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Abstract

Standard conformal prediction ensures marginal
coverage but consistently undercovers underrep-
resented groups, limiting its reliability for fair un-
certainty quantification. Group fairness requires
prediction sets to achieve a user-specified cover-
age level within each protected group. While
group-wise conformal inference meets this re-
quirement, it often produces excessively wide
prediction sets due to limited sample sizes in un-
derrepresented groups, highlighting a fundamen-
tal tradeoff between fairness and efficiency. To
bridge this gap, we introduce Surrogate-Assisted
Group-Clustered Conformal Inference (SAGCCI),
a framework that improves efficiency through two
key innovations: (1) clustering protected groups
with similar conformal score distributions to en-
hance precision while maintaining fairness, and
(2) deriving an efficient influence function that op-
timally integrates surrogate outcomes to construct
tighter prediction sets. Theoretically, SAGCCI
guarantees approximate group-conditional cover-
age in a doubly robust manner under mild con-
vergence conditions, enabling flexible nuisance
model estimation. Empirically, through simula-
tions and an analysis of the phase 3 Moderna
COVE COVID-19 vaccine trial, we demonstrate
that SAGCCI outperforms existing methods, pro-
ducing narrower prediction sets while maintain-
ing valid group-conditional coverage, effectively
balancing fairness and efficiency in uncertainty
quantification.
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1. Introduction
Personalized medicine calls for precise individualized pre-
dictions to guide patient-level decision-making. Equally
critical is robust uncertainty quantification for these predic-
tions, particularly in contexts like vaccine safety or efficacy
studies, where personalized vaccine recommendations can
influence critical individual-level decisions. Examples in-
clude tailoring guidance for vulnerable populations, such as
immunocompromised individuals, or for individuals evalu-
ated based on antibody levels against specific pathogens.

An ideal prediction set for uncertainty quantification must
meet two essential criteria: (1) valid coverage in finite sam-
ples without relying on stringent distributional assumptions,
and (2) sufficiently short prediction set lengths to ensure
practical utility. Conformal prediction is a powerful method
for uncertainty quantification, offering distribution-free cov-
erage guarantees alongside reasonable prediction set lengths
(Vovk et al., 2009; Lei et al., 2013). However, standard
conformal prediction methods ensure marginal coverage
only, i.e., that prediction sets contain the true labels on av-
erage across the population. While effective in providing
distribution-free guarantees, these methods often fail to pro-
vide adequate coverage for sub-groups, which may result
in disparities and lead to ethical or legal implications. Fair
coverage is crucial in socially consequential domains, where
prediction intervals can help guide decision-making related
to access to resources, opportunities, or fair treatment. For
example, if a mortgage lender’s prediction intervals sys-
tematically under-cover minority borrowers, they may face
inflated interest rates or higher denial rates. In healthcare,
if limited supplies of critical antibiotics demand triaging
decisions, under-coverage for certain demographics could
result in denying them lifesaving medications.

Efforts to design conformal inference for fair predictions,
such as the approach proposed by Vovk (2012), recommend
performing conformal inference separately for each sub-
group to ensure group-conditional coverage. However, this
strategy often produces excessively wide prediction inter-
vals due to limited sample sizes within smaller sub-groups,
reducing their practical value. There is a growing need to
develop methods that design more efficient prediction sets
for sub-groups, particularly in contexts where fairness and
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precision are critical. Two promising avenues to address this
challenge are clustering and the use of surrogate outcomes.
Clustered conformal inference, introduced by Ding et al.
(2024) for outcome-dependent inference, provides a more
efficient solution for achieving group-conditional coverage.
Instead of performing group-wise conformal inference, this
method clusters groups with similar conformalized score
distributions into larger clusters, allowing for more efficient
individualized predictions while maintaining fairness. Addi-
tionally, surrogate outcomes – such as biological markers or
machine-learned noisy predictions – offer another powerful
approach to improving efficiency in uncertainty quantifica-
tion. These surrogates, which are often easier to observe or
collect than the primary outcomes of interest, enhance effi-
ciency, especially in scenarios where primary outcomes are
challenging to measure or largely unavailable. For instance,
in vaccine studies, immune correlates like neutralizing anti-
body titers have been shown to serve as effective surrogates
for predicting vaccine efficacy (Gilbert et al., 2022; 2024).

Our contributions In this paper, we propose a novel
Surrogate-Assisted Group-Clustered Conformal Inference
(SAGCCI) framework that achieves group-conditional cov-
erage while improving the efficiency of uncertainty quantifi-
cation through two key innovations:

1. Clustering: By pooling groups with similar score dis-
tributions, we leverage clustering algorithms to deal
with sub-groups with small sample sizes.

2. Surrogate-assisted efficient influence function (EIF):
We develop an EIF-based approach for constructing
conformalized prediction sets, effectively incorporat-
ing surrogate outcomes to maximize efficiency.

Theoretically, we demonstrate that our method guarantees
approximate group-conditional coverage, provided the clus-
tering algorithm pools groups accurately with minimal er-
rors and the model estimation satisfies standard convergence
rate conditions, which are common in flexible machine learn-
ing models (Chernozhukov et al., 2018). We validate the
practical effectiveness of SAGCCI through extensive syn-
thetic simulations and a real-data analysis of the phase 3
Moderna COVE COVID-19 vaccine, showcasing its abil-
ity to improve uncertainty quantification for individualized
predictions. Our proposal advances statistical theory and
machine learning applications in personalized medicine, en-
abling fairer and more efficient uncertainty quantification of
predictions. Our code is publicly available at https://
github.com/Gaochenyin/SurrConformalDR.

2. Related work in surrogates
The concept of statistical surrogacy was introduced by Pren-
tice (1989), who defined criteria for surrogate evaluation.

Since then, numerous surrogate validation methods have
been developed to assess surrogate outcomes, which Conlon
et al. (2017) broadly categorized into two main approaches:
causal effects (Gilbert & Hudgens, 2008) and causal associ-
ation frameworks (Li et al., 2010; Alonso et al., 2016). For a
detailed review of these methods and recent advancements,
see Elliott (2023). Surrogate validation aims to identify out-
comes that can replace primary endpoints in clinical trials,
thereby facilitating the expedited approval of treatments,
particularly for critical illnesses. Regulatory agencies like
the FDA have relied on surrogate endpoints to accelerate
drug approvals (FDA, 1992; 2021). However, surrogate out-
comes are not always reliable, as illustrated by cases where
treatments approved based on surrogate markers, such as
arrhythmia suppression, ultimately led to adverse outcomes
like increased mortality in follow-up studies (Fleming &
DeMets, 1996). To address these challenges, surrogate val-
idation methods often impose stringent assumptions, such
as the strong statistical surrogate condition (Prentice, 1989),
which can be difficult to verify in practice. For example,
Athey et al. (2019) relied on such assumptions to integrate
experimental and observational datasets.

In contrast, our work treats surrogates as auxiliary informa-
tion or “helper covariates” (Xia & Wainwright, 2024) rather
than as substitutes for primary outcomes. This perspective
aligns with recent work that leverages surrogate outcomes
to improve the efficiency of estimating long-term or primary
treatment effects. For instance, Athey et al. (2020) proposed
combining experimental data (containing only surrogates)
with observational data (containing both surrogates and pri-
mary outcomes) to estimate long-term treatment effects.
Chen & Ritzwoller (2023) considered this framework and
derived semiparametric efficiency bounds. Other studies, in-
cluding Cheng et al. (2021) and Kallus & Mao (2024), have
explored efficient estimation methods that rely on a limited
number of primary outcomes alongside abundant surrogates,
without requiring strong statistical surrogacy. Furthermore,
Imbens et al. (2024) examined sequentially structured sur-
rogates and addressed challenges in identifying average
treatment effects when unmeasured confounders are present.
Gao et al. (2024) leveraged surrogates to improve the ef-
ficiency of prediction sets for individual treatment effects,
showing improved efficiency compared to existing methods
(Lei & Candès, 2021; Yang et al., 2024).

