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Abstract

Mass Casualty Incidents can overwhelm emergency medical systems and resulting
delays or errors in the assessment of casualties can lead to preventable deaths. We
present a decision support framework that fuses outputs from multiple computer
vision models, estimating signs of severe hemorrhage, respiratory distress, physical
alertness, or visible trauma, into a Bayesian network constructed entirely from
expert-defined rules. Unlike traditional data-driven models, our approach does
not require training data, supports inference with incomplete information, and is
robust to noisy or uncertain observations. We report performance for two missions
involving 11 and 9 casualties, respectively, where our Bayesian network model
substantially outperformed vision-only baselines during evaluation of our system in
the DARPA Triage Challenge (DTC) field scenarios. The accuracy of physiological
assessment improved from 15% to 42% in the first scenario and from 19% to
46% in the second, representing nearly threefold increase in performance. More
importantly, overall triage accuracy increased from 14% to 53% in all patients,
while the diagnostic coverage of the system expanded from 31% to 95% of the
cases requiring assessment. These results demonstrate that expert-knowledge-
guided probabilistic reasoning can significantly enhance automated triage systems,
offering a promising approach to supporting emergency responders in MCIs. This
approach enabled Team Chiron to achieve 4th place out of 11 teams during the 1st
physical round of the DTC.

1 Introduction

When a terrorist attack struck the Boston Marathon in 2013, emergency responders faced around
250 casualties within minutes, overwhelming the city’s trauma capacity and forcing life-or-death
triage decisions under extreme pressure [11]. Such Mass Casualty Incidents (MClIs) resulting from
terrorist attacks, armed conflicts, or large-scale natural disasters can involve hundreds or thousands of
victims and overwhelm local emergency services instantly [[L8]]. In these chaotic scenarios, resources
are limited, communication can be disrupted, and responders are exposed to fatigue and personal
risk while providing lifesaving care to multiple casualties simultaneously. The shortage of medical
personnel further complicates response efforts, forcing small, exhausted teams to triage a large
number of patients under hazardous conditions, where accurate patient prioritization is essential, as
delays in care can be fatal. However, conventional manual triage methods can fail when faced with
high casualty volumes and complex injury profiles [10} [17].
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To address these challenges, recent efforts have focused on autonomous perception systems that
improve situational awareness and decision support technologies. For example, robotic and drone
platforms can be developed, capable of surveying disaster zones to identify and locate victims while
remotely assessing their injuries and vital signs [3]]. These autonomous systems are equipped with
multimodal sensors, such as radar, lidar, multispectral, thermal, and visible light cameras, that can
noninvasively assess heart rate, respiratory rate, bleeding, amputations, responsiveness, and wounds.
By providing live updates of these data to healthcare workers, these technologies can accelerate
diagnosis and interventions.

Although these autonomous perception capabilities represent significant technological advances,
the algorithms that power them face fundamental limitations that compromise their reliability in
high-stakes MCI scenarios. Current models suffer from three critical limitations: algorithmic isolation-
treating each vital sign independently, context blindness-ignoring clinical interdependencies, and
brittleness under the noisy, partial data conditions prevalent to disaster scenarios. For instance, an
elevated heart rate algorithm may indicate urgency, but without considering visible trauma or level of
consciousness, it cannot distinguish between pain response, blood loss, or anxiety, and its distinction
can determine survival. Robust decision-making requires fusing multimodal outputs and embedding
medical expertise into the reasoning process [[19].

To overcome these limitations, we propose a Bayesian Network (BN) model that integrates multiple
perception algorithm outputs into a unified probabilistic estimate of the patient’s condition. Rather
than training on large datasets, which are hard to get, our BN is constructed from structured clinical
knowledge elicited from experts. The model is designed to support inference even with missing
or uncertain information, improving the consistency and interpretability of triage decisions in real
time. It can probabilistically assess the likelihood of severe conditions, such as hemorrhage, based on
related observations such as amputation and visible bleeding, and allows robotic systems to update
assessments as new information emerges. This expert-knowledge foundation provides a robust and
transparent alternative for decision support in data-scarce MCI scenarios.

In this work, we introduce a knowledge-based BN for automated triage support in MCIs. Our model
integrates vital sign estimates from perception algorithms and applies probabilistic reasoning to infer
a patient’s diagnosis. It is designed for deployment in real-world scenarios where transparent decision
support can directly impact survival. The development and evaluation of this system were carried out
in the context of the DARPA Triage Challenge (DTC), an initiative aimed at advancing autonomous
medical triage capabilities for mass casualty incidents.

