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ABSTRACT

Recent years have witnessed growing interest and emerging successes of bi-level
learning in a wide range of applications, such as meta learning and hyper-parameter
optimization. While current bi-level learning approaches suffer from high memory
and computation costs especially for large-scale deep learning scenarios, which
is due to the hierarchical optimization therein. It is therefore interesting to know
whether the hierarchical structure can be untied for efficient learning. To answer
this question, we introduce NSGame that, transforming the hierarchical bi-level
learning problem into a parallel Nash game, incorporates the tastes of hierarchy by
a very small scale Stackelberg game. We prove that strong differential Stackelberg
equilibrium (SDSE) of the bi-level learning problem corresponds to local Nash
equilibrium of the NSGame. To obtain such SDSE from NSGame, we introduce a
two-time scale stochastic gradient descent (TTS-SGD) method, and provide theo-
retical guarantee that local Nash equilibrium obtained by the TTS-SGD method is
SDSE of the bi-level learning problem. We compare NSGame with representative
bi-level learning models, such as MWN and MLC, experimental results on class
imbalance learning and noisy label learning have verified that the proposed NS-
Game achieves comparable and even better results than the corresponding meta
learning models, while NSGame is computationally more efficient.

1 INTRODUCTION

min P

min Q min Q2

min Pmin Q1

Bi-level Learning NSGame for Bi-level Learning

Hierarchical structure Parallel structure Q1 SubproblemsQ2

Figure 1: Comparison of the current method for
bi-level learning with the proposed NSGame.

Bi-level learning, which models learning problem
with leader and follower hierarchical structure by a
bi-level optimization problem, has achieved great
success in a diverse set of deep learning scenar-
ios, such as few shot learning Finn et al. (2017);
Chen et al. (2021b), robust deep learning Ren et al.
(2018); Shu et al. (2019), learning to optimize
Chen et al. (2021a), adversarial learning Tian et al.
(2021) as well as reinforcement learning Stadie et al.
(2020). Bi-level learning is also a promising method
to replace the hand-crafted learning preconditions,
such as the hyper-parameters Franceschi et al. (2018); Wang et al. (2021), network architectures Shaw
et al. (2019), data augmentation Hataya et al. (2022) as well as label correction Wang et al. (2020),
with those learned in a data-driven way. Recent years have witnessed the continue breakthrough of
bi-level learning in more research fields Hospedales et al. (2021); Vanschoren (2018), especially for
learning and vision problem Liu et al. (2021).

Mathematically, bi-level learning is formulated as a two-player Stackelberg game with leader and
follower hierarchical optimization structure, as

min
x∈Rn

f1(x,y)

s.t. y ∈ arg min
z∈Rm

f2(x, z)
(1)

The leader aims to minimize its cost f1(x,y) through its strategy x and the best response y ∈
arg minz f2(x, z) of the follower given x. The scale of the follower’s problem is decisive to the
optimization of Eq. (1). When the dimension of the optimization variable y is not very large,
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gradient descent algorithm can be used to solve Eq. (1) efficiently. While for practical applications
in deep learning as aforementioned, the follower aims to train a very deep neural network with
millions of network parameters (denoted by y). In these situations, the hierarchical optimization
structure makes the learning process of Eq. (1) computationally more challenging Dempe (2018),
even though the dimension of x is in general very small compared to that of y (m� n). To be more
specific, minimizing f1(x,y) with simple first-order gradient based method need to compute the
total derivative Df1 = D1f1 +Dy>D2f1

1. According to implicit function theorem, Dy involves
computing the inverse of matrix of sizem×m, which is both time and memory consuming, especially
for large m. Although simplified methods have been developed to approximate the Jacobian matrix
Dy with convergence guarantee Dempe (2018); Shaban et al. (2019); Baydin et al. (2018), they
need to compute the second-order derivatives and extending the computational graph, particularly
for learning with deep neural networks. In consequence, the computation and memory costs of
these methods are still demanding, which leads to the super-slow training of current meta learning
approaches, such as Ren et al. (2018); Shu et al. (2019); Wang et al. (2020).

Suffering from the computational difficulties of the large-scale bi-level optimization, it is therefore
very interesting and important to know whether the hierarchical optimization structure in the large-
scale bi-level learning can be untied for efficient learning. In this paper, we aim to answer this
question by introducing a NSGame model which unties the hierarchical structure by splitting the
follower’s large-scale problem into two sub-problems. Then we transform the Stackelberg game into
hybrid Nash and Stackelberg game based on these two sub-problems. NSGame incorporates some
tastes of hierarchy by a small-scale Stackelberg game, as illustrated in Fig. 1. In Fig. 1, the left part is
a bi-level learning problem with hierarchical optimization structure, the right part is our NSGame
with parallel optimization structure among two sub-problems where one is a small scale hierarchical
optimization problem. NSGame alleviates the computational difficulties of current bi-level learning
as long as the scale of its Stackelberg game sub-problem is small.

Related works. The Stackelberg game Eq. (1) offers an elegant and mathematically solid framework
to study meta learning and hyper-parameter learning Liu et al. (2021); Franceschi et al. (2018).
Specifically, the leader’s variable can be the initialization of the network parameters as MAML Finn
et al. (2017), the learning rate in SGD Shu et al. (2020), parameters of the meta weight net MWN
Shu et al. (2019) for sample re-weighting, and parameters of the meta label corrector for noisy label
learning Wang et al. (2020). Please refer to Hospedales et al. (2021); Vanschoren (2018) on bi-level
meta learning for more applications. Although the bi-level hierarchical structure in Eq. (1) benefits
the mathematical modeling of a variety of learning problems, it brings challenge for computation
especially for deep learning problems as aforementioned.

In recent years, great efforts have been made to improve the computational efficiency of algorithms
for solving bi-level learning model Eq. (1). According to the computation of the Jacobian matrix
Dy, most of the existing methods can be classified into two categories: implicit method and explicit
method. The works in Rajeswaran et al. (2019); Lorraine et al. (2020) use implicit function theorem
to obtain Df1 without storing the internal variables and extending computational graph, while they
assume that the inner loop converges to the optimal solution of the follower’s problem, which is
not practical for large-scale problems. Explicit approximated gradient methods such as Luketina
et al. (2016) uses one inner loop, few inner loops Maclaurin et al. (2015) or many inner loop steps
Shaban et al. (2019); Hong et al. (2020) to approximate the Dy. Although the works in Luketina
et al. (2016); Maclaurin et al. (2015); Shaban et al. (2019) have been practically used as in Shu et al.
(2019); Wang et al. (2020); Lee et al. (2019); Yao et al. (2021), these methods need to compute the
second-order derivative D21f2 as an approximation of Dy, which extends the computation graph
and imposes computational and memory burden. Very recently, Bohdal et al. (2021) introduced
EvoGrad to compute the gradient Df1 using evolutionary techniques. Specifically, EvoGrad uses
zeroth-order evolutionary method for solving the follower’s problem and first-order gradient descent
for minimizing the leader’s cost. Yet EvoGrad is still not applicable to very large scale models when
using larger model population.

Contribution. Different to these existing methods, we introduce a new model to characterize the
bi-level learning problem Eq. (1). The main contributions of this paper are three-fold: (1) We
propose a theoretically sound and practically efficient approach, NSGame, for bi-level learning.

1Although the best response of the follower may not be unique, sufficient conditions such as D2f2(x,y) = 0
and det(D2

2f2) 6= 0 guarantee that Dy is well defined.

2



Under review as a conference paper at ICLR 2023

The computation of NSGame involves only a small scale bi-level learning sub-problem which is
easy to solve compared to the original large-scale bi-level learning model; (2) We prove that strong
differential Stackelberg equilibrium (SDSE) of the bi-level learning problem corresponds to local
Nash equilibrium of our NSGame. To obtain SDSE, we develop a two-time scale stochastic gradient
(TTS-SGD) method to solve NSGame, and provide theoretical guarantee for the convergence of
TTS-SGD to SDSE; (3) Experimental results on toy example, class imbalance learning and noisy
label learning verify the effectiveness and efficiency of our proposed TTS-SGD for solving NSGame.
Specifically, NSGame achieves comparable performance with representative methods such as MWN
Shu et al. (2019), TBP Shaban et al. (2019) for MWN Shu et al. (2019) and MLC Wang et al. (2020).