3. Preliminaries
3.1. Notations

Let X ⊆ RdX , Z = {1, · · · ,M}, and Y denote the space
of features, protected groups (or sensitive attributes, e.g.,
race/gender), and the primary outcomes, respectively. De-
fineX , Z, and Y as random variables taking values in X , Z ,
and Y , respectively. Additionally, suppose we have access
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to surrogate outcomes S ∈ S ⊆ RdS for each individual.
These surrogates, such as biomarkers (e.g., neutralizing an-
tibody titers), may serve as predictors of the outcome Y .

We distinguish between two types of data: smaller source
data of size nD1, where the primary outcome Y is observed,
and larger target data of size nD0, where Y is missing. This
setup is motivated by real-world situations where labeled
source data may be costly or require lengthy follow-up
periods, while large amounts of unlabeled target data can be
cheaply obtained from existing databases such as electronic
health records (Cheng et al., 2021). Let D ∈ {0, 1} indicate
the data origin, with D = 1 representing source data and
D = 0 representing target data. In summary, we observe
a source dataset {(Xi, Zi, Si, Yi, Di = 1)}nD1

i=1 and a target
dataset {(Xi, Zi, Si, Yi = NA, Di = 0)}Ni=nD1+1, where
NA means “not available” (missing), and N = nD1 + nD0

is the total sample size.

In our framework, we treat the baseline covariatesX and the
surrogate outcomes S separately, as the distributional dif-
ferences in surrogates across the source and target datasets
may be fully explained by the covariates (e.g., Assumption
4.2(a)). This enables us to leverage surrogates from both
datasets to improve the estimation of primary outcomes,
conditional on the covariates (Theorem 4.4).

3.2. Conformalized prediction

Let W = (X,S) ∈ W = X × S be a set of predic-
tors, and let R(W,Y ) : W × Y → R denote the non-
conformity score function (Vovk et al., 2005). For ex-
ample, common choices of R(W,Y ) include the regres-
sion residual R(W,Y ) = |Y − Ê(Y | W )| (Lei et al.,
2018) or the conformalized quantile residual R(W,Y ) =
max{q̂α/2(W )− Y, Y − q̂1−α/2(W )}, where q̂α/2(·) and
q̂1−α/2(·) are estimated conditional quantiles (Romano
et al., 2019). Given independent and identically distributed
data Vi = (Wi, Zi, Yi) ∼ PD1 drawn from the source dis-
tribution PD1

for i = 1, . . . , nD1, the prediction sets can be
constructed based on the non-conformity scores R(W,Y )
such that C(W ) = C(W ; rα) = {y : R(W, y) ≤ rα},
given a threshold rα for a user-specified miscoverage level
α ∈ (0, 1).

The threshold rα should be chosen such that, for any data
V = (W,Z, Y ) ∼ PD0 drawn from the target distribution,
class label Y has at least 1−α probability of being included
in the prediction set C(W ; rα), that is,

PV∼PD0
(Y ∈ C(W ; rα)) ≥ 1− α, (1)

where the probability is taken over the marginal distribution
of the source data and the future observation from the target
data V . The marginal coverage guarantee (1) does not imply
covariate-conditional coverage, PV∼PD0

(y ∈ C(W ; rzα) |
W = w) ≥ 1 − α, which is more desirable in practice.

However, exact covariate-conditional coverage is known
to be generally unattainable, as shown in Foygel Barber
et al. (2021). Some efforts have been made to achieve
approximate covariate-conditional coverage by designing
better scores (Romano et al., 2019; 2020) or by modifying
the conformal procedure (Guan, 2023; Gibbs et al., 2023).

3.3. Fairness notion in coverage

Despite the impossibility of achieving exact covariate-
conditional coverage, weaker coverage guarantees can be
obtained by conditioning on a set of W rather than limit-
ing W to a specific value w. This approach, referred to as
group-conditional coverage, aligns closely with the concept
of group fairness (Dwork et al., 2012), or demographic par-
ity (Kusner et al., 2017). Group fairness requires certain
statistical metrics to be equalized across different levels of a
protected attribute, such as race or gender (Makhlouf et al.,
2021). For further discussion on related group fairness no-
tions, including equalized odds and equal opportunity, see
Hardt et al. (2016).

Next, we claim that the group-specific prediction set
C(W ; rzα) satisfies group fairness, such that

PV∼PD0
(y ∈ C(W ; rzα) | Z = z) ≥ 1− α, (2)

where rzα is the threshold for group z. Therefore, the predic-
tion sets defined in (2) are fair across all protected groups in
terms of their coverage, irrespective of group size.

Remark 3.1. If a given prediction model achieves fair cov-
erage, it does not necessarily imply fairness in point predic-
tions, especially when the lengths of the prediction sets are
heterogeneous. Therefore, fair coverage can be viewed as
a fairness metric for interval predictions, as it accounts for
the uncertainty in point predictions.

To achieve the desired coverage across all levels of the pro-
tected variable as defined in (2), it is natural to estimate the
thresholds rzα separately for each protected group (Vovk,
2012), and further account for the covariate shifts across
the protected groups as in Gibbs et al. (2023). However,
this group-wise strategy can be overly conservative when
some protected groups are small in size, leading to predic-
tion sets that are excessively large and of limited practical
use in finite samples. Conversely, if the threshold rα is esti-
mated using the entire dataset without splitting by group, the
standard conformal inference procedure cannot guarantee
group-conditional coverage. In such cases, certain groups
may experience substantial under-coverage, while others
may be significantly over-covered.
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4. Surrogate-assisted group-clustered
conformal inference (SAGCCI)

To overcome the limitations of standard conformal infer-
ence and group-conditional conformal inference and to
bridge fairness and efficiency, we propose SAGCCI, which
leverages (i) clustering of protected groups based on non-
conformity scores to overcome the issue of limited sample
sizes in some groups and (ii) an EIF-based estimator for
constructing the conformalized prediction sets, which uses
surrogates to boost the efficiency of the prediction sets.

4.1. Assumptions

We require the following assumptions to ensure the iden-
tification of the threshold for the non-conformity scores,
which are an essential ingredient in the construction of our
EIF-based estimator.
Assumption 4.1. There exists some constant 0 < c0 < 1/2
such that c0 ≤ P (D = 1 | x) ≤ 1− c0 for any x such that
f(x) > 0.

Assumption 4.1 states that each individual should have a
probability of at least c0 of being included in the target
data, conditional on any covariates with a positive likeli-
hood of occurrence. This overlap assumption is common in
the causal inference and missing data literature (Imbens &
Rubin, 2015).
Assumption 4.2. (a) D ⊥ S | X , and (b) D ⊥ Y | S,X .

Assumption 4.2(a) states that the data origin indicator D
is conditionally independent of the surrogates S given the
observed covariatesX . This implies that surrogates from the
combined dataset (if available) can be utilized to improve
efficiency.

Furthermore, Assumption 4.2(b) states that the data origin
indicator D is conditionally independent of the primary
outcome Y given the observed covariates X and the surro-
gates S. Since D effectively indicates whether Y is missing,
Assumption 4.2(b) corresponds to the missing at random
(MAR) assumption in the missing data literature (Little &
Rubin, 2019). This implies that any missingness in the pri-
mary outcome is fully explained by the observed covariates
and surrogates. As a result, covariates and surrogates from
the source data can be used to infer information about the
missing primary outcomes in the target data.

4.2. Clustered conformal prediction

In this section, we introduce a clustering approach for pro-
tected groups based on the similarity of their conformal
score distributions. By grouping smaller protected groups
into larger clusters, this method improves the efficiency of
prediction sets, particularly for groups with limited data.
This strategy builds on similar ideas from Ding et al. (2024),

who used clustering to improve outcome-dependent cov-
erage in settings with categorical outcomes across many
classes.

First, we embed the empirical distribution for the group-
specific scores using a vector constituted by their quantiles
evaluated at discrete levels τ = {0.5, · · · , 0.9} ∪ {1− α}.
Various embedding methods, such as spectral embeddings
or other non-linear embeddings, can be employed, where a
greater distance between any two embeddings indicates a
larger disparity in their score distributions.

