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Abstract

Understanding how individual edges influence the behavior of graph neural net-
works (GNNs) is essential for improving their interpretability and robustness.
Graph influence functions have emerged as promising tools to efficiently estimate
the effects of edge deletions without retraining. However, existing influence pre-
diction methods rely on strict convexity assumptions, exclusively consider the
influence of edge deletions while disregarding edge insertions, and fail to capture
changes in message propagation caused by these modifications. In this work, we
propose a proximal Bregman response function specifically tailored for GNNS,
relaxing the convexity requirement and enabling accurate influence prediction for
standard neural network architectures. Furthermore, our method explicitly accounts
for message propagation effects and extends influence prediction to both edge dele-
tions and insertions in a principled way. Experiments with real-world datasets
demonstrate accurate influence predictions for different characteristics of GNNGs.
We further demonstrate that the influence function is versatile in applications such
as graph rewiring and adversarial attacks.

1 Introduction

Graph neural networks (GNNs) have demonstrated that leveraging structural relationships, often
encoded as connectivity between data points, can enhance the predictive performance of neural net-
works across many tasks. Although the literature clearly identifies the importance of the relationship,
the individual contribution of each connectivity, i.e., an edge, remains poorly understood.

Several recent studies have explored edge importance from a particular perspective. For example,
Nguyen et al. [26] propose an edge rewiring method to mitigate the problem of over-smoothing [23],
a phenomenon where the learned node representation becomes indistinguishable as the depth of the
GNN increases. Alon and Yahav [2] suggest edge rewiring methods to overcome the over-squashing,
which occurs when information propagation encounters bottlenecks between distant nodes.

Despite progress in addressing individual challenges, a unified framework for quantifying edge
influence across these perspectives would provide a more comprehensive understanding of their role
in graph neural networks. For instance, it would allow us to assess how modifying a single edge
affects model behavior from both over-smoothing and over-squashing perspectives. On the other
hand, influence functions have been introduced to quantify the impact on evaluation metrics, such
as validation loss, when a training data point is removed [21]. To do so, the function estimates the
changes in model parameters when the target data point is excluded from the training.
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Figure 1: An illustration of beneficial and harmful edges identified by an influence function proposed
in this work with respect to two evaluation metrics. A harmful edge is one that either blocks informa-
tion propagation between nodes (over-squashing [2]) or makes node representations indistinguishable
(over-smoothing [23]). The barbell graph consists of two clusters, each with distinct node labels. The
influence function can be used to analyze the properties of edges. For example, the edges connecting
two different clusters mitigate over-squashing while amplifying over-smoothing.

Applying influence functions [21] to GNNs introduces a unique challenge, primarily because modify-
ing an edge can alter the propagation paths and consequently change the underlying computational
graph structure. Previous attempts to adapt influence functions for GNNs have focused on parameter
changes, failing to address the influence of the changes in the computational graph [7, 35]. Moreover,
their influence functions rely on the strict convexity assumption of the loss function with respect to
the model parameters, which limits their applicability to widely used non-convex GNNss.

In this work, we propose an influence function tailored specifically for GNNs, enabling precise
predictions regarding the effects of edge modifications from multiple perspectives. To do so, we
overcome the unique challenges of GNNs by deriving the changes in the evaluation function from
Sfundamental principles of calculus. As a result, our function can measure the influence of both edge
deletion and insertion, the latter of which has not been explored in previous studies. To extend the
influence function to non-convex GNNs, we establish the proximal Bregman response function [3]
for node classification. The influence function derived from this response function relies on weaker
assumptions that generally hold for non-convex GNNs. Figure 1 shows an example of influence
analysis for a barbell graph from two different perspectives. Through the analysis, one can identify
that the edges connecting two different clusters have opposite influences on over-squashing and
over-smoothing, providing a unifying view on edge importance.

Experiments on real-world datasets demonstrate that our influence function accurately predicts edge
influence in non-convex GNNs. We further show that the influence function is a versatile tool for
analyzing various properties of GNNs. We present three practical applications, including 1) an
analysis of edge rewiring methods suggested to improve the predictive performance of GNNs, 2)
identifying adversarial edge edits that could alter node predictions, and 3) an analysis of edges
connecting the nodes with the same label or different labels in terms of the node classification
performance.

2 Preliminary

2.1 Influence function for convex models

Let L(z,y, 0) be a loss function, where z is the input, y the label, and 6 the model parameters. The
optimal parameters 6* minimize the empirical loss over the training set Dyyin:

0* = arg min Z L(z,y,0). (1
(wxy)eptrain

Influence functions quantify how removing a specific training data point (z’,y’) impacts model
parameters. Computing the exact impact would require retraining the model by excluding the data



point from the training set, which is computationally expensive. Instead, one can model a response
function that measures the changes in parameters when the data point is upweighted by an amount of
€ € R by solving the following optimization problem:

1
05, = arg min N Z L(x,y,0)+eL(z,y,0), 2)

4
(2,9) € Drain

where N = |Dyin|. For example, 07, |, _
Dlrain \ {I/, Z/’}

The changes in parameter further influence evaluation function f, such as a validation loss. Koh
and Liang [21] demonstrate that when the loss function L is strictly convex with respect to ¢, the
derivative of f (6%, ) with respect to € evaluated at e = 0 is:

_1/N corresponds to the optimal parameter obtained from

af (0% ., . oot d0% . _ .

( Y, ) — Vef(9 )T Y, — —Vef(e )TH9*1V9£($/, y/7 0 )7 (3)
de 0 de | _,

where Hp = < Z(I’y)eumn V2L (x,y,0%) is the Hessian matrix evaluated at 6*. Finally, one can

approximate the influence of data point (2’,y’) on the evaluation function f through the linearization
around the optimal parameter 6* without retraining:

1
F(0y ) = FO7) ~ Vo f(0) T H VoL o 07). @)

When the objective is non-convex, the Hessian can be added with a damping term A € R, i.e.,
Hy- + A, leading to a positive definite matrix. We provide a complete derivation in Appendix A.

