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ABSTRACT

In this paper, we introduce and analyze an architectural augmentation for Large
Language Models (LLMs) that enhances their performance in fine-tuned classifi-
cation tasks through a minimalistic yet effective approach. By incorporating one
additional learnable parameter per transformer block, we facilitate a depth-wise
pooling mechanism that leverages the hierarchical information encoded in the
layers of the pre-trained model. We demonstrate that this method significantly im-
proves classification accuracy, with an observed increase of 1.5-6 percentage points
in some models, at a negligible compute cost during training. Our experiments
span various models and datasets, underscoring the universality and adaptability of
the proposed technique. The augmentation proves particularly effective under data-
scarce conditions, highlighting its practical utility in real-world applications. The
simplicity and efficacy of our approach advocate for its integration in fine-tuning
LLMs for classification, promising enhanced performance and new insights into
model interpretability and optimization for diverse NLP tasks.

1 INTRODUCTION

Ignited by the release of the Transformer paper (Vaswani et al., 2017) and fueled by many important
subsequent works (Devlin et al., 2018; Liu et al., 2019b; Radford et al., 2018; 2019), powerful pre-
trained Large Language Models (LLMs) have become an indispensable part of the natural language
processing (NLP) landscape for researchers and practitioners alike.

LLMs are typically pre-trained on extensive text corpora using methods such as autoregressive
modeling or Masked Language Modeling (MLM). They are then fine-tuned for specific tasks, with
the final layer often being customized to suit the target application. However, this approach potentially
underutilizes the rich, hierarchical information embedded within the multiple layers of the model.
Each layer captures unique and valuable insights (Raganato & Tiedemann, 2018; Tenney et al., 2019;
Voita et al., 2019), and solely relying on the final layer could limit the model’s performance potential.

In this paper, we offer further analysis of the problem, and address it via a minimal architectural
augmentation aimed at harnessing the depth-wise information within the LLMs. Our objective is to
enhance the model’s performance in classification tasks without introducing significant complexity or
computational overhead.

In the proposed method one additional learnable parameter per transformer block is added. This facili-
tates a depth-wise pooling mechanism, allowing the model to leverage the information encoded across
various layers. We hypothesize that this approach will enable a more nuanced and comprehensive
utilization of the model’s pre-trained knowledge, leading to an enhanced performance in fine-tuned
classification tasks. Furthermore, analyzing the trained weights of P-32 will provide additional
information regarding the efficacy of information at different levels of depth in the hierarchy. We
named our method P-32, since for most LLM architectures we only add 32 parameters to the model.

We demonstrate that P-32 can significantly improve classification accuracy, with an observed increase
of up to almost 6 percentage points in the best performing model. Our experiments, conducted
across various models and datasets, underscore the universality and adaptability of our technique. We
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provide an in-depth analysis of the learned depth-wise weights, offering insights into the model’s
enhanced capacity to utilize its hierarchical knowledge effectively.

Our key contributions include:

• We propose an architectural augmentation that improves classification performance by fully
utilizing the hierarchical information captured by the pre-trained Large Language Model
(LLM).

• We show that the proposed architecture are able to select and retain task relevant information
captured at different depths in the LLM.

• We show how the proposed method improves performance across a plethora of different
model sizes and in tandem with popular fine-tuning techniques.

• We show that the proposed method specifically and successfully addresses the problem of
overthinking.

The remainder of this paper is structured as follows: First, we explore related work in Section 2
and subsequently introduce the proposed method in Section 3. Section 4 provides empirical results,
whilst Section 5 focuses on analyzing the factors responsible for the superior performance. Finally,
we conclude in Section 7

2 RELATED WORK

In this section, we provide an overview of the relevant literature in relation to our proposed method-
ology. This includes the development of the Transformer architecture, large pre-trained language
models, and various techniques for fine-tuning and augmentation of these models for specific tasks.

