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Abstract

Open-source pre-trained models hold great po-
tential for diverse applications, but their utility
declines when their training data is unavailable.
Data-Free Image Synthesis (DFIS) aims to gener-
ate images that approximate the learned data dis-
tribution of a pre-trained model without accessing
the original data. However, existing DFIS meth-
ods produce samples that deviate from the training
data distribution due to the lack of prior knowl-
edge about natural images. To overcome this
limitation, we propose DDIS, the first Diffusion-
assisted Data-free Image Synthesis method that
leverages a text-to-image diffusion model as a
powerful image prior, improving synthetic im-
age quality. DDIS extracts knowledge about the
learned distribution from the given model and
uses it to guide the diffusion model, enabling the
generation of images that accurately align with
the training data distribution. To achieve this, we
introduce Domain Alignment Guidance (DAG)
that aligns the synthetic data domain with the
training data domain during the diffusion sam-
pling process. Furthermore, we optimize a single
Class Alignment Token (CAT) embedding to ef-
fectively capture class-specific attributes in the
training dataset. Experiments on PACS and Ima-
geNet demonstrate that DDIS outperforms prior
DFIS methods by generating samples that better
reflect the training data distribution, achieving
SOTA performance in data-free applications.
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1. Introduction

The widespread availability of open-source pre-trained mod-
els have significantly advanced the field of deep learning
(Ridnik et al., 2021; Singh et al., 2023; Goldblum et al.,
2024). Recently, platforms such as Hugging Face (Wolf,
2019) have further enhanced accessibility of the pre-trained
model, enabling researchers to easily apply these models to
various tasks like knowledge distillation and model pruning
(Tran et al., 2024; Wang et al., 2024; Yin et al., 2020). How-
ever, a common requirement for utilizing these models in
such applications is access to their training data, either in
full or in part, for training student networks or fine-tuning
pruned models. Unfortunately, these training datasets are
often inaccessible due to various reasons, including data
privacy and copyright issues. Consequently, the lack of
access to training data presents a challenge in leveraging the
potential of pre-trained models across various applications.

To address the above issue, Data-Free Image Synthesis
(DFIS) has been proposed as a solution. DFIS aims to
synthesize images that approximate the training data dis-
tribution by extracting the model’s internal understanding
of its training data. This enables the application of these
models to tasks like data-free knowledge distillation or prun-
ing, enhancing their utility (Yin et al., 2020; Mordvintsev
et al., 2015; Kim et al., 2022; Ghiasi et al., 2022). How-
ever, since existing DFIS methods generate images without
prior knowledge of natural images, the image search space
becomes huge. Consequently, they produce images with
unnatural or artificial patterns that deviate from the training
data distribution, ultimately limiting the model’s utility.

In this paper, we introduce a novel DFIS paradigm that
leverages the inherent natural image understanding of an
off-the-shelf Text-to-Image (T2I) diffusion model. Recent
breakthroughs in T2I diffusion models trained on large-scale
open-world datasets (Rombach et al., 2022; Saharia et al.,
2022) provide powerful image priors capable of significantly
narrowing the search space on DFIS. However, naively re-
placing the original training data with images generated
by the T2I diffusion model is insufficient. Due to the in-
accessibility of information regarding the training dataset,
encompassing its domain, class-specific attributes, the input
prompts of the T2I diffusion model are necessarily impre-
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cise (e.g., A dog). This vagueness leads to the generation
of countless images that do not align with the training set
distribution. Consequently, without a guiding mechanism
based on the pre-trained model’s knowledge of its training
data distribution, the generated images are highly suscepti-
ble to deviating from the underlying distribution, ultimately
limiting the model’s utility in various applications.

Therefore, we propose a Diffusion-assisted Data-free Image
Synthesis (DDIS), which guides the T2I diffusion model to
generate images that are closely aligned with the training set
distribution. Our approach tackles the misalignment prob-
lem that arises when directly substituting the training set
with images synthesized by a T2I diffusion model. Specif-
ically, our method focuses on achieving alignment in two
key aspects: 1) domain and 2) class-specific detail.

Firstly, to capture the domain of the training data, we in-
troduce a Domain Alignment Guidance (DAG) that guides
the image latent during the diffusion sampling process. We
are inspired by the understanding that Batch Normalization
(BN) layers encode the domain knowledge of the training
set (Wu et al., 2024; Wang et al., 2020). Specifically, the
running statistics in BN layers, derived from the mean and
variance of all training batches, capture the distribution
of the entire training set, including its domain knowledge.
Consequently, DAG guides the diffusion model in aligning
the internal statistics of the synthesized samples with the
running statistics within the given model. This alignment
effectively induces and strengthens the domain-specific fea-
tures of the training dataset in the synthesized images.

Secondly, we propose to find a new embedding vector corre-
sponding to a pseudo-word, Class Alignment Token (CAT),
that represents specific concepts of the target class. CAT
is a token designed to capture the class details of training
data that are not revealed on the class label name itself. For
example, while a class label might be ‘dog,” the specific
dog breeds within the training set are not specified. We
aim to find the embedding vector of CAT, ensuring that
the synthetic images accurately align with the target class
the model was trained on. Interestingly, CAT can not only
capture detailed class features but also resolve the lexical
ambiguity of class labels. We observe that CAT generates
images precisely associated with the intended class when a
class label is a homonym or a compound noun.

Conclusively, our proposed method, leveraging a T2I dif-
fusion model as a strong image prior, synthesizes samples
closely aligned with the training set distribution. DDIS
enables replacing inaccessible original training data, ulti-
mately enhancing the pre-trained model’s utility. DDIS out-
performs existing DFIS methods in capturing the training
data distribution across various domains, such as art, car-
toons, and manga, as well as across the various 1000 classes
within ImageNet-1k. Moreover, DDIS achieves state-of-the-

art results in data-free knowledge distillation and pruning,
verifying the benefit of our synthesized data in enhancing
the given model’s utility. Our key contributions are:

* We propose a DDIS, a novel Data-Free Image Synthesis
(DFIS) method that pioneers the use of a Text-to-Image
(T2I) diffusion model as a strong image prior to address
the issue of existing DFIS methods producing images
distant from the training set distribution due to an vast
image search space.

* To ensure alignment at both the domain and class levels,
we introduce Domain Alignment Guidance (DAG) and
Class Alignment Token (CAT). DAG guides diffusion
sampling to align the statistics of generated images
with the internal statistics of the pre-trained model and
CAT embedding encodes class-specific details.

» Experimental results show that DDIS outperforms prior
DFIS methods by generating samples closely aligned
with the original training set, leading to state-of-the-art
performance in various data-free applications.

