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Abstract

Densely structured pruning methods — which generate pruned models in a fully
dense format, allowing immediate compression benefits without additional de-
mands — are evolving due to their practical significance. Traditional techniques
in this domain mainly revolve around coarser granularities, such as filter prun-
ing, thereby limiting performance due to restricted pruning freedom. Recent
advancements in Grouped Kernel Pruning (GKP) have enabled the utilization of
finer granularities while maintaining a densely structured format. We observe that
existing GKP methods often introduce dynamic operations to different aspects of
their procedures at the cost of adding complications and/or imposing limitations
(e.g., requiring an expensive mixture of clustering schemes) or contain dynamic
pruning rates and sizes among groups that result in a reliance on custom architec-
ture support for its pruned models. In this work, we argue that the best practice
to introduce these dynamic operations to GKP is to make Conv2d(groups) (a.k.a.
group count) flexible under an integral optimization, leveraging its ideal alignment
with the infrastructure support of Grouped Convolution. Pursuing such a direction,
we present a one-shot, post-train, data-agnostic GKP method that is more perfor-
mant, adaptive, and efficient than its predecessors while simultaneously being a
lot more user-friendly, with little-to-no hyper-parameter tuning or handcrafting of
criteria required.

1 Introduction

Despite having a proven track record revolving around computer vision tasks, modern convolutional
neural networks (CNNs) face deployment challenges for growing model capacities. To address
this issue of over-parameterization, network pruning — a field studying how to insightfully remove
components from the original model without significant degradation to its properties and performance
— has undergone constant development for being an intuitive way of potentially reducing the
computation and memory footprint required to practically utilize a model (Blalock et al., 2020).

In this work, we advance the progress on Grouped Kernel Pruning (GKP) (Zhong et al., 2022), a
recently developed structured pruning granularity with many deployment-friendly properties, by
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investigating a common design choice among existing GKP methods: dynamic operations — which
is an act of applying different operations to the same task (e.g., clustering CNN filters with various
combinations of dimensionality reduction and clustering techniques, as in TMI-GKP (Zhong et al.,
2022)). We find that current GKP designs tend to include such operations in a sub-optimal manner,
resulting in various complications and limitations. As a solution, we propose that the best practice
to implement dynamic operations to GKP is to make Conv2d(groups) (a.k.a. group count)
flexible under an integral optimization, leveraging its ideal alignment with the existing and future
infrastructure support of Grouped Convolution (Krizhevsky et al., 2012). Our empirical evaluation
showcases that by making these group counts flexible, we can afford to “lean down” on the rest of the
typical GKP procedures, and therefore obtain a new one-shot, post-train, data-agnostic GKP method
that is more performant, adaptive, and efficient than its predecessors while simultaneously being a lot
more user-friendly with little-to-no hyper-parameter tuning or handcrafted criteria required. We can
concisely summarize our contribution as “advancing hassle-free structured pruning,” as suggested in
the title.

Given that our work develops upon specific observations made on existing adaptations of grouped
kernel pruning (Zhong et al., 2022), a recently proposed structured pruning granularity with
limited exposure, we hereby provide a rather extensive background on the procedure at the risk
of being redundant. Additionally, we refer readers to Zhong et al. (2022) and He & Xiao (2023) for
more information regarding different structured pruning granularities.

1.1 Trading performance for deployability: the practical advantage of structured pruning

Under the general realm of network pruning, two categories of techniques have been proposed, which
are commonly known as unstructured pruning and structured pruning (Mao et al., 2017; Blalock et al.,
2020; He & Xiao, 2023). While it can be faithfully concluded that these two categories have very
different focuses and approaches, there is, unfortunately, no universally agreed distinction between
what pruning methods constitute structured pruning and what do not.

Nonetheless, the general understanding follows a performance-deployability trade-off: an unstruc-
tured pruning method typically tends to enjoy a higher degree of pruning freedom — and thus better
performance — but it is done so at the cost of leaving the pruned network to be sparse without a
reduction in size and consequently require special libraries or hardware support to realize compres-
sion/acceleration benefits (Yang et al., 2018) (e.g., weight pruning (LeCun et al., 1989)). Conversely,
a structured pruning method often removes model components in groups that follow the architecture
design of the original network, potentially resulting in a smaller network. Specifically, the majority
of structured pruning methods (e.g., filter pruning (Zhou et al., 2016; Li et al., 2017)) are capable of
delivering pruned models that are reduced in dimension yet entirely dense (a.k.a. densely structured)
and therefore provide immediate compression benefits without additional demand.

1.2 Exploring structured pruning with finer granularities: grouped kernel pruning (GKP)

To narrow the performance gap between unstructured and structured pruning methods, many struc-
tured pruning works have been exploring finer pruning granularities, which are often regarded as
intra-channel pruning due to the two most prevalent structured pruning approaches — channel
pruning and filter pruning — and essentially drive their pruning operations upon the in and out
channels of the original CNN model.
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Figure 1: Different Structured Pruning Granularities
However, one major issue with these intra-channel explorations is that their pruned models are no
longer dense and therefore lose the benefits of staying densely structured, such as increasing network
efficiency without additional environment or hardware support (Yang et al., 2018). This is evident

2



in Figure 1: it can be seen that if we naively seek out a finer pruning granularity than filter/channel
pruning, we’d naturally have kernel pruning, which is intrinsically sparse. This is also the case
for all intra-kernel pruning methods (e.g., stride pruning (Anwar et al., 2017), N:M sparsity (Zhou
et al., 2021)), in which kernel-level sparsity is introduced. These methods might be “structured” by
definition — they indeed “remove model components in groups” — but they often cannot provide
efficiency benefits without external support due to the sparsity introduced to pruned models.
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Figure 2: General Procedure of Grouped Kernel Pruning
In order to achieve both increased pruning freedom and remaining densely structured, a special type
of intra-channel pruning granularity called Grouped Kernel Pruning (GKP) (Zhong et al., 2022)
has been proposed1, where a finer pruning granularity than filter/channel pruning was achieved
without introducing sparsity by leveraging the format of grouped convolution (Krizhevsky, 2014), as
illustrated in Figure 2. To the best of our knowledge, GKP provides the highest degree of pruning
freedom under the context of being densely structured and thus attracts the interests of the pruning
community (Zhong et al., 2022; Zhang et al., 2022a; Park et al., 2023; He & Xiao, 2023).

1.3 A common recipe for GKP-based methods: dynamic operations

Although GKP is still a fairly under-developed pruning granularity given its recency, we have observed
a consistent pattern among the few existing successful works in GKP (e.g., TMI-GKP (Zhong et al.,
2022) and DSP (Park et al., 2023)). Both methods introduce dynamic operations to different stages
of its procedure and achieve significant performance improvement than GKP methods with only
deterministic operations.
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Figure 3: Procedure of TMI-GKP

As shown in Figure 3: TMI-GKP opts to include dynamic choices of clustering schemes in each of its
convolutional layers. Similarly, in Figure 4, DSP makes its filter grouping and group kernel pruning
stages dynamic in the sense that they may enjoy different group sizes and different in-group pruning
rates for components within the same layer. While both methods deliver impressive performance, we
notice that their adoption of dynamic operations results in various complications and limitations. For
instance, several clustering schemes trialed in TMI-GKP can be very expensive to run. Yet, many of
the produced clustering results are eventually discarded according to their tickets magnitude increase
(TMI) scores. On the other hand, DSP essentially prunes grouped kernels in different sizes, where the

1For the sake of rigor, this granularity was in fact revisited and refined by Zhong et al. (2022) at ICLR
2022 and coined as grouped kernel pruning. The granularity itself is, of course, naturally emerged in grouped
convolution (Krizhevsky, 2014) and was first proposed under a pruning context by Yu et al. (2017); unfortunately,
the proposal did not attract much traction (more about this in Appendix A).
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resultant pruned network is irregularly shaped (i.e., having different dimensions of tensors within the
same layer) and therefore relies on custom model definitions and convolutional operators to undergo
training and inference — more on this in Section 2.1.

To mitigate the complications and limitations caused by dynamic operations in existing GKP methods,
we propose a new method to include the dynamic operation within Conv2d(groups) (a.k.a. “group
count” or “number of groups” as of grouped convolution). This means we allow each convolutional
layer to take a flexible number of groups when grouping filters. We argue this is the best area to
integrate dynamic operations into a GKP procedure, as this setup is directly supported by the
well-adopted grouped convolution operator in modern ML frameworks, and is therefore able to make
use of existing and future infrastructure updates and support for grouped convolutions. Empirical
evaluation also supports the effectiveness of our approach.

Moreover, after employing a flexible group count, we can simultaneously reduce the complexity
and dependency of the rest of the GKP procedure and drastically improve the efficiency and
usability of our method. As an example, we utilize only one simple clustering operation rather
than selecting one of the multiple expansive TMI-score-dependent clustering schemes. This makes
our method usable without needing access to the training snapshots or checkpoints of the unpruned
model (unlike TMI-GKP). This is a meaningful trait, given the prevalent utilization of pretrained
models. We name our method LeanFlex-GKP, emphasizing that it is a GKP method that is more
“leaned down” than others, utilizing flexible group counts as its primary mechanism.

We summarize the traits of our proposed method and the contributions of our work as follows:

• Advancing the progress of GKP by identifying and solving a common pain point: dynamic
operations. We recognize the significance of dynamic operations to GKP, as well as the challenges
of integrating them into a GKP procedure. By utilizing flexible group counts as a medium, we
tactfully introduce such operations to our GKP procedure while avoiding the complications and
limitations typically found in other GKP methods. Extensive empirical evaluation supports the
effectiveness of our method.

• Providing an efficient, hassle-free experience. By reducing the complexity of various stages in
the typical GKP procedure, our method provides a drastic advantage in terms of efficiency and
adaptability. LeanFlex-GKP is a post-train, one-shot, data-agnostic procedure with little-to-no
hyper-parameter tuning or setting handcrafting required, making it one of the most usable structured
pruning methods.

• Guiding future developments of GKP. Aside from the proposed method itself, our work contains
the most comprehensive empirical evaluation and ablation studies currently done on GKP. Given
that GKP is an underdeveloped pruning granularity with many attractive properties, we believe our
investigation may provide valuable insights and guidance to future scholars working to adopt GKP
and its variants.