Our key contributions are (1) the first expert-elicited Bayesian Network specifically designed for
MCI triage that integrates multimodal perception inputs, (2) a probabilistic reasoning framework that
maintains decision transparency while handling uncertain and incomplete data, and (3) validation
through realistic field scenarios conducted during the DTC Systems Competition, demonstrating
that Team Chiron’s integrated approach achieves significant triage accuracy gains over independent
algorithmic outputs.

2 Related work

2.1 Bayesian networks

Bayesian Networks (BNs) [[13]], introduced in the 1980s, are Probabilistic Graphical Models (PGMs)
that represent uncertain knowledge using Directed Acyclic Graphs (DAGs), where nodes denote
random variables and edges signify conditional dependencies. The power of BNs stems from
their ability to compactly represent a joint probability distribution over a set of variables X' =
{X4,...,X,}. The structure of the DAG encodes conditional independence assumptions, allowing
for a computationally tractable factorization of the joint distribution:

P(X1,..., Xa) = [] P(X|Pa(X:)) M
=1

where Pa(X;) denotes the set of parents of variable X; in the DAG. This factorization significantly
reduces the number of parameters required to define the full joint distribution, making complex
probabilistic models feasible.



2.2 Bayesian networks in medical applications

Bayesian Networks (BNs) have been effectively used for clinical triage by modeling relationships
between patient symptoms and outcomes. For instance, BN-based systems have been developed for
triaging non-traumatic abdominal pain [[14] and detecting pediatric asthma with high accuracy [15].
While other studies also explore BNs for triage support, they often highlight the complexity of this
approach [1} (7} 112].

Concurrently, recent advances in machine learning have enabled remote, non-contact prediction of
vital signs, such as heart rate from eye movements [20]], SpO2 levels [4], and blood pressure via
remote photoplethysmography [16]. A recent systematic review and meta-analysis confirms the
potential of this approach, showing that data-driven Al models generally outperform conventional
triage tools in predicting trauma outcomes [2]. However, a significant challenge remains to translate
the success of these individual models into a robust integrated system capable of assessing each
casualty case as a whole. Relying solely on the isolated predictions of these diverse, often "black-box"
neural networks can lead to inaccuracies, particularly in complex environments.

3 Methods

3.1 Environment

The evaluation involved three distinct MCI scenarios: Open Battlefield, Convoy Ambush, and Airplane
Crash. This study focuses on the first two scenarios where the system achieved stable deployment.
Technical constraints encountered during the third scenario, which limited data acquisition for a
complete probabilistic analysis, are discussed in Section 4]

Each scenario involved a timed deployment lasting up to thirty minutes, during which the robotic
systems were launched into the field, navigated challenging terrain obstacles, and surveyed the
environment to locate, assess and report the condition of each casualty. The emphasis was on
performing rapid triage using real-time perception and inference from stand-off sensing, without
human intervention or physical contact. Our system integrated data from multiple onboard perception
algorithms and applied a probabilistic reasoning framework to infer physiological state and injury
severity, even under degraded or incomplete sensing conditions.

System performance was evaluated using a structured scoring framework that awarded point scores
for correctly identifying physiological signs and conditions under time constraints. Each casualty
presented a set of target findings, and points were awarded when the system accurately reported those
findings. In Table[T|we present a list of physiological measurements together with their corresponding
score. Additional weight was given to completing the assessment rapidly, within a "golden time
window" (GW), a period where it is likely that interventions might prevent death, representing the
urgency of real-world triage. The primary objective was to maximize the cumulative score for all
casualties during the execution time of the scenario.

3.2 System architecture and integration

To address the multifaceted issues involved in the assessment of casualties, our solution leverages
a probabilistic modeling framework grounded in domain expertise. The underlying BN model
was constructed and processed using GeNle Modeler [3]]. Its seamless integration into the Robot
Operating System 2 (ROS2) stack was achieved through a custom interface developed with SMILE [6],
which facilitates real-time inference and data exchange. This implementation directly leverages the
principles outlined in [9] for practical application within a modern robotic middleware ecosystem.

The perception system was deployed on a real robotic platform equipped with a sensor suite com-
prising a high-resolution RGB camera, a microphone, a radar, a lidar and a thermal camera enabling
the collection of visual and audio data from a stand-off distance. The system is built on the ROS2
framework, where individual physiological estimators operate as independent nodes. Each node,
corresponding to an input variable in the BN model shown in Figure[I] is an independent AI model
specialized in assessing a specific physiological sign from the robot sensor feed.

