogeneous groups
p. k=0, G) the normalized advantage vanishes (c=0),
illustrating exact gradient collapse.

Figure 5: Finite-group effects in group-normalized advantages. (a) Empirical verification of the
G~1/2 deviation predicted by the delta method; (b) qualitative shape of finite-sample advantages and
the collapse at extreme k. Together, these support our design choices: momentum baselines to supply

a non-degenerate signal near ;1 ~0, 1, and confidence-aware replay to preserve rare successes when
an on-policy group fails.

1-p -p
Ari p - —7 AWI"OH p - T -
ee(p) (L —p) +e¢ «(P) p(1—p) +e¢

These are the ideal normalized advantages as G — oo. For any finite group of size G, suppose
exactly k out of G trajectories are successful, therefore, 1 = % The normalized advantage for a
trajectory in this finite sample will deviate from the population value. In fact, for a randomly chosen
token in the batch, the expected absolute deviation in advantage is

G-k
(G k; p G ‘Arlght k/G) rlght(p)’ + ? ‘Awrong(k/G) - Awrong(p)‘-

This quantity A(G, k;p) measures how much the per-token learning signal is distorted due to

sampling variance in a group of finite size. Averaging over k ~ Binomial(G, p) yields the exact
expectation

G
R(G;p,e) = E[A(G, k;p)] Z —p)“ " A(G, k; p).

Using a second-order delta-method approximation with Var(u) = p(1 — p)/G one obtains

R(Gip.2) =\ 22 (0| + (1~ ) [ Ao + O,

implying that the expected advantage deviation scales on the order of G~'/2; the signed bias is
O(G~1). Moreover, the probability that the group is homogeneous (all correct or all incorrect) is

Pr[homogeneous] = p© + (1 — p)“
on which o = 0 and A; = 0 for all responses, causing exact gradient collapse. Both effects justify
our momentum baseline (non-degenerate signal when 1~ 0 or 1) and confidence-aware replay (retain

rare successes when an on-policy group fails). Empirical evaluations in Fig. match the G—1/2
law and show exponentially vanishing collapse probability away from p€ {0, 1}.

14
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Delta Method Approximation: Convergence Analysis

Ermr=%xwo%}“'--....“_ —o— p=02 - p=07
p=03 == p=0.8
~f—= p=0.5  «--- G~!Reference
—_ T '—'—"--‘—..—.—————————————-—-—-—-—--
s
1
1<
-
1]
=
£
£
= 10°
Y
-
10"
Group Size G
(a) Delta—method relative error vs. G. Error < 5% for G > 16.
Binomial Distribution: Collapse Risk and Deviation Regions
0.150 2i:n;gu§o;zsrt7ist7ics: | == = Expected Value: E[k] = Gp =12.8
= 2.7'7’ Skewness = 0.072 95% Confidence Interval: [7.4, 18.2]
< 0.125 2 === Normal Approximation
I : I Probability Mass
¥, High Deviation
T 0100 el i)
2
<
E 0.075 Binomial(G = 32, p = 0.4)
= Total Collapse Risk:
2 P(k=0) + P(k = G) = 7.96e — 08
= 0.050
=
=]
£
0.025 Collapse Risk
P(k=G)=1.84e—-13
0.000 Lee—"" —

0 5 10 5 20 25 30
Number of Correct Responses (K)

(b) Binomial mass illustrating extreme-k regions where gradient collapse occurs.

1/2

Figure 6: (a) Accuracy of the delta—method approximation used to derive the G~/ scaling; (b)

probability mass near homogeneous groups explaining collapse at ;1 ~0, 1.

C THEORETICAL ANALYSIS

We provide theoretical guarantees for MAPO’s training objective and further analysis of its compo-
nents. In particular, we show that under standard smoothness and trust-region conditions, MAPO’s
surrogate loss is monotonically non-decreasing, akin to policy gradient methods with trust regions.
We also analyze how the momentum baseline acts as a variance-reducing control variate, how the
replay buffer introduces only a small and vanishing bias, and how entropy-based token weighting
preserves the scale of gradient updates while improving credit assignment.