Due to our introduction’s extensive coverage of tightly related pruning methods, we refer readers to
Appendix A for more discussion on related works due to page limitation-related concerns.
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2 Motivation

2.1 Flexible group count as the dynamic operation in GKP

As mentioned in Section 1.3, the involvement of dynamic operations plays a significant role to the
GKP procedure. Yet, current GKP methods tend to adopt dynamic operations at the cost of adding
complications or imposing limitations. Take TMI-GKP (Zhong et al., 2022) and Dynamic Structure
Pruning (DSP) (Park et al., 2023) as examples: TMI-GKP trials different clustering schemes2 at its
filter grouping stage per each convolutional layer of the unpruned model, forming a dynamic choice
of clustering schemes across the depth of the pruned model. DSP, with the term “dynamic” in its
name, allows for dynamic group sizes and in-group pruning ratios upon the formed filter groups and
thus enjoys a higher degree of pruning freedom than TMI-GKP.

While both methods demonstrate performance advantages over GKP methods with purely determinis-
tic operations (e.g., KPGP by Zhang et al. (2022a) and many of the other alternative GKP procedures
introduced in the appendix of Zhong et al. (2022)), the addition of such dynamic operations also
comes with its own respective costs.

In the context of TMI-GKP, certain clustering schemes, which consist of combining a dimensionality
reduction technique with a clustering algorithm like k-PCA + k-Means, my incur significant com-
putational costs. e.g., k-PCA — one of the candidate dimensionality reduction techniques utilized
in TMI-GKP — requires an eigen decomposition of a convolutional layer’s weight tensor, which is
an expensive procedure requiring a complexity more than O(n3) for a n× n matrix (Pan & Chen,
1999). Yet, all but a single produced clustering result are discarded if they are not preferred by its
tickets magnitude increase (TMI) score: a weight-shift related metric inspired by series of works on
the lottery ticket hypothesis (Frankle & Carbin, 2019). This makes the use of TMI-GKP challenging
should the width of the target network become large.

In DSP, dynamic behavior is present in both the filter grouping and grouped kernel pruning stages,
where the (learn-based) filter groups are allowed to be in different sizes, yet each filter group may
opt to remove a different amount of grouped kernels, resulting in a pruning granularity that is finer
than typical equal-group-equal-pruning-ratio GKP methods (Yu et al., 2017; Zhong et al., 2022;
Zhang et al., 2022a). However, with the pruned network having different tensor shapes within the
same layer, it can no longer be reconstructed into a grouped convolution format and instead relies on
custom-defined model definitions and operators, therefore diminishing its practical adaptability.

In this work, we integrate dynamic operations on Conv2D(groups); also commonly known as
“group count” or “number of groups” under a grouped convolution context. This means we may
group convolutions with different groups settings across model layers. We emphasize this setup is
supported by the grouped convolution operator, and is therefore able to take advantage of the existing
and future coming infrastructure updates and support. This flexible group count setup is different to
that of TMI-GKP, where a hard-coded groups=8 is applied for all models and layers, yet TMI-GKP
decide the grouping result without consideration of the subsequent pruning (but our method does).
Such a constant grouping schema and individual approach are revealed to be sub-optimal by our
ablation studies in Appendix C. Our setup is also different from DSP, as the end results still have an
equal group size and an identical pruning ratio among groups, and thus can be implemented without
custom support.

2.2 Leaning out for an efficient GKP procedure

Granted the effectiveness of flexible group counts, we may simultaneously afford to reduce the
complexity of various GKP procedures. For example, instead of trialing different cluster schemes or
employing a learn-based regularization procedure like TMI-GKP and DSP, we may simply utilize
a k-Means++ inspired clustering procedure to determine grouping, which drastically decreases the
complexity and dependency requirement of filter grouping (Section 3.2).

During the grouped kernel pruning stage, methods like TMI-GKP formalize the procedure as a
graph search problem and solve it with a multiple-restart greedy procedure, which is showcased
to have a significant performance advantage over vanilla magnitudes or distance-based alternatives
(Zhang et al., 2022a). However, we decided to use a tactfully designed distance and magnitude-based

2Where each clustering scheme consists of different combinations of various dimensionality reductions and
clustering techniques.
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heuristic to achieve similar, if not better, accuracy retention rates to the unpruned models (Section 3.3).
The removal of this procedure significantly reduces the runtime of our pruning procedure (as clocked
in Table 7), and improves its usability on wide models.

2.3 Towards a hassle-free experience

Although the after-prune performance and the efficiency of pruning procedures are certainly reason-
able criteria when evaluating a method under a practical context, usability across a broad scenario
and being user-friendly along the process are another important set of factors to consider. In
fact, some of the most widely adopted pruning methods do not necessarily offer the best performance
or the fastest runtime, but they are often extremely user-friendly as they can be run and deployed with
minimal adjustments. Two examples of such work are OTOv2 (Chen et al., 2023) and DepGraph
(Fang et al., 2023), which are architecture-agnostic methods capable of pruning any model, with
OTOv2 capable of pruning from scratch.

Our method, LeanFlex-GKP, being a GKP method limited to CNNs, is not at the same level of
generalization as OTOv2 or DepGraph. Still, we strive to maximize its usability under constraints by
making it a post-train, one-shot, data-agnostic pruning method with standard fine-tuning procedures.
This means as long as one has access to the weights of the CNN model and fine-tuning data is
provided, one may adopt our pruning method to prune their model and fine-tune via standard SGD
with no further interference. In comparison, previous GKP methods like TMI-GKP require access to
the training snapshot/checkpoint of the unpruned model, and iterative GKP methods like DSP require
regularization learning and pruning operations during the fine-tuning/retraining procedure.

On the note of user-friendliness, our method has little-to-no hyperparameters in place or handcrafted
settings, making it extremely easy to use (and simultaneously reduces the human and resource effort
of trial-and-error testing different settings). Furthermore, the user of our method can reliably
predict the pruned model size and computation requirement by simply multiplying the pruning
rate by the original unpruned model, making the whole pruning procedure a standardized and
predictable experience. Note, this is a useful property surprisingly lacking in many modern pruning
methods, such as Lin et al. (2020, 2019a); Park et al. (2023) and Chen et al. (2023), where the
user will typically need to trial-and-error various hyperparameter combinations to achieve a certain
pruning reduction. We’d say the importance of being able to predictably obtain a pruned model
at a certain size cannot be overly emphasized in a practical context, as the alternative will require
massive computation or even manual effort to search the suitable hyperparameter setting; sometimes,
it is even impossible to prune to a specific reduction requirement.

3 Proposed method
Our proposed method, LeanFlex-GKP, consists of a four-stage procedure:

1. Filter grouping: where we group filters within a certain convolution layer into n equal-sized filter
groups according to their distance towards k-Means++ determined centers (Figure 5).

2. Group kernel pruning: where we prune a certain amount of grouped kernels out of all filter
groups within the same layer. The pruning is determined by each grouped kernel’s L2 norm and
distance to their geometric median (Figure 6).

3. Post-prune group count evaluation: where we evaluate all grouping and pruning strategies
obtained under different group count settings and then select the one where the preserved group
kernels have the maximum inter-group distance and the minimum intra-group distance (Figure 7).

4. Grouped convolution reconstruction: where we convert the pruned model to a grouped convolu-
tion format, just like we showcased in the standard GKP procedure (Figure 2).

As a general overview, the theme of our proposed method is to use the most lightweight and
dependency-free measures to fulfill the purpose of each GKP stage. In the sections below, we
will walk through the technicalities of our method, as well as demonstrate that a SOTA-capable
GKP method with many favorable properties can be forged by discerningly putting basic tools
together and leveraging the power of flexible group counts.

3.1 Preliminaries

Suppose there is a convolutional neural network model W with L convolutional layers, then the
layer with index l is denoted as Wl. A layer can be viewed as a 4D tensor Wl ∈ RCl

out×Cl
in×Hl×Wl

, in
which Cl

in is the number input channels on layer l (number of kernels in a filter), Cl
out is the number
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output channels on layer l (number of filters in a layer), and Hl ×Wl is the kernel size. The task to
perform a grouped convolution reconstruction upon Wl, as illustrated in Figure 2, can be described
as converting Wl to a Gl ∈ Rn×Cl

in×m×Hl×Wl
, where n stands for the group count setting of this

conversion, and m = Cl
out/n representing the group size.

3.2 KPP-aware filter grouping

The general goal of filter grouping is to cluster filters that are similar to each others within the same
group, so that when such filters are “partially removed” due to pruning, the leftover components
can hopefully cover the representation power of the removed components. In previous works like
TMI-GKP (Zhong et al., 2022) and DSP (Park et al., 2023), this procedure is rather resource-intensive,
with TMI-GKP trialing expensive clustering schemes under the guidance of its TMI score, and DSP
employing a learning-based procedure.

In order to streamline the grouping process and mitigate complexity, we devised an cost-effective filter
clustering algorithm based on the clustering centers obtained by k-Means++ (KPP). Distinguishing
itself from direct utilization of KPP cluster assignments, our approach exclusively leverages the
clustering centers, reinforced by two straightforward greedy strategies. Our procedure is illustrated
in Figure 5. We denote n to be the group count and m = Cl

out/n to be the group size (number of
filters within each filter group). In this particular visualization, we have n = 3 and m = 4. We
demonstrate the efficiency and performance advantage of our method with wall-clock results in
Table 7 and accuracy results in Table 2, support our claims made in Section 2.2 and Section 2.1.
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(a) Filters Clustered
via k-Means++

(c) Determine Next k-Means++ Center with the
Greatest Distance to all Assigned Centers. 

Assign like in (b), then Repeat

(d) Multiple Restart with a 
Different Initial k-Mean++ Center

(b) Pick a Random k-Mean++
Center, then Assign it with Nearest Filters

Figure 5: Visualization of the LeanFlex-GKP KPP-Aware Filter Grouping Procedure. We first
cluster filters (the circles) via KPP into n groups with no constraint on having an equal group size to
determine clustering centers (the squares), as in (a). Then, our operation can be viewed as a cycle
between assigning m nearest filters into a KPP center to form a filter group, then finding the next
KPP center to do subsequent filter assignments, as in (b)→ (c); until n filter groups are formed (the
first KPP center is picked at random). Last, we conduct a multiple restart and repeat the (b)↔(c)
center-finding-filter-assignments, as showcased in (d). After all multiple restarts, we are left with n
candidate filter grouping strategies, and select the strategy that has filters with the least intra-group
distance to their respective KPP centers (having less summed length on red arrows).

3.3 L2 & geometric median-based grouped kernel pruning
Previous methods like TMI-GKP converted its grouped kernel selection problem as a graph search
problem, added with the help of a greedy procedure and multiple restarts. While such a procedure
is generally efficient, it is still time and resource-consuming given a layer with a large amount of
in_channels. Thus, inspired by the toolsets proposed in FPGM (He et al., 2019), we utilize a simple
combination of L2 norm and Geometric Median-based distance to form a lightning-fast pruning
procedure, as illustrated in Figure 6.