2. Related Works
2.1. Data-Free Image Synthesis (DFIS)

DFIS aims to approximate the distribution p(x) learned by
a given classifier by solving an optimization problem in the
input space without accessing the training data (Kim et al.,
2022). DeepDream (Mordvintsev et al., 2015) visualizes
the patterns learned by the model for specific classes by iter-
atively optimizing noise to maximize the output probability
for the desired class. Deeplnversion (DI) (Yin et al., 2020)
tackles the limited image prior in traditional DFIS methods
and introduces a regularizer that ensures the statistics of syn-
thetic images follow the running statistics within the model’s
Batch Normalization (BN) layers (Ioffe & Szegedy, 2015).
Plug-In-Inversion (PII) (Ghiasi et al., 2022) addresses the
issue of low diversity in generated images by combining
various data augmentations during optimization. Despite
these successes, finding an optimal £ that closely approxi-
mates p(x) within a vast search space remains a significant
challenge without access to the training data. Consequently,
the generated images are distant from the training samples.

2.2. Diffusion Models

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al.,
2015; Song et al., 2020) have garnered considerable atten-
tion due to their exceptional sampling quality. Initiating
the process with a random noise sample x7 ~ A (0, T), the
diffusion model iteratively predicts a denoised sample x; at
each time step t. This is known as the reverse process:

Xi—1 = py—1 + o, €~ N(0,I) (1)
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Figure 1. Overall framework of DDIS. The goal of DDIS is to generate images approximating the training set distribution learned by f,
using a Text-to-Image diffusion model. Firstly, we construct prompts y with Class Alignment Token (CAT) and the class label ¢ provided
with the model. (e.g., y =“A/An {Sc} {class label}.) Secondly, we provide domain guidance to noise latent z, at each time step ¢ via
Domain Alignment Guidance (DAG), aligning image features with the BN layer statistics within a model f;. Lastly, we forward the
final image %o from the guided image latent Zy to the fy and optimize the CAT embedding using Cross-Entropy loss to encode features
specific to the target class. (As in the figure above, we can successfully synthesize the “tiger cat” class in the “art” domain via DDIS.)

where o, is noise scale at time ¢ and p;—1 is given by

where €4(x;) is the noise predicted by the U-Net (Ho et al.,
2020).

Ht—1 = )Eﬂ(xt)v )

Sampling Guidance for Diffusion Models. Classifier-
assisted guidance methods contribute to the advancement of
diffusion models by allowing the adjustment of outputs to
generate desired images. From a score function perspective
(Song et al., 2020), we can modify the unconditional score
function Vy, log p(x:) to V, log p(x:]y), controlling im-
age generation to produce results that align with a given
condition y, such as a text prompt or class label.

Classifier Guidance (CG) (Dhariwal & Nichol, 2021) gener-
ates class-conditional images by factorizing Vy, log p(x:|y)
to the unconditional score Vi, log p(x;) and the gradient
derived from the classifier Vy, log p(y|x;) by Bayes’ rule
p(xt|ly) o p(y|x¢)p(x:). The classifier guidance can be
formulated as the following with a guidance scale s > 0:

€ = eg(X¢,y) — $0+Vy, log p(y|x¢). 3)

CG requires generating training data (x;,y) at each time
step ¢ and training a time-dependent external classifier

pt(y|x¢), which is not feasible in DFIS due to the lack
of access to labeled datasets.

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022)
proposes a method for achieving the effects of classifier
guidance without the need for an additional classifier by in-
terpolating between unconditional and conditional outputs.

“

Unfortunately, despite this efficiency, CFG cannot provide
guidance on the domain of the training set learned by the
classifier, making it insufficient for standalone use in DFIS.

€ = eg(x4,y) + s(eg(xt,y) — €9(xt))

3. Method

First, Section 3.1 introduces the preliminaries of data-free
image synthesis and diffusion models. Section 3.2 explains
the concept of Diffusion-assisted Data-free Image Synthesis
(DDIS). Then, Section 3.3 details Domain Alignment Guid-
ance (DAG), which directs the image latent during diffusion
sampling, and Class Alignment Token (CAT) in Section 3.4,
which captures class details for accurate class alignment.

3.1. Preliminary

Data-Free Image Synthesis. The goal of Data-Free Im-
age Synthesis (DFIS) is to find the optimal point £ €
REXCXWXH \yithin the high-dimensional input space that
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Algorithm 1 Domain Alignment Guidance Algorithm
Require: Mode1(Pre-trained unconditional score estimator
€g(-,t), text encoder 7, image decoder D, prompt y, classi-
fier f(-; 0*) pre-trained on unknown dataset

Output: Latent z

€ + e9(2e;9,t) + s(ee(zt,m(y) t) — €o(ze; 9,1))

Zi—1 +— JQr— 1(““1 3t) *) + 1 —a_1 — o026 +

Ot€¢
9: end for
10: Return zg

1: zp ~ N(0,1)

2: fort=T —1to1do

3 e ~N(0,I)

4 zp e+ Ut+1€t+1 {obtain y; from Equation 2}

5 Lan(D(z)) = ZZ(HM(Xt) pullz + |07 (%) — o7 |2)
6: 2z <z — V5, Len(D(z)) {Apply DAG}

7.

8

Algorithm 2 DDIS Algorithm

Require: Pre-trained T2I diffusion model Model, classifier
f(-;0%) pre-trained on unknown dataset
Parameter: Class Alignment token embedding v,
Qutput: Sampling images Xo
1: £,D,74,€9 <Model
2: for number of total classes C' do
Define the prompt y
(e.gy = “a/An{S.}Hcen class label}”)
Add S. to vocabulary and get the v, from 74(S.)
for number of iterations ¢ do
zo < DomainAlignmentGuidance(Model, y)
)A(o — D(io)
ve + Lop(f (o3 07),
10:  end for
11:  Save the ¢, optimal Class Alignment token embedding v;
12: end for
13: Return %o € {X3,%2 - %5}

R A A e

c) {Optimize the v.}

elicits a maximum response from the classifier for a desired
class p(y|Z) under data-free conditions. This process in-
volves iteratively updating a random noise into a visually
natural image by optimizing the following loss function:

min £(2,y) + R(2), &)

where L(-) is Cross-Entropy loss, and R(-) is an image
prior regularizer. Despite the potential of DFIS, finding an
optimal point in a vast search space requires huge computa-
tional costs under data-free settings. Although DeepDream
(Mordvintsev et al., 2015) explores a total variation regu-
larizer to generate visually plausible outputs, the resulting
images lack the naturalness and fidelity of the real samples.

