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ABSTRACT

Federated learning casts a light on the collaboration of distributed local clients
with privacy protected to attain a more generic global model. However, significant
distribution shift in input/label space across different clients makes it challenging
to well generalize to all clients, which motivates personalized federated learning
(PFL). Existing PFL methods typically customize the local model by fine-tuning
with limited local supervision and the global model regularizer, which secures
local specificity but risks ruining the global discriminative knowledge. In this
paper, we propose a novel Personalized Semantics Excitation (PSE) mechanism to
breakthrough this limitation by exciting and fusing personalized semantics from
the global model during local model customization. Specifically, PSE explores
channel-wise gradient differentiation across global and local models to identify
important low-level semantics mostly from convolutional layers which are embed-
ded into the client-specific training. In addition, PSE deploys the collaboration
of global and local models to enrich high-level feature representations and facil-
itate the robustness of client classifier through a cross-model attention module.
Extensive experiments and analysis on various image classification benchmarks
demonstrate the effectiveness and advantage of our method over the state-of-the-art
PFL methods.

1 INTRODUCTION

Deep learning algorithms typically demand prolific training samples for model optimization (LeCun
et al., 2015; He et al., 2016; Rao et al., 2021), which often entails crowd-sourcing from different
clients. However, data privacy issue arises when transmitting data across clients (Yang et al., 2019;
Wei & Liu, 2021; Ghazi et al., 2021). This motivates the exploration of federated learning (FL),
which aims to learn a highly generalizable global model from the collaboration across multiple clients
communicating with a centralized server to perform knowledge sharing (Li & Zhan, 2021; Huang
et al., 2021a). While tremendous efforts have been made by existing approaches to produce a global
model of strong generalizability to all clients, the crowd-sourcing nature of FL makes it really difficult
to generate a generic model satisfying the demand of all clients with various data distributions (Chen
& Chao, 2021; Sun et al., 2021).

The straightforward and efficient solution to this FL challenge is directly fine-tuning the well-learned
global model to adapt the distribution property of each client (Mansour et al., 2020; Hu et al., 2020;
Zhu et al., 2021). This widely-explored strategy is named as personalized federated learning (PFL),
which conducts model customization per client by refining the local model with both local data and
global model constraint (Achituve et al., 2021; Wu et al., 2022; Chen et al., 2022). Alternatively,
personalization relies on the limited supervision per client refine the model to preserve client-specific
patterns with the integration of global model. To reach better customization, (Hanzely & Richtárik,
2020; Deng et al., 2020) adopt additive mixture manner over the global and local network parameters
to gradually adjust the local model learning. Similarly, one recent work named as Ditto (Li et al.,
2021) enforces the local model parameters to be close to the global ones with ℓ2-norm regularization
term, which encourages clients to obtain generic knowledge and guarantees the convergence of
training process. In addition, meta-learning mechanism has attracted much attention to overcome PFL
challenges, since it enables the learning process of clients to imitate the attribution of knowledgeable
in global model (Liang et al., 2020; Collins et al., 2021). Differently, FedRep (Collins et al., 2021)
disentangles the top-down network architecture into a generic feature extractor and a private classifier.
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Such a design manner not only preserves abundant high-level discriminative semantics related to
data distribution but also gains benefits from cross-client collaboration via information integration
in low-level convolutional layers. These mentioned works suggest that the communal and private
semantic excitation and fusion is the key to achieve successful personalized client models.

FedAvg+FT FedRep OursOriginal DittoFedAvg

Figure 1: Comparison of attention maps drawn by global model (FedAvg),
local models respectively learned by FedAvg+FT (McMahan et al., 2017),
Ditto (Li et al., 2021), FedRep (Collins et al., 2021) and our proposed method.

