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ABSTRACT

Emphasis effects – visual changes that make certain elements more
prominent – are commonly used in information visualization to draw
the user’s attention or to indicate importance. Although theoretical
frameworks of emphasis exist (that link visually diverse emphasis
effects through the idea of visual prominence compared to back-
ground elements), most metrics for predicting how emphasis effects
will be perceived by users come from abstract models of human
vision which may not apply to visualization design. In particular,
it is difficult for designers to know, when designing a visualization,
how different emphasis effects will compare and what level of one
effect is equivalent to what level of another. To address this gap,
we carried out two studies that provide empirical evidence about
how users perceive different emphasis effects, using three visual
variables (colour, size, and blur/focus) and eight strength levels.
Results from gaze tracking, mouse clicks, and subjective responses
show that there are significant differences between visual variables
and between levels, and allow us to develop an initial understanding
of perceptual equivalence. We developed a model from the data in
our first study, and used it to predict the results in the second; the
model was accurate, with high correlations between predictions and
real values. Our studies and empirical models provide valuable new
information for designers who want to understand and control how
emphasis effects will be perceived by users.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Perception; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

Emphasis effects are visual changes that make certain elements more
prominent, and are commonly used in information visualization to
draw the user’s attention or to indicate importance. Emphasizing
important data points is a common method used by designers to
support the user when gradually exploring the data – or in narrative
visualization [25], when known aspects of the data are presented
to the users. An effective emphasis effect will alter a data point’s
visual features [4, 22], such that a viewer’s attention will be guided
to the region of interest [61].

The goal of emphasis is to alter important data points to appear
more visually prominent and can be achieved through the use of a
variety of visual effects [17, 22, 23, 59]. For example, a visualization
can use colour changes to emphasize some data points, and differ-
ences in the visual prominence of the selected data points will be
achieved from variations in color, a visual variable known to guide a
user’s attention [24].

Although theoretical frameworks of emphasis exist that link visu-
ally diverse emphasis effects through the idea of visual prominence
compared to background elements [22], we still know little about
how emphasis effects will be perceived by users. In particular, we
know little about what visual effects, and what magnitudes of those
effects, will be most quickly recognized as emphasis by the viewer
of a visualization; in addition, we know little about how different

effects compare and what level of an effect is equivalent to what
level of another.

Many metrics for predicting how emphasis effects will be per-
ceived by users come from abstract models of human vision which
may not apply to visualization design. These abstract models from
human vision are generally constructed using large and visually
isolated stimuli under optimal conditions. Models of human visual
attention are effective at predicting perceptibility in isolation but not
within a field of distractors, and do not work well with even minor
changes to the visual field [3, 58].

Visualizations, in contrast, often consist of large numbers of a
variety of marks viewed using a wide range of devices and environ-
ments - and designers may use a variety of techniques to emphasize
data points. Current guidelines do not address how different empha-
sis effects are perceived by viewers in visualizations, or provide an
equivalence metric for perceived emphasis so designers can choose
effects correctly. Without effective models of visual prominence in
visualizations, designers lack information on know how different
visual effects compare, and don’t know what magnitude of effect to
use to appropriately guide a viewer’s attention to an area of interest.

To address this gap, we carried out two studies that provide em-
pirical evidence about how users perceive different emphasis effects,
using three visual variables (colour, size, and blur/focus) and eight
strength levels. It is important to note that the three emphasis effects
are qualitatively different - for example, colour and size manipulate
just the emphasized element, whereas blur/focus manipulates every-
thing but the emphasized element - and so our goal is not simply to
identify which effect is most perceivable, but rather to establish how
the effects compare to one another at different magnitudes. To do
this, our first study established a baseline of perceived visual promi-
nence through eye-tracking data, interaction logs, and subjective
ratings in simulated static scatterplot visualizations. We then built
a model from the first study’s data using logarithmic curves, that
provides a prediction of equivalence between the three emphasis
effects. Our second study then examined perceived emphasis in
a more realistic context, by looking at visual prominence in com-
plex visualizations that are taken from real-world applications (the
MASSVIS dataset [7]). We evaluated our model by using it to pre-
dict the results of the second study for three different measures; the
model was accurate, with R2 values as high as 0.96.

Our two studies provide new findings about how people perceive
three emphasis effects and their magnitudes in visualizations:

• There were significant differences in both studies for empha-
sis effect: blur/focus was most prominent, and colour least
prominent, with size in between depending on magnitude.

• There were also significant differences between the magnitude
levels for all effects, providing a graduated way to increase or
decrease perceived prominence.

• A predictive model based on logarithmic curves fit the Study 1
data well, and was accurate at predicting perceived emphasis
in Study 2 (particularly in terms of subjective ratings).

Our studies provide an initial empirical foundation for understand-
ing how visual effects operate and are experienced by viewers when
used for emphasis in visualizations – and although more work is
needed to refine and broaden the models, our work provides useful
new information for designers who want to control how emphasis
effects will be perceived by users.



2 RELATED WORK

Emphasis is essential to InfoVis and is used to highlight regions of
interest in a visualization. While there is a large body of research
in this domain, much of the work seeks to understand how the
underlying perceptual system operates – limiting the possibility of
extracting design lessons from low-level data and findings. We
survey current empirical studies of perception from visualization
and vision science to inform our work.

2.1 Visual Attention and Graphical Perception

There are various theories and computational models for selective
visual attention, but in general, most theories agree that attention
operates by alternately selecting “features” from a number of incom-
ing subsets of sensory data for further processing [50]. Early work
suggests a two-stage process: first, a bottom-up, pre-attentive stage,
which is automatic and independent of a task [50], where attention
is guided to the most salient items in a scene [69]; followed by a
second, slower, top-down stage that is driven by current tasks and
goals [34, 49, 61]. Within this model, the conjunction of basic fea-
tures (such as colour and orientation) stems from “binding” features
together (known as Feature Integration Theory [61]).

A second theory, the Guided Search Theory, extends the two-stage
process by proposing that attention can be biased toward targets of
interest (e.g., a user looking for a red circle) in the top-down phase by
encoding particular visual characteristics [68]: for example, assign-
ing a higher weight to the red colour. Recently-proposed attention
theories, however, challenge the two-stage model suggesting there is
also bias to prioritize items that have been previously selected, thus
proposing a three-stage model: current goals, selection history, and
physical salience (bottom-up attention) [1].