These component Al models publish their predictions to a centralized server. Crucially, the BN
acts as a state estimator. When a vision node outputs a categorical label, the BN treats this as hard



Table 1: Scoring criteria for emergency scenarios. Points are awarded based on the official DARPA
Triage Challenge scoring rubric [8]. Higher scores were given for correctly assessing critical
conditions, such as respiratory distress and hemorrhage, within the golden window (GW), defined
as the first half of the simulation scenario, due to their urgency and clinical importance. Maximum
achievable score for each casualty is equal to 12 points.

Field Values Scoring Criteria
Severe Hemorrhage  Present / Absent 4 if in GW

2 if match GT

0 otherwise
Respiratory Distress  Present / Absent 4if in GW

2 if match GT

0 otherwise
Head Trauma Wound / Normal 2 if all match GT
Torso Trauma 1 if at least 2 match GT
Lower Ext. Trauma  Wound / Amputation / Normal 0 otherwise

Upper Ext. Trauma

Ocular Alertness Open / Closed / NT 2 if all match GT
Verbal Alertness Normal / Abnormal / Absent / NT 1 if at least 2 match GT
Motor Alertness 0 otherwise

evidence, instantly updating the probabilities of unobserved variables. This allows the system to
deduce physiological states that are not directly visible to sensors.

A core architectural principle of our system is modularity and agnosticism towards the specific
perception technologies used. In the evaluated deployment, individual estimators were provided as
independent "black-box" modules by separate teams. These modules published predictions without
exposing internal architectures or confidence metrics, requiring our system to remain agnostic to the
underlying perception technologies.

This operational constraint underscores the value of our BN-based approach. The framework is
designed to robustly fuse outputs from heterogeneous sources with unknown and potentially variable
performance characteristics. By probabilistically reasoning over these inputs, the BN can mitigate
the impact of noise or failure in any single module, improving the overall reliability of the final
assessment.

Upon receiving inputs, the BN performs the inference process detailed in Equation [1| to estimate
unobserved physiological variables and generate a probabilistic assessment of the patient’s condition.
This structure enables reasoning over incomplete or noisy inputs and supports on-the-fly updates
as new data become available. The core strength of the system lies in its modularity. Because each
physiological estimator operates independently, the system can incorporate new algorithms or sensing
modalities with minimal architectural changes. This modularity ensures that the system remains
adaptable to evolving technologies in emergency response.

The parameterization of the Bayesian Network, specifically the definition of the Conditional Proba-
bility Tables (CPTs) for each node, was carried out through a knowledge-driven engineering process.
Due to the absence of publicly available standardized datasets for MCI scenarios, a data-driven
approach was not feasible. Instead, the CPTs were populated based on qualitative rules and heuristics
derived from consultations with medical experts, as detailed in Section [3.3] This process involved
translating qualitative statements (e.g., “highly likely,” “possible,” “unlikely’’) into quantitative
probability values.

To ensure consistency and facilitate replicability, we adopted the following convention:

» Strong causal relationships (e.g., a lower extremity amputation almost always causes
severe hemorrhage) were modeled using probabilities in the range of 0.8 — 0.95.



* Moderate correlations (e.g., head trauma may be associated with abnormal verbal alertness)
were assigned values in the 0.4 — 0.6 range.

* Weak or rare dependencies were represented by low probabilities, close to the prior
probabilities of the baseline.

For instance, the probability for "Closed" for "Ocular Alertness" node in the case when prior of
"Head Trauma" was "Wound" was set to 0.7. Although exact values were heuristically assigned, this
structured methodology provides transparency and a framework for future model calibration should
relevant data become available.

The system is lightweight (under 100MB) and operates with inference times below 1ms even on a
legacy hardware such as Raspberry Pi 3.

3.3 Expert knowledge elicitation process

The design and parameterization of the BN, whose structure is shown in Figure [T} involved three
domain experts, each with more than a decade of field experience in emergency medicine and rapid
response medical interventions.

The methodology consisted of an iterative cycle. Initially, our engineering team conducted a series
of individual interviews to identify the most critical observable indicators and their high-level
relationships. Based on this qualitative input, an initial BN structure and preliminary CPTs were
drafted. These drafts translated qualitative expert statements (e.g., "a lower extremity amputation
almost always causes severe hemorrhage") into quantitative probability values.