2.1 TRANSFORMER ARCHITECTURE

The Transformer architecture was introduced by Vaswani et al. in the paper “Attention is All You
Need” (Vaswani et al., 2017). This groundbreaking work demonstrated that self-attention mechanisms
could be used to efficiently model long-range dependencies in sequence data, outperforming previous
state-of-the-art models based on recurrent neural networks (RNNs) and convolutional neural networks
(CNNs) in various NLP tasks. Since then, the Transformer architecture has been the foundation for
numerous works in the NLP domain.

2.2 LARGE PRE-TRAINED LANGUAGE MODELS

The concept of pre-training language models on vast amounts of text data before fine-tuning them for
specific tasks has been a driving force behind the recent progress in NLP. Notable models include
BERT (Devlin et al., 2018), GPT (Radford et al., 2018; 2019), RoBERTa (Liu et al., 2019b), and
many others. These models have demonstrated remarkable performance across a range of tasks,
such as question-answering, sentiment analysis and text summarization, often surpassing human
performance.

2.3 FINE-TUNING AND MODEL AUGMENTATION

Several innovative strategies have been put forth to fine-tune and boost the effectiveness of pre-trained
language models. One such strategy involves the use of intermediate layer representations (Houlsby
et al., 2019). This approach allows a LLM to be fine-tuned for a variety of tasks without fine-tuning
the weights of the Large Language Model.

Another method to enhance performance is the introduction of task-specific adaptation layers (Stick-
land & Murray, 2019). In this scenario, additional layers are incorporated into the model that are
specifically designed and trained to optimise performance for a particular task. This allows the model
to maintain its general language understanding capabilities while also excelling in a specific task,
creating a balance between generalisation and specialisation.

The strategy of multi-task learning also shows considerable promise (Liu et al., 2019a). This approach
trains a single model on multiple related tasks simultaneously, with the idea that learning from one
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task can inform and improve the model’s performance on others. This is based on the principle of
’transfer learning’, where knowledge gained while solving one problem is applied to a different but
related problem.

Lastly, the inclusion of external knowledge sources has demonstrated beneficial results (Peters et al.,
2019; Zhang et al., 2019). In this approach, additional information from outside the model’s training
data is incorporated into the learning process. This could be in the form of structured knowledge
bases, unstructured text data, or even real-time information. The additional knowledge can provide
valuable context, help disambiguate meanings, and add depth to the model’s understanding, thereby
enhancing its overall performance.

2.4 EARLY-EXIT AND MULTI-EXIT BERT ARCHITECTURES

Early-exit or multi-exit BERT architectures have emerged to address computational costs in low-
latency and resource-constrained environments, enabling early classification based on intermediate
layer representations (Xin et al., 2020; Zhou et al., 2020).

3 MODEL

Our proposed augmentation is designed to enhance the fine-tuning performance of Large Language
Models (LLMs) by introducing a learned, depth-wise pooling mechanism. This method addresses the
”overthinking” issue (Kaya & Dumitras, 2018), where networks, especially deep ones, can misclassify
simpler samples due to excessive processing.

Before giving a technical introduction to the method, we offer an intuitive motivation: LLMs learn
different levels of representation at various depths (Raganato & Tiedemann, 2018; Tenney et al., 2019;
Voita et al., 2019). Lower layers often capture basic features like syntax and grammar, while deeper
layers encapsulate more complex, abstract features such as semantics and context. However, not all
tasks require the same level of abstraction. Some might benefit more from the concrete, syntactical
representations found in the shallower layers, while others need the nuanced, abstract features from
the deeper layers. Our method allows the model to select and combine these diverse representations.

In our P-32 method, during the forward pass, the hidden states from each transformer block are
collected and pooled using a weighted sum, as shown in Equation 1. The weights are determined
through a learnable parameter associated with each block, facilitated by the Softmax function. This
adaptability ensures that the most relevant features are selected and combined, tailored to the specific
task at hand.

h̃ =
∑
i∈H

hi ∗

(
eλi∑
j e

(λj

)
(1)

Where,

• hi is the hidden state at depth i

• λi is the learned parameter (a scalar) for hi

• H is the set of all hidden states.