Attention is commonly examined through visual search experi-
ments which usually ask participants to determine whether a target is
present in a scene with distractors; reaction times (RT) and accuracy
are used to model the relationship between the response and the num-
ber of distractors. Frequently, the term “popout” is used to describe a
target item that is easily identified due to its unique visual properties
in these searches. While the noticeability of specific visual charac-
teristics such as colour and size cues have also been examined from
an attention perspective [21, 43], a related area of research called
graphical perception takes a more in-depth look at the suitability of
different visual channels, and at how choices in visual variables for
encoding data affect visualization effectiveness [15].

Graphical perception studies have explored how different visual
channels might support a variety of tasks for visualization [51].
Bertin was among the first to study the ability of visual variables to
encode information, suggesting that variations in individual visual
variables is an effective tool for encoding information and achieving
noticeability [4]. Particularly, Bertin suggests that selective visual
variables, such as position, size, colour hue, or texture allows viewers
to immediately detect variables.

Following Bertin, researchers in multiple disciplines such as
cartography [41], statistics [15], and computer science [42] have
conducted human-subjects experiments and have derived rankings
of visual variables for nominal, ordinal, or quantitative data [15, 41,
42, 56]. In addition to comparing the effectiveness of alternative
visual variables for visualization, researchers have investigated how
other design factors such as aspect ratios [13], chart sizes [26], and
animations [62] influence the effectiveness of charts.

Graphical perception studies have focused on measuring how the
visual encoding of variables affect the accuracy of estimating and
understanding values of the underlying data; insights from studies in
graphical perception, however, can also be applied in manipulating
data points in a visualization to guide a viewer’s attention to an area
of particular importance.

2.2 Emphasis in Visualization
Emphasis is essential to information visualization by offering sup-
port to a user when exploring data, for instance through highlighting
areas of interest when brushing and linking across multiple views
to emphasize relationships [35]. Emphasis is also important when
presenting known aspects of data to a user through narrative visu-
alization [53]. The goal of emphasis is to manipulate the visual
features of an important data point to make it visually prominent,
such that a viewer’s bottom-up attention is attracted to the point [22].

While distortion and magnification techniques – which create
emphasis effects by simultaneously manipulating a visual variable’s
size and positioning have been a focus of infovis researchers for
creating emphasis [11, 32, 38], new techniques such as blur [36],
motion [27], and flicker [64] have recently emerged. Given these
new emphasis techniques, Hall et al. suggested a categorization
of emphasis effects into two main groups based on time variation:
time-invariant and time-variant effects [22].

Time-invariant emphasis effects such as highlighting (colouring
a data point in a visualization), and blurring (where an data point
is shown in focus while the other elements are blurred) do not
change with time, and do not use features such as fly-in, fade-in
or other transitions [22]. Time-variant emphasis effects, such as
motion, flickering, or zooming, by contrast, involve time variations,
commonly achieved through animations that alter the appearance of
a data point [22].

While there are many ways in which a data point in a visualiza-
tion can be emphasized, all visual techniques generate emphasis by
making the focus mark (i.e., the target) visually more prominent by
making it sufficiently dissimilar from the other elements (i.e., the
non-target marks) in at least one visual channel [22]. For example,
blur/focus, magnification, and highlighting create emphasis by mak-
ing one data point more visually prominent than others (e.g., sharper,
bigger, or a different colour).

There are three main properties of a visual channel that could in-
fluence the effectiveness of the visual prominence of an emphasized
target mark against the set of non-emphasized marks: the similarity
between targets and non-targets, the similarity of all non-targets,
and the channel offset (i.e., the lowest value of the non-targets) [63].
Similarity theory shows that visual search efficiency decreases with
increased target/non-target similarity and with decreased similarity
between the non-targets [18]).

In a similar theory, the relational account of attention theory sug-
gests that the perceived similarity between targets and non-targets
can be modeled by the magnitude of a vector in feature space point-
ing from the target to the closest non-target [2]. If users are given
a feature direction in a visual search task (e.g., find the brightest or
largest), attention will be guided to the mark that differs in the given
direction from the other marks. In this theory, however, the non-
target similarity does not have an influence on the visual prominence
of a target.

Findings from classic psychophysics and visual search experi-
ments, however, cannot always be applied directly to data visualiza-
tion. Simple changes such as adding links between dots to simulate
a node-link diagram, or changes to contrast effects due to a back-
ground luminance have shown to have considerable effects on the
results from experiments [3, 58]. These results reinforce the need
for empirical evaluations of visualizations to validate theory and
evaluate real-world visualization applications.

2.3 Evaluations of Perception in Visualization
Evaluations of perception in visualization have focused on under-
standing the details of integral and separable channels [57] and the
interactions between separable channels. Smart and Szafir found
that separability among shape, colour, and size perception functions
asymmetrically, with shape found to have the strongest influence on
size and colour perception over size’s or colour’s influence on shape



perception [57]. Other studies have shown that size perception is
biased by specific hues, and quantity estimation in visualizations are
affected by both size and colour [14, 16].

Scatterplots are one of the most effective visualizations for visual
judgments due to data points being positioned along a common
scale [25]. Several studies have explicitly explored graphical percep-
tion in scatterplots, with many recent techniques being developed to
automate scatterplot design [12], and to predict perceptual attributes
that may affect scatterplot analysis such as similarity or separability.
However, these studies and techniques primarily focus on analy-
ses over single-channel features for scatterplot design to improve
legibility or its suitability for data comparison [19].

Eye-tracking evaluations are a popular and effective tool for un-
derstanding how users view and visually explore visualizations [5,6].
For example, eye-tracking has been used to understand how different
tasks and visual search strategies affect cognitive processes through
fixation patterns [45, 46], and has also been used to evaluate specific
visualization types [10,29,30], for comparing multiple types of visu-
alizations [20], and for evaluating decision making and interaction
in visualization [6, 33].

Free-viewing is a common technique for evaluating human per-
ception of visual stimuli. Participants are not given a task and
are instructed to freely look around the image, which avoids task-
dependent effects. As some attention theories suggest that attention
can be guided by a high-level task [1, 69], free-viewing allows atten-
tion to be guided by image elements in a bottom-up manner. This
assumption has guided researchers to the use of free-viewing for
collecting ground truth data for evaluating saliency and attention in
visualizations.