In the second phase, the drafted model was presented back to the experts in follow-up sessions. Their
role was to validate the model logic, identify potential gaps, and challenge assumptions. This feedback
loop allowed the engineering team to manually refine the CPTs to ensure that the model’s inferential
behavior was balanced and consistent with established clinical reasoning. This expert-in-the-loop
approach, although not fully automated, ensured that the final model was computationally robust and
grounded in real-world medical expertise.

4 Results

The effectiveness of our framework was evaluated during the DTC Round 1 Systems Competition.
We report performance results for the Open Battlefield and Convoy Ambush scenarios. The third
mission, Airplane Crash, is excluded from this analysis due to a hardware-level failure prior to
deployment that prevented consistent data acquisition. Despite this, Team Chiron’s performance in
the remaining missions was sufficient to secure 4th place out of 11 teams overall.

Despite these technical challenges in the final run, the performance of Team Chiron in the first two
scenarios was sufficient to secure 4th place out of 11 teams overall. This result demonstrates the
robustness of our Bayesian reasoning framework when integrated with an operational perception
pipeline.

The evaluation involved 20 distinct casualty cases, portrayed by both human volunteers and advanced
medical mannequins. These scenarios designed by DARPA tested the system’s performance under
significant environmental and tactical challenges, confronting the robotic system with real-world
sensor noise and physical complexity.

In both scenarios, we compared the triage assessment scores achieved by the base perception system
operating alone (“Robot Score”) against the integrated system featuring our Bayesian Network
(“Robot + BN Score”). The baseline “Robot Score* system consists of independent nodes reporting
without a central reasoning layer or validation mechanism. Points were awarded by DTC technical
observers based on correctly identifying key vital signs for each casualty. The scoring framework
emphasized both accuracy and timeliness, with greater weight given to the early detection of life-
threatening conditions. The comparative results for both scenarios are detailed in Table[2]

Our findings demonstrate a substantial and consistent performance improvement when the BN is
integrated with the autonomous triage system. Across both scenarios, the BN significantly improved
the system’s ability to reason from the incomplete or uncertain sensor data that characterized these
field tests. As shown in Table [2| the integration of the BN more than doubled the robot’s score in



Figure 1: Bayesian network architecture illustrating the relationships among vital signs. Arrows rep-
resent causal dependencies derived from expert knowledge. During inference, the flow of information
is bidirectional: observing a symptom (child node) updates the probability of the underlying cause
(parent node).
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Open Battlefield scenario, from 25 to 61 of the total possible points, and nearly tripled it in Convoy
Ambush scenario, from 16 to 45.

Table [3| further details this improvement by breaking down the results into Correct Assignments
(assessments matching ground truth) and Assignment Attempts (any instance where the system
provided an output). System Reliability, defined as the ratio of completed measurements to the
total possible assessments (180), increased from 0.31 to 0.95. Furthermore, Accuracy (correct
assignments among attempts) improved from 46% to 56%. Notably, the integration of the BN led to
a substantial increase in overall Performance, raising the correct assignment rate across all potential
vitals from 14% to 53%. The low baseline performance was often caused by transient sensor failures,
a gap effectively bridged by the BN’s inference capabilities. This 3.84-fold increase in correctly
assigned vitals highlights the BN’s critical role in transforming fragmented perceptual outputs into a
coherent assessment, particularly when individual vision-based algorithms fail due to environmental
occlusions or other real-world challenges.

5 Discussion

The presented approach to the fusion of casualty assessment components demonstrates a substantial
improvement in reliability and accuracy over the baseline system. The observed gains highlight
the profound impact of explicitly modeling uncertainty and inter-modal dependencies, a capability
currently lacking in standard vision-based triage tools. During the DTC field evaluations, the system’s
performance improved as additional evidence became available, emulating the iterative reasoning
of human medics at machine speeds. This shift from static, one-off assessments to continuous
probabilistic reasoning is a key step forward toward effective autonomous triage systems in high-
stakes environments.