Text Conditioned Latent Diffusion Models. Text Con-
ditioned Latent Diffusion models (LDM) (Rombach et al.,
2022) operate in the latent space by projecting the image
X to zg = £(xg) through the auto-encoder £ : R* — R
In the diffusion sampling process, starting from zr, we

subsequently obtain the denoised latent and finally gener-
ate the clean image x( by passing the z, to the decoder
D : R — R*. Expressly, since the text conditioned LDMs
focus on generating images guided by the given text prompt
y encoded by the text encoder 74 as a condition, and the
predicted noise is €g(z:; 74(y), t).

Guidance for Text-to-Image Diffusion Models. As men-
tioned in Section 2.2, Classifier-Free Guidance (CFG), al-
lows the class label or text to be used as a condition in the
diffusion process can be represented in the latent space by
modifying Equation 4 as follows:

€ = €9(24;D,t) + s(eg(ze; 7 (y), t) — €o(ze; D, 1)), (6)

where @ means a null condition (unconditioned) and z; is
latent variable in time step ¢ given by

_ zi + (1 —ar)e -
Zi—1 = /Ot (W +4/1—az—1 — Ut2€fb+0't€t
@)

3.2. Diffusion-Assisted Data-free Image Synthesis

In this section, we introduce Diffusion-assisted Data-free
Image Synthesis (DDIS), which is a pioneer of the use of a
Text-to-Image (T2I) diffusion model as a strong image prior
to address the issue of existing DFIS methods producing
images distant from the training set distribution due to a vast
image search space. We utilize the Stable Diffusion (SD)
(Rombach et al., 2022), which has achieved remarkable
success in T2I diffusion models. By leveraging the com-
prehensive knowledge of natural images embedded in this
pre-trained T2I diffusion model, DDIS can produce samples
that better approximate the learned distribution than current
DFIS methods. However, since the images generated by
T2I diffusion models still differ from the exact training set
distribution, additional guidance is necessary to ensure they
align properly with the training set.

3.3. Domain Alignment Guidance

We propose an effectively applicable guidance method for
the diffusion model, called Domain Alignment Guidance
(DAG), which provides guidance on the domain learned
by the classifier during the diffusion sampling process. In-
spired by studies suggesting that Batch Normalization (BN)
layers encode domain knowledge (Lim et al., 2023; Mirza
et al., 2022), Domain Alignment Guidance (DAG) guides
the statistics of synthesized images to align with the training
set statistics stored in the model’s BN layers. Specifically,
we can obtain the channel-wise running mean g and run-
ning variance o2 of the entire training set from all BN layers
in the given model f(-;0*). To guide the image latent so
that the statistics of the generated images follow the run-
ning statistics, we modify the unconditional score of the
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image latent V, log p(z;) to V, log p(z;|u, o) from the
perspective of SDE (Song et al., 2020). Using Bayes’ rule,
the conditional score can be factorized as below two terms:

o |Zt)7

(®)
where s is a parameter controlling the guidance strength.
We can interpret the second term as the gradient with respect
to the latent obtained from an external loss function, which
minimizes the difference between the running statistics and
those of the synthetic image:

V2, log p(zi|p, 0%) = V,, log p(z,)+5V, log p(p,

L
LonGe) =Y () = pllz + o7 (%) = o7 |12), ©)
=1

where 4 (%;) and o7 (%) represent the mean and variance
of the feature map at the [-th layer of the generated image
X;. In this process, we project the image latent to the pixel
space at each time step ¢, by X; = D(z;), to compute the
gradient. We replace V, log p(u, 02|z;) with the obtained
gradient V,, Lpn (D(z,)) w.rt the latent variable, thereby
providing guidance to the image latent in the direction of
the training set distribution as below:

- nth‘CBN (D(Zt))7

where 7 is the scaling factor for the gradient influence. Fi-
nally, the DAG is integrated with the CFG to guide the
latent toward the target distribution, enabling the T2I diffu-
sion model to sample images faithful to the prompt while
incorporating domain knowledge within the classifier.

(10)

it:Zt

& = €9(24;9,1) + s(ep(Ze; 74 (y ), t) — €0(24; 2, 1)) (11)

In conclusion, starting from noise zr ~ N (0, I), we esti-
mate the noise €; based on guided latent z; via the DAG.
This process iteratively updates the latent to a cleaner one,
ultimately sampling images X, that is aligned with the target
domain by modifying Equation 7.

Zt+(]. —at)

Va
(12)

The overall algorithm of DAG is described in Algorithm 1.

s =i

3.4. Class Alignment Token

To capture the accurate class’s property, we encode the
semantic information about class details into the word em-
bedding of the proposed Class Alignment Token (CAT). In
a T2I diffusion model, words or sub-words from the input
prompt are converted into tokens from a predefined vocab-
ulary, and a pre-trained text encoder 7, maps each token
to a unique word embedding. We chose this embedding
space for optimization in DDIS because this space encodes
rich semantic representations learned by the pre-trained text

)-’-\/ 1-— dt_l — J?gt-f—a'tﬁt

Original data
Figure 2. Qualitative comparison with various DFIS methods on

the PACS (Art Painting) dataset. (a)-(c) correspond to the classes
dog, guitar and horse, respectively.
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Figure 3. Qualitative comparison with various DFIS methods on
the PACS (Cartoon) dataset. The classes match those in Figure 2.

encoder, which we expect to capture the semantic features
of the desired class effectively. Inspired by (Gal et al., 2022;
Huang et al., 2024; Kim et al., 2025), which encodes specific
concepts into pseudo-word token embeddings, we define S,
as a CAT, to precisely represent the desired class c. Then, we
construct a simple prompt y using the given class label as
y =“A/An {S.} {class label}”. We expand the vocabulary
by adding the CAT and only optimize its token embedding
v, of the {S.} using Cross-Entropy (C.E.) loss. This iter-
ative process aims to find the optimal v} that captures the
class-specific information learned by the model, as follows:

Z ¢;log (o

where f(Xo; 6*) indicates output logits given the pre-trained
model f(-;0*) and xg = D(z¢). Specifically, we compute
the C.E. loss only for the final image X, obtained through
the DAG-based diffusion sampling process up to the final
time step, as this image closely resembles the distribution
observed by the classifier. (i.e. p(x) = p(Xg)). Thus,

Lop(f(%0;07),¢

o (fj(%0;07))), (13)
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Figure 4. Qualitative comparison with baseline methods on the
StyleAligned dataset. We conduct experiments on two domains,
Manga (a,b) and Caricature (c,d). (a-d) correspond to the classes
hero, villain, politician, and chef, respectively.

even without access to the training set or additional training
processes, we can capture the class-specific attribute by
optimizing only the CAT embedding. Furthermore, once the
optimal CAT embedding is found, we can quickly generate
images of the desired class through a sampling process.
Consequently, DDIS can generate images that approximate
the training set via DAG in the sampling process and CAT
optimization in the T2I diffusion model, ensuring significant
improvements in image quality compared to existing DFIS
methods. The overall framework is described in Figure 1,
and the algorithm can be found in Algorithm 2.