Naturally, we post
a question “how to
precisely achieve per-
sonalization without
hurting universality
during model cus-
tomization”, which is
promising yet under-
explored. Namely,
this learning process
needs to determine
which universal se-
mantics are essen-
tial to improve local
model performance
and which are unnec-
essary to be overrid-
den with local spe-
cific semantics. To
explicitly answer this question, this work focuses on the federated image classification. First,
we employ Grad-CAM (Selvaraju et al., 2017; Chen et al., 2020) to identify which patterns captured
by convolutional neural network (CNN) are activated. Figure 1 shows the activated maps of image
samples obtained by the global model learned by FedAvg and local models obtained from several
PFL methods separately. From the comparison among FedAvg and the existing three PFL works
in Figure 1, we easily observe that the global model learned by FedAvg pays more attention to the
nose and mouth of the dog and utilizes these discriminative information to successfully identify the
dog. However, FedAvg+FT, Ditto and FedRep show different degrees of degradation on these parts
and fail to correctly classify it. This phenomenon is pretty common and illustrates that local model
training introduces client-specific semantics but easily conceals or updates certain discriminative
global information, which deviates from the eventual goal of PFL.

To prevent such phenomenons, this paper proposes a novel Personalized Semantics Excitation
(PSE) mechanism to strike a balance between personalization and universality during local model
customization. Our method mainly involves two modules: adaptively personalized channel excitation
module and personalized semantic enhancement module. The first module considers precisely
adjusting the filter parameters of convolution w.r.t local feature extractor by discovering which
channel the global model provides more discriminative information. The delicate cross-model
channel excitation to the utmost extent preserves the useful global knowledge. On the other hand, the
second module aims to enrich high-level features and enhance the robustness of classifier. To attain
this expectation, our method introduces the cross-model attention exchange mechanism over the last
convolutional layer of feature extractor, which relies on channel-wise similarity to further elevate
representation of discriminative semantics. The main contributions of our work include three folds:

• First, we empirically validate that local model training for the existing PFL is likely to over-
ride essential global semantics with weak discriminative client-specific contents. To avoid
such a pitfall, we develop the adaptive channel excitation module to balance personalization
and universality for each local client customization.

• Second, we develop the personalized semantic enhancement module with cross-model
attention exchange mechanism to reach better personalization, which explores channel-wise
similarity across global and local models to produce more robust high-level semantics
representation for the classifier training.

• Finally, we evaluate our method and other baselines on novel scenario with data distribution
divergence as well as conventional PFL setting with label shift. Extensive experimental
results and analysis comprehensively illustrate the effectiveness of our method on achieving
better model customization for federated image classification.
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2 THE PROPOSED METHOD

2.1 PRELIMINARY AND MOTIVATION

Federated learning (FL) typically utilizes the communication between one centralized server and
many distributed clients to construct a shared model with high generalization (Hu et al., 2022).
This problem setting assumes each client locally stores their own private data Di = {xij , yij}n

i

j=1

collected from the distribution Pi(xi, yi), where xi
j and yij denote visual input and its corresponding

label, respectively. Assume there are m clients, and the i-th client contains ni samples. With the
collaborative protocol, all clients usually adopt the identical network architecture F(·) with local
trainable parameters Θi formulated by F(xi,Θi). The most popular strategy is FedAvg (McMahan
et al., 2017), which aims to achieve model sharing across different clients with data privacy protection.
Formally, FebAvg naively averages the local model parameters Θi to reach the integrated model Θ
with its objective functions at local clients and global server as:

Local : min
Θi

∑ni

j=1
L(F(xij ,Θi), y

i
j) ⇔ Global : Θ =

∑m

i=1

ni∑m
i=1 n

i
Θi, (1)

where L(·) is usually defined as the cross-entropy loss for classification task.

However, it is difficult to make the generic global Θ suitable for all clients due to the considerable
distribution discrepancy in input or label space. The dilemma motivates the exploration of personal-
ized federated learning (PFL) (Horvath et al., 2021; Zhang et al., 2021), which attempts to customize
the global model for each concrete client. Along with this direction, the most recent FedRep (Collins
et al., 2021) claims that clients can privatize the classifier and enable it to be more discriminative for
their local data property with Θi = {Θi

g,Θ
i
c}, where Θi

g are the shared parameters of generic feature
generator from global server while Θi

c are the private classifier parameters locally preserved for i-th
client. Another widely-used framework named as Ditto (Li et al., 2021) learns personalized client
models with the following learning objective as:

min
Θi

g,Θ
i
c

∑ni

j=1
L(F(xij ,Θ

i
g,Θ

i
c), y

i
j) + λ

(
∥Θi

g −Θg∥2ℓ2 + ∥Θi
c −Θc∥2ℓ2

)
, (2)

where ∥ · ∥ℓ2 denotes ℓ2-norm and λ is the trade-off parameter to the second and third terms, which
enforce the global model regularizer to conduct client-specific customization.