2.2 Influence function for neural networks

Although the influence function in Equation (4) reliably measures the influence of an input for a
linear model with a convex objective, the computation is unreliable in practice with deep neural
networks, c.f. [4]. Bae et al. [3] identify the three main sources of unreliability related to the standard
practices of neural network training and fine-tuning: 1) In non-convex models, the response function
is affected more by parameter initialization than by the influence of the data, as gradient methods
approximate the solution. 2) The addition of the damping term A works as an /5 regularizer of
Equation (1) leading to a different response function. 3) The influence function is measured on fully
converged parameter #*, which is not true in practice due to many reasons, such as early stopping
and over-fitting mitigation.

Bae et al. [3] propose a new response function, named the proximal Bregman response function
(PBRF), to address the three practices:

" .1 A
00,0y e = arg min > Dr(go(x), g0, (2),y) + 5 19— 01> + eL(a', /. 0), (5
(m»y)GDer|in

where gy is a model parameterized by 6, 6, is a reference parameter from which the fine-tuning starts,
and D/ is the Bregman divergence defined as:

De (hoyy) =L (hy) — L (W, y) — ViL (B, y) " (h—h'). 6)

For detailed explanations of each term in Equation (5), please refer to Bae et al. [3].

The objective can be further linearized around the model output to simulate the local approximations
made in Equation (4), leading to the following influence function':

"Equation (7) is originally proposed by Teso et al. [31] as an approximation of Equation (4). Bae et al. [3]
provide a corresponding response function to the approximation.
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where h and h, denote the model outputs parameterized by 6 and 6, respectively. Jpg, is the
Jacobian of the model outputs with respect to the parameters, and Hj,, is the Hessian of £ with
respect to the outputs. When the loss function is convex with respect to the model outputs, the matrix
J zesHhsJ ho, 1S positive semi-definite. This convexity condition is satisfied by commonly used
loss functions, such as cross-entropy and mean squared error. Consequently, for A > 0, the matrix
J ;esHhSJ no, + Al becomes positive definite, ensuring its invertibility. We provide the complete
derivation in Appendix A.

3 Quantifying the influence of edge edits on GNNs

Problem setup and notation We propose an influence function tailored for non-convex GNNss,
designed to quantify how edge deletions and insertions perturb model predictions and evaluation
functions. We consider node classification on an undirected graph G = (V, £, X), where V is the
set of nodes, £ C V x V forms the set of edges, and X € RIVIxd represents the matrix of node
feature X,, € R? for all node v € V. We also represent the graph structure using a binary symmetric
adjacency matrix A € {0, 1}VI*IVl where A,, = 1 indicates an edge between nodes v and v. The
goal of the node classification is to predict the ground truth label y,, € ) of node v € V. The notation
h9-? refers to the representation of node v obtained by a GNN parameterized by # on graph G. A
standard supervised training involves a minimization of the average prediction loss £(h9:?,y,,) over
the entire training set Vi, € V with respect to the model parameter 6.

We focus on analyzing the effect of inserting or deleting a single undirected edge {u,v}. The
derivation naturally generalizes to multiple edge edits, which are provided in Appendix C. We first
define the reweighted adjacency matrix A, such that only the (u, v) and (v, u) entries are updated as
AS, = Auy + (2I[{u, v} € E] — 1) Ne, while all other entries remain unchanged. Setting e = —1/N
corresponds to deleting the edge if it exists, or inserting it otherwise. We denote the edge-reweighted
graph as G¢ = {V, £, A}, where we omit the target edge {u, v} from the adjacency matrix when it
is clear from context for notational simplicity. We collectively refer to edge deletions and insertions

as edge edits.

Decomposition of influence function Let f(6,G) be an evaluation function, to which we want to
measure the influence of an edge edit. Note that unlike standard parameterization of the evaluation
function, i.e., f(6), the evaluation function needs to be parameterized by both the model parameter
0 and the graph structure G, because an edge edit not only changes the model parameter but also
changes the message propagation paths in GNNs. Due to the dependency of the evaluation function
on the graph structure, the derivative of the evaluation function with respect to the change in the
weighting of a target edge is decomposed as follows via the chain rule:

4 (0:,6°) o0 0f(0.6° 94
Y \Ter J - o* € =/ 8
de - V@f( 0 g) e o OAe Oe 6=03, 6207 ( )
parameter shift message propagation

where 07 represents the response function of an edge edit; a formal definition is provided in the
following paragraph.

Remark. The influence functions proposed for GNNs in Chen et al. [7], Wu et al. [35] only consider
the effect of parameter shift while missing the changes in the message propagation path.

Parameter shift To quantify the change in model parameters for non-convex GNNs, we propose a
graph-adapted version of the PBRF. The original PBRF, introduced in Equation (5), only quantifies
the changes in parameters when the weight of a single data point is modified, inapplicable to our
scenario where the weight of an edge changes. To address this challenge, we introduce an edge-edit
PBREF that explicitly accounts for changes in node representations caused by an edge edit.



We define the edge-edit PBRF as follows?:

* . 1 /\ _ L1
0% = argommﬁ Z D, (hﬁ»",h%v"s) + 5 1o — 95H2 + Z el L (hg"g) - L (hév7 N’g)) .
V€ Virain VE Virain
©)

The first two terms regularize 6 to stay close to the reference parameter 6, both in terms of the output
space and the parameter space. The final term, with € < 0, encourages 6 to increase the loss on
the original graph while decreasing the loss on the edge-edited graph. Thus, edge-edit PBRF can
be interpreted as identifying parameters near 6 that fail to predict correctly on the original graph
but succeed on the edge-edited graph, thereby responding to the edge edit. The scalar e controls
the magnitude of this response to the edge edit. Note that 6 = 6, since the Bregman divergence
D, (h, 1, y) is minimized when h = A/,

Based on the edge-edit PBRF objective, the changes in the evaluation function caused by the parameter
shift are then given by:

T 06;

V@f(987 g) e
e=0

=—Vof(0:,6)'G™" > <V9£ (hg%) = VoL <h9”">) (10)

VE Virain

where G = J Z(,SH;LSJ no, + AI denotes the generalized Gauss—Newton Hessian with a damping
term, and h and h, denote the node representations obtained using parameters ¢ and 6, respectively.
A detailed derivation is provided in Appendix B.