4. Experiments
4.1. Experimental Settings

Baselines. We mainly compare our method with existing
data-free image synthesis (DFIS) methods such as Deep-
Inversion (DI) (Yin et al., 2020) and PlugInInversion (PII)
(Ghiasi et al., 2022), which deal with the large-scale datasets
synthesis inverting the CNNs. We do not compare the per-
formance the Naturallnversion (NI) (Kim et al., 2022) since
NI only considers small-scale datasets.

Datasets. We utilize ResNets (He et al., 2016) trained on
five domains to generate images. For the photo domain,
we use ImageNet-1k (Russakovsky et al., 2015). For the
art painting and cartoon domain, we use the PACS dataset
(Li et al., 2017). Additionally, we collect artificial datasets
via Style Aligned (Hertz et al., 2024) for manga and cari-
cature domains. Each dataset includes 7 classes. Detailed
experimental settings and class labels are in the appendix.

Original data oI sD2.1 Ours Original data oI

Figure 5. Qualitative comparison with prior methods on the
ImageNet-1k dataset. We also include comparisons with StableDif-
fusion 2.1 (SD2.1), which serves as the baseline model in our work.
(a-d) denote classes “tiger cat”, “beach wagon”, “mail bag” and
“kite”, respectively. It is noteworthy that our method can address

the issue of lexical overlapping.

4.2. Main Results

Image Synthesis with Various Domain. DDIS is the first
to succeed in generating samples from various domains, not
just the photo domain, in the DFIS. Figures 2 to 4 compare
images generated with the models pre-trained on diverse
domain datasets with baselines. Since we do not know the
knowledge of the dataset used for training the classifier, ex-
isting DFIS methods must explore an extremely large image
search space. This leads to generated images with artifacts
that fail to accurately capture the training dataset’s domain
properties. As a result, they fail to capture the domain prop-
erties of the training dataset and usually generate images
with severe artifact effects. Although Stable Diffusion can
generate class-faithful images given prompts such as ‘A
dog’, it lacks guidance on the domain of the training data,
preventing it from capturing the dataset’s domain-specific
information. In contrast, the proposed DDIS leverages DAG
in the diffusion sampling process and optimizes CAT em-
beddings to synthesize images that accurately reflect the
training dataset’s domain and class attributes, producing
images that closely resemble the original data.

Image Synthesis Faithful to the Target Class. We
demonstrate how CAT embedding optimization enhances
the capture of target class attributes. Figure 5 presents im-
ages generated with a ResNet-34 pre-trained on ImageNet-
1k. Surprisingly, DDIS achieves precise class mappings,
even resolving the lexical overlap problem, where gener-
ators misinterpret class labels. For instance, suppose the
classifier has learned the tiger cat, as shown in Figure 5 (a)
(though we do not know the training set). However, Stable
Diffusion (SD) incorrectly generates a tiger due to word
similarity. This issue becomes even more pronounced with
compound nouns, such as ‘beach wagon’ or ‘mailbag’ where
ambiguity leads to incorrect images. Even for single-word
labels (Figure 5 (d)), SD struggles with homonyms, reduc-
ing accuracy. In contrast, DDIS overcomes these challenges
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Table 1. Comparison of generated image quality with baselines. We evaluate how closely generated images approximate the training set
distribution and further measure the fidelity and diversity of images using Precision and Recall metrics.

| | DDIS (Ours) | Deeplnversion | PlugInInversion
Dataset D

| | 1S(1) FID(}) Precision(t) Recall(t) | IS(t) FID(]) Precision(t) Recall(t) | IS(t) FID(]) Precision() Recall(t)
ImageNet-1k | Photo | 1592 30.31 0.8028 0.7731 | 952 187.63 05038 0.0907 | 351 22062  0.2969 0.0528
PACS Artpainting | 412 133.37  0.7742 0.3213 | 400 18853 04033 00004 | 253 20873 03442 0.0014
Cartoon | 4.04 8541 0.7541 03104 | 391 14894 03704 0.0038 | 281 27586  0.0004 0.0001
Style-Aligned | Caricature | 3.94 13975 0.3552 0.5672 | 358 19525  0.1027 00618 | 251 29358  0.0001 0.0004
vieAlis Manga 3.87 14582 0.2036 04396 | 332 20657  0.0834 0.0019 | 236 295.14  0.0001 0.0003

Table 2. Data-Free Knowledge Distillation (DFKD) performance
on PACS and ImageNet-1k with synthesized images from various
DFIS methods. “T. and ‘S.” denote the teacher and student net-
works, respectively. ‘Original’ refers to the baseline accuracy of a
student network trained on the original training set.

Dataset ‘ T. S. Original DI PII SD Ours
ResNet-34 ResNet-18 32.60 17.49 1227 2193 28.46

ResNet-34 VGG-11 26.03 1265 923 1812 21.89

PACS-art ResNet-50  ResNet-18 3798 1848 1532 31.67 3587
ResNet-50  ResNet-34 28.46 16.63 13.36 19.52 24.65

VGG-16 VGG-11 3289 17.37 1247 2261 2743

VGG-16  ShuffleNetv2  54.25  30.32 23.14 41.74 48.56

ResNet-34  ResNet-18 5135  28.65 17.23 38.12 47.06

ResNet-34 VGG-11 4995 2692 15.62 3894 4492

PACS-cartoon ResNet-50  ResNet-18 58.15 3148 2032 4467 5145
ResNet-50  ResNet-34 4734 2405 1566 36.73 4293

VGG-16 VGG-11 48.82 2529 16.04 38.15 44.81

VGG-16  ShuffleNetv2 5424 2994 1932 4363 49.32

ResNet-34  ResNet-18 4330 467 201 33.02 41.68

ResNet-34 VGG-11 3491 267 134 2741 3271

ImageNet-Tk ResNet-50  ResNet-18 43.09 6.31 1.98 3543  40.77
ResNet-50  ResNet-34 44.57 729  3.08 3315 4287

VGG-16 VGG-11 34.70 255 123 2693 3214

VGG-16  ShuffleNetv2 ~ 28.13 137 1.02 1852 24.61

ResNet-34 on ImageNet-1k

ResNet-34 on PACS art-painting ResNet-34 on PACS cartoon
%0
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Figure 6. Finetuning the pruned ResNet-34 and VGG-16 with syn-
thetic PACS and ImageNet-1k samples under different pruning

ratios. We compare DDIS performance with prior DFIS methods.

by optimizing only the CAT embedding, ensuring that the
generated images accurately align with the intended class.