Although Ditto and FedRep both achieve promising performance under PFL scenario, their local
learning strategy that simply updates all global network parameter with private samples hardly
counterpoises personalization and universality to achieve optimal performance (See Figure 1). First,
the low-level convolutional filters learned from color and sketch images are likely to be diverse. Thus,
the second term of Eq. 2 enforcing Θi

g to be the averaged Θg with no difference fails to adapt cross-
modality clients. Second, the local classifier Θi

c also needs more augmented knowledge to promote
its robustness and discriminative ability, especially when the private clients are with insufficient
training samples, since other clients with the similar distribution provide effective assistant (Huang
et al., 2021b; Sattler et al., 2020).

To reach the better model customization, the ideal solution not only needs to actively identify the
important and discriminative global semantics by maximizing their contribution for local model
training, but also discovers client-specific semantics to generate discriminative representations.
Consequently, we develop 1) one adaptive personalized excitation mechanism within feature extractor
Θi

g and 2) one personalization enhancement module with cross-model attention in private classifier
module Θi

c. It is worth noting that such shared feature extractor parameters from all clients will
be sent to the server, which would further conduct model integration as FedAvg in this paper for
simplicity.

2.2 ADAPTIVELY PERSONALIZED CHANNEL EXCITATION

Recent works on explainable deep learning (Chen et al., 2019; You et al., 2021; Nauta et al., 2021;
Wickramanayake et al., 2021) suggest that different convolutional filters lying in the same layer focus
on various regions of the input feature map and propagate their captured semantics into the next layer
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(Sun et al., 2013; Dong et al., 2014; Farha & Gall, 2019), i.e., F(l) = Wl ⊗F(l−1), where ⊗ denotes
the convolutional operation and F(l) represents the 3D feature map of the l-layer with the total
channel number as cl. Based on this property, Grad-CAM (Selvaraju et al., 2017) attempts to learn the
attention map from the output of the last convolutional (L-th) layer via A = ReLU(

∑
k αkF

(L)
k ),

where F
(L)
k ∈ Rw×h represents the k-th channel with w, h as the index of the width and height, and

αk =
∑

w

∑
h

∂y
∂F

(L)
k,w,h

. The combination weight αk indicates the “importance” of the k-th feature

map to the final prediction. Matching the attention matrix A over the original input image easily
explains which regions lead the model to make the final decision.

Beneficial from Grad-CAM, we easily observe how does the PFL strategy achieve model customiza-
tion. For example, we draw the attention map captured from FedRep (Collins et al., 2021) and
FedAvg+FT (McMahan et al., 2017) adding the simple fine-tuning on well-learned global model. As
Figure 1 shows, we can attain two important observations via the corresponding comparison. First,
the local personalized learning in FedRep is likely to conceal or update certain important task-relevant
information which are helpful for object classification yet activated by the global model from FedAvg.
The reason we speculate lies in that the insufficient local training samples difficultly guide model
to capture these patterns while the global model can integrate models across all clients to enrich
them. That is also why Ditto (Li et al., 2021) in Eq. (2) attempts to reduce the distance between
each client model parameters and global ones during the local training stage. Second, the client
model actually can intensify the representations of certain regions around objects of our interest when
compared with the attention map achieved by global model. The phenomenon results from that server
is averaging the contributions of each client to realize global optimal solution. Therefore, imitating
all patterns from server side as Ditto (Li et al., 2021) is also unsuitable for reaching personalized
federated learning. With these findings, the ideal model customization not only preserves the local
learned discriminative information but also borrows task-relevant semantics from global model.