Once these embeddings are constructed, we can efficiently
implement any clustering algorithm, such as k-means, to
produce the desired clusters; other cluster mappings, such
as fuzzy k-means or overlapping k-means, can be applied,
to obtain overlapping clusters. For a pre-specified number
of clusters K, we apply the clustering algorithm to partition
the embeddings accordingly. Let Iz = {i : Zi = z, i =
1, . . . , N} represent the indices of subjects in the protected
group z. However, for subjects with unknown protected
groups, or for protected groups with extremely small sizes
(e.g., |Iz| < (1/α)− 1), the empirical (1− α)-th quantile
of the scores for these groups does not exist. To address this
issue, these groups are assigned to a null cluster. We define
the cluster mapping from protected groups to cluster labels
as ĥ, where ĥ : Z → {1, . . . ,K} ∪ {null}.

If the score distributions of groups assigned to the same
cluster by ĥ are sufficiently similar, approximate group-
conditional coverage guarantees can be established. Similar-
ity of the scores is measured using the Kolmogorov-Smirnov
(KS) distance, which quantifies the maximum discrepancy
between the cumulative distribution functions of two ran-
dom variables X and Y : KS(X,Y ) = supλ∈R |P (X ≤
λ)− P (Y ≤ λ)|.
Lemma 4.3. Let Rz = {R(Wi, Yi) : Zi = z} be the non-
conformity scores for group z. Suppose the clustering map
ĥ satisfies KS(Rz, Rz′

) ≤ ϵ for every pair (z, z′) such that
ĥ(z) = ĥ(z′) = k. Then, for any protected group z with
ĥ(z) = k, the following holds:

PV∼PD0
(y ∈ C(W ; rkα) | Z = z)

= PV∼PD0
(R(W, y) ≤ rkα | Z = z) ≥ 1− α− ϵ,

where rkα is the threshold for cluster k.

Lemma 4.3 demonstrates that when the score distributions
of two protected groups assigned to the same cluster are
sufficiently similar, as measured by their KS distance, the
cluster-specific thresholds rkα can be used to construct pre-
diction sets for the associated groups with guaranteed cover-
age. This approach enhances the precision of the prediction
sets, as the thresholds are estimated using larger, pooled
clusters, thereby benefiting from increased data size. The
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number of clusters K should be pre-specified, and we pro-
vide a simple heuristic in the Appendix for selecting this
parameter in practice.

4.3. Efficient influence function

We now derive the EIF for rα (or rkα for the k-th cluster),
which is a functional derivative that characterizes how sen-
sitive the estimand is to changes in the data generation
distributions PD1 and PD0 . The EIF, also known as the
canonical gradient (Van der Laan et al., 2011), is a funda-
mental tool for achieving statistical efficiency. Leveraging
the EIF, we construct estimators for rα that incorporate sur-
rogate outcomes, enabling the estimator to achieve local
semiparametric efficiency.

Theorem 4.4. Under Assumptions 4.1 and 4.2, the EIF
ψr
α(V ; rα) without surrogates and the EIF ψα(V ; rα) with

surrogates for rα is, up to a proportionality constant,

ψr
α(V ; eD,m, rα) = (1−D){m(rα, X)− (1− α)}
+DπD(X){1(R ≤ rα)−m(rα, X)},

and

ψα(V ; eD,m, m̃, rα) = ψr
α(V ; eD,m, rα)

+ [DπD(X)− {1− eD(X)}]{m(rα, X)− m̃(rα,W )},

where eD(X) = P (D = 1 | X) is the propen-
sity score of being the source data, πD(X) = {1 −
eD(X)}/eD(X) is the inverse odds of observing pri-
mary outcomes, m̃(rα,W ) = P (R ≤ rα | W ) is
the conditional cumulative distribution function (CDF) of
the non-conformity scores incorporating surrogates, and
m(rα, X) = P (R ≤ rα | X) is the conditional CDF with-
out surrogates, both evaluated at rα.

We refer to eD, m, and m̃ as nuisance functions since they
are not of our interest but are unknown and required to
evaluate the EIFs for rα. Theorem 4.4 establishes that the
surrogate-assisted EIF for rα extends the EIF without sur-
rogates, ψr

α(V ; eD,m, rα), by incorporating an additional
augmentation term. This augmentation term has a condi-
tional expectation of zero, ensuring that it introduces no
bias. The purpose is to leverage the residual information
provided by the surrogates S in both datasets, thereby boost-
ing the estimation efficiency. The efficiency gain achieved
through the inclusion of surrogates is formally quantified in
Corollary 4.5.

Corollary 4.5. Under Assumptions 4.1 and 4.2, the effi-
ciency gain of leveraging the surrogates is given by

V r
eff − Veff

= E
[
πD(X){1− eD(X)}2var{m̃(rα,W ) | X}

]
,

where V r
eff = var{ψr

α(V ; rα)}, Veff = var{ψα(V ; rα)}.

Corollary 4.5 quantifies the efficiency gain achieved by
incorporating surrogates in terms of the semiparametric effi-
ciency lower bound for estimating the threshold rα. Specif-
ically, this efficiency gain depends on how predictive the
surrogates are for the primary outcomes. The predictive-
ness is captured by the variance var{m̃(rα,W ) | X} =
var{P (R ≤ rα | W ) | X}, which reflects the additional
variability in predicting the scores R that is explained by the
surrogates S beyond the covariates X . A higher variance in-
dicates that the surrogates contribute substantial information
about the primary outcomes, resulting in greater efficiency
gains in estimating rα. Moreover, the efficiency gain is
influenced by the proportion of source data, as determined
by the propensity scores eD(X). When eD(X) is large,
the proportion of the labeled source data is high, which
intuitively means there is less missingness in the primary
outcomes to address. As a result, the potential efficiency
gain from leveraging surrogates is reduced in such cases.

4.4. Implementation

To construct the semiparametric efficient estimator r̂kα for
cluster k = 1, · · · ,K, we adopt the split conformal in-
ference strategy (Lei & Wasserman, 2014). This method
involves randomly spliting the combined data into two folds,
I1 and I2. The first fold, I1, is used to train the learning
algorithms (e.g., the nuisance functions eD, m, and m̃). The
second fold, I2, is used to construct prediction intervals
based on the non-conformity scores.

For concreteness, we describe the split conformal inference
for Y using conformalized quantile residuals (CQR) on the
target data. Let q̂α/2(·) and q̂1−α/2(·) denote the quantile
models for the primary outcomes Y , trained on the first fold
I1. Additionally, the propensity score êD is estimated using
I1. To mitigate the computational complexity of estimating
the full conditional distributions m(r,X) and m̃(r,W ) for
infinitely many r, we adopt the localized debiased machine
learning approach (Kallus et al., 2024). Under this approach,
the first fold, I1, is further split into two sub-folds, I11 and
I12. In the first sub-fold, I11, we construct an initial estima-
tor r̂initα for rα. A natural choice is the weighted split-CQR
estimator from Lei & Candès (2021). In the second sub-
fold, I12, the nuisance models m̂(r̂initα , X) and ̂̃m(r̂initα ,W )
are estimated using any machine learning binary algorithm
given the single initial estimator r̂initα .

Next, we compute the non-conformity scores R for
the second fold, I2, using the estimated quantile mod-
els q̂α/2(·) and q̂1−α/2(·). The scores are defined as
R̂(Wi, Yi) = max

{
q̂α/2(Wi)− Yi, Yi − q̂1−α/2(Wi)

}
.

From these scores, the score distributions for each protected
group are embedded using their group-specific quantiles.
We then apply k-means clustering to map the M protected
groups intoK clusters, learning the cluster mapping ĥ based
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on the score embeddings. Finally, within I2, we identify the
cluster-specific efficient estimators r̂kα for the threshold. Let
I(k) = {i : ĥ(Zi) = k, i ∈ I2} represent the indices of sub-
jects who are assigned to cluster k by the mapping ĥ. These
estimators are defined as the smallest values satisfying the
condition:

∑
i∈I2∩I(k) ψα(Vi; êD, m̂, ̂̃m, r̂kα) ≥ 0, where

the nuisance models m̂, ̂̃m, and êD are estimated from I1.
Full implementation details are provided in Algorithm 1.