Quantitative Results. We compare the image quality with
existing DFIS studies to evaluate whether the generated im-
ages approximate the distribution of the training set used
to train the model. For this evaluation, we use (1) Incep-

tion Score (IS) (Reed et al., 2016) and Frechet Inception
Distance (FID) (Heusel et al., 2017), and (2) Precision and
Recall (P&R) (Sajjadi et al., 2018), to measure the fidelity
and diversity of synthetic images strictly. We evaluate the
image quality of 10,000 synthetic ImageNet-1k samples,
2,800 synthetic PACS samples, and 1,400 synthetic Style-
Aligned samples. As shown in Table 1, DDIS outperforms
the baselines across all metrics. Our proposed method gen-
erates images that most closely approximate the training set
distribution, effectively producing images that align with
both the class and domain of the training set.

4.3. Data-Free Applications

DDIS aims to enhance the utility of a given model by gen-
erating samples that approximate the distribution of the
training data. Accordingly, we conduct experiments on
Knowledge Distillation (KD) and Pruning using synthetic
images without direct access to the training data. Specifi-
cally, we synthesize 2,800 images from the PACS dataset
and 100k images from ImageNet-1k for these experiments.

Data-Free Knowledge Distillation. In this section, we en-
sure that we can transfer information from a teacher network
to a student network without original data and outperform
existing data-free knowledge distillation approaches. The
experimental setup for knowledge distillation is based on
the protocol outlined in (Li et al., 2023). Our method is
compared against previous DFIS approaches, including DI
and PII, as well as the use of images generated by Stable
Diffusion (SD).

2 demonstrates the superior performance of the proposed
approach. Our method consistently achieves results closer
to the baseline across all datasets compared to prior studies.
Notably, it better approximates the training set distribu-
tion than directly using SD outputs as training data. This
suggests that our method generates samples that are more
aligned with the domain and class distributions of the origi-
nal training data.

Data-Free Pruning. We demonstrate that DDIS enhances
pruned model accuracy without using real data. We apply
L1-norm pruning (Liu et al., 2017) to ResNet-34 and VGG-
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Figure 7. Sample visualization of the re-weighting of the optimal
Class Alignment Token embedding. We visualize synthetic sam-
ples shown as the scaling parameter w of the CAT embedding
vector progressively increases from 1.0 to 30.0.

16 on PACS art painting, cartoon and ImageNet-1k with
pruning ratios from 50% to 90%. Following (Liu et al.,
2018) settings, we locally prune the least important channels
in each layer at the specified ratios. Similar to DFKD results,
DDIS synthesizes samples closely matching the underlying
distribution, enhancing model utility, as shown in Figure 6.

4.4. Further Analysis

Ablation Study. To understand the impact of each com-
ponent of DDIS on image synthesis, we evaluate the perfor-
mance of various component combinations on the PACS art
painting dataset, as described in Figure 8 and Table 3. When
directly generating images from vanilla SD, the resulting
images lack the information of the training set and fail to
capture the unique characteristics of each class and domain,
leading to significant deviations from the training set. The
DAG leads to synthetic images that better reflect the tar-
get domain by following the inner statistics of the training
set encapsulated in the model. The optimal embedding of
the CAT captures class-specific features, generating images
with high fidelity to the class label, but if not used with
DAG, domain discrepancy issues arise. When all proposed
components are used together, the resulting images align
with both the domain and class of the training set.

Impact of Optimal CAT Embedding on Synthetic Image.
We evaluate if the optimal Class Alignment Token (CAT)
embedding captures the desired class’s high-level semantics
and fine details. Figure 7 shows the influence of the CAT
embedding vector by scaling the cross-attention map with
parameter w from 1.0 to 30.0. As w increases, the CAT
embedding accentuates class-specific features, such as the
‘eye shape’ in the tiger cat images, showing its ability to cap-
ture detailed class attributes. Furthermore, strengthening the
CAT embedding improves alignment with the target domain,
showcasing its capability to represent precise visual details
and maintain consistency with the training set distribution.

DAG® CATO Original PACS
_ (Ours)

ocA
(wlo DAG)

Figure 8. Ablation results on PACS (Art painting) dataset. We
assess the impact of the proposed DAG and CAT on synthetic
images. Note that the case where neither DAG nor CAT is used is
equivalent to using the standard SD 2.1.

Table 3. Evaluation of image quality in PACS (Art Painting) under
different elements in our method. We assess the impact of each
component on the quality of generated images.

Method | DAG CAT | IS(1) FID(}) Precision() Recall(1)
SD 288 19357  0.6429 0.2572
SDw/oDAG | v 329 17431 0.6995 0.3074
SD w/o CAT Vo395 16622 0.6871 0.2843
Ours | v V| 412 13337 07742 0.3213

Original data sD21 Ours

Original data sD21 Ours

Figure 9. Synthesizing the sketch domain is challenging under
data-free conditions due to its abstract depiction.

5. Limitations

While DDIS excelled across domains, it struggled in the
Sketch domain, which has abstract representations of ob-
jects and scenes that make image generation particularly
challenging, as shown in Figure 9. However, DDIS cap-
tures common Sketch characteristics, such as monochrome
backgrounds and darker tones. Additionally, since our DAG
relies on feature statistics from the BN layer, it can only be
applied to models with BN layers. In future work, we plan
to explore model-agnostic domain alignment guidance.

6. Conclusion

We introduce DDIS, the first Diffusion-assisted Data-free
Image Synthesis method, using a T2I diffusion model as
a powerful image prior to narrow the image search space.
We introduce Domain Alignment Guidance (DAG) for do-
main alignment during diffusion sampling and Class Align-
ment Token (CAT) embedding optimization for desired class
alignment. We are also the first to conduct experiments
across various domains in DFIS, proving its effectiveness.
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Impact Statement

This work aims to enhance the utility of pre-trained models
by generating synthetic data in scenarios where access to the
original data is unavailable. We acknowledge that data-free
image synthesis approaches, designed to recover data fol-
lowing the training dataset’s distribution, can raise concerns
regarding privacy leakage and other ethical issues. However,
our objective is not to reconstruct individual instances or
facilitate unauthorized data access but rather to synthesize
a surrogate dataset that can be effectively utilized for data-
free applications such as data-free knowledge distillation
or data-free pruning. Specifically, our method guides the
data generation process by leveraging the running statistics
from classifiers, which represent the averaged information
of the entire dataset. This design inherently prevents the
inclusion of individual instance details in the generated im-
ages, making it extremely difficult to recover any specific
sample (see Figures 2 to 5 in the main paper). We hope
that this work contributes to the responsible development of
data-free techniques for scenarios in which data sharing is
limited or infeasible.
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A. Experiment Settings
A.1. Hyper parameters

We generate a 512x512 resolution image using Stable Diffusion 2.1 (Rombach et al., 2022) with T'" = 30 diffusion time
steps. For applying Domain Alignment Guidance (DAG), we define the gradient scaling factor 7 as the product of Agy
and the guidance scale s,. Here, Apy is the scaling factor for Ly, and s, denotes the DAG guidance scale. These two
parameters play a crucial role in our image generation process, and their impact on synthetic images is discussed in the
following subsection. DAG is incorporated with the Classifier-Free Guidance (CFG) with a scale of 15.