To approximate the vision, the intuitive manner is to discover which convolutional filters of the
global model can be activated to emphasize our interested pattern and embed them into the local
learning process. Thus, we develop the adaptive channel excitation mechanism in client side with
Θ̃ = {Θ̃g, Θ̃c} 1. To this end, given arbitrary one training sample at any local client, we can feed
it into local and global models to get the corresponding predictions via p̃j = F(xj ; Θ̃g, Θ̃c) and
pj = F(xj ; Θg, Θ̃c). On the other hand, we consider global model and local model would have
different channel activation score given the same input sample. With the ground-truth label of the
local training samples, we are able to deploy Grad-CAM (Selvaraju et al., 2017; Chattopadhay et al.,
2018) to estimate the contribution of each feature map F̃

(l)
k /F

(l)
k at l-th layer k-th channel to the

correct prediction per mini-batch as:

α̃
(l)
k =

bs∑
j=1

∑
w

∑
h

∂p̃c
j

∂F̃
(l)
k,(wh),j

, α
(l)
k =

bs∑
j=1

∑
w

∑
h

∂pc
j

∂F
(l)
k,(wh),j

, (3)

where p̃c
j / pc

j denotes the predictive output of the j-th training sample on the c-th category (ground-

truth), and bs is the batch size. Intuitively, we can compare α̃
(l)
k with α

(l)
k to identify the k-th

channel’s importance locally and globally at layer l. Since we hope the highly excited channels only
resided in global model to compensate the local one, thus, we calculate ∆

(l)
k = α

(l)
k − α̃

(l)
k with only

positive difference. In the practical implementation, we first adopt Sigmoid(·) function to separately
normalize the contribution coefficients of the same layer over client and global models. Thus, the
personalized channel excitation is formulated as:

W̃
(l)
k ⇐ W̃

(l)
k +

{
I(∆kl ≥ ∆̄) · ξ ·

(
W

(l)
k − W̃

(l)
k

)}
, (4)

where ∆̄ = mean(
∑

kl
∆

(l)
k ), and I(·) is the indicator function. ξ > 0 controls the ratio of accepting

external novel knowledge with its value as 0.01 by default.

2.3 PERSONALIZED SEMANTIC ENHANCEMENT VIA CROSS-MODEL ATTENTION

The adaptive channel excitation mechanism effectively fuses discriminative semantics from local
and global sides to promote the generalization of feature. To examine the activation difference more

1Note that we remove the client index i of Θi with Θ̃ for easy observation.
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correctly through Grad-CAM, we certainly expect the private classifier module to be more robust and
discriminative in terms of generic feature representation. To achieve this, we are not fully relying on
the generic feature extractor, but also measure the high-level semantic feature representation from
both local and global models. The intuition is the global model is generic for all different tasks across
various clients, which contributes feature robustness. With this thought, we propose the cross-model
attention exchange module which adopts and advances the traditional self-attention components.

Given the rephrased 3-D feature map F ∈ Rh×w×c from the last layer of Θg , we aim to automatically
discover the channel-wise similarity in last convolutional layer to capture addition discriminative
knowledge with the cross-model attention exchange. On the other hand, each client in federated
learning typically consists of insufficient training samples for model optimization. Under this
condition, the abundant linear projections to the keys K ∈ Rdhw×c, queries Q ∈ Rdhw×c and
values V ∈ Rdhw×c (where dhw = h× w) in conventional self-attention module (Zhao et al., 2020;
Dosovitskiy et al., 2020; Han et al., 2021; Liu et al., 2021) easily result in significant overfitting issue.
To avoid it, we adopt lightweight convolutional kernel over feature maps to obtain the projections:

Q = Wq ⊗ F, K = Wk ⊗ F, V = Wv ⊗ F, (5)

where Wq/k/v ∈ R1×1 are 1-D convolutional filter with convolutional operator ⊗. Thus, we follow
the tensor multiplication of (Wu et al., 2021) to obtain the output as the weight sum of the values:

O = Softmax(
QK⊤
√
wh

)V, (6)

where the self-attention weights Softmax(QK⊤
√
wh

) ∈ Rdhw×dhw highlight the important semantics
within per channel and O ∈ Rdhw×c will be reshaped into the same size as F. Similarly, these convo-
lutional kernel will be deployed over the local feature maps F̃ from Θ̃g to obtain the corresponding
outputs {Q̃, K̃, Ṽ} ⇒ Õ.