Theorem 1 (Monotone surrogate improvement under trust region). Suppose (i) the surrogate objective
L in equation[7|is L-smooth in 0, (ii) importance ratios are clipped as in equation[7]with bounds
ensuring Dxr, (7o, || m9) < 6, and (iii) n, o, B, are bounded with o) > o > 0. Then for a

sufficiently small step size 1y, the update 01 = 0) + nkﬁﬁwk) satisfies

E[L(01) — LO)] > mE[|VLOWI3] — LuR E[|VLO)(13] — M.,

where )y, denotes the fraction of off-policy (replay) data at iteration k, and B is a constant bounding
the replay-induced bias (cf. equation[3). Consequently, for sufficiently small ny, and as A\, — 0, the
expected surrogate objective improves, i.e., B[L(041) — L(0))] > 0.

Proposition 1 (Response utilization and nonzero signal). Let RURy, be the fraction of responses in a
batch with non-zero AE?. If (a) b'®) uses EMA equation[2|and (b) replay injects a buffer trajectory

whenever an all-failure group appears, then RURy, > 1 — p§, where pq is the failure rate per sample
under mg,. Thus RURy, remains bounded away from zero even when py is high.
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Remark. In expectation, 1 — p§ is the probability that at least one out of G i.i.d. trajectories is
successful. The replay injection rule (b) guarantees that every prompt yields at least one successful
trajectory in the learning batch (unless none exist even in the buffer). Thus the algorithm effectively
behaves as if each prompt has success probability 1 — p§ of providing a learning signal. Even when
po is close to 1, the probability of all-G failures is pS'; MAPO substitutes a success from memory
when available, ensuring a non-zero advantage in that group.

C.1 EMA CONVERGENCE AND CONTROL VARIATE VIEW

The momentum baseline in MAPO introduces a bias—variance trade-off that reduces gradient variance.
In a stationary regime with p;, = p, the EMA baseline satisfies b(*) = ap®) + (1 — a)b*~1), hence
Ep*) —p,  |EPP] —p| < (1-a)f|p® —p|,

so the baseline bias decays geometrically at rate (1 — «). For trajectory i,

SRR R

o(k) o o(k) o(k)

ka) Ui(k)

With E[Zi(k)] =0and ]E[Ui(k)] — 0, the EMA adds a decaying bias while reducing variance through

Cov(Zi(k), Ui(k)) < 0 (empirically typical). The additive momentum term 7 Abgk) further acts as a
control variate; variance is minimized for 7 near —Cov(Zi(k), Abgk)) / Var(Ab,(;k)).

C.2 KL-REGULARIZED OFF-POLICY MIXING

Consider a trajectory (x, §) from the replay buffer 53, generated by 7y
the current policy 7y is

Its importance ratio under

gen

~ T
w = 77r9(y~| ?) with logw = ZAt,
Ton (7] 7) 2
where Ay :=log o (4s | §<t,x) —log ma,., (U1 | §<t, ).
We enforce a tokenwise KL trust region via the chain rule
T
ZEﬂsgen [DKL(WG(' | J<t,x) || 7T9gcn(‘ | §<t»x))} < 4.
t=1

Assume
(A1) Local quadratic KL. There exists Lky, > 0 such that, for all relevant contexts s,
Di(mo(- | 8) || Topen (- | 8)) < 5% 10 — Ogenl|3.

(A2) Log-probability Lipschitzness. For all 6,6’ y, s,

< Llog H9 - 9/||2~

|logmo(y | s) — logme: (y | 5)

Then from (A1) and the trust region, || — Ogen|l2 < Cp+/0/T for some constant Cy > 0, and by
(A2) the per-token log-ratio is bounded

5
A < b b= Lig Coyf e

Zr = ZT: (A0 = En,, [A)).

t=1
[A¢]] < 2b, Azuma—Hoeffding implies that, for any a € (0, 1),

]P’(|ZT| > 2b«/2T10g(2/a)> < a

Define the centered sum

Since |A; — E

TOge
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Because Er,  [logw] = —Dxki(m,, || 76), we obtain, with probability at least 1 — o,

7T9) + C\/(Slog(Q/a)}, C = 2\/§L10g09.

Hence w concentrates near 1 with [logw| = O(+/9) (high probability). For small §, a Taylor
expansion of e” yields E[(w — 1)?] = O(6) under bounded log-ratio increments.

logw € [ — DKL(ﬂ'Qgen

C.3 SCALE PRESERVATION IN ENTROPY-WEIGHTED TOKEN UPDATES
The per-token policy-gradient loss is ¢; = — log wg(y: | y<¢, ) Ar. MAPO reweights it as

gt = wtgh wy = eXp(’)’AHt) Zwt =1.
t

>, exp(YAH,)’

The reweighted sequence loss is a convex combination:

L= Zwtﬁt = mtin&f <L< m?xét.
t

Let gy = Vgl; and g = >, wyg¢. Then

2
Elgl? = Y wawuElg g, < Y wewu VEIgIP VEIgl? = (3 wivElal?) < 3 wiElal?,
t,u t,u t t

where we used Cauchy—Schwarz and Jensen. In particular, if E[|g;|* < o for all ¢, then E||g||* < 7.