To define the Class Alignment Token (CAT), we newly define a single token .S, with no inherent meaning and add it to
the vocabulary, using its embedding as the initial value. We utilize the token “newcls” as the CAT, but any arbitrary token
without meaning can serve as the initial token. To optimize the embedding vector v. of the CAT, we employ the Adam
optimizer with a learning rate of 0.005. We train for up to 30 epochs, each involving 20 gradient accumulation steps and
generating images from latent noise initialized with different seeds. It is equivalent to a batch size of 20 and can be adjusted
based on resource availability.

A.2. Detail of  in DAG

The main hyperparameter of our proposed Domain Alignment Guidance (DAG) in the diffusion sampling process is 7,
which is divided into the gradient flow scale Apx and the DAG guidance scale s, and we can rewrite the Equation 10 as
below.

it = Z¢ — SQ(ABN(VZtﬁBN(D(Zt)))) (14)

To determine the optimal values for the gradient flow scale(Ap ) and guidance scale(sg), we conduct experiments across a
wide range of values. Specifically, we test Ap between 0.0001 and 1, while the s, is explored within the range of 0.1 to
100. As aresult, we find the optimal settings as a Apx of 0.01 and a s, of 20. The experimental results are shown in the
Figure 11. Users can adjust these two parameters as needed, with the selection of hyperparameters guided by the generated
images’ confidence score.

A.3. Training Strategy

Prompt Design. Due to the nature of Data-Free Image Synthesis (DFIS), where we have no information about the training
set beyond class label information, we design prompts y to be very simple and ambiguous (e.g., y =“A/An {S.} {class
label}.”) To demonstrate that we can effectively approximate the desired distribution with minimal information, we refrain
from using any prefixes like “A photo of ~.”

Gradient Skipping for CAT embedding optimization. Gradient backpropagation through all diffusion steps ¢ demands
substantial memory. In our experiments, limiting gradient propagation to just the final denoising step (i.e., step ¢ = 30
(=final T")) reduces the resource usage. Additionally, since the given model was trained on natural images with a similar
distribution of images from the final denoising step (i.e., p(z) = p(Zo)), the gradient skipping technique produces an
appropriate loss for representing the intended class. Although deeper backpropagation could lead to further improvements,
we do not explore this approach due to memory constraints.

Early Stopping Strategy. We use a threshold of 0.7 for the proportion of correctly predicted samples in a batch to
determine early stopping. During each epoch, the generated batch is evaluated by the classifier. If over 70% of the samples
are accurately predicted as the target class, we apply early stopping for the CAT embedding optimization.

A.4. Computation Overhead

In our experiments using a single RTX 4090 GPU, the optimal CAT embedding is found in approximately 7.5 minutes. Once
determined, this embedding remains fixed, enabling rapid image generation via a diffusion sampling process. Compared to
existing Data-Free Image Synthesis (DFIS) methods, our DDIS enhances efficiency and cost-effectiveness for large-scale
ImageNet-1k dataset generation while preserving high image quality. To illustrate this, we compare the total optimization
iterations needed to synthesize 100,000 ImageNet-1k images on a single RTX 4090 GPU, shown in 4.

Deeplnversion (DI) (Yin et al., 2020) requires iterative optimization for each mini-batch. With an optimal batch size of 250,
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Table 4. Comparison of time cost and iteration count for generating 100,000 ImageNet-1k images with prior DFIS methods (Deeplnversion,
PlugInInversion), and our method.

Cost Deeplnversion  Pluginlnversion DDIS (Ours)
Total Iteration for 100k samples synthesis 8,000K 1,120K 30K
Times per 1 iteration (sec) 0.83 0.79 15.17
Total training cost (hours) 18444 245 126

around 20,000 iterations per batch are needed. Generating 100,000 images necessitates repeating this 400 times, totaling
8,000,000 iterations (20,000 iterations per a mini-batch x 400 batches). PlugInInversion (PII) (Ghiasi et al., 2022) optimizes
a random input across seven progressive upsampling stages (7x7 to 224 x224), with 400 iterations per stage. Generating
100,000 images with a batch size of 250 results in approximately 1,120,000 total iterations (400 iterations per stage x 7
stages x 400 batches).

Our DDIS optimizes only class-wise CAT embedding vectors in a low-dimensional space (1x784). For ImageNet-1k
(1000 classes), we perform just 30 iterations per class, totaling 30,000 iterations (30 iterations/class x 1000 classes). After
finding the CAT embedding, generating 100,000 images involves simply sampling latent vectors without further training or
optimization. While CAT optimization has a slightly longer per-iteration time than prior methods, the drastically reduced
total iterations make the overall process more efficient.

B. Sample Visualization
B.1. ImageNet-1k Sample Synthesis

Since ImageNet- 1k (Russakovsky et al., 2015) consists of 1,000 classes, to evaluate whether our DDIS can avoid lexical
overlapping issues and accurately align with the correct class, we generate images by inverting the ResNet-34 (Sohl-Dickstein
et al., 2015) pretrained on ImageNet-1k provided by TorchVision (Paszke et al., 2019), which has a top-1 accuracy of 73.31%.
We generate 10,000 images with 512x512 using the Stable Diffusion 2.1 and resize them to 224 x224 for evaluation,
matching the typical resolution used during ImageNet-1k training. For comparison, we generate 10,000 images using
Deeplnversion (DI) (Yin et al., 2020) and PlugInInversion (PII) (Ghiasi et al., 2022), the only Data-Free Image Synthesis
(DFIS) studies addressing large-resolution image synthesis, following their official GitHub implementations and proposed
their ImageNet-1k parameters. Figure 12 illustrates samples for 30 classes, including those with lexical overlapping issues.
The proposed method effectively generates images that precisely match the classes learned by the model through CAT
embedding optimization. For example, the class “Yellow Lady’s Slipper” (class 986), which refers to a type of flower,
demonstrates how DDIS alleviates lexical overlapping problems to produce accurate class images.