To obtain more discriminative knowledge from global to local client, we consider to exchange Q̃
with Q to deepen their consensus on the high-level channel-wise features. Similarly, we can replace
Q with Q̃ in Eq. (6) to increase input diversity which further improve the robustness of classifier. In
addition, the relative positions of channels in the same network layer is important information. With
this consideration, beyond the exchange queries, we further introduce a learnable position variable
parameterized as P ∈ Rw×c×h into cross-model attention exchange module:

Õ = Softmax(
QK̃⊤ +QP⊤

√
wh

)Ṽ, O = Softmax(
Q̃K⊤ + Q̃P⊤

√
wh

)V. (7)

Finally, we utilize max-pooling on the outputs Õ and O of cross-model attention module, then
flatten and feed them into two fully-connected layer θfc to access their logits, i.e., p̃ = θfc(Õ) and
p = θfc(O). Note that the classifier parameter Θ̃c is specified as {Wq/k/v,P, θfc}. The attention
exchange enables the local model to pay attention to these informative and discriminative channels as
the global network does and utilizes its values (V) to heavily preserve local well-learned knowledge.
Meanwhile, we also conduct the similar operation over the feature maps of global model and feed
the outputs Õ and O into the last fully-connected layer of classifier, which further promote the
generalization of classifier.

2.4 OVERALL OBJECTIVE AND DISCUSSION

Therefore, we can deduce the objective function of our local model learning as the following via the
integrating Eq. (4) as a regularizer with respect to W̃

(l)
k as well as enhanced classification loss:

min
Θ̃g,Θ̃c

L̃ =
∑

j
L(p̃j , yj) + L(pj , yj)︸ ︷︷ ︸

Obj 1

+
∑

l

∑
k

ξ

2
· I(∆kl ≥ ∆̄) · ∥W̃(l)

k −W
(l)
k ∥2ℓ2︸ ︷︷ ︸

Obj 2

. (8)

The global model is frozen during the overall local training process. Note that in the inference stage,
the client model only depends on the local network Θ̃g, Θ̃c to achieve classification task without the
assistance of global model, which means the cross-model attention exchange is degenerated into the
self-attention mode.
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Remark: Two strategies mutually work together to enhance the personalization from shared channel-
wise semantic (Obj 2 in Eq. (8)) and private semantic information (Obj 1 in Eq. (8)). Actually, our
model is very relevant to Ditto (Li et al., 2021) but with two most significant improvements. First, we
aim to achieve optimal balance of personalization and universality to improve local model perfor-
mance via channel-wise excitation instead of simply regularizing all local parameters indifferently.
Second, we explore cross-model high-level semantic correlation to trigger the private classifier more
robust and discriminative. In addition, we provide the explicit theorem for model convergence and
convergence rate as follows.

Assumption 1. The stochastic gradient gt = ∇L̃(Θ̃t,xt) at time t is an unbiased estimator of the
local gradient with the expectation as Ex∼D[gt] = ∇L̃t and variance as E[∥gt −∇L̃t∥22] ≤ δ2.

Assumption 2. The objective function optimized in each client is L1-Lipschitz smooth. In other
words, the gradient of Eq. (8) is L1-Lipschitz continuous (Malherbe & Vayatis, 2017), i.e., ∥∇L̃t1 −
∇L̃t2∥2 ≤ L1∥Θ̃t1 − Θ̃t2∥2, where Lt1/2 means the loss values at local iteration time t1/2.

Theorem 1. When assumption 1 and 2 hold, we have the following conclusion in any arbitrary client
after per communication round (r):

E[L̃(r+1)τ ] ≤ L̃rτ+1 − (η − L1η
2

2
)

τ−1∑
e=1

∥∇L̃rτ+e∥22 +
L1τη

2

2
δ2, (9)

where τ is the total iteration of local model update and η is the learning rate. This theorem suggests
that selecting appropriate η can achieve our expected gradient decrease in one communication round
so that it finally can guarantee the convergence of model.