Message propagation To quantify the changes in the evaluation function caused by the modification
in the message propagation path, we can further expand the message propagation term in Equation (8).
Since 0A5;/0e = 0 for all {4, j} # {u, v}, the message propagation term simplifies as follows:

df(0,G) DA _0f(0,G°) 045, af(0,G) DAS,
0Ac Qe 0=07, e=0 QA Oe 0=0,. =0 045, 0c g_g. o
_ _ of(0s,G) | 9f(0s,9)
= (21[{u, v} € &] 1)N< DA + oA ) (11)

Unified influence function under edge edits By substituting Equation (11) and Equation (10) into
Equation (8) and linearizing around € = 0, we obtain a first-order approximation of the influence
function that captures both parameter shift and message propagation effects. The resulting influence
of an edge edit is given by:

F(024007%) = 160.,0) % £ Vf 0,06 Y (Tl (18%) - Vc (18 ) )

N
VE Virain

0 (6.9) 3f(98’9>> . (12)

— (2I[{u,v} € £] - 1) ( DA, + 0Ay,

Directly computing G —! is computationally infeasible for large models. To address this, we approxi-
mate the inverse Hessian-vector product G~1Vy f (6, G) using the LiSSA algorithm [1], a stochastic
iterative method. A detailed description is provided in Appendix D.

4 Validation of influence function

We measure the correctness of the proposed influence function on three different evaluation metrics:
over-squashing and over-smoothing measures, and a validation loss. Our goal is to precisely predict

2For notational simplicity, we omit the label y, of node v in expressions involving the loss function or the
Bregman divergence, as it is clear from context.



how much over-squashing and over-smoothing measures, and validation loss change when an existing
edge is deleted from the graph or when a potential edge is added between two nodes.

4.1 Evaluation functions

We explain the three evaluation functions considered in detail.

Over-squashing Over-squashing [2] is the phenomenon in which information from distant nodes is
overly compressed during message passing, preventing it from effectively influencing node repre-
sentations. Topping et al. [32] propose a gradient-based metric 0h,, /90X, to quantify the influence
of the initial node feature X,, on the node representation h,,. One way to measure over-squashing
in a graph is by averaging the gradients between all pairs of distant nodes. However, computing
these gradients for every such pair is computationally expensive. Moreover, estimating the influence
function requires taking the derivative of this measurement, which is even more costly due to the
complexity of the measurement itself. To address this issue, we propose an alternative over-squashing
measure similar to the gradient-based one but without derivation. Let A7, (v) be the set of nodes that
can be reached from node v in exactly L hops. To measure the influence of node v to node v in an
L-layer GNN, we first define modified graph G’ (v) = {V, &, X'}, where

0 ifu e Ni(v)
X =1x ’ 13
v { X,, otherwise, (13)
for all w in V. With the modified graph, we propose a new over-squashing measure as:
0,G) = th,e _ hg/(u),eH . "
fOQ( g) Z v v 9 ( )

veY

The measure computes the average difference in node representations with and without L-hop
neighborhood node features. It is similar to the gradient-based metric in that both quantify how a
node’s representation changes when input features of other nodes are modified, although one does so
through gradient computation and the other through direct input masking.

Over-smoothing We use the Dirichlet energy that quantifies the over-smoothing phenomenon in
GNNs [23]. Dirichlet energy is defined as the average squared /5 distance between the embeddings of
adjacent nodes [6], and serves as a proxy for the representational diversity across the graph. A lower
Dirichlet energy indicates more severe over-smoothing, as node representations become increasingly
indistinguishable due to excessive message passing. Conversely, higher Dirichlet energy suggests
that node embeddings remain more discriminative.

Validation loss We use a standard mean cross-entropy loss on the validation set as an evaluation
function.

4.2 Actual vs. predicted influence

Datasets and experimental setup We conduct experiments on five datasets: the citation graphs
Cora, Citeseer, and Pubmed [29, 36], where the task is to predict each paper’s research area based on
citation relationships; and the Wikipedia graphs Chameleon and Squirrel [28], where the task is to
estimate page traffic based on hyperlink relationships. For the citation graphs, we follow the data
splits provided by Yang et al. [36], and for the Wikipedia graphs, we use the splits from Pei et al.
[27].

We evaluate the prediction performance of our method on three representative graph neural networks:
GCN [20], GAT [33], and ChebNet [13]. We compare our approach with GIF, an existing graph
influence function [7, 35]. To measure the actual influence, we first train the model on the original
graph. We then retrain the GNN on the edge-edited graph by optimizing the minimization objective
defined by each response function. Specifically, for our influence function, we fine-tuned the model
by minimizing the objective in Equation (9), using the original model parameters as 6 and setting
e = —1/N. For GIF, we retrain the model by minimizing the loss on the edge-edited graph, using
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Figure 2: Predicted influence versus actual influence on a four-layer GCN. The x-axis represents
the predicted influence, the y-axis represents the actual influence, and the dotted line represents the
perfect alignment.

the same parameter initialization as the original model. The actual influence is computed as the
difference between the evaluation values of the original model and the retrained model.

Results Figure 2 presents scatter plots for the Cora dataset, where each point shows the actual and
predicted influence of a single edge edit. The x-axis represents the predicted influence computed
by each method, and the y-axis represents the actual influence. The first row illustrates results from
GIF [7, 35], while the second row shows results from our proposed method for edge deletions and
insertions, respectively. Additional results for other GNNs and datasets are provided in Appendix E.