4.5. Theoretical properties

Next, we establish the theoretical properties of the estima-
tor r̂kα for cluster k. To do so, we first list the regularity
conditions for the nuisance functions:

(A1) The estimated nuisance functions êD(X), m̂(r,X)

and ̂̃m(r,W ) are bounded. Specifically, there exist
constants π0, m0 and m̃0 such that |π̂D(X)| ≤ π0,
|m̂(r,X)| ≤ m0, and | ̂̃m(r,W )| ≤ m̃0.

(A2) The estimators m̂(r,X) and ̂̃m(r,W ) are non-
decreasing with respect to r.

Using the split conformal inference strategy outlined in Sec-
tion 4.4, the desired asymptotic group-conditional coverage
of the prediction sets is guaranteed in Theorem 4.6.
Theorem 4.6. Under Assumptions 4.1 and 4.2, along with
regularity conditions (A1) and (A2), there exist constants C0

and C1 such that, for any group z satisfying ĥ(z) = k, the
following holds with probability at least 1− δ with δ > 0:

PV∼PD0
(y ∈ C(W ; rkα) | Z = z)

= PV∼PD0
(R(W, y) ≤ rkα | Z = z) ≥ 1− α− ϵ

− C0(π0 +m0 + π0m̃0)

√
log(1/δ) + 1

|I2 ∩ I(k)|

− C1

{
∥êD(X)− eD(X)∥ · sup

r
∥m̂(r,X)−m(r,X)∥

+∥êD(X)− eD(X)∥ · sup
r

∥ ̂̃m(r,W )− m̃(r,W )∥
}
.

Theorem 4.6 ensures a group-conditional coverage guaran-
tee of approximately 1−α for the cluster-specific prediction
sets of Y from the target population. The slack in the cover-
age guarantee is the sum of three components:

1. Score distribution discrepancy: The first term, ϵ, arises
due to differences in the score distributions of pro-
tected groups within the same cluster, which usually
diminishes to zero for large sample sizes (e.g., the KS
k-means clustering (Zhu et al., 2021)).

2. Finite sample error: The second term, obtained
from empirical process theory, is proportional to

O(N−1/2), results from bounding the empirical mean
of ψα(V ; êD, m̂, ̂̃m, r̂α) in finite samples. This error
decreases as the sample size increases, given a fixed
number of clusters and similar sizes for the data folds
I1 and I2 used in the split inference strategy.

3. Product bias: The third term reflects the bias in-
duced by estimation errors for the nuisance func-
tions. The bias is negligible if either ∥êD(X) −
eD(X)∥ · supr ∥m̂(r,X) − m(r,X)∥ = o(1) and
∥êD(X) − eD(X)∥ · supr ∥ ̂̃m(r,W ) − m̃(r,W )∥ =
o(1). This property, known as rate double robustness
(Chernozhukov et al., 2018), implies that small pertur-
bations in the nuisance functions affect the coverage
error only in second-order terms.

As a result, the prediction sets C(W ; rkα) constructed us-
ing SAGCCI approximately achieve the desired group-
conditional coverage level, up to a negligible term that
vanishes with high probability, that is, PV∼PD0

(y ∈
C(W ; rkα) | Z = z) = 1−α−o(1) as N → ∞. This prop-
erty is commonly referred to as Probably Approximately
Correct (PAC) coverage in the statistical literature (Krish-
namoorthy & Mathew, 2009).

5. Simulation studies
We evaluate the performance of our proposed method
through a series of numerical experiments. Empirical re-
sults show that SAGCCI effectively reduces disparities in
group-conditional coverage while significantly shrinking
prediction set sizes relative to existing methods.

5.1. Experimental setup

To simulate a challenging scenario, we assume that the
source data (with observed primary outcomes) is signifi-
cantly smaller than the target data. Specifically, we ran-
domly select a small proportion, P (D = 1) = N−1/10 of
the total population as the source data (D = 1), with the re-
maining data constituting the target data (D = 0). The total
sample sizes considered are N = 1000, 3000, 5000, 10000.
We first generate the baseline covariates X ∈ R2 from a
multivariate normal distribution, X ∼ N (0, I2), for the
entire population.

Next, we generate the protected group variable Z with
M = 3 levels from a multinomial distribution. Specif-
ically, P (Z = 1 | X) ∝ exp

(
−αZ,1 −

∑
j Xj/2

)
,

P (Z = 2 | X) ∝ exp (−αZ,2 −X1 −X2/2), and P (Z =
3 | X) ∝ exp (−αZ,3 −X1/2−X2), where M = 3 and
αZ = (αZ,1, αZ,2, αZ,3) is adaptively chosen to ensure the
group proportions are approximately 0.5, 0.3, and 0.2, re-
spectively; additional experiments with larger number of
groups (e.g., M = 10, 20) are presented in Appendix B.
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Algorithm 1 Surrogate-Assisted Group Clustered Conformal Inference (SAGCCI)
Input: Source data D1 = {(Wi, Zi, Yi, Di = 1)}nD1

i=1 , target data D0 = {(Wi, Zi, Yi = NA, Di = 0)}Ni=nD1+1, and
miscoverage level α ∈ (0, 1)

◁ Preparation
Randomly split the data D1 ∪ D0 into training and calibration folds I1 and I2.

◁ Training
Split I1 into sub-folds I11 and I12.
Fit score function R̂(W,Y ) on I1 ∩ D1. ◁ e.g., quantile random forest
Fit propensity function êD(W ) on I1. ◁ e.g., SuperLearner for binary outcomes
Obtain the initial threshold r̂initα on I11 ∩ D1 via the WCQR Algorithm from Lei & Candès (2021).
Fit conditional CDF ̂̃m(r̂initα ,W ) and m̂(r̂initα , X) on I12 ∩ D1. ◁ e.g., SuperLearner for continuous outcomes

◁ Calibration
Compute Ri = R̂(Wi, Yi) for i ∈ I2 ∩ D1.
Determine clustering number K by assessing Ri across Zi. ◁ e.g., Elbow method or other herustics
Obtain the clustering mapping ĥ(Z) on I2 ∩ D1. ◁ e.g., k-means
Compute the clustering indices I(k) = {i : ĥ(Zi) = k, i ∈ I2} for k = 1, · · · ,K.
Compute the cluster-specific threshold r̂kα as the smallest values satisfying

∑
i∈I2∩I(k) ψα(Vi; êD, m̂, ̂̃m, rkα) ≥ 0.

◁ Prediction
For a new data point (W,Z, Y ) ∼ PD0

from the target population, compute C(W, r̂kα), where k = ĥ(Z).
Output: prediction set C(W, r̂kα)

The surrogate outcomes S ∈ R2 are modeled as S ∼
N (12, σ

2
SI2), where σS = 1, 3, 5. The variance σ2

S reflects
the extent to which the surrogates S explain the variability
in the primary outcome Y , after adjusting for the baseline
covariates X . A larger σ2

S indicates higher predictiveness
of the surrogates S for the primary outcomes Y .

Finally, the primary outcomes Y are generated as a
multinomial variable with five levels. Specifically, for
y = 2, ..., 5, the conditional probabilities are given
by: P (Y=y|X,S)

P (Y=1|X,S) = exp
(
−αy −

∑2
j=1

Xj

2 −
∑2

j=1
Sj

2

)
,

where y = 1 serves as the reference level, and αy are adap-
tively chosen to ensure marginal probabilities of P (Y =
k) = (0.1, 0.2, 0.4, 0.15, 0.15) for y = 1, . . . , 5.

The non-conformity scores for the categorical outcomes
are derived using the nested prediction sets approach from
Kuchibhotla & Berk (2023); more details are presented in
the Appendix. Following Sesia & Candès (2020), we split
75% of the data into the first fold I1 for model training, and
use the remaining 25% as the second fold I2 to construct pre-
diction sets. We compare our proposed method (SAGCCI)
with K = 2 clusters against four alternative approaches: 1)
clustered conformal inference without leveraging surrogates
(NOSURRO + CLUSTER); 2) surrogate-assisted group-wise
conformal inference (SURRO + GROUP), which accounts for
the covariate shifts to obtain the group-specific thresholds

as in Gibbs et al. (2023); 3) surrogate-assisted standard con-
formal inference without accounting for protected groups
(SURRO + STANDARD); 4) weighted conformal quantile
regression (WCQR) from Lei & Candès (2021); and 5) con-
formalized fair quantile regression (CFQR) from Liu et al.
(2022).