Theorem 2. Given any ϵ, after R round communication, we infer that

1

Rτ

R−1∑
r=1

τ−1∑
e=1

E[∥∇L̃rτ+e∥22] ≤ ϵ, R ≥ 2(L̃0 − L̃∗)

τϵ(2η − L1η2)− τη2L1δ2
, (10)

where η < 2ϵ
L1(ϵ+δ2) and L̃∗ denotes the loss of the optimal solution for the local model. This theorem

illustrates the convergence rate of model, which is related to the overall communication round and
the expectation of ℓ2-norm of gradient. Sufficient communication rounds make the bound tighter.
Please refer to the supplementary material for the proofs of two theorems.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. In practical experiments, we not only consider label distribution shift across various clients
as the traditional PFL works (Tan et al., 2022; Fallah et al., 2020) but also attempt to explore the
interference of cross-client data distribution mismatch. In terms of the label shift, we follow the
protocol of FedRep (Collins et al., 2021) to randomly divide 50,000 training images of Cifar-10 and
Cifar-100 (Krizhevsky et al., 2009) into 20/50 clients and each client contains the same category
number. And the 10,000 test samples are also split into each client according to their categories.
Similarly, the original FashionMNIST consists of 60,000 training gray images and 10,000 test ones,
which are also randomly distributed into 100 client terminals, whose category number varies from
two to four per client. For the data shift experiments, we first convert gray images of FashionMNIST
and FeMNIST into colorful or edge images. Specifically, we arbitrarily crop the 28×28 patch from
color images of BSD500 (Martin et al., 2001) and add them into the gray images to generate colorful
digit or fashion images. Moreover, the edge fashion images are synthesized using classical canny
detector over the gray images. Given another modality dataset, we adopt the same manner to split the
newly-created samples into the additional 100 clients. To this end, we can evaluate PFL algorithms
over 200 clients with significant data/label distribution divergence.

Implementation Details. For our proposed method, the network architecture for all experiments
includes one feature extractor and one classifier. Concretely, the feature extractor involves three
convolutional layers with the specific channel numbers (1/3→32→64→128)2. The classifier consists

2Note that if there exist color images for training, the channel number of input will be three and that of gray
or edge images is also converted into three-channel input.
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Table 1: Average Recognition Accuracy (%) under novel joint label and data shift scenarios.
Datasets FEMNIST FashionMNIST FashionMNIST
Modality (Gray, Color) (Gray, Color) (Color, Edge)
(#M, #C) (200,3) (200,4) (200,5) (100,3) (100,4) (100,5) (200,3) (200,4) (200,5)

Local 81.97 80.40 79.44 81.46 79.62 76.95 83.53 81.95 80.57
FedAvg+FT 83.17 81.97 81.53 84.28 82.36 79.80 86.39 84.08 82.99
FedProx+FT 82.87 81.36 81.03 84.51 82.31 79.50 87.05 84.25 83.09

SCAFFOLD+FT 84.00 81.54 82.04 84.79 82.12 79.94 85.54 83.19 83.05
Fed-MTL 81.14 80.30 79.24 78.70 77.14 78.39 81.12 79.49 79.89
LG-Fed 83.27 81.40 80.03 81.59 79.23 75.89 83.86 80.90 78.31
L2GD 81.88 80.53 79.68 80.16 78.90 77.46 81.75 80.86 79.52
APFL 82.85 81.17 81.14 85.25 81.16 78.73 85.96 82.46 79.22
Ditto 85.23 82.94 82.34 88.11 85.76 84.46 87.82 84.77 84.13

FedRep 84.43 83.54 83.51 86.71 83.01 83.49 84.78 85.10 84.46
Ours 88.81 87.86 87.98 89.58 88.12 86.61 89.97 87.95 85.69

of one multi-head (4-heads) cross-model attention block and two fully-connected layers. The local
model training within each client adopts stochastic gradient descent (SGD) to optimize the model
with momentum 0.5 and the learning rate as 0.01. Moreover, in each round of communication, 50%
clients of Cifar-10/100 or 10% ones of other experiments are randomly selected to update their local
model for 5 epochs and send their feature extractors to the global server for model integration. The
server will conduct 100 rounds of communication with local clients.