Hence entropy-based weighting with ), w; = 1 does not inflate the gradient scale; it redistributes
signal across tokens according to uncertainty.

D ALGORITHM

summarizes the training progress of our method.

Algorithn{I] provides an overview of MAPO’s training procedure, integrating the momentum baseline,
prioritized replay, and entropy weighting into the standard policy optimization loop. For clarity, we
present the update in two conceptual stages:

* Step A computes the momentum advantage and performs a preliminary policy update using
uniform token weights

» Step B then computes entropy-based weights and applies the reweighted objective for a final
update. In implementation, these can be combined or repeated as needed, but separating
them highlights that the entropy weighting can be viewed as an enhancement on top of a
baseline RL update.

E CASE STUDY

For a correct answer sampled from the model, we examine the entropy changes on three different
models: Baseline, GRPO, and MAPO. Figure [/|shows the entropy values of the Baseline model for
this answer. Figure [9]presents the magnitude of entropy changes after GRPO training. In comparison,
Figure [§| contains more dark-colored points, indicating larger entropy changes, and shows greater
variation at key tokens, such as "Now”, ”Since” and “Therefore”.
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Algorithm 1 MAPO: Momentum-Aware Advantage Policy Optimization

Require: Policy 7y, reference m,qf; group size G; clip €; KL weight 3; EMA « € (0, 1]; momentum
n > 0; stabilizer € > 0; entropy temp 7 > 0.
1: Init: mo1q < 7o; Brase — 0; M «— 0.
2: while training do

3: Rollout: For each prompt z, sample {yi}e, ~ moal(|z), get rewards 7;.
4 Stats: = &7, i = giy 2T 00 = G 2T — 1)

5: EMA baseline: bP™®V < By,e[2] (default = p);

6: by < ap_; + (1 — a)bPre;

7: Abz «— bz — bprev;

8: Boase[2] < & 2, bi-

N

N [ bi .
Advantages: A; ! - +n - Ab; (optionally center).
oc+e
10: Replay: If Vi, r; = 0 and (z, §) € M, replace one (x, y;, ;) with (z,7,1).

11: StepA:si(G):eXp{ LY, log M}

7Told Yi t\ )
12: EEA) = min (siAi7 clip(s;, 1 —e,1+¢) - Ai);
13: 0’ < arg maxg {é > EZ(-A) -0 DKL(ﬂ'gHﬂ'ref)}.
14: Step B: Compute AH, ; w; ; < softmaxy(AH; . /7);
15: pia(0') = Zepeil ),
16: Aii’t = Wiz - Ai;
17: ﬁgf) = min(pi}tfli ¢ clip(pig, 1 —€,1+¢) - jlm);
18: 0 < arg maxg {f > Iyl\ Do E(B -3 DKL(T(ngTrref)}.
19: Update: Periodically 7oq < mg; for success (z, y;, 1),
20: store C'(z,y;) = ﬁ >, log mola (yi t|),
21: update M [x] if C improves.

22: end while

18
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Row19 (C D - 8 \ cos (\ phi ) = 0 \ ]Since$ CD \ ne q 0 $ wehave: \[ CD =
Row 20 8 \ cos (\ phi ) \alsckno e ;. \[ ¢D 2 = 8 - 8 \ cos (\theta ) \

angleCAD = \angle A CD = \(ﬁ&/ 2 $herefore  $\

3 incliangIeB CD $§ is is os ce les , $\angll DC

cos (\ phi ) I - \ cos (\theta ) $. Substitutingthis

Row 21 ] Sinc iangle A CDI is is os ce
Row 22 angle B CD 1.8 0 ™ circ - \
Row23 = \ D BC = \ phi / 2 $herefore JE
Row 24 into thequatioror $ CD $, we get : \[ CD = 8 (- \ cos (\theta)) = - 8 \ cos (\theta ) \
Row25 ] Since $ CD $ is alength, it mustbgositiveTherefore Ihave: \[ cD =-Now , we can
Row 26 find tiperimetarf thequaitisteral $ ABI $ ¢ \ \ text { Peimeter} = AB + BC + CD + DA =