Again, we demonstrate the efficiency advantage of our method with Table 7, as we claimed in
Section 2.2.

3.4 Post-prune group count evaluation
One primary motivation for our work is that our method makes use of flexible group counts under
a GKP procedure. However, it is intrinsically challenging to evaluate clustering quality under
different group counts (e.g., previously, Zhong et al. (2022) suggests metrics like a Silhouette score
have little bearing under a network pruning context). Thus, we simply employ another Geometric
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(d) Form Pruned 
Filter Group

Grouped Kernel
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Filter

Figure 6: Visualization of LeanFlex-GKP L2 & Geometric Median-based Grouped Kernel Pruning
Procedure. Given an unpruned filter group as in (a), we first calculate the Geometric Median (GM)
of its Grouped Kernels (GKs), as well as each GK’s distance to the GM and their L2 norm. These
distances and the L2 norm are visualized in (b) as the length of black arrows and the area of green
circles, respectively. The GKs with large L2 norms and small distances to their GMs are preserved
and eventually reconstructed to the grouped convolution format, as shown (c) to (d) — please refer to
Appendix B.1 for details.

Group 1 Group 2

Inner Distance

Outer Distance

Geometric
Median

Kept Grouped
Kernel

Figure 7: Visualization of LeanFlex-GKP Group Count Evaluation. We first compute the GM
among retained grouped kernels and then calculate the inner and outer distance among them. After
a normalization w.r.t. the group count, the one with the highest average (Outer Distance − Inner
Distance) is chosen; please refer to Appendix B.2 for details.

Median-based evaluation as we have already done so in Section 3.3. We illustrate our evaluation as
Figure 7 and provide a walk-through of the complete LeanFlex-GKP procedure in pseudocode
as Algorithm 1. Given each group count evaluation is conducted upon a pruned convolutional layer
(after being grouped with different Conv2d(groups)), our method makes connections between the
(originally independent) filter grouping and grouped kernel pruning stage. Ablation study results in
Table 4 confirm the advantage of this integral optimization design over other alternative setups.

4 Experiments
We evaluate the effectiveness of our method against 32 other densely structured pruning methods
(Table 8) with coverage including BasicBlock (20/32/56/110) and BottleNeck ResNets (50/101)
(He et al., 2016), VGG11/13/16 (Simonyan & Zisserman, 2015), DenseNet40 (Huang et al., 2017),
and MobileNetV2 (Sandler et al., 2018). The datasets we used include CIFAR10/100 (Krizhevsky
et al., 2009), Tiny-ImageNet (Wu et al., 2017), and ImageNet-1k (Deng et al., 2009). Please refer to
Appendix D for full details on experiment settings.

4.1 Results
Due to page limitations, here we only provide an abbreviated version of our experiments at Table 1.
We refer our readers to Table 9 to 16 in Appendix D for the full experiment results, where
we compared against 32 different structured pruning methods illustrated in Table 8 and evaluated
our methods under 20 different settings specified in Table 5. We also provide a series of ablation
studies in Appendix C to facilitate an anatomical understanding of our proposed method.

For all experiment results, DA represents if the method is data-agnostic (pruning can be done without
access to data), IP indicates if a method is considered an iterative pruning method (utilizing a train-
prune cycle), and RB reports recovery budget (in terms of epochs). All other reported criteria are in
terms of %. BA and Pruned respectively report the unpruned (baseline) accuracy and the pruned
accuracy. Methods marked with ∗ are drawn from their original or (third-party) replicated publication;
the rest are replicated by us to ensure a fair comparison (often with an identical baseline). Generally
speaking, a method that is DA ✓, IP ✗, and demands a smaller RB is likely to be more user-friendly.
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Table 1: Abbreviated Experiment Results (please refer to Section 4.1 for header definitions)

Method DA IP RB BA Pruned ∆Acc ↓MACs ↓ Params
VGG16 on CIFAR10 MACs ≈ 313.4M Params ≈ 14.7M

CC (Li et al., 2021) ✗ ✗ 300 93.94 94.14 ↑ 0.20 43.18 -
GAL (Lin et al., 2019b) ✗ ✓ 300 93.94 91.29 ↓ 2.65 35.16 47.40
HRank (Lin et al., 2020) ✗ ✓ 300 93.94 93.57 ↓ 0.37 32.28 40.82
L1Norm (Li et al., 2017) ✓ ✗ 300 93.94 92.88 ↓ 1.06 42.71 37.85
KPGP (Zhang et al., 2022b) ✓ ✗ 300 94.27 94.17 ↓ 0.13 43.15 43.59
TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 93.94 94.07 ↑ 0.10 25.00 -
LeanFlex-GKP (ours) ✓ ✗ 300 93.94 94.15 ↑ 0.21 43.15 43.59

ResNet110 on CIFAR10 MACs ≈ 255.0M Params ≈ 1.73M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 94.26 94.90 ↑ 0.64 43.31 43.52
L1Norm-B (Li et al., 2017) ✓ ✗ 300 94.26 92.96 ↓ 1.30 43.17 36.69
CC (Li et al., 2021) ✗ ✗ 300 94.26 94.31 ↑ 0.05 44.54 39.47
SFP (He et al., 2018a) ✗ ✓ 300 94.26 94.44 ↑ 0.18 43.42 43.52
GAL (Lin et al., 2019a) ✗ ✓ 300 94.26 93.42 ↓ 0.84 29.14 31.37
FPGM (He et al., 2019) ✗ ✓ 300 94.26 94.18 ↓ 0.08 43.39 43.52
NPPM (Gao et al., 2021) ✗ ✗ 300 94.26 94.16 ↓ 0.10 42.46 35.19
HRank (Lin et al., 2020) ✗ ✓ 300 94.26 92.96 ↓ 1.30 18.57 5.38
DHP (Li et al., 2020) ✗ ✓ 300 94.26 92.53 ↓ 1.73 60.25 64.58
LRF (Joo et al., 2021) ✗ ✗ 300 94.26 94.49 ↑ 0.23 43.37 42.30
OTOv2 (Chen et al., 2023) ✗ ✓ 300 94.26 91.58 ↓ 2.68 37.83 42.44
KPGP* (Zhang et al., 2022b) ✓ ✗ 300 93.76 94.01 ↑ 0.25 43.3 43.5
LeanFlex-GKP (ours) ✓ ✗ 300 94.26 94.92 ↑ 0.66 43.31 43.52

MobileNetV2 on CIFAR10 MACs ≈ 98.768M Params ≈ 2.383M

DCP* (Zhuang et al., 2018) ✗ - 400 94.47 94.69 ↑ 0.22 26.00 -
SCOP* (Tang et al., 2020) ✗ - 400 94.48 94.24 ↓ 0.24 49.30 -
WM* (Zhuang et al., 2018) ✗ - 400 94.47 94.17 ↓ 0.30 26.00 -
DMC* (Gao et al., 2020) ✗ - 160 94.23 94.49 ↑ 0.26 40.00 -
MDP* (Guo et al., 2020a) ✗ - - 95.02 95.14 ↑ 0.12 28.71 -
GDP* (Guo et al., 2021) ✗ - 350 94.89 95.15 ↑ 0.26 46.22 -
ChipNet* (Tiwari et al., 2021) ✗ ✓ 300 93.55 92.58 ↓ 0.97 20.00 -
LeanFlex-GKP (ours) ✓ ✗ 300 93.87 94.30 ↑ 0.43 28.74 26.98

ResNet110 on CIFAR100 MACs ≈ 255.001M Params ≈ 1.734M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 72.99 72.79 ↓ 0.20 43.31 43.37
L1Norm-A (Li et al., 2017) ✓ ✗ 300 73.20 69.85 ↓ 3.35 43.74 44.41
CC (Li et al., 2021) ✗ ✗ 300 73.20 73.21 ↑ 0.01 43.43 19.78
NPPM (Gao et al., 2021) ✗ ✗ 300 73.20 72.38 ↓ 0.82 42.77 18.69
LRF (Joo et al., 2021) ✗ ✗ 300 73.20 73.58 ↑ 0.38 43.38 42.16
LCCL* (Dong et al., 2017) ✗ - 300 72.79 70.78 ↓ 2.01 31.3 -
SFP* (He et al., 2018a) ✗ ✓ 300 74.14 71.28 ↓ 2.86 52.3 -
FPGM* (He et al., 2019) ✗ ✓ 300 74.14 72.55 ↓ 1.59 52.3 -
TAS* (Dong & Yang, 2019) ✗ ✗ 300 75.06 73.16 ↓ 1.90 52.6 -
LeanFlex-GKP (ours) ✓ ✗ 300 73.20 73.63 ↑ 0.43 43.31 43.36

ResNet56 on Tiny-ImageNet MACs ≈ 506.254M Params ≈ 0.865M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 56.13 55.52 ↓ 0.61 37.05 36.76
L1Norm-A (Li et al., 2017) ✓ ✗ 300 56.13 55.41 ↓ 0.72 35.51 32.14
SFP (He et al., 2018a) ✗ ✓ 300 56.13 53.65 ↓ 2.48 33.96 35.38
FPGM (He et al., 2019) ✗ ✓ 300 56.13 54.14 ↓ 1.99 33.53 34.68
HRank (Lin et al., 2020) ✗ ✓ 300 56.13 54.16 ↓ 1.97 37.39 30.98
GAL* (Lin et al., 2019b) ✗ ✓ 100 56.55 55.87 ↓ 0.68 52.00 32.00
DHP* (Li et al., 2020) ✗ ✓ 100 56.55 55.82 ↓ 0.73 55.00 46.00
3D* (Wang et al., 2021) ✗ ✓ 420 56.55 56.04 ↓ 0.51 59.00 34.00
Slimming* (Liu et al., 2017) ✗ ✗ 100 56.55 52.45 ↓ 4.10 53.00 54.00
LeanFlex-GKP (ours) ✓ ✗ 300 56.13 55.67 ↓ 0.46 37.05 36.76

ResNet50 on ImageNet-1K MACs ≈ 4122.828M Params ≈ 25.557M

SFP* (He et al., 2018a) ✗ ✓ 100 76.13 58.50 ↓ 17.63 36.08 32.31
FPGM* (He et al., 2019) ✗ ✓ 100 76.13 75.04 ↓ 1.09 35.93 28.36
TMI-GKP* (Zhong et al., 2022) ✓ ✗ 100 76.15 75.53 ↓ 0.62 33.21 33.74
ThiNet* (Luo et al., 2017) ✗ ✓ 100 72.88 72.04 ↓ 0.84 36.7 -
OTOv2*
(post-train) (Chen et al., 2023) ✗ ✓ 120 76.13 75.38 ↓ 0.75 37.70 26.58

DOP* (Yang et al., 2022) ✗ ✗ 120 76.47 74.29 ↓ 2.18 60.00 -
KPGP* (Zhang et al., 2022b) ✓ ✗ 76.15 75.50 ↓ 0.65 33.7 33.2
Layer-wise Proxy*
(Elkerdawy et al., 2020) ✗ ✗ - 76.14 75.0 ↓ 1.14 5.5 -

LeanFlex-GKP (ours) ✓ ✗ 100 76.13 75.62 ↓ 0.51 33.06 30.34
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5 Discussion and Conclusion
We believe it is fair to conclude that our proposed method showcases SOTA-competitive (if not
beyond) performance across comprehensive combinations of models and datasets. Out of all 20
reported results of LeanFlex-GKP, 17 of them showcased improvements after pruning (yet, no other
compared method is able to provide positive ∆Acc under the three exception setups), suggesting our
pruning method actually help on the generalization of the model should there be a reasonable setup.