Baselines. To evaluate the effectiveness of our method, we compare with the state-of-the-art PFL
algorithms. Generally, they are divided into two branches. One manner is utilizing conventional
federated learning methods such as FedAvg (McMahan et al., 2017), FedProx (Li et al., 2018) and
SCAFFOLD (Karimireddy et al., 2019) to attain their global models and then fine-tuning (FT) them
to customize the local network named as “X”+FT. The other direction is to design the specific
customized model training approaches as Fed-MTL (Smith et al., 2017), LG-Fed (Liang et al., 2020),
L2GD (Hanzely & Richtárik, 2020), APFL (Deng et al., 2020), Ditto (Li et al., 2021), and FedRep
(Collins et al., 2021). For a fair comparison, we perform experiments with their public available
implementations and replace the network architecture with the above mentioned design, e.g., three-
layer CNNs, one self-attention module (Eq. (6)) and two FC layers, where only our cross-model
attention mechanism is not deployed.

3.2 COMPARISON RESULTS

In PFL experiments, all training and test samples are randomly allocated into multiple clients. To
reduce the uncertain influence of random partition, we carry out many times for each task and report
the average accuracy. It is worth nothing that each client will evaluate local model with its private test
samples and access the corresponding accuracy. The above test accuracy refers to average the test
classification accuracy across all clients. Table 1 and Table 2 show the performances of our method
and other baselines over various datasets under different partitions. According to them, we can easily
achieve several valuable conclusions.

First, it is straightforward to observe that our method obtains the state-of-the-art performance in
all mentioned tasks. This convincingly illustrates the effectiveness of our method on customizing
client model under federated learning scenario. In terms of the experiments on Cifar-100 with 50
clients, there exists considerable label space divergence across different clients. In other words,
arbitrary clients have a little category information overlap. Under the difficult situation, our method
outperforms others by a large margin, especially for the case (50, 15), (Ours v.s. FedRep)∼(62.46%
v.s. 58.94%). These comparisons suggest our proposed method significantly overcomes the negative
effect of label distribution shift when conducting knowledge sharing. Second, compared with several
personalized training manners as Fed-MTL, LG-Fed, the naive fine-tuning mechanism over the
global model well-learned from FedAvg or FedProx produces promising results in many tasks. And
Ditto heavily depends on the global models and attains stable performances in these experiments. It
demonstrates that the local personalized learning is likely to conceal or update useful knowledge from
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Table 2: Average Recognition Accuracy (%) under conventional label shift scenarios.
Datasets CIFAR-10 CIFAR-100 FashionMNIST
(#M, #C) (20,2) (20,3) (20,4) (50,5) (50,10) (50,15) (100,3) (100,4) (100,5)

Local 79.65 73.97 67.54 73.35 58.76 49.79 89.65 86.37 85.75
FedAvg+FT 82.94 78.23 74.62 77.01 61.96 55.40 91.43 89.00 87.36
FedProx+FT 82.44 76.74 73.63 74.10 60.40 53.35 88.35 87.05 85.51

SCAFFOLD+FT 82.03 76.51 72.92 75.09 59.92 51.54 90.33 87.68 85.22
Fed-MTL 83.19 75.81 69.57 65.28 54.84 48.72 84.65 82.59 82.86
LG-Fed 84.24 77.1 71.23 67.17 54.31 50.63 87.07 84.51 81.19
L2GD 83.76 76.26 69.8 67.15 55.30 50.12 85.50 83.88 82.84
APFL 82.09 78.80 74.29 72.81 61.77 54.04 90.58 86.83 85.67
Ditto 84.74 80.34 76.25 75.23 65.40 56.14 91.21 89.91 88.81

FedRep 84.12 80.39 76.28 78.30 63.52 58.94 92.71 90.73 89.56
Ours 86.95 82.98 78.03 79.58 67.10 62.46 94.03 91.77 90.47
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Figure 2: (a) Comparison of multiple variants over three tasks, (b) Comparison of attention map
drawn by our proposed method and one variant.

the external collaborators. Therefore, our proposed learning mechanism not only discovers valuable
global information but also gradually adjusts local model to augment private data distribution. Third,
through the comparison of Table 1 and Table 2 with respect to FashionMNIST, we notice that all
involved methods suffer from performance degradation when introducing distribution shift on inputs
across various clients. This domain shift scenario brings in more challenges to personalized federated
learning. However, our method still significantly outperforms other competitors. The main reason
lies in the collaboration of adaptive channel excitation and cross-model attention mechanisms, which
effectively captures more discriminative information to promote the robustness of model.