Organization. This paper is organized as follows. Section 2 introduces some preliminary works
and definitions. Section 3 presents our NSGame model and theoretical analysis on the relation
between NSGame and bi-level model, develops a two-time scale stochastic gradient descent method
(TTS-SGD). Section 4 gives the theoretical analysis on the convergence of TTS-SGD algorithm to
the optimal solution of the bi-level model. Section 5 demonstrates the effectiveness of NSGame on
toy example and real applications. Finally, we conclude our work at Section 6.

Notation. Throughout this paper, we denote by Dif as the derivative of f w.r.t. the i-th variable.
Dijf represents the partial derivative of Dif w.r.t. the j-th variable (i 6= j), D2

i f = Diif represents
the second-order derivative of f w.r.t. the i-th variable and Df represents the total derivative.
Specifically, for f1(x,y) in Eq. (1), D1f1 indicates the derivative of f1 w.r.t. the first variable x.
D2f1 means the derivative of f1 w.r.t. the second variable y. As y is an implicit function of x, Df1

is D1f1 + Dy>D2f1 with Dy the derivative of y w.r.t. x as Dy = −(D2
2f2) ◦ D21f2 (Implicit

function theorem). D2f1 is the second-order total derivative. M � 0 denotes the matrixM is positive
definite. a� b means a is much smaller than b.

2 PRELIMINARIES

We now introduce the games related to the bi-level learning and our proposed model, present the
concepts of equilibriums of these games, and characterize their optimality condition. Specifically,
consider a non-cooperative game between two players, with costs f1(x,y) : X × Y → R for the
first player and f2(x,y) : X × Y → R for the second player, where X ⊆ Rn, Y ⊆ Rm denote the
action space of first and second player respectively. Throughout this paper, we assume f1 and f2 are
sufficiently smooth, and the action space X × Y are continuous.

The games we study can be classified into Stackelberg game and Nash game according to the behavior
of these two players: in leader-follower play or simultaneous play. Eq. (1) presents a Stackelberg
game where the two players play in leader-follower manner. This contrasts with Nash game where
the two players play simultaneously as

(P1) min
x∈X

f1(x,y) (P2) min
y∈Y

f2(x,y). (2)

In Eq. (2) the two players minimize their costs through their own strategy given the other, and the
optimization is in single level. The learning algorithm for both the Stackelberg game and the Nash
game can be implemented through myopic update roles such as gradient descent (GD/SGD).

Given these two kinds of games, we then introduce the corresponding equilibriums which are critical
for our optimization and follow up analysis.

Definition 2.1. (Differential Stackelberg Equilibrium (DNE)). Fiez et al. (2020) For the Stackelberg
game in Eq. (1), the strategy (x∗,y∗) is a differential Stackelberg equilibrium, if Df1(x∗,y∗) =
0, D2f1(x∗,y∗) � 0, and D2f2(x∗,y∗) = 0, D2

2f2(x∗,y∗) � 0.

Definition 2.2. (Differential Nash Equilibrium (DSE)). Ratliff et al. (2016) For the Nash
game in Eq. (2), the strategy (x∗,y∗) is a differential Nash equilibrium, if D1f1(x∗,y∗) =
0, D2

1f1(x∗,y∗) � 0, and D2f2(x∗,y∗) = 0, D2
2f2(x∗,y∗) � 0.

The equilibriums are the only optimal that we can obtain by first-order algorithm such as GD/SGD. It
has been proved in Mazumdar et al. (2020); Jin et al. (2020) that DNE and DSE are closely related to
local Nash equilibrium and local Stackelberg equilibrium for general sum game and zero sum games.
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3 METHODOLOGY

3.1 THE PROPOSED NSGAME MODEL

To alleviate the computation and memory burden for solving Eq. (1), we propose to split the
follower’s problem into two subproblems with variables y1 ∈ Y1 ⊆ Rm1 and y2 ∈ Y2 ⊆ Rm2 such
that Y = Y1×Y2 ⊆ Rm. Then we introduce the following hybrid Nash and Stackelberg game model
(NSGame) as

(P1) min
y1∈Y1

f2(x,y1,y2) (P2)


min
x∈X

f1(x,y1,y2)

s.t. y2 ∈ arg min
z∈Y2

f2(x,y1, z)
(3)

The model Eq. (3) is a Nash game with two players where (P1) aims to minimize f2 w.r.t. y1 given
x and y2, and (P2) aims to minimize f1 w.r.t. x given y1. Particularly, the problem (P2) is a
Stackerlberg game with very small scale lower-level subproblem (m2 < m1). For bi-level learning
in deep neural networks, y2 can be the parameter a sublayer (e.g. “FC layer” in ResNet) and y1 is
the parameter of the remaining layers. In this case, the follower’s problem of (P2) can be strongly
convex (with ‖y2‖22 regularization) with single optimal.

NSGame in Eq. (3) unties the bi-level hierarchical structure of the Eq. (1) to single level parallel
structure, therefore first-order methods for solving Eq. (3) can be more efficient than solving Eq. (1),
especially for bi-level optimization with very large-scale lower-level subproblem such as meta
learning Liu et al. (2021); Shu et al. (2019); Lee et al. (2019). Specifically, one only needs to compute
and store the second-order derivate D31f2 of a small scale subproblem where m2 � m. Since Eq. (3)
is easy to solve, it is therefore very important to know can we obtain the solution of bi-level model in
Eq. (1) from NSGame in Eq. (3). The answer is affirmative under some mild conditions.

3.2 THEORETICAL ANALYSIS

Before presenting our main results, we first give a sketch of our analysis and then introduce the
definition of strong differential Stackelberg equilibrium which is critical to our theoretical results.

Sketch of analysis. To answer the aforementioned question, we need to connect DSE of Eq. (1) with
DNE of Eq. (3) and try to obtain the DSE of Eq. (1) by solving Eq. (3). To this end, we present three
theorems in this section (Theorem 3.1, Theorem 3.2 and Theorem 3.3) to show the relation between
DSE of Eq. (1) and DNE of Eq. (3). Theorem 3.1 reveals that the strong differential Stackelberg
equilibrium (SDSE) of Eq. (1) corresponds to the DNE of Eq. (3). Theorem 3.2 shows that under
the coherent condition every DSE of Eq. (1) is a DSDE, thus it corresponds to the DNE of Eq. (3).
Theorem 3.3 indicates that the DNE with certain structure corresponds to the DSE of Eq. (1).
Definition 3.1. (Strong Differential Stackelberg Equilibrium(SDSE)) For the Stackelberg game
Eq. (1), a joint strategy (x∗,y∗) ∈ X × Y is a strong differential Stackelberg equilibrium if
D1f1(x∗,y∗) = 0, D2f1(x∗,y∗) = 0, D2f2(x∗,y∗) = 0, D2

2f2(x∗,y∗) � 0 and[
D2

1f1 D12f1

D21f1 D2
2f1

]
� 0. (4)

It is easy to verify that for Eq. (1) every SDSE is a DSE, but not vice versa. Moreover, SDSE is very
important equilibrium for Stackelberg game and our NSGame, we have the following results.
Proposition 3.1. If the Stackelberg game Eq. (1) has SDSE, then its global optimal must be a SDSE.
Theorem 3.1. Let (x∗,y∗) ∈ X × Y be a SDSE of Eq. (1) with y∗ = (y∗1 ,y

∗
2) ∈ Y1 × Y2, then

(x∗,y∗1 ,y
∗
2) is a DNE of Eq. (3).

Proposition 3.2. If the Stackelberg game Eq. (1) has SDSE, then the pareto optimal Nash equilibrium
of the corresponding NSGame Eq. (3) is the global optimal of Eq. (1).

The Proposition 3.1 and Proposition 3.2 show some interesting properties of SDSE. The Theorem 3.1
indicates that SDSE of the Stackelberg game Eq. (1) is a DNE of Eq. (3). While in general, not
every DSE of a Stackelberg game Eq. (1) is SDSE. Next, we show that under some mild conditions
Stackelberg game has only SDSE.
Definition 3.2. (Coherent Condition) Two functions f1(x,y) and f2(x,y) are said to be coherent if
there exits x∗ such that local optimality of y∗ for f2(x∗,y) implies the local optimality of (x∗,y∗)
for f1(x,y).
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Theorem 3.2. If the two functions f1(x,y) and f2(x,y) in Eq. (1) are coherent, then every DSE of
Eq. (1) is a SDSE and thus is a DNE of Eq. (3).