We also note the compute (MACs) and memory (Params) reduction of our pruned models are almost
always within 1% of their assigned pruning rates (e.g., see Table 15 and Table 16), which is a useful
characteristic not found in many compared methods3. This supports one of the hassle-free claims we
made in Section 2.3. Additionally, we would like to mention the combinations of BasicBlock ResNets
with CIFAR10 — though being some of the most commonly evaluated combinations (Blalock et al.,
2020) — are potentially getting saturated, as methods with significant performance gaps on more
difficult model-dataset combinations tend to show little difference upon BasicBlock ResNets and
CIFAR10.

In general, our empirical evaluation supports the efficacy of our flexible group count design as well
as our goal of assembling a GKP method with only lightweight and low-dependency operations.
Following the exposure of Park et al. (2023) for winning an oral recognition at AAAI 2023, our work
serves as a more performant, efficient, and user-friendly advancement to the grouped kernel pruning
granularity and can be of particular interest for both scholars of the pruning community or end users
with practical application needs.
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A Related Works

Structured pruning. As discussed in Section 1.1 and illustrated Figure 1, structured pruning is
a family of pruning methods that removes model components in groups, where the majority of
methods are capable of delivering densely structured pruned models for immediate efficiency benefits.
Below, we briefly introduce some important aspects of structured pruning and refer our reader to
comprehensive survey work like Blalock et al. (2020) and He & Xiao (2023) for details.

Prior papers on densely structured pruning have carried out such pruning operations on (or determined
by) filters, channels, layers, inputs, or combinations of the above (Li et al., 2017; Dong et al., 2017;
Anwar et al., 2017; Wang et al., 2021; Li et al., 2021; Fang et al., 2023; Li et al., 2020; He et al.,
2019; Lin et al., 2019a, 2020; Li et al., 2017; Joo et al., 2021; Gao et al., 2021; Chen et al., 2023;
Wang et al., 2020; He et al., 2018a; Liu et al., 2017; Luo et al., 2017; Zhong et al., 2022; Zhuang
et al., 2018; Gao et al., 2020; Guo et al., 2021; Dong et al., 2017; Guo et al., 2020a; Tang et al.,
2020; Dong & Yang, 2019; Wang et al., 2019; Zhao et al., 2023; He et al., 2018b; Tiwari et al., 2021;
Yang et al., 2022; Zhang et al., 2022b; Zhuang et al., 2018; Liebenwein et al., 2020; Elkerdawy et al.,
2020; Guo et al., 2020c). Scholars often refer to this as the “granularity” or simply the “type” of
a pruning method. Among them, filter/channel pruning is considered the most popular structured
pruning granularity as it can gain immediate efficiency benefits after channel removal.

Outside the pruning granularity, the pipeline of a pruning method plays another major role in
deciding which method to adopt. Pruning operations can conducted from-scratch (e.g., OTOv2 by
Chen et al. (2023)), during training (e.g., Roy et al. (2020)), or post-train (e.g., FPGM by He et al.
(2019)). Many pruning methods also require intervention (or access to information) at an earlier
stage, then conduct actual pruning at a later stage. E.g., DMCP by Guo et al. (2020c) further adjusts
weights of a pruned model before pruning, and TMI-GKP by Zhong et al. (2022) requires access
to the model training checkpoint to guide its pruning operations. Most pruning methods follow a
train - prune - fine-tune/retrain pipeline, as the trained model provides a good starting and reference
point for pruning and evaluating. However, this pipeline suffers the natural drawback of having to
both train the unpruned baseline model and fine-tune/retrain the pruned model, where from-scratch
methods or fine-tuning free methods like Narshana et al. (2023) may effectively avoid such compute
cost, though often with a trade-off of delivering lower accuracy retention.

Further, the scheduling of a pruning method drastically affects the efficiency and adaptability of a
method. Most pruning methods can be roughly categorized into one-shot or iterative pruning. The
former prunes all redundant model components all at once; the latter, as its name implies, conducts
pruning gradually with weight updates between two pruning operations. One-shot pruning is often
considered easier to deploy and more efficient to run, though iterative pruning is generally more
performant on accuracy retention.

On the note of adaptability, the data dependency of a pruning method potentially plays another
vital role in the adaptability of a method. With data-agnostic pruning methods do not require data
access to determine what to prune, and data-dependent or data-informed methods do the opposite.

Other implementations details such as hard or soft pruning (whether the pruned components are
entirely removed from the model to yield a pruned model with reduced dimension, or just zero-
masked), reduction control and estimation (if one can reliably control and predict the memory and
compute requirements of a pruned model before conducting the actual pruning), and hyperparameter
tuning pressure (whether the method has a lot of hyperparameters to adjust, or if the method has a
way to tune them automatically, like AAP by Zhao et al. (2023) and AMC by He et al. (2018b)) also
have their influences, especially on the user-friendliness aspect of a method.

Our method is a one-shot, post-train, data-agnostic, hard-pruning method with only one tunable
hyperparameter (which is primarily determined by the layer dimension; see Appendix C.2 for details).
Yet, one may adjust the pruning rate setting of our method to reliably control and predict the MACs and
Params reduction of the pruned model (see the relation between pruning rate and pruned model size
in experiments like Table 15 and 16). These characteristics put our method on top of the efficiency,
adaptability, and user-friendliness lists over many other pruning methods under the context of densely
structured CNN pruning.

Grouped kernel pruning. Grouped kernel pruning (GKP) is a special type of densely structured
pruning granularity that is able to offer finer pruning freedom than filter or channel pruning methods.
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As demonstrated in Figure 2, GKP is, in essence, a combination of pruning a stack of kernels
under the same filter group (a.k.a. grouped kernels) and reconstructing the remaining model to a
grouped convolution format (Krizhevsky, 2014). Granted, grouped convolution itself is proposed
with efficiency motivations, and we may say that this granularity — outside a pruning context —
naturally exists with the debut of AlexNet (Krizhevsky et al., 2012).

The combination of densely structured pruning with grouped convolution is first introduced in Yu
et al. (2017), but the method, unfortunately, did not attract significant attention from the community.
One potential reason for this is due to the high complexity of its pruning procedure: feature maps-
dependent iterative pruning plus fine-tuning with knowledge distillation. Other reasons include not
performing a comprehensive ablation study to track its contributions, as well as a lack of comparable
experiments to modern pruning arts. Another work, Guo et al. (2020b), also explores structured
pruning with grouped convolution, but it still introduces sparsity to its pruned model with its zero-
padded implementation to support unequal group sizes.

A refined procedure at the intersection of densely structured pruning and grouped convolution is
brought by Zhong et al. (2022) as TMI-GKP, where they stipulate a three-stage procedure consisting
of 1) filter grouping, 2) grouped kernel pruning, and 3) grouped convolution reconstruction – as well
as coining it with the term “grouped kernel pruning.” The GKP procedure and nomenclature have
since been adopted by TMI-GKP’s concurrent, related, and follow-up works like Zhang et al. (2022a);
Park et al. (2023); He & Xiao (2023).

B Extended proposed method

B.1 Formal definition of L2 & geometric median-based grouped kernel pruning

To better illustrate the formal definition of our purposed method, let W be the set containing all filters
f in a certain convolutional layer of a CNN:

W : {f1, f2, . . . , fn},

where n is the number of filters in that layer, a.k.a. the out_channels. The filter grouping procedure
is then applied on such f1 to fn.

The numbers of desire grouped filters (a.k.a. the Conv2d(groups) or group count) are chosen from
candidate group count list (see Table 5), where one of them is ultimately selected after the post-prune
group count evaluation (see Section 3.4).

For simplicity, let’s assume that the current candidate group count is m (the number of filters n
must be divisible by m because in our implementation every group in the same layer has exactly the
same number of filters to be able to reconstruct to a grouped convolution format), and let G be the
set containing all filter groups g after KPP-aware filter clustering is applied on all the filters in W
(Figure 5):

W : {f1, f2, . . . , fn}
KPP-aware Filter Grouping−−−−−−−−−−−−−−→ G : {g1, g2, . . . , gm},

where gi is the ith grouped filters in G.

Suppose there are λ number of kernels in a filter (a.k.a. in_channel), we shall have λ grouped
kernels (gk) in each filter group g:

g : {gk1, gk2, . . . , gkλ}.

We then compute the geometric median τ of each filter group g among all grouped kernels (gk) in g:

G : {g1, g2, . . . , gm}
Compute Geometric Median−−−−−−−−−−−−−−→ {τ1, τ2, . . . , τm}.

After we get each group’s geometric median, we start to prune grouped kernels gk in each filer group
g. Inside each filter group g, we compute the L2-norm of each grouped kernels gk in g and add them
to list Q:
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g : {gk1, gk2, . . . , gkλ}
Compute L2-Norm−−−−−−−−−−→ Q : {q1, q2, . . . , qλ},where qi = ∥gki∥2.

Also, we compute the euclidean distance of each grouped kernels gk to its group’s geometric median
τ and add them to list D:

g : {gk1, gk2, . . . , gkλ}
gk’s Distance to τ−−−−−−−−−→ D : {d1, d2, . . . , dλ},where di = Euclidean(gki, τ).

Then we do Min-Max Normalization on list Q and D separately:

Q : {q1, q2, . . . , qλ}
Min-Max Normalization−−−−−−−−−−−−→ Q

′
: {q

′

1, q
′

2, . . . , q
′

λ},

such that

q
′

i =
qi −min(Q)

max(Q)−min(Q)
.

Using the same equation above, we conduct the same Min-Max Normalization upon list D:

D : {d1, d2, . . . , dλ}
Min-Max Normalization−−−−−−−−−−−−→ D

′
: {d

′

1, d
′

2, . . . , d
′

λ}.