GIF [7, 35] fails to reliably estimate actual influences on non-convex GNNSs, achieving correlations
of only 0.09 and 0.14 for over-squashing and Dirichlet energy, respectively. In contrast, our proposed
method significantly improves prediction, achieving correlations up to 0.95, closely aligning with
the ideal predictions shown by the grey dotted line. Moreover, our method exhibits strong predictive
capability for both edge deletions and insertions.

We further evaluate how editing the graph to improve
each measurement affects prediction on the test nodes. Taple 1: Test accuracy on edge-edited graphs.
To perform the edge edits, we first compute the influ-  The best result is highlighted in bold.

ence function with respect to each measurement and

then edit the edges that are predicted to improve the Cora  CiteSeer PubMed
corresponding measurement. For validation loss, we GCN 310403 693205 756%10
edit the edges with t.he k smallest 1nﬂuenge values,as  pooq00 811204 692404 75 7+0s
negative influence indicates that removing the edge  gF 80.9+05 69.2405  75.6+0.

is expected to reduce the measurement. For the other  Qurs (DE)  80.8z04  69.5+05  75.4+12
measurements, we edit the edges with the k largest Ours (fog) 81.1x04  69.3x05  75.4%10
influence values. The value of k is selected to maxi- Ours (VL)  82.1x05 69.6x0.7 76.4x1.3
mize validation accuracy. We compare the edge edits
produced by our influence function to two baselines:
random edge deletion (Random) and edge edits using GIF [7, 35] in place of our influence function.

Table 1 shows the test accuracy when the model is trained and evaluated on edge-edited graphs.
Dirichlet energy (DE), over-squashing (foq), and validation loss (VL) are used as shorthand in the
table. Our edits based on validation loss achieve the best performance across three datasets. This
result suggests that editing edges to reduce validation loss can be helpful for improving test accuracy.
In contrast, editing edges to improve Dirichlet energy or the over-squashing measurement does not



x10-3 __ Validation Loss 50X1072 Over-squashing Dirichlet Energy

5 20 X Deletllon 5 15 o 5 2.0
o ® Insertion @ 1.0 3 o
= [ = & 10
] . o o 2oos . * i
c S . R c % c *
_g 0.0 . -. .I o = _g 0.0 . » wop U o g 0.0 . v %o {: (9
© o] © -0.5 © . .
oD-1.0 * 9 . o Y o Y X
-1.0
g 8—10 3‘ 8 aey
©-20 , o 3 :
o e a-15 I a -2.0 r
-3.0 Correlation: -0.07 -2.0 Correlation: 0.01 Correlation: -0.09
-3 -2 -1 0 1 2 -2.0-15-1.0-050.0 05 1.0 1.5 2.0 -2 -1 0 1 2
Parameter Shift Effect x1073 Parameter Shift Effect 1073 Parameter Shift Effect

Figure 3: The relationship between parameter shift effect and message propagation effect defined
in Equation (8). The x-axis denotes the parameter shift effect, and the y-axis denotes the message
propagation effect.

x10~2 10 Edges 5.0 X1072 20 Edges x10~2 100 Edges
15 4.0 =
o 1.0 . ® 10 ea et o o Beteee
N - . L .® °
£ os oy egpare g . -.'-1.""}" re g 20 I
] [ 9] ° g%, & [ oo, g0 La%s P
E . S 00 i e X E; Xt S
= 0.0 oot . = o &%, Fae = 00 g et o
< R 2 £ S, Te IS .
=03 , s = -1.0 L =
3-1.0 S 5 -2.0
2-1 2 2
< < -20 <
-15 : -4.0
-2.0 Correlation: 0.91 30 Correlation: 0.88 Correlation: 0.84
—i6 -08 00 08 16 3 - 01 0 1 2 2 2 0 2 3
Estimated Influence x1072 Estimated Influence %1072 Estimated Influence x1072

Figure 4: Predicted influence versus actual influence on a four-layer GCN under varying numbers of
inserted edges.

consistently improve test accuracy. This indicates that optimizing these intermediate metrics does not
necessarily translate to better predictive performance. Finally, editing edges to reduce validation loss
using GIF fails to improve test accuracy, which we attribute to its inaccurate influence estimation on
non-convex GNNs.

Analysis on the influence of message propagation We analyze the importance of explicitly
incorporating the influence of message propagation when predicting the influence of edge edits. If
the influence of the message propagation is negligible or highly correlated with the influence of
the parameter shift, predicting the influence of the message propagation may not be necessary. To
validate the importance of the message propagation influence, we measure its correlation with the
influence of parameter shift.

Figure 3 shows scatter plots comparing these two influences on the Cora dataset. We observe a low
correlation between the message propagation and parameter shift influence across all metrics, while
their magnitudes remain comparable. These results underscore the necessity of explicitly measuring
the influence of message propagation in estimating the influence of edge edits.

Influence estimation for multiple edge edits We evaluate the accuracy of the proposed influence
function in predicting the actual influence under multiple edge edits. Figure 4 presents scatter plots
of predicted versus actual influence when inserting different numbers of edges. The experiments are
conducted on the Cora dataset, with validation loss used as the evaluation metric. Specifically, we
report results for simultaneous insertions of 10, 20, and 100 edges.

Our influence function maintains a high correlation with the actual influence, achieving 0.84 even
under 100 simultaneous edge edits. Nonetheless, Figure 4 shows that the accuracy of influence
estimation diminishes as the number of simultaneous edits increases. We attribute this degradation to
first-order approximation errors induced by substantial parameter shifts, a phenomenon that has also
been consistently observed in prior studies on group influence estimation [22, 5, 30].

S Applications

Influence function as a tool for adversarial attack Once we identify the most influential edges in
the entire input graph, we can significantly affect the model’s output by editing them. This process



Table 2: Test accuracy under adversarial edge edits. The attack ratio denotes the percentage of edges
added or removed with respect to the total number of edges in the original graph. The values in
parentheses next to each dataset name indicate the test accuracy on the original graph before any
edits.