5.2. Evaluation metrics

Denote the second data fold I2 as the validation dataset:
{(Wi, Zi, Yi)}i∈I2

. The empirical group-conditional cov-
erage for group z is defined as: ĉz =

∑
i∈Iz∩I2

1(Yi ∈
C(Wi))/|Iz ∩ I2|, where Iz ∩ I2 represents the subset of
validation data points belonging to group z, and |Iz ∩ I2|
is the number of such points.

To evaluate the quality of the prediction sets while incor-
porating considerations of group fairness, we use two pri-
mary metrics: 1) Average Size (AvgSize) of the prediction
sets, defined as AvgSize =

∑
i∈I2

|C(Wi)|/|I2|, where
|C(Wi)|is the size of the prediction set for individual i;
and 2) Average Group Coverage Gap (CovGap), defined as
CovGap =

∑
z∈Z |ĉz − (1 − α)|/M , where M = |Z| is

the total number of groups.

The AvgSize metric assesses the precision of the prediction
sets, where smaller values indicate more precise intervals.
Meanwhile, the CovGap metric evaluates how closely the

7
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group-conditional coverage aligns with the desired level
1− α. A smaller CovGap reflects better adherence to fair-
ness goals across groups. Additionally, we evaluate the
fraction of under-covered and over-covered groups in each
experiment and provide the results in Appendix B; similar
conclusions can be drawn from these results.

5.3. Results

First, we evaluate the benefits of leveraging surrogates to
construct prediction sets. Figure 1 summarizes the perfor-
mance metrics for the proposed clustered conformal infer-
ence methods, both with and without surrogates, across
500 Monte Carlo simulations for σS = 1, 3, 5, representing
low, medium, and high surrogate effects, respectively. The
WCQR method with surrogates produces more precise pre-
diction sets compared to NOSURRO + CLUSTER when sur-
rogates are highly predictive of the primary outcomes (i.e.,
as σS increases). However, it fails to ensure valid group-
conditional coverage, as indicated by its non-decreasing
CovGap with increasing sample size. In contrast, SAGCCI
consistently achieves the smallest average prediction set
sizes while maintaining valid group-conditional coverage,
evidenced by its empirically decreasing AvgSize and Cov-
Gap. Its efficiency gain over NOSURRO + CLUSTER be-
comes more pronounced as σS increases. With larger σS ,
surrogates explain a greater proportion of the variability in
the primary outcomes, increasing their predictiveness and
improving the construction of prediction sets. The results
align with the theoretical results presented in Corollary 4.5,
where surrogates are leveraged in the most efficient way by
the EIF to estimate the thresholds.
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Figure 1. Comparison of AvgSize and CovGap for the considered
methods. The error bar plot denote ± the standard errors.

Next, we investigate the impact of cluster mapping on em-
pirical group-conditional coverages, with results presented
in Figure 2. The SURRO + STANDARD method achieves

the smallest AvgSize across all settings by utilizing the en-
tire dataset without accounting for protected groups. How-
ever, as expected, its CovGap does not decrease to zero,
as it lacks guarantees for group-conditional coverage. In
contrast, the SURRO + GROUP method fairly ensures the
desired group-conditional coverage but with a significantly
larger AvgSize, indicating less precise prediction sets. The
CFQR method focuses on learning a fair quantile function
to construct the non-conformity score used to produce fair
prediction sets. However, this approach may not generalize
well to scores for categorical outcomes, as evidenced by
its unsatisfactory performance under our problem setup. In
contrast, our proposed SAGCCI method takes a balanced
approach by leveraging the similarity in score distributions
across protected groups to form larger clusters and esti-
mate cluster-specific thresholds, which is more general and
can be applied to any type of non-conformity scores. This
strategy maintains high-quality and precise prediction sets
comparable to SURRO + STANDARD in terms of AvgSize,
while effectively addressing disparities in group-conditional
coverage for protected groups with a diminishing CovGap,
similar to SURRO + GROUP.

For example, when σS = 3, the proposed SAGCCI reduces
AvgSize by over 60% on average compared to SURRO +
GROUP at N = 1000, while increasing the CovGap by only
7%. Compared to SURRO + STANDARD, the AvgSizes are
similar, but SAGCCI noticeably reduces the CovGap by
over 80% at N = 3000. Even when surrogate outcomes are
not available (i.e., σS = 0), cluster mapping remains benefi-
cial, as seen by comparing the performance of NOSURRO +
CLUSTER against NOSURRO + STANDARD and NOSURRO
+ GROUP in Appendix B.
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Figure 2. Comparison of AvgSize and CovGap for the considered
methods. The error bar plot denote ± the standard errors.
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6. Real-data application
We analyzed data from the Moderna COVE phase 3 COVID-
19 vaccine efficacy trial, which randomized adults to receive
two doses of mRNA-1273 or placebo at Days 1 and 29. Our
per-protocol analysis included participants who received
both injections without specified protocol violations. Par-
ticipants were randomly sampled into the immunogenicity
subcohort using stratified Bernoulli random sampling, with
antibody markers measured at Days 1, 29, and 57. Our analy-
sis focused on a cohort of 1418 individuals, including 46.0%
underrepresented minorities (n = 652), defined as Blacks or
African Americans, Hispanics or Latinos, American Indians
or Alaska Natives, Native Hawaiians, and Pacific Islanders.
The source population of non-minorities (n = 766) included
all other races (e.g., White, Asian) and non-Hispanic ethnic-
ity. Confounders included a standardized COVID-19 risk
score built using machine learning and baseline covariates
(e.g., sex, BMI, enrollment time), with fairness evaluations
conducted across age-comorbidity stratification groups: (i)
65 or older, (ii) younger than 65 with comorbidities, and
(iii) younger than 65 without comorbidities. The surrogate
outcome was the Day 29 log10 nAb-ID50 titer, while the pri-
mary outcome was a discrete variable representing quintiles
of the binding spike antibody level at Day 57.

We set the miscoverage level α = 0.05 and employed a 75-
25 train-test split, repeating the procedure 100 times to sum-
marize results. Table 1 presents the results. Methods lever-
aging surrogate outcomes (SURRO + STANDARD, SURRO
+ GROUP, and SAGCCI) consistently outperformed those
that did not, producing lower coverage gaps and shorter pre-
diction interval sizes. Among these, our proposed SAGCCI
achieves the best overall performance, with the shortest pre-
diction intervals across all three age-comorbidity subgroups,
and valid group-conditional coverage. This highlights the ef-
fectiveness of combining surrogate information with cluster-
ing to achieve both precision and fairness in individualized
vaccine efficacy estimation.

Table 1. Comparison of methods: AvgSize, CovGap, empirical
coverage, and width for age-comorbidity stratification groups

Method AvgSize CovGap Coverage Width

NOSURRO + STANDARD 4.46 4.39 (0.97, 0.87, 0.92) (4.79, 4.20, 4.39)
SURRO + STANDARD 3.83 1.09 (0.95, 0.93, 0.96) (3.82, 3.91, 3.76)
NOSURRO + GROUP 4.63 2.22 (0.97, 0.90, 0.95) (4.81, 4.44, 4.63)
SURRO + GROUP 3.93 0.14 (0.95, 0.95, 0.95) (3.80, 4.06, 3.94)
NOSURRO + CLUSTER 4.48 3.28 (0.94, 0.87, 0.94) (4.62, 4.27, 4.53)
WCQR 4.05 5.24 (0.98,0.82,0.88) (4.21, 3.82, 4.24)
SAGCCI (ours) 3.61 0.18 (0.95, 0.95, 0.95) (3.63, 3.55, 3.66)

7. Discussion
We have introduced a novel surrogate-assisted group-
clustered conformal inference (SAGCCI) framework for
constructing fair and efficient prediction sets. SAGCCI

substantially improves efficiency over existing group-wise
conformal methods by producing tighter prediction sets
while maintaining valid group-conditional coverage, mak-
ing it well-suited for high-stakes applications such as clin-
ical risk assessment and policy evaluation. A promising
direction for future research is to extend the generalizability
and transportability of these conformal inference methods
across multiple data sources, such as multi-site randomized
clinical trials or observational studies. This could involve
relaxing the MAR assumption and addressing potential dis-
tributional shifts, including conditional shifts in outcomes
and surrogates (Liu et al., 2024). Such extensions would be
particularly valuable in settings where privacy constraints
preclude the sharing of individual-level data, a common
challenge in federated causal inference (Han et al., 2023;
2024; 2025; Guo et al., 2025; Xiong et al., 2023).