Our experience in the challenge underscores the insufficiency of using isolated "black box" models.
As Team Chiron utilized various independent perception modules, we observed that lacking domain-
level integration can lead to inconsistent or implausible predictions. Our choice of a Bayesian



Table 2: Comparison of the system performance with and without BN

Open Battlefield Convoy Ambush
Casualty Id Robot Score Robot + BN Score Robot Score Robot + BN Score
1 9 9 0 0
2 0 3 0 3
3 0 3 2 7
4 0 3 2 7
5 0 3 0 4
6 0 5 1 3
7 4 5 8 11
8 0 7 1 3
9 8 9 2 7
10 4 7 N/A N/A
11 0 7 N/A N/A
Total 25/132 61/132 16/108 45/108

Table 3: Comparison of Correct Assignments and Assignment Attempts with and without BN across
all casualties.

Correct Assignments Assignment Attempts

Vital Robot Robot+ BN Robot Robot + BN
Severe Hemorrhage 6 12 12 19
Respiratory Distress 5 16 6 19
Head Trauma 0 15 0 19
Torso Trauma 0 11 0 19
Lower Ext. Trauma 8 11 14 19
Upper Ext. Trauma 3 8 14 19
Motor Alertness 0 8 0 19
Verbal Alertness 3 7 8 19
Ocular Alertness 0 8 1 19
Total 25 96 55 171
Reliability N/A N/A 0.31 0.95
Performance 14% 53% N/A N/A
Accuracy 46% 56 % N/A N/A

Network offered a critical advantage by enabling modularity and extensibility, allowing us to fuse
heterogeneous outputs from different sub-teams into a coherent assessment without needing access to
the internal architectures of the individual Al estimators.

The proposed architecture ensured graceful degradation when data were incomplete—a frequent
occurrence in the DTC scenarios due to sensor occlusions, dust, or environmental noise. The failure
of a single input module did not cause a catastrophic failure of the entire triage assessment; instead,
the BN marginalized over the missing variables, providing the best possible diagnostic estimate from
the remaining functional sensors. This fault tolerance proved to be a fundamental requirement for
operational success in the field.

The probabilistic framework is inherently extensible. Although the current implementation treats
categorical inputs as direct evidence, the BN structure is designed to accommodate future enhance-
ments, such as incorporating model confidence scores or rejecting low-probability inputs. This
forward-looking flexibility is essential for future phases of the DTC, where more complex injury
profiles and higher levels of environmental degradation are expected.



Even though our initial results from Round 1 are encouraging, a more comprehensive evaluation is
necessary. Future work will involve direct comparisons with other hybrid architectures and further
refinement of the expert-defined CPTs based on the data collected during these field trials.

6 Conclusion and future work

We presented a Bayesian Network-based decision support framework that fuses outputs from multiple
computer vision models to automate trauma assessment in mass casualty incidents. By leveraging
expert-defined clinical rules, our model provides a robust, transparent, and training-data-independent
solution for high-stakes triage. The empirical validation conducted during the DTC Round 1 demon-
strated that our integrated system substantially improves the accuracy and diagnostic coverage of
casualty assessments compared to vision-only baselines.

Based on the challenges identified during our participation in the DTC, we propose the following
directions for future development.

6.1 Robustness and sensor degradation

Our field experiments underscored the critical importance of robustness testing in degraded envi-
ronments (smoke, dust, and debris). While the BN mitigates cascading error propagation, future
iterations of Team Chiron’s platform will focus on tighter integration of sensor confidence metrics.
This will allow the BN to dynamically adjust the weighting of inputs from specific modalities (e.g.,
thermal vs. RGB) when environmental conditions severely degrade.

6.2 Human-Al collaboration and tactical optimization

The current system frees up a responder’s cognitive resources by synthesizing complex data into a
clear diagnostic picture. We envision extending this approach to optimize the scheduling of care for
multiple casualties. In the context of DTC’s evolving requirements, we plan to incorporate health
trajectory forecasting, allowing the system to not only assess the current state but also predict the
urgency of intervention. This will require specialized training for emergency responders to effectively
trust and collaborate with the autonomous system in the field.

6.3 Data Quality and Field Data Acquisition

A fundamental challenge remains the lack of standardized MCI datasets for machine learning. The
physical rounds of the DTC provide a unique and invaluable opportunity to collect high-fidelity,
annotated data from realistic scenarios. We are currently processing the data captured during Round
1 to refine our CPTs and we encourage the research community to join us in establishing open-access
datasets for autonomous triage.

6.4 Ethical Considerations and Safeguards

Relying on Al-driven decision support in life-or-death scenarios raises profound ethical questions.
Our future development will prioritize "human-in-the-loop" mechanisms and robust safeguards to
ensure that the system remains a supportive tool for expert responders, rather than a replacement for
human judgment in critical care.
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