Cora (81.0) CiteSeer (69.3) PubMed (75.6)
Attack ratio 1% 3% 5% 1% 3% 5% 1% 3% 5%
DICE 80.8+04 80.3x05 80.0+05 69.0+07 68.5+05 68.1+05 75.1209 T4.5+14 T73.5+11
PRBCD 80.6+05 79.4+05 T78.7+09 68.5+05 67.4+08 66.4+05 T4.6+13 T2.9+18 T70.9+17
GIF 80.8+04 80.8+06 80.6x04 69.8+07 69.8+07 69.3%05 75.4+11  753%10 75209

Ours (DE) 81.0+03 80.7x03 80.8403 69.1x05 69.2+07 68.8+08 75.6x1.0 752410 75.0%12
Ours (fog)  80.9+04 80.9+06 80.6207 68.9+06 69.0%05 68.6+08 75409 74.9+10 T4.4%11
Ours (VL) 80.2+07 79.1x07 78.4x08 68.2x05 66.7x0.6 65.1x09 73.2x14 71.2+15 69.9:11

represents a form of global adversarial attack for the graph, aiming to reduce the performance of the
entire graph.

Table 2 presents the adversarial attack performance of our methods, comparing it to previous influence-
function-based methods and other adversarial attack methods, DICE [34] and PRBCD [14], in the
white-box scenario. As a result, the GIF shows poor performance, while our method with a validation
loss metric outperforms the others. An interesting observation is that, among the three metrics we
tested, the validation loss-based attack is more effective than the tailored attack methods.

Explanation of the characteristics of benefi-

cial edges We demonstrate the influence of Insertion Influence Deletion Influence
edges connecting the node with the same la- coraf  f———=» ——
bel (homophilic edge) and different labels (het- ] | :
ey . CiteSeer S m——— o——
erophilic edge) on GCN. Figure 5 presents a | ;
dumbbell plot showing the mean influence of PubMed ° o
homophilic and heterophilic edges across six ol _‘l —d:
datasets, which include three homophilic graphs ~~ " ! :
(Cora, CiteSeer, and PubMed), where edges Actor o ol
tend to connect nodes with the same labels, Homophiic ecge | i
Squirrel ’ Heterophilic edge; ’ (:

and three heterophilic graphs (Chameleon, Ac-
tor, and Squirrel), where edges tend to connect
nodes with different labels. Figure 5: Mean influence of homophilic and het-
erophilic edges on validation loss for edge insertion
(left) and edge deletion (right). Each dumbbell con-
nects the average influence of homophilic (light
green) and heterophilic (dark green) edges across
six datasets. A negative value indicates that the
edge edit decreases the validation loss, thus im-
proving the performance.

-0.0004 -0.0002 00000 00002 _10-3_10-¢-10-5 O 10-5 10~ 10-

For both types of graphs, adding homophilic
edges is more beneficial than adding het-
erophilic ones. The opposite effect is observed
for edge deletion. These findings suggest that
increasing a graph’s homophily is beneficial,
which aligns with the homophilic nature of the
tested GNNGs.

Analysis of the effect of edge rewiring Our approach provides multiple analytical perspectives on
existing rewiring strategies through various evaluation metrics. Specifically, we analyze BORF [26]
and FoSR [19]. BOREF alleviates over-squashing by inserting edges between nodes with negative
curvature and mitigates over-smoothing by removing edges with positive curvature, while FOSR
alleviates over-squashing by inserting edges that enlarge the spectral gap.

Figure 6 presents the estimated influence of edges selected by BORF and FoSR from three measure-
ment perspectives. Edge insertions chosen by both methods generally increase the over-squashing
measurement, while edge deletions in BORF tend to increase the over-smoothing measurement,
confirming that each method effectively targets its intended GNN challenge. Nevertheless, we also ob-
serve unintended side effects: edge insertions often exacerbate over-smoothing, and neither insertions
nor deletions consistently reduce validation loss. Mitigating these side effects could substantially
enhance the overall effectiveness and reliability of edge rewiring methods.



Validation Loss ({) Over-squashing (1) Dirichlet Energy (1)

-
3

! Insertion (+103 -97) % Insertion (+141 -59) % Insertion (+32 -168)
immm Deletion (+67 -53) i Deletion (+52 -48) Deletion (+65 -35)

[T
IR
=

Frequency
5
Frequency
Frequency

M i
1
ER i
i
H ‘ 8 8
,,,,,,, 6 6 |
4 4
-. - 0 | L[ ]| 1| . o W | | .- ||

-0.0200  -0.0100 0.0000 0.0100 0.0200 -0.0080 -0.0040 0.0000 0.0040 0.0080 -3.0000 -1.5000 0.0000 1.5000
Value Value Value

on s o
|-

|

[ |
[ |
 ———
 —
-

(a) BORF [26]

Validation Loss ({) Over-squashing (1) Dirichlet Energy (1)
27 : 21 ; ;
24 Insertion (+100 -100) 5 Insertion (+143 -57) 24 ! Insertion (+66 -134)
18 | |

21 21
2 o 5
G 15 o 12 S 15
= = Z12
g o ° 9]
<4 < <
L 9 [N [reg

6 6

3 3 3

0 . 0 ; 0 i

-0.0300 -0.0150 0.0000 0.0150 0.0300 0.0450 -0.0120 -0.0060 0.0000 0.0060 0.0120 -3.0000 -1.5000 0.0000 1.5000 3.0000
Value Value Value
(b) FoSR [19]

Figure 6: Histograms of the estimated influence of edge insertions (blue) and deletions (red) selected
by BORF [26] and FoSR [19], evaluated on a four-layer GCN trained on the Texas dataset. Influences
are measured across validation loss, over-squashing, and over-smoothing. Arrows (] / 1) indicate the
desired direction of each measurement (decrease/increase).

6 Related work

Originally introduced by Cook and Weisberg [12], the influence function quantifies how removing a
single training point would affect model parameters after retraining. Koh and Liang [21] adapted
this concept to modern machine learning, providing efficient approximations of the influence on
model predictions without the need for retraining. Influence functions have since been widely
employed for model interpretability [17, 16], data valuation [8, 18], adversarial analysis [11, 10], and
unlearning [39, 37].