However, despite the extensive body of research from vision sci-
ence on graphical perception, prior research has been focused on
evaluating factors that may affect the visual prominence of a specific
emphasis effect [63], or in empirically ranking visual variables for
encoding data [15, 26]; few guidelines discuss the issue of how dif-
ferent emphasis effects are perceived by viewers in visualizations, or
consider issues of equivalence for perceived emphasis. Therefore, in
the evaluations described next, we set out to determine the viewer’s
perception of visual prominence, and the effectiveness of a variety
of emphasis effects at a wide range of intensity levels.

3 GENERAL METHODS

Data visualizations are used both to reveal patterns in data through
exploration, and to communicate specific information to a viewer.
When building visualizations for communication, a designer may
need to draw a user’s attention to a specific data point in order to
better reveal the narrative focus of the visualization, and this can
effectively be done by increasing the perceptual difference in the
visual variables of the underlying data.

In the following two studies, we experimentally evaluate how
specific emphasis effects are experienced by a viewer. Our first
study was designed to determine the baseline visual prominence of
eight levels of three emphasis effects using different visual variables
(blur/focus, colour, and size). In simple scatterplot visualizations,
we visually emphasized one data element, and gathered eye-tracking
data, mouse clicks, and subjective ratings of visual prominence.
Our second study built on the first; it used a similar paradigm but
increased the complexity of the visualizations by using subset of the
MASSVIS dataset - a repository of static data visualizations obtained
from a variety of publicly-available online sources intended for a
wide audience [7].

Our theoretical starting point for these studies was the mathemat-
ical framework of emphasis effects in data visualizations developed
by Hall et al., where visually diverse emphasis effects can be linked
through the idea of visual prominence compared to background ele-
ments [22]. Our first study extends this previous work to determine
the visual prominence of emphasis effects through eye-tracking met-

rics, click data, and user’s subjective ratings. Using eye movement
data makes it possible to examine which areas of a visualization
viewers attend to and how their attention can be guided by apply-
ing emphasis effects. Combining eye tracking, interaction logs and
subjective methods allowed us to collect a more diverse set of data,
allowing us to analyze how participants’ actions were guided by their
perception of the different effects. This rich data allows us to better
understand how users perceive commonly used effects that designers
can use to emphasize a particular element in a visualization.

3.1 Emphasis Effects and Levels
Many modern visualization software and libraries utilize a wide
range of emphasis techniques. For example, Chart.js, a commonly-
used visualization library for the web, increases a mark’s size when
a user clicks on it to generate emphasis, while Tableau uses a com-
bination of blur/focus and size to emphasize a mark. Based on an
informal survey of visualization tools, we chose three visual vari-
ables for our study – colour, blur/focus, and size – that are commonly
used to provide emphasis in many different contexts. (It is impor-
tant to note that our goal of measuring the relative perceptibility of
different effects is not strongly tied to any particular visual variable).

• Colour. Emphasizing an element using colour means changing
the hue of the data element to be different from the standard
element colour; colour is well known to ”pop out” when there
is adequate difference between the highlighted item and the
other elements, and colour change is widely used to indicate
importance.

• Size. Emphasizing an element using size means increasing the
area of the data element such that it is bigger than other ele-
ments. Size also pops out, and is used in several visualization
tools for interactive highlighting.

• Blur/Focus. Emphasizing an element using blur/focus means
applying a blur filter (e.g., Gaussian blur) to all of the elements
in the visualization except for the emphasized element (which
remains sharp). This effect is therefore qualitatively different
from colour and size because it affects a much larger fraction
of the overall view.

For each type of emphasis effect, we chose several levels of the
visual variable so that we could test the effect at different levels of
magnitude (eight levels for Study 1, and three levels for Study 2).
We sampled mark sizes, colour differences, and blur strength along
increasing levels of difference between the target and the distractor,
allowing us to compare our results for each effect and level - we
term these levels of difference as ‘magnitude of difference’. For
some of the visual variables, the magnitude of difference range was
constrained at both ends (e.g., there is a fixed range of hues between
red and blue); for other variables, such as blur or size, the range was
constrained only at one end (e.g., blur/focus and size start from the
sharpness and size of the distractors and range up to an arbitrary
upper end).

For colour, we chose eight magnitude levels using a colour differ-
ence metric that normalizes the colour space to provide a closer fit
between perceptual and geometric differences between colours [48].
∆E is a metric devised to understand and measure how the human
eye perceives colour difference, where a difference of 2.3 is roughly
equal to one Just Noticeable Difference (JND) [54]. By utilizing
∆E, we can more accurately compare a wider range of colours, uti-
lizing all the colours of a colour space to compare differences and
comparing their change in visual perception. We use the current ∆E
standard, CIEDE2000 [55], as our primary colour difference metric,
which has added corrections to account for lightness, chroma, and
hue. For the colour levels used in the first study, we chose eight
fixed colour differences (i.e., the difference between emphasized



Figure 1: Visual variables and magnitude of difference levels. Rows 1-3: Colour, Blur/Focus, Size (distractors upper, targets lower).

and non-emphasized elements) ranging from ∆E 10 to ∆E 45 (see
Figure 1) The empirical results we describe below confirm that the
increasing ∆E values did result in increasing perceptibility of the
emphasized data element (e.g., see Fig 4).

For size, we chose eight fixed size differences (difference in mark
area between emphasized and non-emphasized content) from 25%
to 200%. As shown in Figure 1, the size differences indicate area
rather than diameter (since area is more perceptually noticeable).

For blur/focus, we chose eight different blur intensities (applied
to the non-emphasized areas of a visualization) implemented using
GIMP’s Gaussian Blur function – with blur radius ranging from 1
to 8. Note that size and blur/focus do not have difference metrics
similar to colour’s ∆E; therefore, for these effects we chose levels
that cover a wide range of perceived prominence for all targets. A
subset of the emphasized visual targets, and their corresponding
distractors are shown in Figure 1.

Our first study measured perceptibility of the three emphasis ef-
fects and the eight magnitude levels using artificial static scatterplot
visualizations rendered using Chart.js1. Scatterplots were rendered
on a white background using one-pixel gray axes. The second study
used the same three effects, but only three of the eight levels; we
used the visual variable to manipulate elements in visualizations
taken from the MASSVIS dataset.