We then calculate the importance score I of each grouped kernels (gk) (Figure 6):

g : {gk1, gk2, . . . , gkλ}
calculate importance score−−−−−−−−−−−−−→ I : {I1, I2, . . . , Iλ},where Ii = q

′

i + d
′

i.

Finally, assume that the pruning rate (ratio of grouped kernels to be pruned) is pr, we preserve 1− pr
ratio of grouped kernels gk in group g with higher importance score I . So with λ number of gk and
preserve rate 1− pr, we will have λ(1− pr) numbers of preserved grouped kernels gk after pruning:

g : {gk1, gk2, . . . , gkλ}︸ ︷︷ ︸
λ numbers of gk

pruning−−−−→ g∗ : {gk∗1 , gk∗2 , . . . , gk∗λ}︸ ︷︷ ︸
λ(1 − pr) numbers of gk

.

So in general, for each candidate group count m, we will have GKP result G∗:

W : {f1, f2, . . . , fn} −→ G : {g1, g2, . . . , gm}︸ ︷︷ ︸
filter grouping stage

−→ G∗ : {g∗1 , g∗2 , . . . , g∗m}︸ ︷︷ ︸
gk pruning stage

.

For demonstration, suppose we have three candidate group count [m1,m2,m3], we will have three
pruning results G∗

1, G
∗
2, G

∗
3. Then we evaluate these three pruning results via post-prune group count

evaluation (Section 3.4). Finally, based on post-prune group count evaluation, the optimal pruning
result will be transformed into densely structured group convolution layer.

B.2 Formal definition of post-prune group count evaluation

For simplicity, let’s assume that the current candidate group count is m (m number of groups
in a layer), and suppose there are λ number of kernels in a filter. After grouped kernel pruning
(Section B.1), we can get pruned layer:

G∗ : {g∗1 , g∗2 , . . . , g∗m}.

Then we may compute the preserved grouped kernels geometric median τ∗ for each pruned group g∗:

G∗ : {g∗1 , g∗2 , . . . , g∗m}
Compute Geometric Median−−−−−−−−−−−−−−→ {τ∗1 , τ∗2 , . . . , τ∗m},
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where τ∗i is the geometric median of preserved gk (different from Section 3.3, which are the
geometric median for all gk including those being pruned). Let | | be an operator that calculate
cardinality in terms of grouped kernels. For group g∗i with geometric median τ∗i :

A(g∗i ) =
1

|g∗i |
∑

gk∈g∗
i

Euclidean(gk, τ∗i ),

where A(g∗i ) is the average euclidean distance between gk of ith group and its geometric median
(intra-group similarity).

B(g∗i ) =
1

|G∗ − g∗i |
∑

gk∈G∗−g∗
i

Euclidean(gk, τ∗i ),

where B(g∗i ) is the average euclidean distance between ith group’s geometric median and all gk that
are not in ith group (inter-group distinctions). Now, we may calculate the group count evaluation
score S upon the pruning result of each candidate group count (see Figure 7) as:

S = γ

m∑
i=1

B(g∗i )−A(g∗i ),where γ =
λ

m
. (1)

Since we have candidate group count list with different group counts (see Figure 5), during post-prune
group count evaluation, each group count will provide a unique score S using Formular 1.

For demonstration, following the example in the last paragraph of Section B.1, suppose we have
three candidate group counts [m1,m2,m3], we will have three pruning results G∗

1, G
∗
2, G

∗
3. Using

Equation 1, we will have three group count evaluation scores S1, S2, S3. So we only need to choose
the pruning result G∗ among G∗

1, G
∗
2, G

∗
3 with largest S value in S1, S2, S3.

A large value of S implies a pruned layer with better intra-group similarity and inter-group distinctions.
Utilizing this S evaluation metric, we are able to leverage the joint optimization effect of grouping
and pruning on different group count settings and, therefore, obtain a better pruning result for the
layer-in-question.

B.3 Pseudo code for the proposed method

Algorithm 1 General Procedure of LeanFlex-GKP on a Single Convolutional Layer
Input: Candidate Group Count Queue Q ▷ candidate Conv2d(groups) like [2,4,8]

1: Initialize: Empty List P ▷ storage of pruning strategies w.r.t. each group count candidate
2: for q ∈ Q do ▷ looping though all group count candidates
3: Conduct k-Means++ clustering on filters to get q amount of centers
4: CS ← q candidate sequences of centers generated by multiple restarts ▷ see Figure 5
5: Initialize: Empty List FG ▷ to store filter grouping results
6: for s ∈ CS do
7: Get filter grouping result fgs for the s center sequence, as illustrated in Figure 5(c)
8: FG.append(fgs)
9: Determine the optimal filter grouping result fgopt with least intra-group distance (Figure 5)

10: for filter group g ∈ fgopt do ▷ Prune grouped kernels inside each filter group
11: gqpruned ← Prune g w.r.t. the L2 & geometric median-based method stipulated in Figure 6

12: P.append(gqpruned)

13: Determine the best gopt ∈ P according to Appendix B.2 ▷ illustrated in Figure 7
14: return Pruned convolutional layer gopt and its corresponding group count qopt
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C Ablation studies
In company with our main experiment results showcased in Section 4 and Appendix D, we provide
ablation studies of our proposed LeanFlex-GKP method from different perspective-of-interests,

C.1 On different procedural recipes
In this section, we conduct ablation studies on our proposed methods by evaluating the contribution
of our proposed algorithmic components. We utilized BasicBlock ResNets (He et al., 2016) on the
CIFAR10 dataset (Krizhevsky et al., 2009) for their lightweightness. All comparisons are done so
with the pruning rate being 43.75% (meaning 43.75% of the original model is removed; please refer
to the LeanFlex-GKP reports in Table 16 for the exact reduction status).

In Table 2, we try to investigate the influence of different grouping approaches under our Flexible
Group Count pipeline, where our proposed filter grouping method, KPP-aware filter grouping
(Section 3.2) has the optimal empirical results.

Table 2: Ablation Study on Different Filter Grouping Approaches

Method Name ResNet32 ResNet56 ResNet110
FGC + RandomGroup + GM&L2 92.81 93.72 94.67
FGC + No Restart KPP-aware Filter Grouping + GM&L2 93.04 93.76 94.61
FGC + Equal-size KPP + GM&L2 92.52 93.77 -
FGC + KPP-aware Filter Grouping + GM&L2 (ours) 93.01 94.00 94.92

In Table 3, we try to evaluate the validity of our proposed L2 & geometric median-based grouped
kernel pruning method in comparison with other pruning strategies (while under our flexible group
count pipeline). It is observed that our flexible group count pipeline is best working with the GM&L2
grouped kernel pruning method we proposed in Section 3.3.

Table 3: Ablation Study on Different Grouped Kernel Pruning Approaches

Method Name ResNet32 ResNet56
FGC + KPP-aware Filter Grouping + TMI (Greedy) 92.84 93.58
FGC + KPP-aware Filter Grouping + Distance to GM 92.92 93.73
FGC + KPP-aware Filter Grouping + L2Norm 92.99 93.61
FGC + KPP-aware Filter Grouping + GM&L2 (ours) 93.01 94.00

In Table 4, we showcase the power of adding flexible group count into our GKP procedure as stipulated
in post-prune group count evaluation (Section 3.4), it is observed that the Conv2d(groups)
decided by our evaluation design has better performance than other constant or dynamic group count
settings. Specifically, the “Eight Groups” strategy is utilized in TMI-GKP (Zhong et al., 2022), and
the “Random Groups Reassign” means to randomly re-distribute the optimal group counts (deemed
by our post-prune group count evaluation method) across different layers; granted such reassignment
is legal in term of layer dimensions.

Table 4: Ablation Study on Different Group Count Settings

Method Name ResNet32 ResNet56 ResNet110
Eight Groups (TMI’s setting) + KPP-aware Filter Grouping + GM&L2 92.86 93.82 94.72
Max Groups + KPP-aware Filter Grouping + GM&L2 92.88 93.82 94.72
Random Groups Reassign + KPP-aware Filter Grouping + GM&L2 92.75 93.89 94.43
FGC + KPP-aware Filter Grouping + GM&L2 (ours) 93.01 94.00 94.92

C.2 On different hyperparameter settings

We illustrate the hyperparameter settings for all reported LeanFlex-GKP experiments as Table 5.
The only tunable hyperparameter for LeanFlex-GKP is Candidate Group Counts, i.e., a set of
Conv2D(groups) setting considered. Granted most CNN architectures have different dimensions
across their convolutional layer, this setting should be adjusted subject to subject to the layer’s
out_channels. In our case, we basically checkout what is the largest Conv2D(groups) applicable
to a particular convolutional layer, then generate the rest of group count candidates by reducing it by
half.
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Table 5: Hyperparameter Settings for LeanFlex-GKP’s Reported Results. PR stands for pruning
rate, Budget represents the train - fine-tune budget in terms of number of epochs, BS implies batch
sizes, and Candidate Group Counts indicate the different Conv2D(groups) settings considered.
We provide settings in torch style code snippets

Model Dataset PR Budget BS Optimizer & Learning Rate Candidate Group Counts
ResNet20

CIFAR10 43.75% 300 - 300 64 SGD(lr=0.01, momentum=0.9, weight_decay=5e-4)
StepLR(step_size=100, gamma=0.1)

S2
ResNet32 S1
ResNet56 S2
ResNet110 S1

ResNet32
CIFAR10 62.5% SGD(lr=0.01, momentum=0.9, weight_decay=5e-4)

StepLR(step_size=100, gamma=0.1)

S1
ResNet56 300 - 300 64 S2
ResNet110 S1

ResNet56 CIFAR100 43.75% 200-300 64 SGD(lr=0.01, momentum=0.9, weight_decay=5e-4)
StepLR(step_size=100, gamma=0.1)

S2
ResNet110 S2

ResNet56 Tiny-ImageNet 37.5% 100-300 64 SGD(lr=0.01, momentum=0.9, weight_decay=5e-4)
MultiStepLR(milestones=[80, 90], gamma=0.1) S2

ResNet101 Tiny-ImageNet 43.75% 300-20 256 SGD(lr=0.1, momentum=0.9, weight_decay=1e-4)
StepLR(step_size=5, gamma=0.1)

[8,16,32]x1
[8,16,32,64]x3

ResNet50 ImageNet 66.00% Pretrained-100 256 SGD(lr=0.01, momentum=0.9, weight_decay=1e-4)
StepLR(step_size=30, gamma=0.1) All layers [4,8,16,32]