Software and Data
Our R code, complete with illustrative examples, is
available at https://github.com/Gaochenyin/
SurrConformalDR.
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A. Proofs
A.1. Proof of Theorem 4.4

In this section, we derive the EIF for the threshold rα. Since the threshold can be group-(or cluster-)specific, the protected
group Z is excluded from the observed data in the derivation. Let t denote the index for the parametric submodels ft(O) of
the observed data (X,D, S, Y ) with true density function evaluated at t = t∗, i.e., f(O) = ft∗(O), where

f(O) = f(X)× eD(X)D{1− eD(X)}1−D

× f(S | D,X)× f(Y | S,D,X),

the observed score function is derived by the pathwise derivatives of log ft(O) with respect to t, given by st(O) =
st(Y | S,D,X) + st(S | D,X) + st(D | X) + st(X). The tangent space corresponding to this model is Λ =
ΛX ⊕ ΛD|X ⊕ ΛS|D,X ⊕ ΛY |S,D,X , where ΛX , ΛD|X , ΛS|D,X , and ΛY |S,D,X are the mean square closures of the score
vector of the submodels:

ΛX = {Γ(X) :

∫
Γ(x)f(x)dx = 0},

ΛS|D,X = {Γ(S,D,X) :

∫
Γ(s,D,X)f(S | D,X)ds = 0},

ΛY |S,D,X = {Γ(Y, S,D,X) :

∫
Γ(y, S,D,X)f(y | S,D,X)dy = 0},

for any two arbitrary square-integrable measurable functions a(X) and b(X).

Let u(R, rα) = 1(R ≤ rα | D = 0)− (1− α), and r(t) be the corresponding (1− α)-quantile for the scores of the target
population R | D = 0 under the parametric submodels, which satisfies Et[u{R1, r1(t)}] = 0 with r(t∗) = rα. Next, we
can show that

0 =
∂

∂t
Et[u{R, r(t)}]

∣∣
t=t∗

=
∂

∂t
Et[u{R, r(t∗)}]

∣∣
t=t∗

+
∂

∂r
Et∗ [u{R, r(t∗)}]

∂r(t)

∂t

∣∣
t=t∗

,

which leads to

∂r(t)

∂t

∣∣
t=t∗

=

[
− ∂

∂r
Et∗{u(R, rα)}

]−1
∂

∂t
Et{u(R, rα)}

∣∣
t=t∗

∝ ∂

∂t
Et{u(R, rα)}

∣∣
t=t∗

.

Under Assumptions 4.1 and 4.2, we have

∂

∂t
Et{u(R, rα)}

∣∣
t=t∗

=
∂

∂t
Pt(R < rα | D = 0)

∣∣
t=t∗

∝ ∂

∂t
EX,t[ES,t{PY,t(R1 < rα,1 | D = 1, S,X) | X} | D = 0]

∣∣
t=t∗

∝ ∂

∂t
EX,t[(1−D)ES,t{PY,t(R < rα | D = 1, S,X) | X}]

∣∣
t=t∗

∝ ∂

∂t
EX,t[Pt(D = 0 | X)ES,t{PY,t(R < rα | D = 1, S,X) | X}]

∣∣
t=t∗

= T1 + T2 + T3 + T4,

which is constituted by five terms T1, T2, T3, and T4. We analyze these four terms separately,

T1 =
∂

∂t
EX,t{P (D = 0 | X)m(r,X)}

∣∣
t=t∗

= EX [{P (D = 0 | X)m(r,X)− (1−D)(1− α)}s(X)],

T2 =
∂

∂t
EX{Pt(D = 0 | X)m(r,X)}

∣∣
t=t∗

= −E[{D − eD(X)}m1(r,X)s(D | X)],

T3 =
∂

∂t
EX [P (D = 0 | X)ES,t{m̃(r,W ) | X}]

∣∣
t=t∗

= E [P (D = 0 | X) {m̃(r,W )−m(r,X)} s(S | D,X)] ,
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and

T4 =
∂

∂t
EX [P (D = 0 | X)ES{PY,t(R < rα | D = 1, S,X) | X}]

∣∣
t=t∗

=
∂

∂t
EX

(
P (D = 0 | X)E

[
D {1(R ≤ rα)− m̃(r,W )}

eD(X)
s(Y | S,D,X) | X

])
=

∂

∂t
E [DπD(X) {1(R ≤ rα)− m̃(r,W )} s(Y | S,D,X)] .

Putting these terms together, we can show that

∂r(t)

∂t

∣∣
t=t∗

∝ ∂

∂t
Et{u(R, rα)}

∣∣
t=t∗

= E{ψα(V ; eD,m, m̃, rα)s(Y, S,D,X)},

and

ψα(V ; eD,m, m̃, rα) = (1−D){m(rα, X)− (1− α)}
+ {1− eD(X)}{m̃(rα,W )−m(rα, X)}
+DπD(X){1(R < rα)− m̃(rα,W )}
= (1−D){m(rα, X)− (1− α)}+DπD(X){1(R ≤ rα)−m(rα, X)}
+ [DπD(X)− {1− eD(X)}]{m(rα, X)− m̃(rα,W )},

where (1 − D){m(rα, X) − (1 − α)} ∈ ΛX , {1 − eD(X)}{m̃(rα,W ) − m(rα, X)} ∈ ΛS|D,X , DπD(X){1(R <
rα)− m̃(rα,W )} ∈ ΛY |S,D,X . Thus, it completes the proof of Theorem 4.4 by the definition of efficient influence function.

A.2. Proof of Theorem 4.6

In this section, we establish asymptotic properties for the estimator of rα, which is important for constructing prediction set
with the user-defined coverage level 1− α. First, we establish the connection between the asymptotic coverage probability
P (R ≤ rα | D = 0) and the EIF for rα in Lemma A.1.

Under Lemma A.1, we can show that for the empirically estimated r̂α using the second data fold I2, we have

P(R ≤ r̂α | D = 0)− (1− α) =
PI2

{ψ̂(V ; rα)}
P (D = 0)

+
P{ψ̂(V ; rα)} − PI2{ψ̂(V ; rα)}

P (D = 0)
+

P{ψ̂(V ; rα)− ψ(rα,1,W )}
P (D = 0)

≥ 0 + I1 + I2.

Here, we use the fact that PI2
{ψ̂(V ; rα)} ≥ 0 by definition. The term I1 is negligible if ψ(V ; rα) belongs to a Donsker

class (Van der Vaart, 2000). Even if the Donsker condition is not met, the sample-splitting procedure in (Chernozhukov
et al., 2018) can be used to assure that I1 is negligible, where the first data fold I1 is used to estimate êD, m̂a and ̂̃m, and
the second data fold I2 is used to compute rα; see Lemma A.2 for more details on the bound of I1.

The term I2 is the second-order remainder term, which is bounded by the product of estimation error for the nuisance
functions:

P{ψ̂(V ; r)− ψ(V ; r)} = P [{1− eD(X)}{m̂(r,X)−m(r,X)}]

+ P
[
{1− êD(X)}{ ̂̃m(r,W )− m̂(r,X)}

]
+ P

[
eD(X)π̂D(X){m̃(r,W )− ̂̃m(r,W )}

]
= P [{1− eD(X)}{m̂(r,X)−m(r,X)}]

+ P
[
{1− êD(X)}{ ̂̃m(r,W )− m̃(r,W ) +m(r,X)− m̂(r,X)}

]
+ P

[
eD(X)π̂D(X){m̃(r,W )− ̂̃m(r,W )}

]
= P [{êD(X)− eD(X)} {m̂(r,X)−m(r,X)}] + P

[
{1− êD(X)− eD(X)π̂D(X)}{ ̂̃m1(r,W )− m̃1(r,W )}

]
≲ ∥êD(X)− eD(X)∥ · sup

r
∥m̂(r,X)−m(r,X)∥+ ∥êD(X)− eD(X)∥ · sup

r
∥ ̂̃m(r,W )− m̃(r,W )∥,
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where the last inequality follows from the Cauchy–Schwarz inequality. Combining the bounds for I1 and I2 gives us

P (R ≤ r̂α | D = 0) ≥ (1− α)

− C0e0(e
−1
0 +m0 + e−1

0 m̃0)

√
log(1/δ) + 1

|I2|

− C1

{
∥êD(X)− eD(X)∥ · sup

r
∥m̂(r,X)−m(r,X)∥+ ∥êD(X)− eD(X)∥ · sup

r
∥ ̂̃m(r,W )− m̃(r,W )∥

}
,

which completes the proof.