3.2 Apparatus
To record eye movement and interaction data we used an SMI Red-
m eye tracker running at 60 Hz on a Dell 24-inch monitor (screen
resolution of 1980x1080) connected to a Windows 10 PC. The view-
ing distance was approximately 60 cm (Figure 2). Gaze data was
recorded using SMI Experiment Center and analyzed with SMI
BEGAZE software. Users’ heads were not fixed, but they were in-
structed to avoid unnecessary head movements. The experiment was
conducted in an indoor laboratory with normal lighting conditions.
All questionnaire data was collected through web-based forms.

1https://www.chartjs.org/

Figure 2: Setup and visualization graphic presented to participant for
one trial

4 STUDY 1: ESTABLISHING A BASELINE FOR PER-
CEIVED EMPHASIS

4.1 Participants

Twenty-one participants were recruited from the local university
pool. We excluded three participants from our analysis either for
self-reporting a colour vision deficiency, or for high eye-tracking
deviation; this left eighteen people (7 male, 11 female) who were
given a $10 honorarium for their participation. The average age
of the participants was 26 (SD 4.5). All participants continuing
to the study reported normal or corrected-to-normal vision and no
colour-vision deficiencies, and all were experienced with mouse-
and-windows applications (10 hrs/wk). Six participants reported
previous experience with information visualizations from previous
university courses.



Figure 3: Time to Target Fixation. Empirical means (solid lines) and
log curve (dashed lines). R2 values for logarithmic curves: blur = 0.45,
colour =0.60, and size = 0.87.

4.2 Study Procedure

Participants completed informed consent forms and demographic
questionnaires. Participants then completed a colour vision test: we
checked for colour blindness using ten of the Ishihara test plates [31].
Next, we used the five-point calibration procedure from the SMI
experimental suite to calibrate the eye tracker. Once the eyetracker
calibration step was completed, participants carried out a series of
trials with our scatterplot visualizations. The instructions given to
participants were to visually explore each visualization and click on
the element they felt was most emphasized.

Participants were presented with an order-balanced presentation
of the visual stimuli. Each visualization contained one target mark
(an emphasized stimuli) and twenty randomly-placed distractor
marks, avoiding overlaps. While spatial distance between marks can
influence colour difference perceptions [9], we elected to construct
our scatterplots with variable element spacing to increase the visual
complexity of the stimuli for increased ecological validity. The
three emphasis effect types were presented at their 8 magnitude-of-
difference levels, and each emphasis level was presented 5 times.
Each target maintained the same appearance for each of the 5 trials
of the level. The monitor was blanked after each trial (after the par-
ticipants clicked on an element) and the study software then asked
the participant to rate the perceived visual prominence of the target
mark, on a 1-7 scale.

4.3 Study Design and Analysis

To compare the relative perceptibility of the three emphasis effects,
we needed to determine the differences between the visual variables
and the magnitudes of the effects. We used an analysis-of-variance
approach to explore these differences: in particular, a repeated-
measures within-participants design, with factors Emphasis Effect
(blur/focus, colour, size) and Magnitude of Difference (levels 1-8).
Dependent measures were: time to eye fixation on the target, time to
the user’s mouse click on the target, the user’s total fixation time on
the target, and the user’s subjective rating of the target’s emphasis.

We then use our analysis results to explore relative differences
between the emphasis effects, and fit curves to our empirical data in
order to develop an initial equivalence model.

Figure 4: Time to Target Click. Empirical means (solid lines) and log
curve (dashed lines). R2 values for logarithmic curves: blur = 0.68,
colour =0.90, and size = 0.96.

5 STUDY 1 RESULTS
5.1 Time to Target Fixation, Time to Target Click, and

Fixation Times
We analyzed differences between emphasis effect and magnitude of
difference on participant’s time to target fixation, target click, and fix-
ation time in an Area of Interest (AOI) surrounding the emphasized
visual target. We report effect sizes for significant RM-ANOVA re-
sults as general eta-squared η2 (considering .01 small, .06 medium,
and >.14 large [40]). For all follow up tests involving multiple
comparisons, the Holm correction was used.

Time to Target Fixation. RM-ANOVA showed significant main
effects of Emphasis Effect (F2,34 = 17.73, p < 0.001,η2 = 0.07),
and Magnitude of Difference (F7,119 = 8.23, p < 0.001,η2 = 0.19)
on time to target fixation. RM-ANOVA found no interaction be-
tween Emphasis Effect ×Magnitude of Difference. These data are
shown in Fig 3. Overall, across all Magnitude of Differences, par-
ticipants fixated on targets fastest in the Blur/Focus condition (828
ms), followed by Size (913 ms) and Colour (1242 ms). Post-hoc
t-tests showed significant (p < 0.01) differences between each em-
phasis pair except for Blur→ Size. Across all emphasis effects, time
to target fixation was the fastest at a magnitude of difference of 8
(613 ms), and the slowest at a difference of 1 (1733 ms). A similar
post-hoc t-test was applied for pairs of magnitude of differences and
showed a significant difference for 1→ 2-8 (p<0.001), and 3→ 7
(p<0.05).

Time to Target Click. RM-ANOVA showed significant main
effects of Emphasis Effect (F2,34 = 40.99, p < 0.001,η2 = 0.24),
and Magnitude of Difference (F7,119 = 56.45, p < 0.001,η2 = 0.45)
on target click. These data are illustrated in Fig 4. Participants
clicked on focused targets fastest in the Blur condition (2051 ms),
followed by size (2141 ms) and colour (2882 ms). Holm-corrected
post-hoc t-tests showed significant (p < 0.01) differences between
each emphasis pair except for Blur → Size. Averaged across all
emphasis effects, time to target click was fastest at Magnitude 7
(1791 ms), and the slowest at a Magnitude of 1 (3748 ms).

Target Fixation Time. RM-ANOVA showed a significant main
effect of Magnitude of Difference (F7,119 = 6.65, p < 0.001,η2 =
0.12) on fixation time, but no difference between Emphasis Effects
(F2,34 = 2.76, p = 0.08). Averaged across magnitude, total fixation
time was similar among the emphasis effects (1990ms for size;
2260 ms for both size and colour). Averaged across all effects, a
Magnitude of 7 had fixation time of 2470ms, while a Magnitude of
1 had the least time at 1913 ms. Post-hoc t-tests showed significant



Figure 5: Perceived Prominence of Emphasis Effects. Empirical
means (solid lines) and log curve (dashed lines). R2 values for loga-
rithmic curves: blur = 0.80, colour =0.97, and size = 0.98.