VGG11 CIFAR10 43.75% 300-300 64 SGD(lr=0.01, momentum=0.9, weight_decay=5e-4)
StepLR(step_size=100, gamma=0.1)

[8,16,32]x1
[16,32,64]x2
[32,64,128]x4

VGG13 CIFAR10 43.75% 300-300 64 SGD(lr=0.01, momentum=0.9, weight_decay=5e-4)
StepLR(step_size=100, gamma=0.1)

[4,8,16]x2
[8,16,32]x2
[16,32,64]x2
[32,64,128]x3

VGG16 CIFAR10 43.75% 300-300 64 SGD(lr=0.01, momentum=0.9, weight_decay=5e-4)
StepLR(step_size=100, gamma=0.1)

[4,8,16]x2
[8,16,32]x3
[16,32,64]x3
[32,64,128]x4

DenseNet40 CIFAR10
33.33%
50.00%
66.67%

Pretrained-300 64 SGD(lr=0.01, momentum=0.9, weight_decay=1e-4)
MultiStepLR(milestones=[150, 225], gamma=0.1)

[4,6,12]
[7,8,12,14,21,24]

[8,12,13,24]

DenseNet40 CIFAR10 52.00% 400-300 64 SGD(lr=0.01, momentum=0.9, weight_decay=1e-4)
MultiStepLR(milestones=[150, 225], gamma=0.1)

[4,6,12]
[7,8,12,14,21,24]

[8,12,13,24]

MobileNetV2 CIFAR10 25.00% 300-300 64 SGD(lr=0.001, momentum=0.9, weight_decay=5e-4)
StepLR(step_size=100, gamma=0.1)

[2,4,8]
[4,8,12,24]
[4,8,16]

[8,16,32,64]
[8,16,32]

Note in Table 5 above we have S1 and S2 as candidate group count settings for BasicBlock ResNets
on CIFAR10. In such cases, S1 stands for [4,8,16],[8,16,32],[16,32,64], where S2 stands
for [8,16],[8,16,32],[8,16,32,64]. Table 6 reports the evaluation results when the models are
grouped/pruned according to different candidate group count settings. Under most evaluated setups,
our method’s performance is similar between the two settings.

Table 6: Basicblock ResNets on CIFAR10 when pruned according to setting S1 and S2.

Model S1: pr = 43.75% S2: pr = 43.75% S1: pr = 62.50% S2: pr = 62.50%

ResNet20 92.14 92.49 - -
ResNet32 93.01 92.96 92.40 92.07
ResNet56 93.93 94.00 93.32 93.54
ResNet110 94.92 94.54 94.35 94.34

C.3 On Wall-Clock Speedup

We additionally investigate the wall-clock runtime of our proposed method at Table 7 regarding its
pruning procedure (time required to obtain a ready-to-fine-tune pruned model in grouped convolution
format).
Table 7: Wall-clock Runtime Comparison between LeanFlex-GKP (Ours) and TMI-GKP (Zhong
et al., 2022)’s Pruning Procedure

Method ResNet32 ResNet56 ResNet110
TMI-GKP (Zhong et al., 2022) 1h 20m 10s 2h 36m 22s 5h 30m 18s
LeanFlex-GKP (ours) 10m 56s 21m 32s 44m 15s

Our method provides a massive speed advantage over TMI-GKP while both being post-train, one-shot,
and data-agnostic.
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D Extended experiment results

Our proposed method, LeanFlex-GKP, follows the classic train - prune - fine-tune pipeline under a
data-agnostic setting. This implies all model components are pruned all at once prior to fine-tuning,
without having access to the training or fine-tuning data. Our method is implemented in a hard
pruning fashion, which means the pruned model for fine-tuning is already compressed. We refer
our readers to Table 5 for specific experiment details such as epoch budget and hyperparameter
settings, as we have thereat documented detailed experiment settings for all 20 reported results of
LeanFlex-GKP.

As introduced in Section 4, we evaluate the effectiveness of our method against many other densely
structured pruning methods on ResNet20/32/56/110 with the BasicBlock, ResNet50/101 with the Bot-
tleNeck implementation (He et al., 2016), VGG11/13/16 (Simonyan & Zisserman, 2015), DenseNet40
(Huang et al., 2017), and MobileNetV2 (Sandler et al., 2018). The datasets we used include CI-
FAR10/100 (Krizhevsky et al., 2009), Tiny-ImageNet (Wu et al., 2017), and ImageNet-1k (Deng
et al., 2009).

D.1 Compared Methods

Our methods is compared against 32 different pruning methods as illustrated in Table 8. Where
notions like C/F/GK/K/L/R in the Granularity column respectively represent Channel/Filter/Grouped
Kernel/Kernel/Layer/Resolution pruning. Procedure indicates if the pruned model is generated
iteratively (requires weight update between conducting the first pruning act and having the fully
pruned model) or in a one-shot manner (pruned all at once without weight update in between).
Zero-Masked? column investigates if a model is hard pruned (no zero-masked weight) before
fine-tuning.

Table 8: Overview of Compered Methods.

Method Venue Granularity Procedure Zero-Masked?
3D (Wang et al., 2021) ICML F&L&R Iterative -
CC (Li et al., 2021) CVPR C One-shot N
DepGraph (Fang et al., 2023) CVPR C One-shot N
DHP (Li et al., 2020) ECCV F Iterative (from-scratch) Y
FPGM (He et al., 2019) CVPR F Iterative Y
GAL (Lin et al., 2019a) CVPR F Iterative Y
HRank (Lin et al., 2020) CVPR F Iterative Y
L1Norm (Li et al., 2017) ICLR F One-shot N
LRF (Joo et al., 2021) AAAI C One-shot N
NPPM (Gao et al., 2021) CVPR C One-shot N
OTOv2 (Chen et al., 2023) ICLR F Iterative (from-scratch) Y
PScratch (Wang et al., 2020) AAAI C One-shot (from-scratch) -
SFP (He et al., 2018a) IJCAI F Iterative Y
Slimming (Liu et al., 2017) ICCV C One-shot N
ThiNet (Luo et al., 2017) ICCV F One-shot -
TMI-GKP (Zhong et al., 2022) ICLR GK One-shot N
LeanFlex-GKP (Ours) - GK One-shot N

EigenDamage (Wang et al., 2019) ICML C Iterative N
AAP (Zhao et al., 2023) AISTATS F Iterative -
AMC (He et al., 2018b) ECCV C - N
ChipNet (Tiwari et al., 2021) ICLR C Iterative N
PFP (Liebenwein et al., 2020) ICLR F - -
GDP (Guo et al., 2021) ICCV C One-shot -
DOP (Yang et al., 2022) BMVC C One-shot Y
KPGP (Zhang et al., 2022b) APIN GK One-shot N
WM (Zhuang et al., 2018) NeurIPS C Iterative -
Layer-wise Proxy (Elkerdawy et al., 2020) IEEE ICIP L One-shot N

DCP (Zhuang et al., 2018) NeurIPS C Iterative -
DMC (Gao et al., 2020) CVPR C Iterative -
LCCL (Dong et al., 2017) CVPR K Iterative Y
MDP (Guo et al., 2020a) CVPR C - -
SCOP (Tang et al., 2020) NeurIPS F - -
TAS (Dong & Yang, 2019) NeurIPS C&L Iterative (NAS) -
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D.2 Full Experiment Results

The terms and notations utilized in the following experiment results follow the definitions defined
in Section 4.1: DA represents if the method is data-agnostic (pruning can be done without access
to data), IP indicates if a method is considered an iterative pruning method (utilizing a train-prune
cycle), and RB reports recovery budget (in terms of epochs). All other reported criteria are in terms
of %. BA and Pruned respectively report the unpruned (baseline) accuracy and the pruned accuracy.
Methods marked with ∗ are drawn from their original or (third-party) replicated publication; the rest
are replicated by us to ensure a fair comparison. Generally speaking, a method that is DA ✓, IP ✗,
and demands a smaller RB is likely to be more user-friendly.

Table 9: Results of ResNet50 Model on ImageNet-1K Dataset. Results in bold red indicate being the
second best among comparisons.

Method DA IP RB BA Pruned ∆Acc ↓MACs ↓ Params
ResNet50 on ImageNet-1K MACs ≈ 4122.828M Params ≈ 25.557M

SFP* (He et al., 2018a) ✗ ✓ 100 76.13 58.50 ↓ 17.63 36.08 32.31
FPGM* (He et al., 2019) ✗ ✓ 100 76.13 75.04 ↓ 1.09 35.93 28.36
TMI-GKP* (Zhong et al., 2022) ✓ ✗ 100 76.15 75.53 ↓ 0.62 33.21 33.74
PScratch* (Wang et al., 2020) ✗ ✓ ≈ 409 77.20 76.70 ↓ 0.50 29.80 26.80
ThiNet* (Luo et al., 2017) ✗ ✓ 100 72.88 72.04 ↓ 0.84 36.7 -
OTOv2*
(post-train) (Chen et al., 2023) ✗ ✓ 120 76.13 75.38 ↓ 0.75 37.70 26.58

DOP* (Yang et al., 2022) ✗ ✗ 120 76.47 74.29 ↓ 2.18 60.00 -
Layer-wise Proxy*
(Elkerdawy et al., 2020) ✗ ✗ - 76.14 75.0 ↓ 1.14 5.5 -

KPGP* (Zhang et al., 2022b) ✓ ✗ 76.15 75.50 ↓ 0.65 33.7 33.2
LeanFlex-GKP (ours) ✓ ✗ 100 76.13 75.62 ↓ 0.51 33.06 30.34

Table 10: Results of ResNet56/101 Model on Tiny-ImageNet Dataset

Method DA IP RB BA Pruned ∆Acc ↓MACs ↓ Params
ResNet56 on Tiny-ImageNet MACs ≈ 506.254M Params ≈ 0.865M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 56.13 55.52 ↓ 0.61 37.05 36.76
L1Norm-A (Li et al., 2017) ✓ ✗ 300 56.13 55.41 ↓ 0.72 35.51 32.14
L1Norm-B (Li et al., 2017) ✓ ✗ 300 56.13 55.21 ↓ 0.92 36.43 41.04
SFP (He et al., 2018a) ✗ ✓ 300 56.13 53.65 ↓ 2.48 33.96 35.38
FPGM (He et al., 2019) ✗ ✓ 300 56.13 54.14 ↓ 1.99 33.53 34.68
HRank (Lin et al., 2020) ✗ ✓ 300 56.13 54.16 ↓ 1.97 37.39 30.98
GAL* (Lin et al., 2019b) ✗ ✓ 100 56.55 55.87 ↓ 0.68 52.00 32.00
DHP* (Li et al., 2020) ✗ ✓ 100 56.55 55.82 ↓ 0.73 55.00 46.00
3D* (Wang et al., 2021) ✗ ✓ 420 56.55 56.04 ↓ 0.51 59.00 34.00
Slimming* (Liu et al., 2017) ✗ ✗ 100 56.55 52.45 ↓ 4.10 53.00 54.00
LeanFlex-GKP (ours) ✓ ✗ 300 56.13 55.67 ↓ 0.46 37.05 36.76