Coherent is a mild condition for a lot of real applications such as meta learning for hyper-parameter
optimization Franceschi et al. (2018), meta learning for class imbalance learning Menon et al. (2020);
Shu et al. (2019) and noisy label learning Patrini et al. (2017); Wang et al. (2020). Specifically, in
hyper-parameter optimization, x is the hyper-parameter, y can be the parameters of a deep network.
Then given an optimal x∗, we aim to learn the optimal y∗ which not only minimizes the training loss,
but also minimizes the validation loss, thus the training loss and the validation loss are coherent. With
coherent condition, Theorem 3.2 indicates that the DSE of Eq. (1) is a DNE of the corresponding
NSGame Eq. (3).

The above results reveal that every SDSE must be a DNE (SDSE⇒ DNE). While in general not
every DNE is a SDSE (DNE ; SDSE). The following questions then arise naturally: 1) What kind of
DNE in Eq. (3) is SDSE? 2) Can we guarantee to obtain such DNE? To answer the first question, we
need to introduce the following assumption:

Assumption 3.1. 1) Functions f1(x,y) and f2(x,y) are coherent and f1(x,y) is separable as
f1(x,y) = h(x)+ψ(y1,y2); 2) The positive definiteness ofD2

2f1 is consistent withD2
2f2, ∀(x,y) ∈

X × Y ; 3) For function f1(x,y1,y2), the equality D1f1 +Dy>2 D3f1 = 0 implies Dy>1 D2f1 = 0.

The assumptions are mild for a variety of bi-level learning problems, such as, hyper-parameter
learning Franceschi et al. (2018), meta learning Menon et al. (2020); Shu et al. (2019); Patrini et al.
(2017); Wang et al. (2020). With these assumptions, we have the following result:

Theorem 3.3. Assume the above assumptions are satisfied by the Stackelberg game Eq. (1). Let
(x∗,y∗1 ,y

∗
2) be a DNE of Eq. (3). If y∗ = (y∗1 ,y

∗
2) is a function of x∗, that is y∗ = φ(x∗), and

D2
2f2 � 0 for f2(x,y) at (x∗,y∗), then (x∗,y∗1 ,y

∗
2) is a SDSE.

Theorem 3.3 indicates that if y∗1 and y∗2 are closely related to x∗ and they minimize f2(x,y1,y2),
then the local Nash equilibrium corresponds to the DSE of Eq. (1). Proofs of the theoretical results
are provided in supplementary materials (SM) Section A. To answer the second question, we need an
optimization method which is able to find an equilibrium (x∗,y∗1 ,y

∗
2) satisfying (y∗1 ,y

∗
2) = φ(x∗).

3.3 TWO-TIME SCALE SGD ALGORITHM

First-order algorithm, such as gradient descent (GD) or stochastic gradient descent (SGD)2, can be
used to optimize Eq. (3). While to enhance the hierarchical structure between x and y, such that at
equilibrium (x∗,y∗1 ,y

∗
2), y∗1 and y∗2 is function of x∗ as (y∗1 ,y

∗
2) = φ(x∗), we introduce a two-time

scale SGD for our NSGame. Specifically, the variables in (P1) Eq. (3) is updated by

yt+1
1 = yt

1 − αtĝ1(xt,yt
1,y

t
2) (5)

where ĝ1 is the gradient of f2 w.r.t. y1 as D2f2. While (P2) in Eq. (3) is bi-level optimization with
lower-level variable y2, here we adopt an online update strategy as Shu et al. (2019) to update y2 and
x through a single inner loop as 3

yt+1
2 = yt

2 − αtĝ2(xt,yt
1,y

t
2) (6)

xt+1 = xt − βtĥ(xt,yt
1,y

t+1
2 ) (7)

where ĝ2 is the gradient of f2 w.r.t. y2 as D3f2 and ĥ is full gradient of f1 w.r.t. x as
D1f1 +Dy>2 D3f1. As the optimal y2 in Eq. (3) is approximated by yt+1

2 in Eq. (6), thus Dy2 is
approximated by the gradient of yt+1

2 w.r.t. x, Dy2 = −αt
∂ĝ2
∂x = −αtD31f2. As the dimension of

D31f2 for f2(x,y1,y2) is generally much smaller than D21f2 for f2(x,y) with y = (y1,y2), the
training of our NSGame using Eq. (7) is much more efficient than existing bi-level learning methods
Menon et al. (2020); Shu et al. (2019); Lee et al. (2019); Wang et al. (2020); Yao et al. (2021).

2In this paper, we mainly concern the learning problems where only noisy gradient is available.
3Note that other advanced bi-level optimization algorithms with multiple inner loop such as Maclaurin et al.

(2015); Shaban et al. (2019) can also be used to solve the lower-level problem of (P2) in Eq. (3), while we find
single inner loop is sufficient to guarantee the convergence as proved in Shu et al. (2019).
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Algorithm 1: TTS-SGD for NSGame.
Input : Initialization of x, y = (y1,y2).

Number of iterations T and the
learning rate α0, β0.

Output :Optimal variables x∗,y∗1 ,y
∗
2 .

while t ≤ T do
Update learning rate αt and βt ;
Update variable y1 of (P1) by Eq. (5) ;
Update variable y2 of (P2) by Eq. (6) ;
Update variable x of (P2) by Eq. (7);

end

More importantly we employ two-time scale
learning rule Borkar (1997); Heusel et al. (2017)
by setting αt and βt of different orders. Specif-
ically, the learning rate βt of the variable x is
much smaller than the learning rate αt of y1

and y2. In this way, the variable x is almost
static when updating y1 and y2 in the learning
process until (y1,y2) converges to an equilib-
rium φ(x). In consequence, the variable x will
lead the entire learning process, which is impor-
tant for our algorithm to converge to a SDSE
of Eq. (1). We summarize our two-time scale
stochastic gradient descent (TTS-SGD) algorithm in Algorithm 1.

4 CONVERGENCE AND COMPLEXITY ANALYSIS

Two-time scale learning plays an important role in the asymptotic convergence analysis of stochastic
approximation Borkar (1997); Prasad et al. (2015), it has wide applications in learning continue
games such as GAN Heusel et al. (2017) and Bi-level optimization Hong et al. (2020). In this section,
we study the convergence of TTS-SGD to the SDSE of Eq. (1), and analyze the time and memory
complexity of TTS-SGD.

4.1 CONVERGENCE ANALYSIS.

In our NSGame and its application to learning problems, only noisy gradient is available, therefore
the update of x, y1 and y2 are actually

xt+1 = xt − βth(xt,yt
1,y

t
2) + Nt

x

yt+1
1 = yt

1 − αtg1(xt,yt
1,y

t
2) + Nt

y1

yt+1
2 = yt

2 − αtg2(xt,yt
1,y

t
2) + Nt

y2

, (8)

where h(xt,yt
1,y

t
2), g1(xt,yt

1,y
t
2) and g2(xt,yt

1,y
t
2) are the exact gradient of x,y1 and y2. Nt

x,
Nt
y1

and Nt
y2

are stochastic errors.

To prove the convergence of TTS-SGD, we make the following assumptions as in Heusel et al. (2017):

1. The gradients g1, g2 and h are Lipschitz.

2.
∑∞

t=1 αt =∞,
∑∞

t=1 α
2
t <∞,

∑∞
t=1 βt =∞,

∑∞
t=1 β

2
t <∞, βt = o(αt).

3. The stochastic gradient error Nt
x, Nt

y1
and Nt

y2
are martingale difference sequences w.r.t. the

increasing σ-fieldFn = σ(xt,yt
1,y

t
2,N

t
x,N

t
y1
,Nt

y2
, t ≤ n), n ≥ 0 with E

[
‖Nn

x‖2|Fn

]
≤

B0, E
[
‖Nn

y1
‖2|Fn

]
≤ B1 and E

[
‖Nn

y2
‖2|Fn

]
≤ B2, where B0, B1 and B2 are positive

deterministic constant.