(all p < 0.05) differences on difference pairs 1→ 5, 1→ 7, 3→ 7,
and 7→ 8.

5.2 Subjective Perception of Visual Prominence

After the presentation of each visualization, participants were asked
to rate how visually prominent the emphasized data point appeared
to them. Mean response scores are shown in Figure 5. We used
the Aligned Rank Transform [67] with the ARTool package in R
to enable analysis of the subjective prominence responses using
RM-ANOVA. For subjective ratings of perceived emphasis there
were main effects of Emphasis Effect (F2,408 = 56.38, p < 0.001),
Magnitude of Difference (F7,408 = 24.98, p < 0.001), but no interac-
tion between Effect x Magnitude (F14,408 = 1.43, p < 0.13). Results
from these analyses follows those from Time to Mouse Click, in
which sharp objects in the Focus/Blur emphasis condition were, on
average, perceived as most visually prominent, followed by Size
and Colour - with an increasing perceived visual prominence as
the difference between emphasized and non-emphasized data points
increase.

5.3 Participant Preferences and Comments

At the end of the study session we asked participants to state which
emphasis effect they felt was the most visually prominent, least
prominent, and to provide further comments on their responses.
Overall, focus/blur was found to be perceived as most prominent,
with seven participants overall rating blur/focus as most prominent,
six rated size as most prominent, while four stated colour as most
prominent. One participant stated that none seemed to stand out as
most prominent. Participant comments for the three emphasis effects
reflect the empirical findings, favouring blur/focus. On preferring fo-
cus/blur, one participant reported, “[In focus/blur] other data points
were very blurry and hard to distinguish so the clear one stood out
more that if the colour were different or the size were different (i.e.
could only focus on the emphasized one, compared to the other types
where you could still view the non-emphasized points)”. Another
commented on blur/focus being preferred as “[blur/focus] clearly
hid the other circles”. Participants that favoured size emphasis re-
ported that size may be easier for quick comparisons; one participant
remarked “It is easier for the eye to visualize a bigger/smaller size
in comparison to other dots vs trying to see a colour difference of a
similar size dot”.

5.4 Building an Initial Equivalence Model

We used the raw data from Study 1 to build initial predictive models
of time to target fixation, time to click, and subjective rating of
emphasis – and although more data will be needed to refine the
predictions, we are able to capture some of the main differences
between the three emphasis effects that we examined. Our models
are simple functions fit to the raw empirical data; we use logarithmic
functions they are commonly used to describe human performance
in signal-detection and perceptual studies [66]. We fit the functions
to the data using R (lm(mean ∼ log(magnitude of difference)); we
could then use R’s ‘predict’ function to get predicted values. The
fitted logarithmic curves for time to target fixation, time to click,
and subjective ratings are shown in Figures 3, 4, and 5. Captions
for these figures also state the R2 values for the accuracy of the
fitted functions to the data: for time to fixation the curve was only
moderately accurate, but for time to click and subjective ratings, the
accuracy was much higher.

The logarithmic curves provide a simple model that allows in-
vestigation of equivalence between the three effects. For all three
measures, the models allow us to observe some main features of
the relationships: first, colour is consistently less perceptible than
the other two effects, both in terms of performance data and sub-
jective ratings; second, size and blur/focus are very similar at level
3 and above of both performance measures, but at levels 1 and 2,
size is somewhat weaker; third, size and blur/focus are more clearly
separated in subjective ratings, with clear differences up to level 5.

These models, once validated, can allow simple calculation of
equivalence between effects. As an example of how the calculation
works, consider a scenario where a designer needs to change from
a blur/focus emphasis effect to one that uses colour; interpolation
of the curves of Figure 4 indicate that to translate the perceived
emphasis of level 1 of blur/focus, a designer would need to use a
colour effect of approximately level 7. However, before we can
consider using the models for equivalence, we need to verify that
they are robust enough to work with other visualizations. We do this
by predicting data from Study 2 with the models developed from
Study 1 data, as described below.

6 STUDY 2: PERCEPTION OF EMPHASIS IN COM-
PLEX VISUALIZATIONS

In contrast to the scatterplots used in Study 1, many visualizations
include other visual factors such as background graphics, labels,
titles, annotations and other embellishments that may affect how a
user’s attention is guided and ultimately how an emphasis effect is
perceived. Therefore, we need to understand how users perceive
emphasis effects in more complex visualizations. We designed
our study following a similar method to Study 1, but evaluated
emphasis effects in complex, real-world visualization graphics from
the MASSVIS database [7].

6.1 Image Data

As the emphasis effects we are studying are not particularly tar-
geted towards a specific visualization type, we chose the MASSVIS
database [7] as the source for image data. The dataset contains 5000
static data visualizations obtained from a variety of online sources,
and real-world applications and are targeted to a broad audience - as
such, making it a popular choice to understand how users in general
understand data visualizations. We selected a subset of 16 visual-
izations from the dataset covering a variety of visualization types,
including maps, and scatter plots. Each of the 16 visualizations
had one emphasis effect applied at a time (Fig 6), which were then
used to evaluate how users perceive the different emphasis effects in
our experiment. We included baseline (no emphasis effect applied)
graphics to investigate and compare whether users already perceived
an area of the graphic as emphasized.



Figure 6: Example stimulus display for study 2 (a) baseline, (b) focus/blur, (c) size/area, (d) colour; Rows 1-2 at level magnitude of difference 4.
Row 3 shows magnitude of difference 7.

6.2 Emphasized Stimuli
Following study 1 baseline results, we decided to sample mark
sizes, colour differences, and blur strength along three uniform
steps (1, 4, and 7), giving us the performance range we saw in
the baseline results, and allowing us to compare our results for
each effect. Example graphics with an emphasized data point are
illustrated in Fig 6.

6.3 Experimental Design and Procedure
The experiment followed a similar procedure to that of Study 1;
After providing informed consent and going through the eye-tracker
calibration, participants were instructed to explore each visualization
and to click on the area they felt was most emphasized. Participants
were presented an order-balanced presentation of the visual stimuli.
Baseline graphics had no emphasized marks, test graphics contained
one randomly-placed test mark in the graphic. After each stimulus
presentation, participants were asked to rate the perceived visual
prominence of the emphasized point they selected.