Row 27 + 4 4+ 2 + 2 = 9 \Ierefore therimetaf thequatb‘terH $' 9 § lswl

Col 1 Col 4 Col 7 Col 10 Col 13 Col 16 Col 19 Col 22 Col 25 Col 28

Figure 7: Token-level entropy heatmap of a correct answer on Qwen2.5-Math-7B
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Row 1 Let enotéhequa‘dktera $ ABCD $ with § AB = 1 9, 4 $, Eldiagonad AC =
Row?2 2 incethdiagona$ AC $ divideshequaititterainto two is os ce leriang havetwecases teeSlle i either $triangle
Row 3 ABC $ and $¥iangleA CD $ are is os ceH , or $yiangleA BD $ and $¥iangleB CD $ are is os ce

Row 4 les I:welince$ = 1 § and $§ BC = 4 H $trianglaBC $ cannobe is os ce with $

Row5 AB = BC $Theref $¥riangleA CD $ mustbe is os ce les with $ AC = = .

we

Row 6 neezl'ermiﬂusengthof $ CD $. Since$iriangleA CD $ is is os ce les with § AC = = 2§ we

Row 7 can useI Law of Cosines in $¥iangleA CD $ toﬁ $ CD $. Let $\angleCAD = \ theta $. TheI by the

Row8 Law of Cosines : \[ CD ~ 2 = AC ~ 2 + AD *~ 2 - 2 \ cdot AC \ cdot AD \ cdot \ cos
Row9 (\theta) \ ] Since $ AC = AD = 2 $ wehave: \[ CD » 2 = 2 ~ 2 4+ 2 A
Row10 2 - 2\ cdot 2\ cdot 2 \cdot \ cos (\theta) = 8 - 8 \ cos (\theta )

Row 11 \alsoneed ta SKNIIABC $. Since $¥rianglaBC $ is not is os ce Hwith $ AB = 1 $ and
Row12 §$ BC = 4 we need to ﬁnﬁengthofnCDI rﬁ $¥riangleB CD $ is is os ce If

Row 13 $¥iangleB CD $ is is os ce with § BC = = 4 8, then we can use the Law of Co: in $\ 1 i

Row 14triangleB CD $ to find $ CD $. Let $\angle B CD = \ phi $. Then, by thelaw of Cosines : \[ BD *

Row1 2 = BC ~ 2 + CD ~ 2 - 2 \cdotBC \ cdotCD \ cdot \ cos (\ phi ) \ 1 Since $ BC

Row16 = = 4 $ and $ BD = 4 8§, wehave: \[ 4 ~ 2 = 4 ~ 2 4+ 0CD" 2 - .
)

Row17 2 \ cdot 4 \cdotCD \cdot \ cos (\ phi ) \ 1 \l 1 6 = 1 4+ @D &

Row 18 8 €D \cos (\ phi ) \ 1 \[ 0 =Cb* 2 - 8 CD \ cos (\ phi I \[

Row19 (C D - 8 \ cos (\ phi ) = 0 \ ]Since$ CD \ ne q 0 $ wehave: \[ CD =

Row 20 8 \ cos (\ phi ) \nWe alsdkno \[ cD » 2 = 8 - 8 \ cos (\theta ) \

Row 21 ] SinciangIeA CD $ is is os ce les , E3®ngleCAD = \angle A CD = \theta / 2 Slherefore $\
Row 22 angle B CD = 1 8 0 M circ - \ MSince $¥riangleB CD $ is is os ce les , $\angll DC
Row 23 = \l DBC = \ phi / 2 herefore lYcos (\ phi ) = - \ cos (\theta ) $. Substitutingthis

Row 24 into thequatiofor $ CD $, we get : \[ CD = 8

- \ cos (\theta)) = - 8 \ cos (\theta ) \

Row 25 ] Since $ |[CD $

is alength, it mustbgositiveTherefore wehave: \[ CD = 2\ Now , Wwe can

Row 26 find tperimetarf thequaititeral$ AB CD ¢ : \[ \ text { Peimeter} = AB + BC + CD + DA =

Row 27 + + 2 = 9 \ Erefore tiperimetarf thequamrterH $ 9 % Ivswl
Row 28 H Him_ erI