A.3. Proof of Corollary 4.5

By straightforward algebra, the EIF for rα without surrogates is ψr(V ; rα) = (1 − D){m(rα, X) − (1 − α)} +
DπD(X){1(R ≤ rα) − m(rα, X)}. The variance for estimating rα without surrogates is V r

eff = var{ψr(V ; rα)} =
V r
1 + V r

2 + V r
3 + 2V r

12 − 2V r
13 − 2V r

23, where

V r
1 = var [(1−D){m(rα, X)− (1− α)}] ,
V r
2 = var [DπD(X)1(R ≤ rα)] , V r

3 = var {DπD(X)m(rα, X)} ,
V r
12 = cov [(1−D){m(rα, X)− (1− α)}, DπD(X)1(R ≤ rα)] = 0,

V r
13 = cov [(1−D){m(rα, X)− (1− α)}, DπD(X)m(rα, X)] = 0,

V r
23 = cov [DπD(X)1(R ≤ rα), DπD(X)m(rα, X)] = V r

3 .

Similarly, we can show that the variance for estimating rα with surrogates is Veff = var{ψ(V ; rα)} = V1 + V2 + V3 + V4 +
2V12 + 2V13 − 2V14 + 2V23 − 2V24 − 2V34, where

V1 = var [(1−D){m(rα, X)− (1− α)}] ,
V2 = var [{1− eD(X)}{m̃(rα,W )−m(rα,C , X)}]
V3 = var {DπD(X)1(R ≤ rα)} , V4 = var {DπD(X)m̃(rα,W )} ,
V12 = V13 = V14 = 0,

V23 = V24

= cov [{1− eD(X)}{m̃(rα,W )−m(X)}, DπD(X)m̃(rα,W )] ,

V34 = cov [DπD(X)1(R ≤ rα), DπD(X)m̃(rα,W )] = V4.

Therefore, we can verify that

V r
eff − Veff = V4 − V r

3 − V2

= var {DπD(X)m̃(rα,W )} − var {DπD(X)mC(rα,C , X)} − var [{1− eD(X)}{m̃(rα,W )−mC(rα,C , X)}]
= E

{
Dπ2

D(X)m̃2(rα,W )
}
− E

{
Dπ2

D(X)m2
C(rα, X)

}
− E

[
{1− eD(X)}2{m̃(rα,W )−mC(rα, X)}2

]
= E

[
{1− eD(X)}2

eD(X)
{m̃2(rα,W )−m2

C(rα, X)}
]
− E

[
{1− eD(X)}2{m̃2(rα,W )−m2

C(rα, X)}
]

= E
[
πD(X){1− eD(X)}2var{m̃C(rα, X, S) | X}

]
,

where V r
1 = V1 and V r

2 = V3. Hence, it completes the proof of Corollary 4.5.

A.4. Additional technical details

A.4.1. PROOF OF LEMMA A.1

Lemma A.1. Under Assumptions 4.1 and 4.2, the following holds for any EIF ψ(V ; rα):

P (R ≤ rα | D = 0) = 1− α+
E{ψ(V ; rα)}
P (D = 0)

.
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On the one hand, we can show that

P (R ≤ rα | D = 0) = E {1(R ≤ rα) | D = 0} . (3)

On the other hand, we can prove that

E{ψ(V ; rα)} = E[(1−D){m(rα, X)− (1− α)}]
= E {P (D = 0 | X)P (R ≤ rα | X)} − P (D = 0)(1− α)

= E {(1−D)P (R ≤ rα | X)} − P (D = 0)(1− α)

= P (D = 0)E {1(R ≤ rα) | D = 0} − P (D = 0)(1− α).

Combine it with (3), we have P (R ≤ rα | D = 0) = 1− α+ E{ψ(V ; rα)}/P (D = 0).

A.4.2. PROOF OF LEMMA A.2

Lemma A.2. Under the regularity conditions (A1) and (A2), there exists some constant C0 such that for any δ > 0,

P

(
|I1| ≤

C0e0(e
−1
0 +m0 + e−1

0 m̃0)

P (D = 1)

√
log(1/δ) + 1

N
| I1

)
≥ 1− δ.

The proof of Lemma A.2 is adapted from Theorem 3 in Yang et al. (2024). First, we expand the numerator of I1 into the
following four parts,

P{ψ̂(V ; rα)} − PI2
{ψ̂(V ; rα)}

=

[
1

|I2|
∑
i∈I2

Diπ̂D(Xi)1(R ≤ rα)− P {Dπ̂D(X)1(R ≤ rα)}

]
(4)

+
1

|I2|
∑
i∈I2

{êD(Xi)−Di} m̂1(rα, Xi)− P {êD(X)−D} m̂1(rα,1, X) (5)

+
1

|I2|
∑
i∈I2

[Diπ̂D(Xi)− {1− êD(Xi)}] ̂̃m(rα,Wi)− P [Dπ̂D(X)− {1− êD(X)}] ̂̃m(rα,W ) (6)

−

{
1

|I2|
∑
i∈I2

(1−Di)− P (D = 0)

}
(1− α) (7)

= Rem1(rα) +Rem2(rα) +Rem3(rα) +Rem4.

Bound on suprα |Rem1(rα)| We define a class of functions F1 by

F1 = {fr : fr = DπD(X)1(R ≤ rα),∀r} .

One can observe that ∀fr ∈ F1, we have |fr| = |π̂D(X)| ≤ π0. Therefore, 1 is an envelope function of F1. Let ∥z∥F denote
the supermum norm of z over a class of function F , defined by ∥z∥F = supf∈F |z(f)|. For Oi = (Xi, Ai, Si, Yi, Di) and
any function f , we define

GN =
1√
N

N∑
i=1

[f(Oi)− P{f(O)}].

Applying Lemma A.3 with s(a, d, w) = D and h(w, y) = R produces E∥GN∥F1 ≤ C1 with C1 being a universal constant.
By McDiarmid’s inequality, we can show that

P (∥GN∥F1
− E∥GN∥F1

≥ t) ≤ exp

(
− 2t2∑N

i=1 c
2
i

)
≤ exp

(
− 2t2∑N

i=1 2
2/N

)
= exp

(
− t2

4π2
0

)
,
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where

ci ≤ sup
Oi,O′

i

sup
r

√
N

∣∣∣∣ 1NDiπ̂D(Xi)1(R1,i < r)− 1

N
Di′ π̂D(X ′

i)1(R1,i′ < r)

∣∣∣∣ ≤ 2π0√
N
.

Substituting the expectation bound to the inequality gives us

P

(
∥GN∥F1

≥ C2π0

√
1 + log

(
1

δ

))
≤ δ, (8)

for some constant C2.

Bound on suprα |Rem2(rα)| Similar to the bound on suprα |Rem1(rα)|, a class of function F2 is defined by F2 =
{fr : fr = {êD(X)−D} m̂(rα, X),∀r}, where

fr = {êD(X)−D} m̂(rα, X)

= {êD(X)−D}
∫ m0

0

1{m̂(rα, X) ≥ u}du

=

∫ m0

0

{êD(X)−D}1{rα ≥ h(X,u)}du,

where the first equality holds by m̂(rα, X) =
∫m0

0
1{m̂(rα, X) ≥ u}du, and the second equality holds as m̂(rα, X) is

monotonously increase in rα. By Lemma A.3 and McDiarmid’s inequality, we have

E∥GN∥F2 ≲
∫ m0

0

du ≲ m0, P (∥GN∥F2 − E∥GN∥F2 ≥ t) ≤ exp

(
− t2

4m2
0

)
.