6.4 Participants
Twenty four participants were recruited from the local university
pool. We excluded four participants from our analysis for high
eye-tracking deviation, or failure to follow experiment instructions.
The remaining twenty participants (9 male, 9 female, 2 non-binary)
were given a $10 honorarium for their participation. The average

age of the participants was 26 (SD 6.02) and all reported normal
or corrected-to-normal vision and no colour-vision deficiencies;
all were experienced with mouse-and-windows applications (10
hrs/wk), and 6 had previous visualization experience. We used the
same experimental setup described in Study 1.

6.5 Study Design and Analysis
The study used a repeated-measures within-participants design, with
factors Emphasis Effect (blur/focus, colour, and size) and Magnitude
of Difference (Levels 1, 4, and 7 from Study 1). We used the same
four dependent variables: time to fixate on target, time to target click,
total fixation time, and subjective rating of perceived emphasis.

7 STUDY 2 RESULTS:
We again analyzed emphasis effect and magnitude of difference on
participant’s time to target fixation, target click, and target fixation
time. We again report effect sizes as general eta-squared η2, and
use Holm correction for followup tests.

Time to Target Fixation. RM-ANOVA found no main effect of
Emphasis Effect (F2,38 = 1.78, p = 0.18) on time to target fixation,
but did find an effect of Magnitude of Difference (F2,38 = 3.80, p <

0.01,η2 = 0.31). There was an Emphasis Effect×Magnitude of Dif-
ference interaction (F4,76 = 3.09, p < 0.01,η2 = 0.05). These data
are shown in Fig 7. Post-hoc t-tests showed significant (p < 0.01)
differences between each magnitude-of-difference pair. Averaged



Figure 7: Time to Target Fixation in Complex Visualizations. Empirical
means (solid lines) and predicted means (dashed lines).

Figure 8: Time to Target Click in Complex Visualizations. Empirical
means (solid lines) and predicted means (dashed lines).

across all emphasis effects, time to click on an emphasized data
point was fastest at an Magnitude of Difference of 7 (3548 ms), and
the slowest at a Magnitude of 1 (4932 ms).

Time to Target Click. RM-ANOVA showed significant main ef-
fects of Emphasis Effect (F2,38 = 41.18, p < 0.01,η2 = 0.32) and
Magnitude of Difference (F2,38 = 58.04, p < 0.01,η2 = 0.62) on
target click time, and an Emphasis Effect ×Magnitude of Difference
interaction (F4,76 = 14.64, p < 0.01,η2 = 0.15). These data are il-
lustrated in Fig 8. Similar to Study 1, focused targets in the blur
condition were clicked on fastest (4812 ms), followed by Size (5787
ms) and Colour (3106 ms). Holm-corrected post-hoc t-tests showed
significant (p < 0.01) differences between each emphasis pair. Av-
eraged across all emphasis effects, time to click on an emphasized
data point was fastest at an magnitude of difference of 7 (4616 ms),
and the slowest at a Difference of 1 (7012 ms).

Target Fixation Time. RM-ANOVA showed a significant main
effect of Emphasis Effect (F2,38 = 3.41, p < 0.01,η2 = 0.04) and
Magnitude of Difference (F2,38 = 15.08, p < 0.01,η2 = 0.22) on
total fixation time, and a Emphasis Effect×Magnitude of Difference
(F4,76 = 4.30, p < 0.01,η2 = 0.08) interaction. Averaged across
magnitude of differences, fixation time for blur/focus was 1369ms
and 1240 ms for both Size and Colour. Averaged across all effects,
a magnitude of difference of 7 gathered the most attention with a

Figure 9: Perceived Prominence of Emphasis Effects in Complex
Visualizations. Empirical means (solid lines) and predicted means
(dashed lines).

fixation time of 1494ms, while a difference of 1 had the least fixation
time at 1080 ms. Post-hoc t-tests showed significant (all p < 0.01)
differences for Magnitude of Difference but no difference among
Emphasis Effects.

7.1 Subjective Perception of Visual Prominence in Com-
plex Visualizations

After the presentation of each visualization, participants were asked
to rate the visual prominence of the emphasized data point. Mean
response scores are shown in Fig 9. We used the Aligned Rank
Transform [67] with the ARTool package in R to enable analysis of
the subjective responses using RM-ANOVA. RM-ANOVA showed
there were main effects of Emphasis Effect (F2,171 = 16.05, p <
0.001), Magnitude of Difference (F2,171 = 60.00, p < 0.001), and
an interaction between Emphasis Effect x Magnitude of Difference
(F4,171 = 2.57, p = 0.03). Results from these analyses are shown
in Figure 9 and follow those from Time first to Mouse Click, in
which sharp objects in the Focus/Blur effect were perceived as most
visually prominent, followed by Size and Colour - with an increasing
perceived visual prominence as the difference increased.

7.2 Participant Preferences and Comments
After completing the study, participants provided their preferences
and general comments on the emphasis effects they identified. Partic-
ipant comments echoed our other findings. Participants made several
comments on how the focus/blur emphasis effect helped them to
rapidly identify content. On preferring blur/focus, one participant
stated “It [emphasized point] just popped out more than the rest,
provided more contrast”. Another participant reflected “Because
it [blur/focus] didn’t allow me to see the others, I focused all my
attention to the point that was not blurry”. One participant favoured
size, stating “[size] always drew my eye immediately”.

When asked whether there were other areas of a visualization
that got their attention, one participant remarked “The titles and
information, I was trying to read them and see if that would have
helped somehow to identify what was emphasized”, while another
participant stated “I occasionally looked at the titles to see what the
information was representing”.

7.3 Consistency Across Studies and Validation of the
Model

We used the models built from Study 1 data to predict the data
gathered for each effect and magnitude used in Study 2, and then



compared the empirical data points to the predicted values (predic-
tions are shown in Figures 7, 8 and 9 as dotted lines). Although
the absolute values of the predictions are lower than the true values,
the predictions do capture many of the characteristics of the Study
2 results, as discussed below. We tested the correlation between
the predicted and empirical values: for time to target fixation, the
correlation was 0.82 (R2=0.87); for time to target click, correlation
was 0.92 (R2 = 0.94); for subjective ratings, correlation was 0.96
(R2 = 0.96).