A significant limitation of influence functions is the assumption of strict convexity in the loss
function [4], which does not hold for many deep learning models. To overcome this, Teso et al. [31]
approximate the Hessian using the Fisher information matrix, while Bae et al. [3] introduce a proximal
Bregman response function objective that relaxes this convexity requirement. Recent studies have
further extended influence functions to diffusion models [25] and large language models [15, 9, 38].
In graph settings, Chen et al. [7] and Wu et al. [35] apply influence functions to transductive node
classification, and Song et al. [30] analyze group-level influence.

7 Conclusion

We introduce an enhanced graph influence function that estimates the impact of edge perturbations on
model predictions in Graph Neural Networks. Unlike existing graph influence functions, our approach
explicitly incorporates message propagation effects and relaxes the convexity assumption, enabling it
to be applied to commonly used non-convex GNNs. Additionally, we extend the framework to handle
both edge deletions and insertions, broadening its applicability to real-world graph rewiring tasks.
Experimental results on various real-world datasets demonstrate that our method provides significantly
more accurate estimates of influence than previous methods and enables effective improvements in
key target measurements such as validation loss, over-squashing, and over-smoothing. Despite these
advances, our method has limitations. Although it achieves high accuracy under multiple edge edits,
performance gradually declines as the number of simultaneous edits grows, and scalability to deep
GNNs remains challenging. Future work could address these issues to enhance the applicability of
the method to complex graph learning tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We represented contributions in Section 3, experimental evidence in Section 4
and applications in Section 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed about our method limitations in Section 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provided the detailed derivation of theoretical approaches in Appendix B.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We write the training of GCN and information of major experiment setup in
Appendix F.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We used public datasets such as Cora, and the code is provided in the supple-
mentary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We mentioned data split in Section 4 and hyper-parameters in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include statistical information, such as standard deviation and correlation
coefficients, for the major experimental results in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiments are not affected with different compute resources and do not
requires extensive time. We write down GPU types we used in Appendix F.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have fully adhered to the ethical guidelines.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our work is intended to make an academic contribution rather than a social
impact.
Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose risks of misuse or dual use.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original papers for the datasets, models, and code in Section 4.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the documentation of our code in the supplementary material.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve any crowdsourcing nor research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve any crowdsourcing nor research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our methods and applications in paper don’t utilize any LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Derivation of the influence function

In this section, we derive the influence function for linear models [21], as shown in Equation (3), and
for neural networks [3], as shown in Equation (7). In particular, we reformulate the derivation by Bae
et al. [3] to fit our setting.

A.1 Influence function for linear models

‘We begin by considering the re-weighted objective introduced in Equation (2):

TO.0=5 Y L0+l y0) (1)

(,Y) € Drain

Assuming that the loss function £ is twice continuously differentiable and that 7 (0, ¢) is strictly
convex in 6, the optimal parameter 67, ,, - minimizing the objective satisfies the first-order optimality
condition:

VoI (03 4 .er€) = 0. (16)
To justify that the response function 6}, ,  is differentiable with respect to €, we apply the Implicit
Function Theorem to the optimality condition. The following conditions must be satisfied for the
theorem to apply:

* The function V7 (6, €) is continuously differentiable in both # and e. This holds because
J (0, ¢) is constructed as a linear combination of smooth loss functions, and its dependence
on ¢ is linear.

*

* The optimality condition V7 (6}, ,/ ., €) = 0 holds by definition, since 0}, ,, . minimizes

the objective J (6, €).

* The Hessian V3.7 (6, €), taken with respect to 6, is non-singular in a neighborhood of € = 0,
as J (0, ¢) is assumed to be strictly convex in 6.

*

Under these conditions, the Implicit Function Theorem ensures that 67, ,,  is continuously differen-
tiable with respect to €, and we differentiate Equation (16) using the chain rule:

% (VoT (O .c:€) = ViT By .cr6) - daif,’e +VoLl(a',y' 05, ) =0 (A7)
Solving for the derivative yields:
% = — (V3T(0% ) VoL@ Oy - (18)
Evaluating at e = 0, we obtain the influence function:
da;;;yl76 = —(V37(6%, 0))_1 VoL(z',y',60%), (19)

e=0
where 0* := 0*

7o e—
x5,y ,e=

o 18 the minimizer of the original objective without perturbation.
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A.2 Influence function for neural networks

Bae et al. [3] demonstrated that the influence function using the generalized Gauss-Newton Hessian
corresponds to that of the linearized form of the proximal Bregman response function objective’:

1 - A
Onor e = argmin e Y De (A h57) + 510 = 0.1 + € VoLl(a',05) 76, (20)
(zfy)eplrain

where hY = gy(z), and Lquaa and i are the quadratic and linear approximations of the loss and
model output, respectively:

1
Laua(hg) = L(0G7) + Vo L(hG7) T (hG — hy) + 5(’12 = hg) "V L(RG) (hg — he),

B0 = B+ Tno, (0 = 0), 1)
where Jj09 = ohg _, 1s the Jacobian of the model output with respect to the parameters.

zUs a0 10=0
We now expand the Bregman divergence term. First, using Lquad(h%:) = L(hE):

D s (g™ 157) = Lauaa (") = Lauaa (hg) = Vo Lauaa () T (g™ — hg?)
1
= L(hg) + Vo L(hg:) T (hg — h3r) + o (hg — hgr) TV L(hg ) (hG — hg?)