4. For each x, the ODE ẏ(t) = g(x,y(t)) where g(x,y(t)) is the gradient of f2(x,y(t)) w.r.t.
y = (y1(t),y2(t)), has a locally asymptotically stable attractor φ(x) with the domain of
f2 such that φ is Lipschitz. The ODE ẋ(t) = h(x(t), φ(x(t))) has a locally asymptotically
stable attractor x∗ with the domain of f1.

5. supt ‖xt‖ ≤ ∞, supt ‖yt
1‖ ≤ ∞ and supt ‖yt

2‖ ≤ ∞.

The following theorem indicates the convergence of TTS-SGD.

Theorem 4.1. Borkar (1997) The iterates Eq. (5), Eq. (7) and Eq. (6) converges to (x∗,y∗1 ,y
∗
2)

where (y∗1 ,y
∗
2) = φ(x∗) a.s., if the above assumptions are satisfied.

The solution (x∗, φ(x∗)) is a stationary local Nash equilibrium of Eq. (3) Heusel et al. (2017), since
x∗ and φ(x∗) are locally asymptotically stable attractors with h(x∗, φ(x∗)) = 0 and g(x∗, φ(x∗)) =
0. The obtained local Nash equilibrium (y∗1 ,y

∗
2) is a function of x∗, therefore, there are strong

hierarchical relation between x∗ and the corresponding (y∗1 ,y
∗
2). According to Theorem 3.3 and

Theorem 4.1 we know that TTS-SGD for solving Eq. (3) converges to a SDSE of the Eq. (1).
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Remark. Note that using two time scales is very important for our algorithm converge to the SDSE of
Eq. (1), as the separated time scales enhance the hierarchical structure between the learning variables.
Specifically, the slower update variable becomes the leader variable and fast update variable becomes
the follower variable. Without the separated time scales, the update process may not converge as
analyzed in Prasad et al. (2015); Fiez et al. (2020). Our results in Fig. 2 also verifies that using
separate learning rate properly is important for our algorithm to converge.

4.2 COMPLEXITY ANALYSIS.

Table 1: Comparisons of time and mem-
ory complexity.

Model Time
requirement

Memory
requirement

Bi-level O(mn) O(m+ n)
NSGame O(dn) O(d+ n)

The computation of the vanilla bi-level model Eq. (1) using
gradient based methods Luketina et al. (2016); Maclau-
rin et al. (2015); Shaban et al. (2019) requires higher-
order gradients D21f2. For bi-level learning in deep net-
works, such as hyper-parameter learning and meta learn-
ing, higher-order gradient computation is especially time
and memory consuming when the dimension of y is very
large, since it needs to store all the intermediate variables in memory and extend the computa-
tional graph for back-propagation on back-propagation. Specifically, the big-O time and memory
requirements for computing D21f2 is O(mn) and O(m+ n).

In contrast to vanilla model Eq. (1), our NSGame only needs to compute a small scale second-order
gradients D31f2 ∈ Rd×n(d � m) for f2(x,y1,y2). The benefits of computing D31f2 ∈ Rd×n

over D21f2 ∈ Rm×n for f2(x,y)are two-fold. On one hand, since d � m, the time requirement
of D31f2 (O(dn)) is much smaller than that of D21f2 (O(mn)). On the other hand, y2 can be the
parameters of one layer or a shallow subnetwork of a deep network, such as the FC layer of ResNet
He et al. (2016), thus we do not need to store the intermediate variables and extend the corresponding
computational graph. The memory requirements then reduce to O(d+ n). Therefore, gradient based
method for solving NSGame can be not only computational more efficient but also memory economic
compare to the vanilla bi-level model. We summarize the time and memory requirements for solving
bi-level model Eq. (1) vs our NSGame using gradient based methods in Table 1.

5 EXPERIMENTS

In this section, we first conduct experiments on toy example to verify the convergence of TTS-GD
and the effectiveness of our proposed NSGame for solving the corresponding bi-level optimization
problem. This numerical example serves as proof-of-concept problem and is easy to understand. We
then apply NSGame for two realistic applications: class imbalance learning and noisy label learning.
Two meta learning models MWN Shu et al. (2019) for class imbalance learning, MLC Wang et al.
(2020) for noisy label learning are the base models for our NSGame. We provide a brief overview
of each problem and present experimental results and analysis of NSGame compared to MWN and
MLC. More detailed experimental settings are provided in the supplementary material (SM).

5.1 TOY EXAMPLE

To verify the convergence of TTS-GD to the optimal solution of the Stackelberg game, we consider
min
x∈Rn

1

2
‖x− y1‖22 +

1

2
‖y2 − e‖22

(y1,y2) = arg min
z1∈Rn,z2∈Rn

−x>z1 +
1

2
‖z1‖22 +

1

2
‖x− z2‖22

(9)

where n = 5 and e = (1, 1, 1, 1, 1)>. x is the leader’s variable, which aims to minimize the upper-
level objective through itself and the follower’s strategy y1,y2. One can easily obtained the optimal
solution of Eq. (9) by simple calculation, that is x∗ = y∗1 = y∗2 = (1, 1, 1, 1, 1)>. The problem
Eq. (9) satisfies the assumptions in Section 3.2. Then we construct the corresponding NSGame as:

(P1) min
y1∈Rn

−x>y1 +
1

2
‖y1‖22 (P2)


min
x∈Rn

1

2
‖x− y1‖22 +

1

2
‖y2 − e‖22

s.t. y2 = arg min
y2∈Rn

1

2
‖x− y2‖22

(10)

where y1 aims to solve the objective of (P1) given x, and x aims to solve the upper-level objective
of (P2) through itself and y2 given y1.
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We employ GD to solve Eq. (9) and GD with two-time scale (TTS-GD) learning rate to solve Eq. (10),
the experimental results are shown in Fig. 2. In the first row of Fig. 2, we set the learning rate
for update of x as 0.005 and learning rate for update y1 and y2 as 0.5. We can see that TTS-GD
for solving Eq. (10) converges to the optimal solution of Eq. (9) for different initialization, which
indicates that one can solve Eq. (9) by optimizing Eq. (10). We reverse the learning rate in the second
row of Fig. 2, that is y1 and y2 update slow, while x updates fast, one can see that gradient descent
for solving NSGame does not converge to the optimal solution of Eq. (9), which indicates that time
scale is very important for GD converges to our desired solution as shown in Theorem 4.1.

5.2 CLASS IMBALANCE LEARNING
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Figure 2: Illustration of the convergence of TTS-GD for solv-
ing NSGame Eq. (10) to the optimal solution of Stackelberg
game Eq. (9).

Class imbalance learning Ren et al.
(2018) deals with the problem where
the number of samples for each class
follows long-tailed distribution, there-
fore learning on such imbalanced
dataset will seriously degenerate the
performance of the learned model on
test set. In this task, we work on long-
tailed version of CIFAR datasets and
apply NSGame based on the model
MWN Shu et al. (2019) which is pre-
sented as a bi-level learning problem.
More experimental settings about the
data generation and analysis on the
problem setting are provided in sup-
plementary material Section B.
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Figure 3: Comparison of dif-
ferent network layers as y2.
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Figure 4: Comparisons
of the meta loss.

Ablation study. We take ResNet 32 as
our backbone network, to construct NS-
Game model, and split the network pa-
rameters (y in Eq. (1)) into different parts
“Layer 1, Layer 2, Layer 3, FC layer”, ac-
cording to the network architecture. We
conduct ablation study by setting the pa-
rameters of each parts as y2 in Eq. (3).
Specifically, if y2 is the parameter of the
“FC layer”, then y1 is the parameters of
the remaining layers. We show in Fig. 3
the performance (orange bar) and com-

putational time (blue bar) of NSGame under these different settings. It can be seen from Fig. 3 that
the performances are comparable in all cases, which means that we can take any parts of the network
layers to be y2. While the computational time for taken y2 to be different layers are quite different.
Since we need to compute second order derivative D31f2 according to Eq. (7), if y2 is the parameters
of the “Layer 1”, then we need to extend the entire computational graph, therefore costs time and
memory. While taking parameters of the “FC layer” as y2 does not need to extend the computational
graph too much, therefore it is more efficient than other settings 4.