If equivalence models are to be useful, the perceptibility of em-
phasis must be reasonably reliable across different visualization
situations. Our two studies involve two visual settings: plain scat-
terplots in Study 1, and more complex visualizations in Study 2
(with background graphics and colours, text, and multiple visual
styles). Nevertheless, there are several similarities between the two
sets of results (as indicated by the very strong correlation scores). In
both studies, the colour effect was less perceivable (higher time to
target fixation and target click time, and lower subjective ratings);
however, the earlier difference between colour and size at the high-
est magnitude is now gone. As in study 1, the blur/focus effect is
again consistently more perceivable (and is rated as more prominent).
Also as in Study 1, there was a similar improvement in performance
as the magnitude of the effect increases; there was less of a clear
logarithmic curve for some of the emphasis effects (although this
would be less apparent with the three magnitude levels used in Study
2).

The most obvious difference between the predicted and real val-
ues is that times for both fixation and clicking were substantially
higher with the MASSVIS visualizations. However, this was an
expected difference because of the additional visual information
available in each image – and because all emphasis effects were
affected similarly, any equivalence calculations using the model will
be unaffected.

The subjective responses were particularly well predicted by the
Study 1 model (see Figure 5), with the predicted points being accu-
rate both in terms of absolute score and the relationship between the
effects. This is a particularly valuable finding, because as discussed
below, it may be that the user’s perception of emphasis is a more
important measure for designers than the user’s gaze patterns or
click behaviour.

The main point where the predictions were inaccurate – both for
performance data and for subjective ratings – was the perceptibility
of the size effect at level 7. After reviewing the stimuli for this
condition, there are two possible reasons for the empirical results
being different from predicted values. First, two of the visualizations
(see Figure 10) contained a large number of data points and many
visual elements overall, and previous research has shown that it is
more difficult to recognize objects in a cluttered environment due
to visual crowding, which can create a visual-perception bottleneck
[39]. Second, when data points in these visualizations are dense,
composite blobs with several overlapping points create marks that
are larger than the default size. Although none of our target elements
were in or beside these blobs, the presence of varying-size elements
in the visualization may have forced participants to do a more careful
visual search.

This anomaly with the size effect points to another useful aspect
of having a predictive model, however: that is, the identification of
empirical results that are not as expected and that may need to be
investigated further.

8 DISCUSSION

8.1 Summary of Findings

We investigated how users perceive colour, size, and blur/focus when
used as emphasis effects in both basic scatterplots and more complex
visualizations. Our evaluations provide several findings:

Figure 10: Study 2 graphics. Graphic (a) contained a larger number of
data points with composite blobs, leading to visual crowding. Graphic
(b) has multiple visual elements (shapes, colours, and text), reducing
the effect of size emphasis on a data point.

• Across both studies, blur/focus led to fastest target fixation and
target click, and was rated highest in terms of visual promi-
nence by participants; size also led to fast performance and
high ratings of visual prominence at higher magnitude levels
(with one exception); colour led to the slowest performance
and lowest ratings for prominence.

• Across both studies, increasing the magnitude of the effect
consistently increased visual prominence (again, with the same
one exception).

• A predictive model based on logarithmic curves fit the Study 1
data well, and was reasonably accurate at predicting emphasis
in Study 2 (particularly the subjective ratings).

In the following sections, we consider possible explanations for
these results, look at how our findings and models can be used to
assist designers in building visualizations with emphasis, and discuss
limitations and directions for future research in this area.

8.2 Explanation of Results
Differences Between the Emphasis Effects

We saw consistent differences in fixation time, click time, and
subjective ratings for our three emphasis effects, and the reasons for
these differences arise from each technique’s fundamental properties
(as introduced earlier). First, blur/focus is an effect that manipulates
the entire visualization except for the emphasized data element, and
so has advantages over single-element techniques like colour and
size. In particular, the blur effect guarantees that there will be no
inadvertent competing visual stimuli that could slow the user’s visual
search (as happened with size at level 6 in Study 2), because all other
elements are blurred. Second, the relative advantage for size over
colour in our studies can be explained by the inherent limit on colour
difference (i.e., there is a maximum difference between any two
colours) whereas size difference has an unlimited upper end. The
study results show that our range of magnitudes for size was larger
than our range for colours – which points to the need for a better
understanding of equivalences between effects.

Effectiveness of the Predictive Model
The model built from Study 1 data provided accurate predictions

of the results in Study 2 (R2 values of 0.87, 0.94, and 0.96 for fixa-
tion time, click time, and subjective rating), and the model correctly
represented the overall relationships between the emphasis effects
and the changes expected with increasing magnitude level. The
success of the predictive model shows that perception of emphasis is



consistent between our two experimental settings – plain scatterplots
in Study 1, and realistic scatterplots with other visual features in
Study 2. In addition, the model was a useful tool for identifying
results that need further exploration, including the greater overall
response times for the MASSVIS dataset, and the anomalous per-
formance of size at level 7. Of course, these anomalies can only be
spotted when there are empirical results to compare to the model,
but it is likely that the model will be used in concert with empirical
testing until it matures with the addition of more data in different
settings.

The Size-at-Level-Seven Anomaly
As described above, the size effect at level seven was less promi-

nent than expected, with two possible reasons: visual crowding from
other elements in the visualizations, and inadvertent size variance
from overlapping data points (see Figure 10). This result clearly
indicates that there can be emergent properties in real-world visu-
alizations that interfere with the user’s perception of emphasis, and
thus a planned emphasis effect must be considered in light of other
visual elements. These real-world interactions are another motiva-
tion to have equivalence metrics, so that designers can switch from
one emphasis effect to another (and preserve the prominence of the
emphasized element) when interference is discovered.

While our setup of the presentation of visual stimuli ensured
that distractor marks and stimuli would not overlap, changes in the
distance between distractors and the emphasized elements may affect
their noticeability. Because effects of visual crowding occur with
a wide range of objects, colours and shapes [65], this phenomena
may have affected other individual data points as well; but our
explicit decision to not control the distance between points in Study
1 means that our results provide a more valid representation of
the challenges faced by designers when emphasizing elements in
a crowded visualization. As noted above, global effects such as
blur/focus are less affected by visual crowding, as blurring non-
targets partially eliminates them from a user’s view, leaving only the
focused element available. We note that it is possible to quantify the
overall degree of visual complexity in an image, and in future work
this could be added to our models as a factor (i.e., further studies
could examine perceived emphasis at different levels of crowding).