ResNet101 on Tiny-ImageNet MACs ≈ 10081.092M Params ≈ 42.902M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 20 65.71 65.05 ↓ 0.66 43.25 43.53
SFP (He et al., 2018a) ✗ ✓ 20 65.51 68.06 ↑ 2.55 43.56 42.43
FPGM (He et al., 2019) ✗ ✓ 20 65.51 66.95 ↑ 1.44 43.13 43.84
LeanFlex-GKP (ours) ✓ ✗ 20 65.51 68.46 ↑ 2.95 43.25 43.53

Table 11: Results of MobileNetV2 Model on CIFAR10 Dataset

Method DA IP RB BA Pruned ∆Acc ↓MACs ↓ Params
MobileNetV2 on CIFAR10 MACs ≈ 98.768M Params ≈ 2.383M

DCP* (Zhuang et al., 2018) ✗ - 400 94.47 94.69 ↑ 0.22 26.00 -
SCOP* (Tang et al., 2020) ✗ - 400 94.48 94.24 ↓ 0.24 49.30 -
WM* (Zhuang et al., 2018) ✗ - 400 94.47 94.17 ↓ 0.30 26.00 -
DMC* (Gao et al., 2020) ✗ - 160 94.23 94.49 ↑ 0.26 40.00 -
MDP* (Guo et al., 2020a) ✗ - - 95.02 95.14 ↑ 0.12 28.71 -
GDP* (Guo et al., 2021) ✗ - 350 94.89 95.15 ↑ 0.26 46.22 -
ChipNet* (Tiwari et al., 2021) ✗ ✓ 300 93.55 92.58 ↓ 0.97 20.00 -
LeanFlex-GKP (ours) ✓ ✗ 300 93.87 94.30 ↑ 0.43 28.74 26.98
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Table 12: Results of VGG11/13/16 Model on CIFAR10 Dataset

Method DA IP RB BA Pruned ∆Acc ↓MACs ↓ Params
VGG11 on CIFAR10 MACs ≈ 153.5M Params ≈ 9.3M

CC (Li et al., 2021) ✗ ✗ 300 92.34 92.24 ↓ 0.10 42.32 56.77
L1Norm (Li et al., 2017) ✓ ✗ 300 92.34 91.77 ↓ 0.57 41.44 35.01
LeanFlex-GKP (ours) ✓ ✗ 300 92.34 92.55 ↑ 0.21 43.41 43.68

VGG13 on CIFAR10 MACs ≈ 229.4M Params ≈ 9.4M

CC (Li et al., 2021) ✗ ✗ 300 93.95 93.97 ↑ 0.02 42.56 54.11
L1Norm (Li et al., 2017) ✓ ✗ 300 93.95 93.26 ↓ 0.69 42.95 35.09
LeanFlex-GKP (ours) ✓ ✗ 300 93.95 94.03 ↑ 0.08 43.58 43.68

VGG16 on CIFAR10 MACs ≈ 313.4M Params ≈ 14.7M

CC (Li et al., 2021) ✗ ✗ 300 93.94 94.14 ↑ 0.20 43.18 -
GAL (Lin et al., 2019b) ✗ ✓ 300 93.94 91.29 ↓ 2.65 35.16 47.40
HRank (Lin et al., 2020) ✗ ✓ 300 93.94 93.57 ↓ 0.37 32.28 40.82
L1Norm (Li et al., 2017) ✓ ✗ 300 93.94 92.88 ↓ 1.06 42.71 37.85
KPGP (Zhang et al., 2022b) ✓ ✗ 300 94.27 94.17 ↑ 0.13 43.15 43.59
TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 93.94 94.07 ↑ 0.10 43.15 43.59
LeanFlex-GKP (ours) ✓ ✗ 300 93.94 94.15 ↑ 0.21 43.15 43.59

Table 13: Results of DenseNet40 on CIFAR10 Dataset

Method DA IP RB BA Pruned ∆Acc ↓MACs ↓ Params
DenseNet40 on CIFAR10 MACs ≈ 282.2M Params ≈ 1.5M

GAL* (Lin et al., 2019b) ✗ ✓ - 94.81 94.61 ↓ 0.20 35.30 35.60
Slimming* (Liu et al., 2017) ✗ ✓ - 94.81 94.35 ↓ 0.46 57.60 66.30
HRank* (Lin et al., 2020) ✗ ✓ - 94.81 94.24 ↓ 0.57 41.00 36.50
CC (pr=0.33) (Li et al., 2021) ✗ ✗ 300 94.81 94.75 ↓ 0.06 32.97 51.42
CC (pr=0.50) (Li et al., 2021) ✗ ✗ 300 94.81 94.58 ↓ 0.23 49.85 64.48
CC (pr=0.67) (Li et al., 2021) ✗ ✗ 300 94.81 94.22 ↓ 0.59 66.55 75.88
LeanFlex-GKP (pr=0.33) (ours) ✓ ✗ 300 94.81 94.99 ↑ 0.18 33.08 52.68
LeanFlex-GKP (pr=0.50) (ours) ✓ ✗ 300 94.81 94.93 ↑ 0.12 49.75 64.08
LeanFlex-GKP (pr=0.67) (ours) ✓ ✗ 300 94.81 94.72 ↓ 0.09 66.42 75.55

TMI-GKP (pr=0.52) (Zhong et al., 2022) ✓ ✗ 300 94.66 94.76 ↑ 0.10 52.49 57.22
LeanFlex-GKP (pr=0.52) (ours) ✓ ✗ 300 94.66 95.11 ↑ 0.45 52.49 57.22

Table 14: Results of ResNet56/110 on CIFAR100 Dataset

Method DA IP RB BA Pruned ∆Acc ↓MACs ↓ Params
ResNet56 on CIFAR100 MACs ≈ 126.567M Params ≈ 0.859M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 70.85 71.11 ↑ 0.26 43.22 43.19
L1Norm-A (Li et al., 2017) ✓ ✗ 300 71.53 68.61 ↓ 2.92 43.05 40.86
L1Norm-B (Li et al., 2017) ✓ ✗ 300 71.53 68.32 ↓ 3.21 42.16 48.20
CC (Li et al., 2021) ✗ ✗ 300 71.53 71.43 ↓ 0.10 43.52 28.52
SFP (He et al., 2018a) ✗ ✓ 300 71.53 69.80 ↓ 1.73 44.29 44.82
FPGM (He et al., 2019) ✗ ✓ 300 71.53 69.48 ↓ 2.05 43.38 43.19
NPPM (Gao et al., 2021) ✗ ✗ 300 71.53 71.57 ↑ 0.04 33.54 13.04
HRank (Lin et al., 2020) ✗ ✓ 300 71.53 69.84 ↓ 1.69 37.39 31.32
LCCL* (Dong et al., 2017) ✗ - 300 71.33 68.37 ↓ 2.96 39.3 -
TAS* (Dong & Yang, 2019) ✗ ✗ 300 73.18 72.25 ↓ 0.93 51.3 -
LeanFlex-GKP (ours) ✓ ✗ 300 71.53 72.11 ↑ 0.58 43.22 43.18

ResNet110 on CIFAR100 MACs ≈ 255.001M Params ≈ 1.734M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 72.99 72.79 ↓ 0.20 43.31 43.37
L1Norm-A (Li et al., 2017) ✓ ✗ 300 73.20 69.85 ↓ 3.35 43.74 44.41
L1Norm-B (Li et al., 2017) ✓ ✗ 300 73.20 69.32 ↓ 3.88 42.22 51.96
CC (Li et al., 2021) ✗ ✗ 300 73.20 73.21 ↑ 0.01 43.43 19.78
NPPM (Gao et al., 2021) ✗ ✗ 300 73.20 72.38 ↓ 0.82 42.77 18.69
LRF (Joo et al., 2021) ✗ ✗ 300 73.20 73.58 ↑ 0.38 43.38 42.16
LCCL* (Dong et al., 2017) ✗ - 300 72.79 70.78 ↓ 2.01 31.3 -
SFP* (He et al., 2018a) ✗ ✓ 300 74.14 71.28 ↓ 2.86 52.3 -
FPGM* (He et al., 2019) ✗ ✓ 300 74.14 72.55 ↓ 1.59 52.3 -
TAS* (Dong & Yang, 2019) ✗ ✗ 300 75.06 73.16 ↓ 1.90 52.6 -
LeanFlex-GKP (ours) ✓ ✗ 300 73.20 73.63 ↑ 0.43 43.31 43.36
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Table 15: Results of ResNet32/56/110 on CIFAR10 dataset with a pruning rate of ≈ 62.5%

Method DA IP RB BA Pruned ∆Acc ↓MACs ↓ Params
ResNet32 on CIFAR10 MACs ≈ 69.5M Params ≈ 0.46M

L1Norm-A (Li et al., 2017) ✓ ✗ 300 92.80 89.96 ↓ 2.84 61.86 65.21
L1Norm-B (Li et al., 2017) ✓ ✗ 300 92.80 90.01 ↓ 2.79 62.36 67.39
CC (Li et al., 2021) ✗ ✗ 300 92.80 92.39 ↓ 0.41 61.29 54.35
SFP (He et al., 2018a) ✗ ✓ 300 92.80 90.28 ↓ 2.52 59.74 60.65
FPGM (He et al., 2019) ✗ ✓ 300 92.80 91.32 ↓ 1.48 58.28 59.57
NPPM (Gao et al., 2021) ✗ ✗ 300 92.80 91.92 ↓ 0.88 61.15 56.52
DHP (Li et al., 2020) ✗ ✓ 300 92.80 91.73 ↓ 1.07 50.92 -
LRF (Joo et al., 2021) ✗ ✗ 300 92.80 92.79 ↓ 0.01 56.95 56.52
EigenDamage* (Wang et al., 2019) ✗ - - 95.30 95.17 ↓ 0.13 60 -
LeanFlex-GKP (ours) ✓ ✗ 300 92.80 92.40 ↓ 0.40 61.56 61.74