B.2. PACS Sample Synthesis

We are the first to address the synthesis of non-photo-specific domain datasets in DFIS. We focus on the PACS dataset
synthesis (Li et al., 2017), a benchmark commonly used in domain generalization, which consists of four domains: Photo,
Art Painting, Cartoon, and Sketch.We specifically handle the Art Painting and Cartoon domains, as the Photo domain’s
excellence is well-described with the ImageNet- 1k experiment, and the Sketch domain represents a failure case in our study.
Each domain contains seven classes: dog, elephant, giraffe, guitar, horse, house, and person. We fine-tune the ResNet-34
pre-trained on ImageNet-1k with two domains, excluding the training domain data for inference on the remaining three
domains to measure top-1 accuracy. The top-1 accuracies for Art Painting and Cartoon pre-trained ResNet-34 models are
54.73% and 61.78%, respectively. We generate 512x512 images using Stable Diffusion 2.1 and resize them to 224 x224
for evaluation, aligning with the typical PACS training resolution. For comparison, we generate 3,000 images using
Deeplnversion (DI), PlugInlnversion (PII), and our DDIS method. We reproduce the DI and PII utilizing the official GitHub
implementations and ImageNet-1k parameters matching the PACS dataset resolution.

Figure 13 shows the results of synthesizing all classes in the PACS Art Painting domain, while Figure 14 displays the
results for the PACS Cartoon domain. We demonstrate that our proposed DAG-based diffusion sampling process and CAT
embedding optimization align the target dataset’s domain and class information more effectively than the baseline methods.
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B.3. Style-Aligned Sample Synthesis

To demonstrate the effectiveness of our methodology across a broader range of domains, we utilize Style-Aligned (Hertz
et al., 2024) to create high-quality, domain-specific datasets. We select the domains of manga, caricature, and sketch and
synthesized 400 images for each of the seven classes within these domains using Stable Diffusion 2.1. The synthesized
datasets are illustrated in the Figure 15. Subsequently, we finetune a classifier using a ResNet-34 pre-trained on ImageNet- 1k,
following the same approach as with ImageNet-1k and PACS experiments. The top-1 accuracies for manga, caricature, and
sketch are 85.70%, 76.80%, and 98.90%, respectively.

C. Additional Experiments
C.1. Efficiency of Domain Alignment Guidance

We demonstrate that in DAG, the gradient of L£py, which aligns synthetic image statistics with the BN layer running
statistics, provides stable guidance unaffected by the time step. To avoid confusion, we compare our method with Classifier-
Guidance (CG) (Dhariwal & Nichol, 2021), which only provides class guidance at the last time step 7'. First, running
statistics within all BN layers are derived from the entire training set, making them more robust and stable than providing
guidance based on conditional probability gradients for individual samples. Second, we demonstrate that the BN statistics of
generated images remain stable across different time steps. Figure 18 illustrates the layer-wise mean and variance of images
generated at every time step. We sample 30 images from the “hero” class in the Style Aligned Manga domain over time
steps, passing them through a ResNet-34 pre-trained on the Manga dataset to observe the variation in layer-wise mean over
time steps. The layer-wise statistics of noise samples at each time step surprisingly exhibit similar trends from time step 0 to
T, remaining consistent across different time steps. This result indicates that the model’s internal statistics remain stable
regardless of the time step, demonstrating that guidance aligning synthetic image statistics with BN layer running statistics
at each time step is highly reliable.

C.2. Comparative Analysis of Class/Domain-Wise Token

To demonstrate the effectiveness of our Class Alignment Token, we compare our CAT with the domain-wise token. The
domain-wise token is trained to observe the overall classes, while class-wise tokens are trained to observe each class
independently. Figure 10 illustrates the results for the PACS-cartoon domain when using a single token embedding for
all classes. We observe that the domain-wise token embedding captures the domain knowledge of the training set but
generates images with ignored class-specific features, averaging across all classes. In contrast, our CAT embedding encodes
class-specific information, capturing precise features corresponding to each class.

C.3. Zero-shot Image Synthesis

We conduct a zero-shot image synthesis experiment to evaluate whether Stable Diffusion can effectively generate images
for unseen classes. First, using Stable Diffusion V3, we select 10 classes that the Stable Diffusion 2.1 model used in our
study has never encountered and generate images for those classes with SD V3. Then, we train a ResNet-50 model using
the dataset of these 10 classes (see Figure 19). Finally, we utilize Stable Diffusion 2.1 to synthesize the images used for
training ResNet-50 with the our proposed DDIS. Surprisingly, as shown in Figure 20, although Stable Diffusion 2.1 struggles
with these classes, the CAT embedding can capture the class attributes from the training set and generate images with a
distribution similar to that of the original dataset.

C.4. Further Analysis of CAT Embedding Optimization with Frozen SD Networks

To evaluate the effectiveness of our CAT embedding optimization, we conduct ablation studies on three design choices,
synthesizing four lexically ambiguous ImageNet-1K classes: Kite (21), Tiger Cat (282), Beach Wagon (436), and Mail Bag
(636) like 5 in the main paper. We compare confidence scores and visual quality under these settings. Firstly, we test three
fine-tuning configurations for Stable Diffusion (SD): (b) UNet only, (c) text encoder only, and (d) Full fine-tuning, using the
Cross-Entropy (CE) loss used for CAT optimization. As shown in Figure 21 and Table 5, fine-tuned SD produces distorted,
low-confidence images, failing to generate class-aligned images. It suggests that the SD fine-tuning in Data-Free Image
Synthesis (DFIS) disrupts the prior knowledge within the SD, degrading image quality. Generally, SD is fine-tuned using
real data to adapt to specific domains or styles, but in DFIS, the lack of real images leads to unstable training (right side of
Figure 21). Moreover, per-class SD fine-tuning leads to individual SD networks, increasing computational cost. In contrast,
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Table 5. Design Choice 1: Partial or Full Fine-tuning of SD

Method C-21 (C-282 C(C-436 C-636 Avg. Confidence
(a) Ours 94.12 6594 8573 67.66 78.36
(b) SD UNet 0.77  0.67 247 1.53 1.36
(c) SD Text-Encoder 0.03  21.25 1735 257 10.30
(d) SD Full 026 040 0.01 0.01 0.17

Table 6. Design Choice 2: Optimizing Multiple Tokens Embeddings - Confidence Scores

Method C-21 C-282 C(C-436 C-636 Avg. Confidence
1 Token (Ours) 94.12 6594 85.73 67.66 78.36
2 Tokens 0.01 30.19 5.04 4.10 9.83
3 Tokens 0.01 30.15 5.08 3.19 9.60
4 Tokens 0.01 30.17  5.07 3.59 9.71
5 Tokens 001 29.14 132 3.54 8.50

Table 7. Design Choice 3: Adding BatchNorm loss on CAT embedding optimization - Confidence Scores

Method C-21 C-282 C(C-436 C-636 Avg. Confidence
Ours 9412 6594 8573 67.66 78.36
CAT optim. w/BN Loss  0.01  26.15  8.26 0.03 8.61

our method freezes SD and optimizes a single token, preserving SD’s image prior while efficiently generating high-quality,
class-aligned images.