8.3 Implications for Design

Our findings are applicable in a number of different visualization
contexts. Visualization designers often need to draw a user’s atten-
tion to important data points; our studies improve understanding of
how visual cues are detected as emphasis effects and offer insights
to their perceived visual prominence. While the current set of visual
stimuli examined was relatively small, we intend to explore further
visual variables in future studies.

A first design implication is that global visual effects such as
blur/focus can achieve a high perceived visual prominence, and
is relatively unaffected by a visualization’s background. Perceived
differences for other variables such as colour and size can be affected
by the non-target elements, but by blurring the non-target objects in
a visualization, the focused item is less likely to be affected by visual
crowding. In visualizations with a large number of objects (such
as different colours and shapes), blurring non-targets may achieve
the highest noticeability – however, blur/focus cannot be used in
visualizations where the user needs to inspect elements that are not
emphasized.

Second, predictive models of perceived visual prominence can be
valuable tools for designers. Although our model is still only a first
step, it was already able to predict the results of Study 2, and can
already be used to consider the equivalence between perception of
the three effects that we tested. (We note that the model should not
be used to calculate exact conversion factors between the effects, but
rather to understand general relationships and approximate relative
magnitudes). As further studies are carried out and more data is

added, models like ours can become resources for designers that can
accelerate the design of a narrative visualization. It is interesting
that the model was most accurate at predicting people’s subjective
ratings of prominence, which raises the question of which metric
is most important. It may be that subjective perception is a better
measure for a model, because when a designer adds emphasis to
a visualization, they typically want the viewer to know that the
item is being emphasized – that is, what the viewer thinks is being
emphasized is possibly more important than what their eye is drawn
to first.

A third design consideration is for designers utilizing colour as a
way to emphasize certain data points. It should be noted that a subset
of users suffer from various genetic conditions which cause atypical
forms of colour perception - in such cases, a different emphasis
effect may be more appropriate. Designers may wish to use our
metrics and results to evaluate the effectiveness of a different visual
effect to achieve the same perceived importance. Our future work
intends to evaluate the use of various visual cues for emphasis effects
and compare the sets for individuals with normal vision and users
with a vision deficiency.

Beyond visualization, our findings can also be applicable in other
domains. For example, interface designers may wish to use our re-
sults as a way of devising methods of providing visual feedback. For
instance, visual feedback during “find” tasks in different software
software such as web browsers and pdf readers varies - with some
software opting for colour highlighting an item when found, while
others increase its size or use a combination of both. To effectively
guide a user’s attention to an item, designers can use perceived visual
prominence as a method to evaluate and compare different visual
effects.

8.4 Generalizability, Limitations, and Future Work

Our studies tested a limited range of visualizations (i.e., scatterplot
presentations), so the application of our results should be limited to
that type; in Study 2, however, we did test a wide variety of different
visual styles taken from real-world examples, and so we believe that
our findings will be robust across a range of real scatterplots. In
future work, we plan to extend our work to other types of visualiza-
tions and other real-world scenarios. We also tested only a single
emphasized data point, and an opportunity to extend to our work is
to investigate visualizations that emphasize multiple points. Multi-
ple points of emphasis also provides us with another opportunity to
test the predictions of the model – that is, if two data elements are
emphasized with different effects that our model predicts should be
equally prominent, which will the user fixate on first? (We note that
this kind of comparison is only possible with single-element effects
such as size and colour).

The difference levels for the visual variables tested in our experi-
ments are intended to be generalizable for the design of emphasized
elements in typical visualizations. However, although we tested
a wide range of magnitude of differences, it is possible that our
findings are influenced by the magnitude of differences we tested (as
noted above in terms of the range of difference that is possible with
each visual variable). We also plan to carry out studies that look
at how magnitude of emphasis is affected by clutter and by other
mappings of visual variables to data variables.

Other factors in generalization should be considered as well.
Colour perception models rely on a simplified model of the world
that assume perfect viewing conditions. While this assumption is
necessary for understanding the visual system, complexities of the
real world such as the viewing environment [37], lighting condi-
tions [8, 47], and display device [52] may affect visual perception.
Our experimental viewing conditions were controlled and remained
stable throughout the studies, however, future work could extend
these results to larger user samples and different viewing conditions,
using crowd-sourcing methods [25].



There are several additional opportunities for extending our find-
ings. We explored emphasis effects with static visual variables
(time-invariant in terms of Hall et al.’s framework [22]) but there
are many other effects that could be tested, including depth, trans-
parency, or shape. Additionally, future research should investigate
time-variant emphasis effects with dynamic visual variables such as
flicker or motion and extend our results to interactive visualizations.

We evaluated our emphasis effects based on empirical metrics
such as time to target fixation, and time to mouse click. There are
other ways emphasis effects can be evaluated. For instance, the
MASSVIS dataset contains a comprehensive set of user attention
maps on the visualizations [7]. We intend to analyze viewer’s at-
tention maps on the visualizations, comparing the visualization’s
attention maps with and without an emphasis effect applied.

Finally, we elected to use the CIE2000 as it is commonly used
in visualization and has been methodologically validated in past
studies [28, 60]. Future work may consider the use of other colour
difference models or colour spaces, such as CIECAM02 [44]. We
anticipate investigating a number of different colour spaces will
result in more accurate models of colour difference perceptions for
visualization design.

9 CONCLUSION

Emphasis is an essential component of InfoVis, and is used by de-
signers to draw a user’s attention or to indicate importance. However,
it is difficult for designers to know how different emphasis effects
will compare and what level of one effect is equivalent to what
level of another when designing visualizations. We carried out two
user studies to evaluate the visual prominence of three emphasis
effects (blur/focus, colour, and size) at various strength levels, and
developed a predictive model that can indicate equivalence between
effects. Results from our two studies provide the beginnings of an
empirical foundation for understanding how visual effects operate
and are experienced by viewers when used for emphasis in visual-
izations, and provide new information for designers who want to
control how emphasis effects will be perceived by users.
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