2 xT
— L(h7) — Vpo L(hG) T (RS — hY). (22)

Next, using ™% — hfs = Jp09, (0 — 0,):

: 1
D,qulad(hlallcnﬁ? th) = vhgﬁ(h% )TJhgas (0 - 03) + 5 (0 - GS)TJZgOS Vizﬁ(hff )Jhigs (9 - 09)
— Vg LR Tyg0,(0— 0,)
1
=50~ 05) " oo, Via LM ) I nog, (0 — 05). (23)
Since 0f, ., is the optimal solution, the gradient of the objective with respect to 6 is zero at this
point:
1 * *
0= _N Z Jgges Vigc(h%)Jhges (Hlin,w’,yﬂe - 98) + )‘(Glin,w’,yﬂe - 98) +e VG‘C(‘T/? 98)
(2,Y) € Dyain
(24)
Solving for 6y, ., ./ ., we obtain:
X —1
O e = 0s + (Tjog H Tpog, + ML) VoL(2',0,)e, (25)

where J}l—eesHhthges =4 >
Hessian.

2.9)EDean I Zg 0. Vig L(h2)J noo, is the generalized Gauss-Newton

3For notational simplicity, we omit the label y in expressions involving the loss function or the Bregman
divergence, as it is clear from context.
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B Gradient derivation for edge-edit PBRF

Similar to the derivation of the influence function for the PBRF objective in Appendix A.2, we
demonstrate that the influence function in Equation (10) corresponds to that of the linearized form of
the edge-edit PBRF objective:
* . 1 i A 2
Hlin,e = arg;nlnﬁ Z Dﬁquad (hgﬁ,lm) hgﬂs) + 5 ||9 - QSH

VE Virain

1 T
+ Y e VoL(h )—vgc(thv"s)) 0, (26)
VE Vinain

where Lquaq and h9-0-in denote the quadratic and linear approximations of the loss and the model
output, respectively:

Lauaa(h?) = L(WT"*) + V6.0 L(hT )T (R0 — h )
1
+ (W] = 7)o w LB ) (R = W0,
RGO = 30 + 3,60, (0= 05), 27)

where J, 6.0, = is the Jacobian of the model output with respect to the parameters.

6
W‘e:es
We first expand the Bregman divergence term:

Do (RSP 10%) = L00a(RS ™) — Lowaa(hY %) — Vh%,eﬁquad(hg,as)T(hg,a,lin _ pgoe)
— £(h%?‘95) + th,eﬁ(hg"’S)T(hfﬂ B hg’QS)

quad (

(8 — RO T2 o LRGBS — HEH)
= L(h]%) = Vg L(hT %) T (R — R ). (28)
Using hg " — h§% = J, 5.0, (0 — 0), we substitute into the expression:
Dy (WSO hE0) = ¥, 6.0 L(HE") 3,00, (0 6,)
(9 6 )TJhg o, vig,gc(hgﬂ )J 9.0 (0 —65)
- vhg o L(h7 %) T 6.0, (0—0s)

(9 05)" 3 )00, Voo L(hT )T 0.0, (6 —06). (29)

Since 6y, _ is the optimal parameter minimizing the objective, the derivative of the objective with
respect to § at § = 911“ . 18 zero:
0__7 Z ‘] 999 ggﬁ( ) hg 90 (011n6_95)+)‘(01>§n,e_05)
Uevlram
Y e(acoen) - vacws ). o
VE Virain

Rearranging the terms, we obtain:

_ L
One =0s+eG™" Y (VoL(h§") = VoL(h§ ™ ﬂs)) , (31)
VE Virain

where G := Zvevm 1S90, V2g o L(hS05)T no-0g, +Alis the generalized Gauss-Newton matrix.

Taking the derivative with respect to €, we obtain:

06} 05, — 05 L 1
in,e 4. n,e S - G,0¢ _ G N 0,

5 =lm=— =G D VoL(hd %) = VoL(hS )) , (32)

VE Virain
which confirms that the linearized edge-edit PBRF objective yields the same influence function as
derived in Equation (10).
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C Influence function for multiple edge edits
Problem setup for multiple edge edits In this section, we extend our influence function to handle

multiple edge edits. Let S denote the set of edges to be edited. We generalize the definition of A€ in
Section 3 to the multi-edge case by defining

AS, = Ayy + (2I[{u, v} € 8] — 1) Ne.

The edge-reweighted graph is then given by G¢ = {V, &, A°}, where edges in S are reweighted.
Setting e = —1/N implies that all edges in S are deleted if they exist, and inserted otherwise.

Parameter shift Following Section 3, the edge-edit PBRF is defined as

1 4
0 = argmin Tz > D (W) h%) + ||9 bl + D e ( £ (ng?) c(hg 9))

o V€ Virain VE Virain
(33)

Following the same derivation steps as in Appendix B, the contribution of the parameter shift to the
evaluation function is given by

T 0.9)TG Y <V9£ )—voﬁ(h%“ﬁ)), (34)

Oe
e=0 VE Virain

Vef(%» g)

where G = J ng Hj,_Jre, + AL The only distinction from the single-edge case lies in the redefinition
of G~V which now denotes the graph with multiple edge edits.

Message propagation Unlike the single-edge case in Section 3, the perturbed adjacency matrix A€
is influenced simultaneously by all edges in the set S. Consequently, the message propagation effect
can no longer be attributed to a single edge but must be decomposed into contributions from all edited
edges. By applying the chain rule, the overall effect is expressed as a summation over gradients with
respect to each reweighted edge:

0f(6,G°) 0A®
0A¢  Oe

_ 0f(0,G°) 0A%,
0=03, e=0 {uv}eS 8A'Zv Oe

of(6,G°) 9A;

VU

€
=0, c=0 0As,  Oe

60=0,,e=0

= > (@{uv}e&]-1)N (agi’vg) + afa(fxi’ug)> . (35

{u,v}eS

Unified influence function under multiple edge edits By substituting the parameter shift and
message propagation terms into Equation (8) and linearizing around € = 0, the resulting influence
under multiple edge edits can be approximated as

P07, 07%) = 1(0,6) = VoS (0,6) G Y (vac(hg“’)—vaﬁ(h%*")é))

VE Virain

0f(05,G) | 9f(0s,9)
_{Mz}esm[{”’”}eg]_l)( 0 209 o)

24



D Description of LiSSA

To approximate the inverse of the generalized Gauss—Newton Hessian-vector product G~ 1v, we
employ the LiSSA algorithm [1]. LiSSA estimates G ~!v by iteratively accumulating powers of the
residual matrix (I — G) applied to the vector v. When the spectral radius of (I — G) is less than 1,
the inverse can be expressed using the Neumann series:

G lv=> (I-G)". (37)

k=0

Letting (%) = ZfZO(I — G)*kv, the iteration is defined recursively as:

(B S D (I-— G)r(k). (38)

In practice, we perform the update in Equation (38) until convergence. The iteration is terminated
early if the update difference ||(**1) — +-(¥)|| falls below a predefined threshold, or when the number
of iterations reaches 10,000.