ResNet56 on CIFAR10 MACs ≈ 126.6M Params ≈ 0.85M

L1Norm-A (Li et al., 2017) ✓ ✗ 300 93.24 91.79 ↓ 1.45 62.43 57.64
L1Norm-B (Li et al., 2017) ✓ ✗ 300 93.24 91.56 ↓ 1.68 62.25 62.35
CC (Li et al., 2021) ✗ ✗ 300 93.24 93.57 ↑ 0.33 61.54 50.58
SFP (He et al., 2018a) ✗ ✓ 300 93.24 92.24 ↓ 1.00 58.61 60.24
FPGM (He et al., 2019) ✗ ✓ 300 93.24 92.64 ↓ 0.60 58.33 59.88
NPPM (Gao et al., 2021) ✗ ✗ 300 93.24 93.07 ↓ 0.17 58.49 47.05
HRank (Lin et al., 2020) ✗ ✓ 300 93.24 90.63 ↓ 2.61 60.56 51.88
DHP (Li et al., 2020) ✗ ✓ 300 93.24 91.66 ↓ 1.58 60.54 -
AAP* (Zhao et al., 2023) - - - 92.84 92.21 ↓ 0.63 52.72 -
AMC* (He et al., 2018b) - - - 92.80 91.90 ↓ 0.90 50.00 -
PFP* (Liebenwein et al., 2020) ✗ - 182 92.95 93.64 ↑ 0.69 67.41 72.10
LeanFlex-GKP (ours) ✓ ✗ 300 93.24 93.54 ↑ 0.30 61.76 61.99

ResNet110 on CIFAR10 MACs ≈ 255.0M Params ≈ 1.73M

L1Norm-A (Li et al., 2017) ✓ ✗ 300 94.26 92.50 ↓ 1.76 61.58 64.16
L1Norm-B (Li et al., 2017) ✓ ✗ 300 94.26 94.04 ↓ 0.22 60.29 72.25
CC (Li et al., 2021) ✗ ✗ 300 94.26 94.29 ↑ 0.03 61.34 58.38
SFP (He et al., 2018a) ✗ ✓ 300 94.26 92.98 ↓ 1.28 58.70 60.29
FPGM (He et al., 2019) ✗ ✓ 300 94.26 94.11 ↓ 0.15 58.35 60.17
NPPM (Gao et al., 2021) ✗ ✗ 300 94.26 93.93 ↓ 0.33 60.81 56.87
HRank (Lin et al., 2020) ✗ ✓ 300 94.26 91.94 ↓ 2.32 61.90 62.49
DHP (Li et al., 2020) ✗ ✓ 300 94.26 92.73 ↓ 1.53 74.16 -
LRF (Joo et al., 2021) ✗ ✗ 300 94.26 94.10 ↓ 0.16 62.94 63.12
ChipNet* (Tiwari et al., 2021) ✗ ✓ 300 93.98 93.78 ↓ 0.20 62.41 -
PFP* (Liebenwein et al., 2020) ✗ - 182 93.57 94.58 ↑ 1.01 68.94 71.98
LeanFlex-GKP (ours) ✓ ✗ 300 94.26 94.35 ↑ 0.09 64.22 62.19
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Table 16: Results of ResNet20/32/56/110 on CIFAR10 dataset with a pruning rate of ≈ 43.75%.
Results in bold red indicate being the second best among comparisons.

Method DA IP RB BA Pruned ∆Acc ↓MACs ↓ Params
ResNet20 on CIFAR10 MACs ≈ 40.9M Params ≈ 0.27M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 91.99 92.18 ↑ 0.19 42.86 43.33
L1Norm-A (Li et al., 2017) ✓ ✗ 300 91.99 90.54 ↓ 1.45 43.11 35.19
L1Norm-B (Li et al., 2017) ✓ ✗ 300 91.99 90.83 ↓ 1.16 43.87 19.63
CC (Li et al., 2021) ✗ ✗ 300 91.99 91.80 ↓ 0.19 43.47 36.30
SFP (He et al., 2018a) ✗ ✓ 300 91.99 91.15 ↓ 0.84 40.32 41.85
FPGM (He et al., 2019) ✗ ✓ 300 91.99 91.51 ↓ 0.48 43.34 43.33
NPPM (Gao et al., 2021) ✗ ✗ 300 91.99 91.86 ↓ 0.13 43.49 35.19
LRF (Joo et al., 2021) ✗ ✗ 300 91.99 92.23 ↑ 0.24 43.08 43.70
DepGraph (Fang et al., 2023) ✓ ✗ 300 91.99 91.38 ↓ 0.61 42.96 41.11
KPGP* (Zhang et al., 2022b) ✓ ✗ 300 92.46 92.10 ↓ 0.36 55.10 55.70
PFP* (Liebenwein et al., 2020) ✗ - 182 91.40 91.36 ↓ 0.04 32.10 43.16
LeanFlex-GKP (ours) ✓ ✗ 300 91.99 92.49 ↑ 0.50 42.86 43.33

ResNet32 on CIFAR10 MACs ≈ 69.5M Params ≈ 0.46M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 92.80 92.99 ↑ 0.19 43.08 43.32
L1Norm-A (Li et al., 2017) ✓ ✗ 300 92.80 91.45 ↓ 1.35 42.63 45.69
L1Norm-B (Li et al., 2017) ✓ ✗ 300 92.80 91.58 ↓ 1.22 42.96 32.54
CC (Li et al., 2021) ✗ ✗ 300 92.80 93.01 ↑ 0.21 43.49 32.76
SFP (He et al., 2018a) ✗ ✓ 300 92.80 91.94 ↓ 0.86 41.89 42.67
FPGM (He et al., 2019) ✗ ✓ 300 92.80 92.41 ↓ 0.39 43.36 43.53
NPPM (Gao et al., 2021) ✗ ✗ 300 92.80 93.13 ↑ 0.33 43.00 29.74
DHP (Li et al., 2020) ✗ ✓ 300 92.80 92.26 ↓ 0.54 42.30 39.01
LRF (Joo et al., 2021) ✗ ✗ 300 92.80 93.04 ↑ 0.24 44.17 43.97
DepGraph (Fang et al., 2023) ✓ ✗ 300 92.80 93.04 ↑ 0.24 40.79 33.26
OTOv2 (Chen et al., 2023) ✗ ✓ 300 92.80 90.97 ↓ 1.83 38.28 44.77
OTOv2
(post-train) (Chen et al., 2023) ✗ ✓ 300 92.80 92.14 ↓ 0.66 49.77 35.80

KPGP* (Zhang et al., 2022b) ✓ ✗ 300 92.71 92.68 ↓ 0.03 43.1 43.4
LeanFlex-GKP (ours) ✓ ✗ 300 92.80 93.01 ↑ 0.21 43.08 43.32

ResNet56 on CIFAR10 MACs ≈ 126.6M Params ≈ 0.85M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 93.24 93.95 ↑ 0.71 43.23 43.49
L1Norm-A (Li et al., 2017) ✓ ✗ 300 93.24 92.44 ↓ 0.80 46.27 42.91
L1Norm-B (Li et al., 2017) ✓ ✗ 300 93.24 92.62 ↓ 0.62 43.02 31.30
CC (Li et al., 2021) ✗ ✗ 300 93.24 94.04 ↑ 0.80 44.82 27.78
SFP (He et al., 2018a) ✗ ✓ 300 93.24 93.15 ↓ 0.09 43.54 43.61
GAL (Lin et al., 2019a) ✗ ✓ 300 93.24 91.27 ↓ 1.97 22.38 17.94
FPGM (He et al., 2019) ✗ ✓ 300 93.24 93.60 ↑ 0.36 43.38 43.49
NPPM (Gao et al., 2021) ✗ ✗ 300 93.24 93.55 ↑ 0.21 44.02 29.54
HRank (Lin et al., 2020) ✗ ✓ 300 93.24 92.27 ↓ 0.97 37.39 31.54
DHP (Li et al., 2020) ✗ ✓ 300 93.24 92.42 ↓ 0.82 42.09 43.73
LRF (Joo et al., 2021) ✗ ✗ 300 93.24 93.93 ↑ 0.69 43.89 42.56
DepGraph (Fang et al., 2023) ✓ ✗ 300 93.24 93.79 ↑ 0.55 39.82 26.71
OTOv2 (Chen et al., 2023) ✗ ✓ 300 93.24 91.57 ↓ 1.67 36.96 43.70
OTOv2
(post-train) (Chen et al., 2023) ✗ ✓ 300 93.24 93.02 ↓ 0.22 47.70 35.01

KPGP* (Zhang et al., 2022b) ✓ ✗ 300 93.75 93.72 ↓ 0.03 43.2 43.5
LeanFlex-GKP (ours) ✓ ✗ 300 93.24 94.00 ↑ 0.76 43.23 43.49

ResNet110 on CIFAR10 MACs ≈ 255.0M Params ≈ 1.73M

TMI-GKP (Zhong et al., 2022) ✓ ✗ 300 94.26 94.90 ↑ 0.64 43.31 43.52
L1Norm-A (Li et al., 2017) ✓ ✗ 300 94.26 92.75 ↓ 1.51 43.74 44.56
L1Norm-B (Li et al., 2017) ✓ ✗ 300 94.26 92.96 ↓ 1.30 43.17 36.69
CC (Li et al., 2021) ✗ ✗ 300 94.26 94.31 ↑ 0.05 44.54 39.47
SFP (He et al., 2018a) ✗ ✓ 300 94.26 94.44 ↑ 0.18 43.42 43.52
GAL (Lin et al., 2019a) ✗ ✓ 300 94.26 93.42 ↓ 0.84 29.14 31.37
FPGM (He et al., 2019) ✗ ✓ 300 94.26 94.18 ↓ 0.08 43.39 43.52
NPPM (Gao et al., 2021) ✗ ✗ 300 94.26 94.16 ↓ 0.10 42.46 35.19
HRank (Lin et al., 2020) ✗ ✓ 300 94.26 92.96 ↓ 1.30 18.57 5.38
DHP (Li et al., 2020) ✗ ✓ 300 94.26 92.53 ↓ 1.73 60.25 64.58
LRF (Joo et al., 2021) ✗ ✗ 300 94.26 94.49 ↑ 0.23 43.37 42.30
OTOv2 (Chen et al., 2023) ✗ ✓ 300 94.26 91.58 ↓ 2.68 37.83 42.44
OTOv2
(post-train) (Chen et al., 2023) ✗ ✓ 300 94.26 93.99 ↓ 0.27 38.11 42.50

KPGP* (Zhang et al., 2022b) ✓ ✗ 300 93.76 94.01 ↑ 0.25 43.3 43.5
LeanFlex-GKP (ours) ✓ ✗ 300 94.26 94.92 ↑ 0.66 43.31 43.52
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