Secondly, we explore whether multiple CAT embeddings improve class expressivity by optimizing embeddings for one
to five tokens. As shown in Figure 22 and Table 6, performance drops with more tokens. Lexical ambiguity persists, and
confidence scores drop. In data-free settings with simple prompts (e.g., "A {class}"), more tokens amplify the effect of
randomly initialized embeddings, hindering desired class-aligned image generation. Therefore, a single token is sufficient
and more effective for encoding class information in DFIS.

Lastly, we test optimizing CAT embedding with BatchNorm (BN) loss alongside vanilla CE loss. As shown in Figure 23
and Table 7, BN loss negatively affects capturing class semantics by inducing synthetic images toward the averaged statistics
of the entire dataset, which causes class mixing and reduces separability. Therefore, optimizing CAT embedding with CE
loss alone effectively captures class-specific attributes.

In conclusion, the above design studies validate that desired concepts or complex information can be encoded by optimizing
only token embeddings on frozen SD. Building on this, we adopt the idea to DFIS and demonstrate that a single CAT token
effectively captures class semantics while preserving SD’s priors. Across all design choices, our approach consistently
outperforms alternatives, highlighting its effectiveness for DFIS.
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Person Horse

Figure 10. Visualization of PACS (cartoon) samples generated with domain-wise tokens. While domain-wise tokens capture domain
information, they fail to distinguish unique class attributes, resulting in averaged class images.

Ours (20) J

Figure 11. Study on Gradient Flow scale and Guidance scale
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Figure 12. Visualization of ImageNet-1k samples. We select 30 ImageNet-1k classes with lexical overlapping issues and present visual
results. Panel (a) displays our method, (b) shows PlugInInversion, and (c) depicts Deeplnversion. (class index: 1, 2, 3, 6, 13, 18, 21, 31,
33,37, 282, 436, 460, 461, 465, 466, 467, 489, 490, 492, 496 ,636, 726, 862, 982, 984, 986, 991, 996, and 999)
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Figure 13. Visualization of all class samples in the PACS (Art Painting) dataset. (a) through (g) sequentially represent the classes: dog,
elephant, giraffe, guitar, horse, house, and person. Our method demonstrates superior capture of target domain and class information
compared to baselines (DI, PII) and highlights the domain discrepancy issues that arise when directly applying Stable Diffusion to DFIS.
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Original data DI

Figure 14. Visualization of all class samples in the PACS (Cartoon) dataset. (a) through (g) sequentially represent the classes: dog,
elephant, giraffe, guitar, horse, house, and person. Our method demonstrates superior capture of target domain and class information
compared to baselines (DI, PII) and highlights the domain discrepancy issues that arise when directly applying Stable Diffusion to DFIS.
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Figure 15. Synthetic datasets are generated using Style-Aligned (Original data). We treat these synthetic data as the training set and then
train a ResNet-34 model. Finally, we invert ResNet-34 pre-trained on a Style-Aligned dataset to generate the images.
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Figure 16. Layer-wise mean values
Layer-wise Variance Values over the diffusion time steps
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Figure 17. Layer-wise variance values

Figure 18. Visualization of layer-wise mean and variance over diffusion time steps (DDIM sampler, 30 steps).
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"a photo of a degen octopus juggling crypto tokens"

"a photo of a flex model with VR drip on a digital runway"

"a photo of a flying submarine gliding over a futuristic harbor"

"a photo of a ghost kitchen drone delivering byte-snacks"

"a photo of a posthuman cyborg sipping matcha in a digital cafe"

"a photo of a robot hummingbird hovering over neon flowers"

"a photo of a robotic tiger prowling through a cyberpunk alley"

. "a photo of a steampunk robot playing a grand piano in a dimly lit room"
. "a photo of an astronaut riding a giant manta ray in space"

0."a photo of a frosty pixel lion"

ESRCCRCORSIDROIRERCONOR b

Figure 19. Prompt with an unseen class for zero-shot image synthesis. The classes above are unseen by Stable Diffusion 2 (SD2) and
were used as prompts to generate images with Stable Diffusion 3 (SD3). For each prompt, we generate 400 images per class, and the
resulting images are used as the training dataset for the classifier.

SD3

SD2

Ours
(SD2)

Class 1 2 3 4 5 6 7 8 9 10

Figure 20. Zero-shot image synthesis results for unseen classes. We first find 10 classes described in 19 that Stable Diffusion 2 (SD2)
struggles to generate, but Stable Diffusion 3 (SD3) handles well. Using SD3, we generate 400 images per class and then train a ResNet-50
classifier with these images. Using this trained classifier, we apply the DDIS method to synthesize samples that approximate the training
set distribution. While the vanilla SD2 (without DDIS) produces samples that deviate significantly from the training set distribution, our
proposed method can generate images that closely resemble the original data distribution, even for classes that SD2 has never seen.
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Figure 21. Sample visualization for Design Choice #1 (Stable Diffusion (SD) Fine-tuning vs. CAT embedding optimization). Synthetic
images for four lexical ambiguous ImageNet-1k classes using (a) our CAT embedding optimization with frozen SD and (b—d) fine-tuning
baselines: (b) UNet, (c) text encoder, (d) full SD. For each row, the images on the left of the arrow are generated at the minimum
Cross-Entropy loss, and those on the right are after 20 epochs. SD fine-tuning leads to degraded and unstable outputs over time.
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Figure 22. Sample visualization for Design Choice #2 (Number of CAT tokens). Synthetic images generated with varying numbers of
optimized CAT embeddings on frozen SD: (a) single token (ours), (b-e) from two to five tokens. Image quality degrades as the number of
tokens increases and lexical ambiguity persists, indicating that a single token is sufficient for capturing class-specific attributes.
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Figure 23. Sample visualization for Design Choice #3 (Effect of BatchNorm loss on CAT embedding optimization). (a) CAT embedding
optimization with Cross-Entropy loss (ours). (b) CAT optimization with CE and BN loss. BN loss encourages synthetic samples to match
overall dataset statistics, often producing mixed-class images and reducing class separability.
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