3.3 EMPIRICAL ANALYSIS

Ablation Study. The cooperation of adaptive channel excitation and cross-model attention exchange
assists our model in achieving better recognition performance. To clearly understand the contribution
of each component, we design three variants for our method by separately removing one of the
following components: a) the effect of channel excitation module (Ours-v1), 2) cross-model attention
(Ours-v2) and 3) position information of Eq. (7) (Ours-v3). The results in Figure 2(a) show their
difference under three scenarios. On one hand, by removing two important modules, Ours-v1 and
Ours-v2 suffer from significant performance degradation, which inversely testifies the effectiveness
of them on personalization. On the other hand, the position information also provides a little
positive effect on performance improvement by intensifying valuable channel representation. In
addition, we also explicitly analyze how does the cross-model attention help the model to promote its
discriminative ability and robustness. We also visualize the heat map of Ours-v2 in Figure 2(b). From
these visualizations, we achieve the conclusion that cross-model attention exchange explores the
channel-wise similarity to find novel discriminative knowledge and instructs low-level convolutional
operation to achieve them. For example, for the “elk” in the 2-nd column, Ours-v2 merely focuses
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Figure 3: (a) Fairness analysis by calculating the performance per client and overall standard deviation
attached behind the method, (b) Convergence analysis over different communication rounds.

neck of “elk” and provides a little discriminative information for the final decision. Differently, our
integrated method can pursue more useful knowledge as head and antlers to object classification.

Fairness & Convergence. PFL setting not only customizes local models to attain performance
improvement but also expects that all clients are able to benefit from the model sharing with fair
performance improvement, which is also defined as “Fairness” (Li et al., 2021). Thus, we utilize the
well-learned local model of each client to do evaluation on test samples from gray FashionMNIST
(100, 4) and record them in Figure 3(a). Compared with FedAvg+FT and FedRep, our performance
divergence across all clients is relatively slight. Specifically, the standard deviations of all client test
accuracy for FedAvg+FT, FedRep and ours are 9.02%, 8.49% and 5.01%. Thus, our proposed method
generates better fairness when solving PFL challenge. Moreover, PFL scenario generally concerns
the training convergence. For this point, we record the training loss in each communication process
on three cases and show them in Figure 3(b). By observing them, it is simple to know that the training
process of our method is stable and easily achieves convergence which is consistent with the theorems.
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Figure 4: Confusion matrix of local training manner and our
method in one client from Cifar-100 (50, 15).

Confusion Matrix. To clearly un-
derstand how our method benefits
the various categories in each client,
we randomly select one client from
Cifar-100 (50, 15) by comparing our
model and local training only. It is
worth noting that there are only 15
categories per client. The confusion
matrices for the local test samples
are shown in Figure 4, where we
highlight the significant improved
categories in red, and slightly de-
creased categories in blue. From it,
we find that our method significantly
improves the ratio of correct classification in most categories, which illustrates our method captures
more discriminative semantics when preserving certain valuable global information.

4 CONCLUSION

Personalized federated learning not only utilizes the collaboration of numerous distributed clients
to achieve knowledge sharing without private data leakage but also customizes local model to
adapt the property of private data. Through the empirical studies on the existing PFL solutions,
we observed that their local personalization easily conceals certain important patterns captured by
global model, leading to incorrect classification. To solve this, we proposed a novel algorithm to
attain better customization including two modules, i.e., adaptive personalized channel excitation and
personalized semantic enhancement. The first component attempts to discover valuable knowledge
from global model and precisely adjust the parameters of convolutional filters in local model to
achieve semantics fusion. The second one explores the cross-model attention exchange mechanism
to discover complementary and discriminative knowledge to enhance the robustness of local features.
In practical implementation, we evaluate the performance of algorithm on conventional PFL setting
with label shift and novel scenario with input distribution shift. The experimental comparisons with
baselines and analysis verify the effectiveness of our method on solving PFL issue.
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