Substituting the expectation bound back gives us

P

(
∥GN∥F2

≥ C3m0

√
1 + log

(
1

δ

))
≤ δ, (9)

for some constant C3.

Bound on suprα |Rem3(rα)| Similarly, we first define the class of function F3 as

F3 =
{
fr : [Dπ̂D(X)− {1− êD(X)}] ̂̃m(rα,W )

}
.

The supermum norm of GN over F3 and the bound of ∥GN∥F3 can be obtained by Lemma A.3 and McDiarmid’s inequality,
respectively:

E∥GN∥F3
≲
∫ m̃0

0

π0du ≲ π0m̃0, P (∥GN∥F3
− E∥GN∥F3

≥ t) ≤ exp

(
− t2

4π2
0m̃

2
0

)
,

which yields

P

(
∥GN∥F3 ≥ C4π0m̃0

√
1 + log

(
1

δ

))
≤ δ, (10)

for some constant C4.

Bound on |Rem4| The random variables (1−Ai) is i.i.d., and Hoeffding inequality gives us

P

({
1

N

N∑
i=1

(1−Di)− P (D = 0)

}
≥ t

)
≤ exp

(
−2t2

N

)
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which leads to

P

(
Rem4 ≥ (1− α)

√
1

2N
log

(
1

δ

))
≤ δ. (11)

Combining (8), (9), (10), and (11) together with the help of union bound, we can show that with probability larger than
1− δ,

sup
rα

|Rem1(rα) +Rem2(rα) +Rem3(rα) +Rem4| ≲ (π0 +m0 + π0m̃0)

√
log(1/δ) + 1

|I2|
,

which completes the proof for the bound of I1.

A.4.3. ADDITIONAL LEMMAS AND THEOREMS

Lemma A.3 (Lemma 8, Yang et al. (2024)). There exists a universal constant C such that for any functions s(a, d, w) ∈
[−κ0, κ0] and h(w, y),

E

[
sup
r

|GN [s(a, d, w)1{h(w, y) ≤ r}]|
]
≤ Cκ0.

A.5. Proof of Lemma 4.3

Denote Z(k) = {z ∈ Z : ĥ(z) = k} be the set of protected groups that the clustering algorithm ĥ assign to cluster k. Let
R(k) be the non-conformity scores for cluster k and Rz be the non-conformity scores for group z. Since we assume that the
KS distance between the score distribution for each pair of the cluster k is bounded by ϵ, it follows that KS(Rz, R(k)) ≤ ϵ
by the triangle inequality as R(k) follows a mixture distribution of the group-specific Rz such that z ∈ Z(k).

By the definition of KS distance, it implies |P (R(W, y) ≤ rkα | Z = z)− P (R(W, y) ≤ rkα | Z ∈ Z(k))| ≤ ϵ, where rkα is
the cluster-specific threshold for cluster k. Since performing conformal inference separately for each cluster guarantees the
coverage, we have

|P (R(W, y) ≤ rkα | Z = z)− P (y ∈ C(W ; rkα) | Z ∈ Z(k))| ≤ ϵ,

where P (y ∈ C(W ; rkα) | Z ∈ Z(k)) ≥ 1 − α. Therefore, we have P (R(W, y) ≤ rkα | Z = z) ≥ 1 − α − ϵ, which
completes the proof by integrating (W,Z, Y ) over the target population.

B. Additional simulation details
Guidance on selecting the number of clusters The number of clusters K should be pre-specified, and we provide a
simple heuristic for selecting this parameter in practice. On the one hand, each cluster should have a sufficiently large
sample size to ensure efficient estimation of the thresholds. On the other hand, K should not be too large; otherwise this will
reduce the method to group-wise conformal inference.

In particular, we recommend targeting an average of 100 subjects per cluster in our study, while Ding et al. (2024) advocated
for 150 subjects per cluster in their practical applications. Therefore, K is chosen as the smallest number of clusters such
that each cluster has at least 100 subjects, which is adopted throughout our simulations and real-data analyses. Other
human-in-the-loop strategies can be adopted to avoid overly clustering on non-clusterable groups, such as the Elbow method
or other information criterion (e.g., AIC, BIC) in a cross-validation setting.

Details of nonconformity scores for categorical primary outcomes Let F (W ; t) = {y : PY (y | W ) ≤ t} denote
a nested sequence of sets constructed using the first data fold, I1. The corresponding non-conformity scores R(W,Y )
for the source data are defined as R(W,Y ) = inf{t : y ∈ F (W ; t)}, where the conditional probabilities PY (y | W ) are
estimated using multinomial logistic regression from the NNET package. To construct the scores for the target data, where
the primary outcomes are unobserved, we fit a model on the scores R(Wi, Yi) from the source data i = 1, · · · , nD1 on Wi,
and predict the scores for the target data. Finally, the semiparametric efficient estimator r̂kα for cluster k is computed as the
smallest value satisfying the condition

∑
i∈I2∩I(k) ψα(Vi; êD, m̂, ̂̃m, r̂kα) ≥ 0, where the nuisance models m̂, ̂̃m, and êD

are estimated from I1. The models are all fitted using SUPERLEARNER (Van der Laan et al., 2007), with Random Forests
and generalized linear models as base learners.
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Fraction of under-coverage and over-coverage The fraction of protected groups that are under-covered and over-covered
are evaluated as well. We define the fraction of under-covered (FracUnderCov) and over-covered (FracOverCov) groups by:
FracOverCov =

∑
z∈Z 1(ĉz > 1−α+0.01)/M and FracUnderCov =

∑
z∈Z 1(ĉz < 1−α− 0.01)/M , where the value

0.01 is included to account for finite-sample randomness and ĉz is the empirical group-conditional coverage for group z.
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Figure 3. Comparison of FracOverCov and FracUnderCov for the considered surrogate-assisted methods. The error bar plot denotes ±
the standard errors.

Figure 3 illustrates the results for the considered surrogate-assisted methods. It can be observed that both SURRO + GROUP
and SAGCCI exhibit well-controlled fractions of under-coverage and over-coverage as the sample size increases. However,
SURRO + GROUP achieves the low FracOverCov and FracUnderCov by producing larger prediction sets on average, which
can be observed in Figure 2. Moreover, SURRO + STANDARD continues to exhibit non-negligible fractions of under-coverage
or over-coverage, even with large sample sizes, as it is unable to guarantee group-conditional coverage.

Larger number of protected groups and clusters To evaluate the impact of a larger number of protected groups, we
generate the protected group variable Z by randomly sampling from {1, · · · ,M}, where the number of groups M is set
to 10 or 20. The baseline covariates X and the surrogate outcomes S are generated in the same way as described in the
main simulation studies. Next, the primary outcomes Y are generated as a multinomial variable with five levels, where the
conditional probabilities are given by: P (Y=y|X,Z,S)

P (Y=1|X,Z,S) = exp
(
−αy −

∑2
j=1

Z
M

Xj

2 −
∑2

j=1
Sj

2

)
, with the same marginal

probabilities P (Y = k) = (0.1, 0.2, 0.4, 0.15, 0.15) as in the main paper.

Figure 4 presents the results for a fixed number of clusters, K = 5. As the number of groups increases, the performance
of SURRO+GROUP noticeably degrades in both metrics (AvgSize and CovGap), even when N ≥ 5000 for M = 20.
This is because each group contains fewer samples, making it harder to estimate non-conformity scores accurately. In
contrast, SAGCCI adopts a more balanced approach, achieving an AvgSize comparable to SURRO+STANDARD while
also maintaining a smaller CovGap as the sample size increases. Furthermore, in the absence of surrogate outcomes,
NOSURRO+CLUSTER, the non-surrogate-assisted version of SAGCCI, still delivers strong performance by effectively
balancing AvgSize and CovGap.
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Figure 4. Comparison of AvgSize and CovGap for the considered methods for a larger number of groups and clusters. The error bar plot
denotes ± the standard errors.
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