To verify whether NSGame is a good approximation to the MWN, we plot the meta loss of MWN
and NSGame in Fig. 4. It can be seen from Fig. 4 that the meta loss of NSGame is almost identical
to MWN especially in the final stage of training, which indicates that our TTS-SGD for solving
NSGame follows almost the same optimization path as SGD for MWN and converges to the optimal
of MWN. The experimental results echoes the results presented by Theorem 4.1. More analysis are
provided in Appendix B.3 and Appendix B.4.

Experiments on CIFAR. We then test NSGame on long-tailed CIFAR 10 and CIFAR 100 Cui et al.
(2019) datasets. We follow the same experimental settings as MWN Shu et al. (2019) and compare
our results with MWN and another approximated gradient based bi-level optimization method TBP
Shaban et al. (2019). In Table 2, we report the top-1 mean accuracy (±std) of MWN, TBP and our

4In the follow up applications we take parameters of the “FC layer” as y2 in Eq. (3).
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NSGame under class imbalance factor 20, 50, 100 for 3 repeatitions. WMN† indicates that we report
our running results using the original code provided by the authors. One can see that the NSGame
achieves comparable and even better results than MWN and TBP for all cases in CIFAR 10 and
CIFAR 100. Importantly, NSGame is computationally more efficient than MWN and TBP, it takes
about 0.07 Seconds for one training iteration of NSGame under ResNet-32 backbone, while MWN
costs about 0.15 Seconds and TBP takes about 0.17 Seconds for one training iteration. As for the
memory costs, MWN requires 235MB and TBP needs 242MB extra memory for computing the
second order derivative, while NSGame requires almost no extra memory for computing the second
order derivative, these are consistent with theoretical results in Section 4.2. More experiments on
large scale networks are provided in supplementary materials which demonstrate that the advantage
of NSGame over MWN is more significant for deeper networks as ResNet-101 and ResNet-152.

5.3 NOISY LABEL LEARNING

Table 2: Test accuracy (%) and costs(s/MB) of
ResNet 32 on long-tailed CIFAR-10 and CIFAR-
100 datasets.

Dataset Long-Tailed CIFAR-10
Imbalance Costs 100 50 20

MWN† 0.152/235 75.35±0.41 80.10±0.52 84.90±0.34

TBP 0.173/242 75.45±0.32 80.22±0.43 85.07±0.37

NSGame 0.068/0.056 75.42±0.22 80.30±0.34 85.21±0.38

Dataset Long-Tailed CIFAR-100
MWN† 0.164/235 42.01±0.39 46.0±0.45 53.55±0.33

TBP 0.188/241 42.08±0.41 46.17±0.36 53.6±0.44

NSGame 0.071/0.17 41.75±0.19 46.34±0.31 53.72±0.26

We further consider a more practical problem
where we learn a robust network from noisy
labeled data. Two representative meta learn-
ing methods MWN Shu et al. (2019) and MLC
Wang et al. (2020) are regarded as our base mod-
els, specifically, we apply our NSGame method
to solve these two bi-level learning problem re-
spectively. One can easily verify that the models
of MWN and MLC for noisy label learning sat-
isfy the assumption of our NSGame (Please refer
to SM Section C for experimental settings and more analysis). We use the code provided by MWN
and MLC and follow the same experimental settings, and test NSGame on uniform noise and flip
noise under different noise ratio. Specifically, we use ResNet32 for MWN and NSGameMWN, and
WRN-28-10 network for MLC and NSGameMWN. We also compare NSGame with an approximated
gradient method TBP Shaban et al. (2019) for MWN.
Table 3: Test accuracy (%) and computational costs(s/MB) on CIFAR-10 and CIFAR-100 datasets
with varying noise rate under different noise type.

Datasets Methods/Costs Uniform noise Flip noise
Methods Costs 0% 20% 40% 0% 20% 40%

CIFAR-10

MWN 0.165/233 91.93±0.23 90.36±0.38 87.44±0.45 91.64±0.26 89.81±0.53 88.06±0.37

TBP 0.192/242 92.11±0.27 90.19±0.33 87.15±0.38 92.15±0.24 90.05±0.46 88.12±0.39

NSGameMWN 0.072/0.059 92.03±0.17 90.12±0.26 87.04±0.34 92.26±0.21 90.50±0.32 87.85±0.42

MLC 0.215/388 90.42±0.36 84.91±0.27 80.60±0.42 90.45±0.33 86.62±0.41 80.13±0.35

NSGameMLC 0.097/0.02 90.73±0.21 85.21±0.25 80.45±0.33 90.25±0.19 87.64±0.28 79.57±0.39

CIFAR-100

MWN 0.173/233 69.65±0.33 63.31±0.41 57.63±0.37 68.97±0.24 64.25±0.39 57.53±0.43

TBP 0.201/242 69.77±0.22 63.14±0.37 58.26±0.39 69.12±0.28 64.11±0.37 57.82±0.44

NSGameMWN 0.075/0.18 69.84±0.15 63.08±0.27 58.96±0.42 69.05±0.23 63.94±0.38 57.98±0.32

MLC 0.221/388 72.18±0.33 66.17±0.39 59.34±0.44 71.53±0.36 65.97±0.29 52.26±0.45

NSGameMLC 0.105/0.17 72.20±0.18 66.0±0.33 59.82±0.37 71.83±0.25 66.14±0.41 53.25±0.44

Table 3 reports the test accuracy and computational costs of our methods NSGameMWN and
NSGameMLC compared with TBP, the base models MWN and MLC. We report the mean accuracy
(± std) after 3 repetitions. The experimental results show that NSGame is able to achieve comparable
performance for both MWN, TBP and MLC, while NSGame is computationally more efficient.
NSGame takes about 0.075 Seconds for one iteration to solve MWN, while the original MWN takes
0.17 Seconds and TBP takes 0.19 Seconds. Meanwhile, NSGame takes about 0.1 Seconds for one
iteration to solve MLC, the original MLC takes 0.21 Seconds. For the memory costs, MWN, TBP and
MLC require extra memory (233MB for MWN, 242MB for TBP and 388 for MLC) for computing
the second order derivative, while our NSGame requires almost no extra memory.

6 CONCLUSION
This paper aims to alleviate the computation bottleneck of bi-level learning methods. Different to
the current efforts which improve the computational efficiency of first-order algorithms for solving
the bi-level model, we propose a novel NSGame as an alternative to the bi-level learning model.
NSGame is the first to untie the hierarchical structure of the bi-level model, it is easy to solve and
is guaranteed to be a good alternative to the original bi-level learning model both in theory and
in practice. First-order two-time scale method can be readily used to solve NSGame, and it has
been verified on representative meta learning applications that NSGame significantly improves the
computational efficiency of current bi-level learning methods with same accuracy.
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A APPENDIX – PROOFS AND ANALYSIS

A.1 PROOFS OF THE MAIN RESULTS

In this part, we provide the proofs of all theoretical results in our main paper.

Proposition 3.1. If the Stackelberg game Eq. (1) has SDSE, then its global optimal must be a SDSE.
Furthermore, the Pareto optimal Nash equilibrium of the corresponding NSGame Eq. (3) is the global
optimal of Eq. (1).

Proof. We use proof by contradiction. Let (x∗,y∗) be the global optimal of Eq. (1). If (x∗,y∗)
is not an SDSE, then it implies that either D1f1(x∗,y∗) 6= 0, D2f1(x∗,y∗) 6= 0, or the matrix[
D2

1f1 D12f1

D21f1 D2
2f1

]
has negative eigenvalues. All these results suggests that one can find a direction

(−D1f1(x∗,y∗), −D2f1(x∗,y∗) or the vector corresponds to the negative eigenvalues) to decrease
the objective function f1(x∗,y∗), which contradicts with that (x∗,y∗) is a global optimal.

Theorem 3.1. Let (x∗,y∗) ∈ X × Y be a SDSE of Eq. (1) with y∗ = (y∗1 ,y
∗
2) ∈ Y1 × Y2, then

(x∗,y∗1 ,y
∗
2) is a DNE of Eq. (3).