Col 1 Col 4 Col 7 Col 10 Col 13 Col 16 Col 19 Col 22 Col 25 Col 28

Figure 8: Entropy change heatmap at each token position for a correct answer before and after MAPO
training of Qwen2.5-Math-7B
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Row 1 Let 'sdenotéhequaititeralas $ AB CD $ with $ AB = 1 $ $ BC = 4 $, andlagona AC =
Row?2 2 $. Sincethdiagona$ AC $ divideshequaitiiterainto two is os ce letriangles we havetwecasesteonsider either$¥riangle

Row 3 ABC $ and $¥iangleA CD $ are is os ce les , I $¥riangleA BD $ and $¥riangleB CD $ are is os ce

Row 4 les .However since $ AB = 1 $ and $ BC = 4§, $¥ianglaBC $ cannobe is os ce Iwith $
Row5 AB = BC $lhereforg $¥iangleA CD $ mustbe is os ce les with $§ AC = AD = 2 $ . Now , we
Row 6 need tetermitiedlengthof $ CD $. Since$lriangleA CD $ is is os ce les with § AC = AD = 2§ we

Row 7 can use the Law of Cosines in $YiangleA CD $ to find $ CD $. Let $\angleCAD = \ theta $. l , by the
Row8 Law of Cosines : \[ CD » 2 = AC ~ 2 + AD ~ 2 - 2 \ cdot AC \ cdot AD \ cdot \ cos
Row9 (\theta) \ ] Since $ AC = AD = 2 $, wehave: \[ CD ~ 2 = 2 A~ 2 4 2
Row10 2 - 2\ cdot 2\ cdot 2 \cdot \ cos (\theta) = 8 - 8 \ cos (\ theta )
Row 11 \IWe alsoneed teonsidepirianglaBC $. Since $¥rianglaBC $ is not is os ce les with $ AB = 1 $ and
Row12 § BC = 4 $, weneed to ﬁnc.engthof $ CD $ suchthat $¥iangleB CD $ is is os ce les . |If

Row 13  $¥iangleB CD $ is is os ce les with § BC = BD = 4§, then we can use the Law of Cosines in $\ 1

Row l4triangleB CD $ to find $ CD $. Let $\angle B CD = \ phi $. Then, by thelaw of Cosines : \[ BD *

Row1s5 2 =BC ~ 2 + CD *~ 2 - 2 \cdotBC \ cdotCD \ cdot \ cos (\ phi ) \ ] Since § BC

Row 16 = 4 § and $ BD = 4 § wehave: \[ 4 ~ 2 = 4 ~ 2 + CD* 2 -

-1
Row17 2 \ cdot 4 \cdotCD \cdot \ cos (\ phi ) \ 1 \l 1 6 = 1 6 +CD"~ 2 -

Row 18 8 CD \cos (\ phi ) N 1 \[ 0 =CDb "~ 2 - 8 CD \cos (\ phi ) \ 1 \ CD
Row19 (C D - 8 \ cos (\ phi ) = 0 \ ]Since$ CD \ ne q 0 $ wehave: \[ CD =
Row 20 8 \cos (\ phi ) \ ] Wealscknowthat : \[ CD ~ 2 = 8 - 8 \ cos (\theta ) \
Row 21 ] Since $¥riangleA CD $ is is os ce les , $\angleCAD = \angle A CD = \theta/ 2 S$lherefore $\
Row 22 angle B CD = 1 8 0 ™ circ — \theta$. Since$iriangleB CD $ is is os ce les , $\angle B DC
Row23 = \angle D BC = \ phi / 2 $herefore $\cos (\ phi ) = - \ cos (\theta ) $. Substitutingthis
Row 24 into theguatiofor $ CD $, we get : \[ CD = 8 (- \ cos (\theta)) = - 8 \ cos (\theta) \
Row?25 ] Since § CD $ is alength, it mustbgositiveTherefore wehave: \[ CD = 2 \ ] Now , we can
Row 26 find tperimetaf thequaitateral$ AB CD $ : N\ text { Peimeter} = AB + BC + CD + DA = 1

Row 27 + 4+ 2 + 2 = 9 \ Therefore tipgrimetaf thequatiteralis $ 9 $ .Ansz $

Row 28 H &im_erl

Col 1 Col 4 Col 7 Col 10 Col 13 Col 16 Col 19 Col 22 Col 25 Col 28

Figure 9: Entropy change heatmap at each token position for a correct answer before and after GRPO
training of Qwen2.5-Math-7B
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