Since the spectral radius of (I — G) is not necessarily less than 1, we rescale the matrix to ensure
convergence. Specifically, we define a scaled matrix G = %G, where s > A\pnax(G), so that the
spectral radius of (I — Gy) is less than 1. The inverse is then computed via

1
G lv= gGglv,

and LiSSA is applied to approximate G 'v.

To avoid explicitly storing the generalized Gauss—Newton matrix G, the matrix-vector product Gr(*)
in Equation (38) is computed approximately using a Jacobian-based heuristic. Specifically, we
compute the Jacobian-vector product & = J;,9.7(*), apply the Hessian to obtain « < H,_x, and
finally compute the transposed Jacobian-vector product Gr(¥) = J ;95 x.

E Experimental result on other datasets and GNNs

In this section, we present scatter plots for additional non-convex GNNs and datasets. Figure 7 shows
the results for additional datasets, while Figure 8 and Figure 9 show the results for ChebNet [13] and
GAT [33], respectively. Under these settings, our influence function accurately predicts the actual
influence, consistently showing a correlation above 0.8.
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Figure 7: The scatter plot of predicted influence and actual influence on four-layer GCN. The x-axis
represents the predicted influence and y-axis represents the actual influence, and the red-dotted line
represents the perfect alignment.

25



x10-4 Validation Loss 8.0 x10-4 Over-squashing Dirichlet Energy

7 7 7
o 00 . @ 6.0 R o 02 o5
2 4.0 «o” = o, A % oy
o 2 S 4.0 - c
3 59 e/ o] i o 01 v
2% »” 2 20 33 2 .o
£ 00 /-W 1 £ 00 o g 00 e’
= -2.0 PA = -2.0 Pasii) < 01 '/ o
2-40 27 2 a0 . 2 -02 -7
o 7 v 7 Q 7
< -6.0 7. < _g0 27 . << 03 27 .
. s Correlation: 0.94 Correlation: 0.94 - e Correlation: 0.93
-8 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 8 -0.3-02 -0.1 00 01 02
Estimated Influencex10™ Estimated Influencex10~ Estimated Influence
(a) Deletion
x10-3 Validation Loss x10-3 __Over-squashing Dirichlet Energy
g 1.0 . 0.2 P
g 1.0 . R ] o5 R g R
g <’ g e g o1 e
5 05 . »5 35 00 . E oy
= / = . E 0.0 /
= 00 > =05 w? = .3
© > ©_10 Qs © L
S ¢ s~ L TR 5 -0.1 o 2
2-05 ¢ 2 s 2 B o ts
O o 7 Q_15 e 7 9} bl
< o < Pid < 02| -
-1.0{ » Correlation: 0.91 —2.0] 7 Correlation: 0.99 <l e Correlation: 0.99
-10 -05 00 05 -2.0-15-1.0-0.5 0.0 05 1.0 -02 -01 00 01 02

1.0
Estimated Influencex1073 Estimated Influencex1073 Estimated Influence

(b) Insertion

Figure 8: The scatter plot of predicted influence and actual influence on two-layer ChebNet. The
x-axis represents the predicted influence and y-axis represents the actual influence, and the red-dotted
line represents the perfect alignment.
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Figure 9: The scatter plot of predicted influence and actual influence on two-layer GAT. The x-axis
represents the predicted influence and y-axis represents the actual influence, and the red-dotted line
represents the perfect alignment.

F Experimental configuration

All experiments are conducted using NVIDIA GeForce RTX 3090, NVIDIA RTX A5000, and
NVIDIA RTX A6000 GPUs. The experiments presented in the main text employ a 4-layer GCN
model as a representative non-convex GNN. To produce the results in Table 1 and Table 2, we tune the
model and training hyperparameters of a vanilla GCN over the following search space: learning rates
{0.1,0.03,0.01}, hidden dimensions {32, 64}, and weight decays {10~3,10%,1075,1076, 10~ 7}.
Training is performed for 2000 epochs using the SGD optimizer. For influence function computation,
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we run the LiSSA algorithm for 10,000 iterations. The damping parameter A is selected from
{0.1,0.01,0.001,0.0001}. We randomly sample 10,000 candidate edges for both deletion and
insertion, and estimate their influence. For Table 1, the number of edges to edit is determined based
on validation accuracy. The experiments are repeated for 10 independent runs using different random
seeds provided by the BernNet implementation.

BOREF [26] and FoSR [19], used in the analysis of edge rewiring methods, are applied with the default
settings from the original paper. The number of rewired edges reported in Figure 6 is aggregated over
10 runs, with a total of 200 edges inserted. Unlike FOSR, which performs only edge insertions, BORF
also considers edge deletions. To improve visualization, we reduce the number of edge deletions,
as the influence scores for insertions exhibit a long-tailed distribution, making it difficult to display
them on the same scale as deletions. Accordingly, edge deletions are performed with 120, 100, and
100 edges, respectively.

For the adversarial attack experiments in Table 2, DICE [34] and PRBCD [14] are implemented by
modifying the PyTorch-based DeepRobust library [24], while maintaining its default settings. For our
method, we consider both edge insertions and deletions, and select the operations with the highest
influence scores for validation loss, and the lowest influence scores for over-squashing and Dirichlet
energy.
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