Proof. According to the Definition 3.1, we haveD1f1 = 0 andDy>2 D3f1 = 0 for f1 at (x∗,y∗1 ,y
∗
2),

thusD1f1+Dy>2 D3f1 = 0. Meanwhile, we haveD2f2(x∗,y∗1 ,y
∗
2) = 0 andD3f2(x∗,y∗1 ,y

∗
2) = 0,

therefore (x∗,y∗1 ,y
∗
2) is an equilibrium of Eq. (3). According to Eq. (4), we haveD2

1f1 D12f1 D13f1

D21f1 D2
2f1 D23f1

D31f1 D32f1 D2
3f1

 � 0 (11)

for f1(x∗,y∗1 ,y
∗
2), thus we can verify that D2

1f1 +Dy>2 D31f1 +Dy>2 D13f1 + (Dy>2 )2D2
3f1 � 0

at (x∗,y∗1 ,y
∗
2). Together with D2

2f2(x∗,y∗1 ,y
∗
2) � 0 and D2

3f2(x∗,y∗1 ,y
∗
2) � 0, we prove that

(x∗,y∗1 ,y
∗
2) is a DNE of of Eq. (3).

Proposition 3.2. If the Stackelberg game Eq. (1) has SDSE, then the pareto optimal Nash equilibrium
of the corresponding NSGame Eq. (3) is the global optimal of Eq. (1).

Proof. It is straight forward to prove the results. According to Proposition 3.1 we know that if the
Stackelberg game Eq. (1) has SDSE then the global optimal is a SDSE, then according to Theorem 3.1
we know the global optimal must be a Nash equilibrium of Eq. (3). Based on the definition of global
optimal the Nash equilibrium that corresponds to the global optimal must be the pareto optimal Nash
equilibrium.

Theorem 3.2. If the two functions f1(x,y) and f2(x,y) in Eq. (1) are coherent, then every DSE of
Eq. (1) is a SDSE and it is also a DNE of Eq. (3).
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Proof. Since f1(x,y) and f2(x,y) are coherent, then for differential Stackelberg equilibrium
(DSE) (x∗,y∗) of Eq. (1), (x∗,y∗) must achieves a local minimum of f1, which implies that

D1f1(x∗,y∗) = 0, D2f1(x∗,y∗) = 0 and
[
D2

1f1 D12f1

D21f1 D2
2f1

]
� 0 at (x∗,y∗). Together with the

definition of DSE, then (x∗,y∗) is an SDSE. According to Theorem 3.1, we know the DSE of Eq. (1)
is DNE of Eq. (3).

Theorem 3.3. Assume the above assumptions are satisfied by the Stackelberg game Eq. (1). Let
(x∗,y∗1 ,y

∗
2) be a DNE of Eq. (3). If y∗ = (y∗1 ,y

∗
2) is a function of x∗, that is y∗ = φ(x∗), and

D2
2f2 � 0 for f2(x,y) at (x∗,y∗), then (x∗,y∗1 ,y

∗
2) is a SDSE.

Proof. With assumption 1, assumption 3 and that (x∗,y∗1 ,y
∗
2) is a DNE, we know that

D1f1(x∗,y∗1 ,y
∗
2) = 0, D2f1(x∗,y∗1 ,y

∗
2) = 0 and D3f1(x∗,y∗1 ,y

∗
2) = 0 (12)

which indicates that (x∗,y∗1 ,y
∗
2) is a critical point of f1(x,y1,y2). The coherent of f1 and f2 also

implies that [
D2

1f1 D13f1

D31f1 D2
3f1

]
� 0 (13)

Meanwhile, as y∗ = ψ(x∗) and D2
2f2(x∗,y∗) � 0, which suggests (y∗1 ,y

∗
2) is a local optimal of

miny1,y2 f2(x∗,y1,y2). According to assumption 2, we know[
D2

2f1 D23f1

D32f1 D2
3f1

]
� 0 (14)

together with Eq. (13) and the separability of f1 in assumption 1, we haveD2
1f1 D12f1 D13f1

D21f1 D2
2f1 D23f1

D31f1 D32f1 D2
3f1

 � 0. (15)

Combine Eq. (12) with Eq. (12) and the fact (y∗1 ,y
∗
2) is a local optimal of miny1,y2 f2(x∗,y1,y2),

we know that (x∗,y∗1 ,y
∗
2) is a SDSE.

The proof of the Theorem 4.1 is the same as the proof provided by Borkar (1997); Heusel et al.
(2017).

A.2 ANALYSIS ON THE MAIN RESULTS

1) Reasons on the introduction of SDSE. The SDSE that we introduce in Section 3 is a special
DSE of bi-level Stackelberg game Eq. (1), it is not only important for our main results but also very
practical in use. For Eq. (1), its DSE (x∗,y∗) implies that

D1f1(x∗,y∗) = 0, Dy>D2f1(x∗,y∗) = 0. (16)

For lots of real applications such as hyper-parameter learning Shu et al. (2019); Wang et al. (2020), x
is only implicit in f1 through y as 

min
x∈Rn

f1(y)

s.t. y = arg min
z∈Rm

f2(x, z)
(17)

therefore, Eq. (16) implies
∂f1

∂y
· ∂y
∂x

= 0

at (x∗,y∗). While in practice, we aim to find x∗ such that f1(y∗) is minimal with the corresponding
y∗ = arg minz f2(x, z), that is y∗ is also the optimal solution of f1(y∗). Therefore, we are
practically interested in ∂f1

∂y = 0 and ∂2f1
∂2y � 0, which is exactly why we introduce the definition of

strong DSE for general bi-level learning problem Eq. (1).

13
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To guarantee the existence of SDSE, we introduce coherence condition in ??. The DSE (x∗,y∗) of
the bi-level learning problem Eq. (1) implies

D2f2(x∗,y∗) = 0, D2
2f2(x∗,y∗) � 0.

and
Df1(x∗,y∗) = D1f1(x∗,y∗) +Dy>D2f1(x∗,y∗) = 0.

D2f1(x∗,y∗) = D2
1f1(x∗,y∗)+Dy>D12f1(x∗,y∗)+Dy>D21f1(x∗,y∗)+(Dy>)2D2

2f1(x∗,y∗) � 0.

Furthermore, if the two functions f1 and f2 are coherent and the x∗ in the DSE (x∗,y∗) is exactly
the x∗ in ??. Then we have

D1f1(x∗,y∗) = 0, D2f1(x∗,y∗) = 0

and [
D2

1f1 D12f1

D21f1 D2
2f1

]
� 0,

which implies that the DSE of the bi-level learning problem Eq. (1) is SDSE.

2) Applications of SDSE in real bi-level learning problems. The introduction of the coherent
condition is to assure that the bi-level learning problem that we consider is well-defined. That is to
say the DSE of the bi-level learning problem is SDSE, and y∗ obtained by y∗ = arg minz f2(x, z)
is also the optimal solution of f1(x∗,y∗). In practice, coherent condition is also mild for a lot of
applications, such as noise label learning and class imbalance learning.

a. SDSE in noisy label learning. In noisy label learning such as MLC Wang et al. (2020), we aims
to find the label corrector with which we can learning a network that is robust to the label noise.
Specifically, as presented by Patrini et al. (2017), let T ∈ [0, 1]c×c be the noise transition matrix with
its entries Ti,j describing the probability of label i being flapped to label j, as Ti,j = P (z = i|z = j).

The MLC aims to solve the following bi-level learning problem
min
T
− 1

M

M∑
i=1

ymeta
i log

(
f(xmeta

i ;θ)
)

s.t. θ = arg min
θ
− 1

N

N∑
i=1

ytraini log
(
Tf(xtrain

i ;θ)
) (18)

where xtrain
i here is the i-th training sample with its label ytraini , and xmeta

i is the i-th meta sample
with its label ymeta

i . θ is the parameter of the network. Let’s denote by

Lmeta(θ) = − 1

M

M∑
i=1

ymeta
i log

(
f(xmeta

i ;θ)
)

and

Ltrain(T,θ) = − 1

N

N∑
i=1

ytraini log
(
f(Txtrain

i ;θ)
)

One can easily find that Lmeta(θ) and Ltrain(T,θ) are coherent according to the following theorem
provided by Patrini et al. (2017).

Theorem A.1. Patrini et al. (2017) Suppose that the noise matrix T is non-singular, given a proper
composite loss L, define the forward loss correction as:

L→ = L(Tf(x)). (19)

Then, the minimizer of the corrected loss under the noise distribution is the same as the minimizer
under the clean distribution:

arg min
θ

Ex,ỹL(Tf(x;θ)) = arg min
θ

Ex,yL(f(x;θ)) (20)

14
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where ỹ denotes that the label is noisy and y denotes the clean label, therefore
Lmeta(θ) = Ex,yL(f(x;θ))

and
Ltrain(T,θ) = Ex,ỹL(Tf(x;θ))

The Theorem A.1 indicates that given the correct label transition matrix, the minimizer of the
Ltrain(T,θ) w.r.t θ is exactly the minimizer of Lmeta(θ), thus the two objective functions Lmeta(θ)
and Ltrain(T,θ) are coherent. In consequence, the DSE T ∗,θ∗ is a SDSE of Eq. (18).

b. SDSE in class imbalance learning. Class imbalance learning is very similar to noisy label
learning. In class imbalance learning, the number of samples for each class are seriously different
and the data follows long-tailed distribution. In the statistic viewpoint, let P (y|x) be the probability
of sample x with label y, then

P (y|x) ∝ P (y) · P (x|y). (21)
Typically, one minimizes the cross-entropy loss from the training data to obtain a prediction model

L(y, f(x,θ)) = −logy · f(x,θ)

where P (x|y) = f(x,θ).

In class imbalance learning, only a highly skewed prior distribution P̂ (y) is available Menon et al.
(2020), such that the prediction P̂ (y|x) is actually

P̂ (y|x) ∝ P̂ (y) · P (x|y). (22)
Such a prediction highly bias towards the head classes. Assume that the distribution P (x|y) is
balanced, the Eq. (22) can be obtained by

P̂ (y|x) = P (y|x) · P̂ (y)

P (y)
(23)

we assume P (y) is the balanced prior distribution. The Eq. (23) tells us that the biased prediction
P̂ (y|x) which is due to the class imbalanced training data, can be estimated from unbiased prediction
P (y|x) if the unbalanced prior distribution P (y) is available.

Existing method for class imbalance learning methods aim to estimate the distribution P (y) by
re-sampling He & Garcia (2009) or re-weighting Ren et al. (2018); Shu et al. (2019) strategies. The
prediction P (y|x) is generally represented by a deep neural network f(x,θ). The rationality of
exiting methods is that if given an ideal balanced P (y), one can learn a prediction f(x,θ) from the
imbalanced dataset using either re-sampling or re-weighting, such that f(x,θ) can predict unbiased
results. For meta weight net MWN Shu et al. (2019) as

min
Θ

1

M

M∑
i=1

Lmeta
i (w∗(Θ))

s.t. w∗(Θ) = arg min
w

1

N

N∑
i=1

Vi(Ltrain
i (w),Θ)Ltrain

i (w)

(24)

where w is the parameter of a deep network. The above results indicate that there exits an ideal
weighting function Vi(Ltrain

i (w),Θ∗) which is related to P (y), such that with Vi(Ltrain
i (w),Θ∗)

the optimal network parameterw∗(Θ∗) not only minimizes the training loss, but also minimizes the
meta loss. These result reveals that the two objectives in MWN are coherent.

B EXPERIMENTAL SETUP FOR CLASS IMBALANCE LEARNING

B.1 DATASETS

Our experiments on class imbalance learning are conducted on imbalanced CIFAR-10 and CIFAR-100
datasets Cui et al. (2019). The original CIFAR-10 and CIFAR-100 contains 50,000 training images
and 10,000 validation images with 10 classes for CIFAR 10 and 100 classes for CIFAR 100. The
image size is 32× 32. To create class imbalanced version, we randomly remove the training samples
by niµi for each class, where i is the class index, ni is the original number of the training samples
for the i-th class, and the parameter µ is set as µ ∈ (0, 1).
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Table 4: Comparisons of test accuracy for different learning rate βt.
β 1e-3 1e-4 1e-5 1e-6

MWN 45.25 46.15 46.07 45.97
NSGame 34.91 43.30 46.21 46.17
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Figure 5: Comparison of the test accuracy and computational time for different networks.

B.2 EXPERIMENTAL SETUP

We conduct our experiments using Pytorch platform, training with one NVIDIA TITAN V GPU.
Three imbalanced factors {20, 50, 100} are applied on the imbalanced CIFAR-10 and CIFAR-100.
We mainly compare our NSGame with MWN, for fair of comparison, all the experimental settings
are the same as MWN, including the backbone network ResNet32, the learning rate schedule, total
training epochs and the number of meta data. Consider the randomness, we repeat each experiment
three times and report the averaged results in Table 2.

B.3 TWO-TIME SCALE ANALYSIS

Two-time scale learning rate schedule is very important for the convergence analysis of our method.
In experimental setup, we set the learning rate αt for the fast update variable to be α0 = 1× 10−1

with learning rate schedule the same as MWN. Then based on the fast learning rate, we set the slow
learning rate β0 with different values as given in Table 4. It can be seen from Table 4 that when
setting β0 to be 1 × 10−5 with α0 = 1 × 10−1, our NSGame achieves the best test accuracy. The
result is similar for β0 = 1× 10−6. While the test accuracy of NSGame degrades significantly as
β0 increases, especially when β0 = 1× 10−3, which is due to that increase the learning rate of the
slow update variable will break the leader-follower relationship in our TTS-SGD algorithm, thus the
proposed algorithm will not converges to the SDSE of the MWN model. In contrast to our NSGame,
the MWN is robust the meta learning rate, as the leader-follower relationship is constructed by the
bi-level model which is independent of the solving algorithm.

B.4 NSGAME FOR LARGE SCALE NETWORK

To further verify the efficiency of our NSGame for large scale model, we conduct experiments on
very large scale deep networks such as ResNet-101 and ResNet-152 for class imbalance learning
on CIFAR 100 with imbalance ratio 50. We show in Fig. 5 the test accuracy and computational
time (per iteration) of NSGame for different networks, “R18” indicates that the backbone network is
ResNet-18, similarly for “R34, R50, R101, R152”. It can be seen from Fig. 5 the test accuracy of
NSGame and MWN are comparable for different networks, while the computational time of MWN is
much longer than NSGame for all networks. Meanwhile, with the increase of the network layers, the
computational advantage of NSGame is more significant than MWN. Specifically, for ResNet-18 the
computational time of MWN is about 2 times that of NSGame, for ResNet-152 the computational
time of MWN is about 5 times that of NSGame.
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B.5 PYTORCH CODE FOR CLASS IMBALANCE LEARNING

We provide the pytorch code (main function) of NSGame for MWN, the entire code will be released
upon acceptance.

optimizer_a = torch.optim.SGD(model.params(), 0.1,
momentum=args.momentum, nesterov=args.nesterov,
weight_decay=args.weight_decay)

vnet = VNet(1, 100, 1).cuda()

optimizer_c = torch.optim.SGD(vnet.params(), 1e-5,
momentum=args.momentum, nesterov=args.nesterov,
weight_decay=args.weight_decay)

def train(train_loader, validation_loader,model,
vnet,optimizer_a,optimizer_c,epoch):
"""Train for one epoch on the training set"""
model.train()

for i, (input, target) in enumerate(train_loader):
input_var = to_var(input, requires_grad=False)
target_var = to_var(target, requires_grad=False)

meta_model = build_model()
meta_model.load_state_dict(model.state_dict())
y_f_hat = meta_model(input_var)
cost = F.cross_entropy(y_f_hat, target_var, reduce=False)
cost_v = torch.reshape(cost, (len(cost), 1))

v_lambda = vnet(cost_v)
norm_c = torch.sum(v_lambda)
if norm_c != 0:

v_lambda_norm = v_lambda / norm_c
else:

v_lambda_norm = v_lambda

l_f_meta = torch.sum(cost_v * v_lambda_norm)
meta_model.linear.zero_grad()
grads = torch.autograd.grad(l_f_meta,

(meta_model.linear.params()), create_graph=True)
meta_lr = args.lr * ((0.1 ** int(epoch >= 80)) * (0.1 ** int(epoch

>= 90)))
meta_model.linear.update_params(lr_inner=meta_lr,

source_params=grads)
del grads

input_validation, target_validation = next(iter(validation_loader))
input_validation_var = to_var(input_validation,

requires_grad=False)
target_validation_var = to_var(target_validation,

requires_grad=False)
y_g_hat = meta_model(input_validation_var)
l_g_meta = F.cross_entropy(y_g_hat, target_validation_var)
prec_meta = accuracy(y_g_hat.data, target_validation_var.data,

topk=(1,))[0]

optimizer_c.zero_grad()
l_g_meta.backward()
optimizer_c.step()

y_f = model(input_var)
cost_w = F.cross_entropy(y_f, target_var, reduce=False)
cost_v = torch.reshape(cost_w, (len(cost_w), 1))
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prec_train = accuracy(y_f.data, target_var.data, topk=(1,))[0]

with torch.no_grad():
w_new = vnet(cost_v)

norm_v = torch.sum(w_new)
if norm_v != 0:

w_v = w_new / norm_v
else:

w_v = w_new
l_f = torch.sum(cost_v * w_v)

optimizer_a.zero_grad()
l_f.backward()
optimizer_a.step()

C EXPERIMENTAL SETUP FOR NOISY LABEL LEARNING

C.1 EXPERIMENTAL SETUP

We test the proposed method for noisy label learning on CIFAR-10 and CIFAR-100 datasets with
different noise types and noise levels. We conduct experiments on uniform noise and flip noise with
noise level {0, 20, 40}. (1) Uniform noise. The label of each sample is transformed to random class
with probability p. (2) Flip noise. The label of each sample is randomly flipped to similar classes
with probability p, as specified in Shu et al. (2019), we select two classes as similar classes in our
experiments.

We use ResNet-32 for NSGameMWN and Shu et al. (2019) as specified in Shu et al. (2019), and
use the SGD with momentum 0.9 and learning rate 1 × 10−5 for the meta objective, SGD with
momentum 0.9 and initial learning rate 1× 10−1 for the training objective.1000 images with clean
labels in validation set are randomly selected as the meta-data set as in Shu et al. (2019) for MWN and
NSGameMWN For our NSGameMWN, all other settings are the same as Shu et al. (2019). Specifically,
we train the entire model with 40 epochs (the learning rate is divided by 10 at the 36 and 38 epochs)
for uniform noise and 60 epochs (the learning rate is divided by 10 after 40 and 50 epochs) for flip
noise.

We use WRN-28-10 for MLC Wang et al. (2020) and our NSGameMLC. Both the meta objective
and training objective of NSGameMLC are optimized by SGD with learning rate 1× 10−4 for meta
objective and 1×10−1 for the training objective. As for the clean meta datasets, we randomly sample
50 clean images for each class for CIFAR-10 and 5 clean images for each class for CIFAR-100. All
the training setups of MLC and NSGameMLC are the same in our implements expect for the learning
rate and optimizer setting, which is due to our two-time scale SGD algorithm. We provide the pytorch
code of NSGameMWN and NSGameMLC.
1) Pytorch code for NSGameMWN

optimizer_model = torch.optim.SGD(model.params(), args.lr,
momentum=args.momentum,

weight_decay=args.weight_decay)
optimizer_vnet = torch.optim.SGD(vnet.params(), 1e-5,

momentum=args.momentum,
weight_decay=1e-4)

def train(train_loader,train_meta_loader,model,
vnet,optimizer_model,optimizer_vnet,epoch):
print(’\nEpoch: %d’ % epoch)

train_loss = 0
meta_loss = 0

train_meta_loader_iter = iter(train_meta_loader)
for batch_idx, (inputs, targets) in enumerate(train_loader):

model.train()
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inputs, targets = inputs.to(device), targets.to(device)
meta_model = build_model().cuda()
meta_model.load_state_dict(model.state_dict())
outputs = meta_model(inputs)

cost = F.cross_entropy(outputs, targets, reduce=False)
cost_v = torch.reshape(cost, (len(cost), 1))
v_lambda = vnet(cost_v.data)
l_f_meta = torch.sum(cost_v * v_lambda)/len(cost_v)
meta_model.linear.zero_grad()
grads = torch.autograd.grad(l_f_meta,

(meta_model.linear.params()), create_graph=True)
meta_lr = args.lr * ((0.1 ** int(epoch >= 40)) * (0.1 ** int(epoch

>= 50)))
meta_model.linear.update_params(lr_inner=meta_lr,

source_params=grads)
del grads

try:
inputs_val, targets_val = next(train_meta_loader_iter)

except StopIteration:
train_meta_loader_iter = iter(train_meta_loader)
inputs_val, targets_val = next(train_meta_loader_iter)

inputs_val, targets_val = inputs_val.to(device),
targets_val.to(device)

y_g_hat = meta_model(inputs_val)
l_g_meta = F.cross_entropy(y_g_hat, targets_val)
prec_meta = accuracy(y_g_hat.data, targets_val.data, topk=(1,))[0]

optimizer_vnet.zero_grad()
l_g_meta.backward()
optimizer_vnet.step()

outputs = model(inputs)
cost_w = F.cross_entropy(outputs, targets, reduce=False)
cost_v = torch.reshape(cost_w, (len(cost_w), 1))
prec_train = accuracy(outputs.data, targets.data, topk=(1,))[0]

with torch.no_grad():
w_new = vnet(cost_v)

loss = torch.sum(cost_v * w_new)/len(cost_v)

optimizer_model.zero_grad()
loss.backward()
optimizer_model.step()

2) Pytorch code for NSGameMLC

def train_MLC(Val_choose, train_datas, train_lables, test_datas,
test_lables, type, ratio):
main_model= build_model()
optimizer = torch.optim.SGD(main_model.params(), lr=args.lr_2,

momentum=args.momentum, weight_decay=args.weight_decay)

if (type==1):
type = ’uniform’

elif (type==2):
type = ’flip’

else:
type = ’flip_to_one’

########## load data ##########################################
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print(’noise ratio is ’+ str(ratio)+’%’)
train_data = Cifar10_Dataset(True, Val_choose, train_datas,

train_lables, transform, target_transform, noise_type=type,
noisy_ratio=ratio)

print(’size of train_data:{}’.format(train_data.__len__()))
test_data = Cifar10_Dataset(False, Val_choose, test_datas,

test_lables, transform, target_transform)
print(’size of test_data:{}’.format(test_data.__len__()))
train_loader = Data.DataLoader(dataset=train_data,

batch_size=args.batch_size, shuffle=True)
test_loader = Data.DataLoader(dataset=test_data,

batch_size=args.batch_size, shuffle=True)

model_root = ’./Cifar10_warmup_CE_’+str(type)+str(ratio)+’.pth’ #
warmup model using pretrain

main_model.load_state_dict(torch.load(model_root))
## load small validation set

X_Val, Y_Val =Cifar10_Val_1(Val_choose, 50)
print(’size of val_data:{}’.format(len(X_Val)))
Y_Val = Y_Val.int()
Y_Val = Y_Val.long()
X_Val = to_var(X_Val, requires_grad=False)
Y_Val = to_var(Y_Val, requires_grad=False)

plot_step = 100
for i in tqdm(range(50000)):

main_model.train()
image, labels = next(iter(train_loader))
meta_net = Wide_ResNet(40, 2, 10)
meta_net.load_state_dict(main_model.state_dict())
if torch.cuda.is_available():

meta_net.cuda()

image = to_var(image, requires_grad=False)
labels = to_var(labels, requires_grad=False)
T = to_var(torch.eye(10, 10))
y_f_hat = meta_net(image)
pre2 = torch.mm(y_f_hat, T)
l_f_meta = torch.sum(F.cross_entropy(pre2,labels, reduce=False))
meta_net.linear.zero_grad()

grads = torch.autograd.grad(l_f_meta, (meta_net.linear.params()),
create_graph=True)

meta_net.linear.update_params(1e-3, source_params=grads)
y_g_hat = meta_net(X_Val)
l_g_meta = F.cross_entropy(y_g_hat,Y_Val)
grad_eps = torch.autograd.grad(l_g_meta, T, only_inputs=True)[0]
T = torch.clamp(T-0.11*grad_eps,min=0)
norm_c = torch.sum(T, 0)

for j in range(10):
if norm_c[j] != 0:

T[:, j] /= norm_c[j]

y_f_hat = main_model(image)
pre2 = torch.mm(y_f_hat, T)

l_f = torch.sum(F.cross_entropy(pre2,labels, reduce=False))

optimizer.zero_grad()
l_f.backward()
optimizer.step()
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