Figure 1 shows two diagrams the left one is a standard LLM classification setup, whilst the one on
the right illustrates the P-32 method, where hidden states from each transformer block are pooled
using the learned weights. This pooled representation, encapsulating features from various depths, is
then fed through the standard classification head.

4 EXPERIMENTS

To fairly assess the empirical performance of the proposed method, we selected four language models
that we deemed representative of most language models in terms of size, pre-training strategy and
pre-training dataset. Solely based on its popularity with practitioners, we include the recently released
LLAMA-2-{7,13}B models (Touvron et al., 2023); BERT, as a model representing alternative
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Figure 1: Diagrams for a normal LLM classification setup (left) and P-32 (right).

pretraining objectives (namely Masked Language Modeling (MLM) and Next Sentence Prediction
(NSP)) (Devlin et al., 2018), and lastly, we use StableCode-Instruct-Alpha (Adithyan et al.). The
reasoning behind the last choice was to include a model that is trained not solely on text.
Table 1 summarizes some basic information regarding the size and number of transformer blocks
each of the language models use.

Model # Transformer Blocks # Parameters
BERT 12 109,482,240
StableCode 32 2,769,310,720
LLAMA-2-7B 32 6,738,415,616
LLAMA-2-13B 40 13,015,864,320

Table 1: The number of transformer blocks (# Transformer Blocks) and total parameter count (#
Parameters) of the used models.

Since the GLUE benchmark consists of a number of different datasets of different sizes, it seems
like a sensible choice for checking how P-32 addresses overthinking on smaller datasets, whilst not
degrading performance on larger ones. Having said that, naturally, we do not expect the, for example,
LLAMA-2 models to outperform BERT on this benchmark, but rather are curious to compare the
baseline versions of each with the relevant P-32 version.
Since the parameter count in modern Large Language Models has vastly out-paced the amount of
affordable compute available, we will use QLoRA (Dettmers et al., 2023) for all models, except
BERT.

4.1 MAIN RESULTS

Before diving into the results, we want to point out that due to the high cost of fine-tuning large
language models, we were only able to complete a single run for each of them. However, since
the results seem very coherent, we don’t think that this is an issue. Additionally, when training the
LLAMA models on the smaller datasets in GLUE, the model can sometimes diverge into a nan loss.
If that happens, we change the seed and re-run the model (worth pointing out that this only happend
once or twice, and then mainly for the baseline versions, and not for the P-32 ones).

As can be seen in Table 2, our method consistently improves the performance of all models, except
BERT, where it degrades it by 0.02 percentage points. This is in-line with what we would expect as
the relatively shallow BERT architecture is less likely to suffer from overthinking than the deeper
and larger models. The largest performance gains are achieved when applying the P-32 method to
StableCode, with a 5.85 percentage point increase. This is likely because the model was originally
trained on a combination of code and text, whilst the benchmark datasets are text based. Thus it is
forced to switch domains to an extend, which seems to be made easier via the depth-wise pooling;
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BERT StableCode LLAMA-2-7B LLAMA-2-13B
Baseline P-32 (ours) Baseline P-32 (ours) Baseline P-32 (ours) Baseline P-32 (ours)

rte 62.46 65.34 55.96 58.48 54.87 57.04 49.10 53.79
mrpc 88.62 87.77 79.80 79.66 80.47 83.91 83.31 80.89
cola 56.53 55.74 5.13 13.20 46.40 50.89 47.93 55.16
stsb 88.52 88.65 56.61 70.73 84.88 87.20 83.92 86.30
sst2 92.55 91.28 83.83 85.09 94.90 94.38 94.61 94.95
qnli 90.87 90.98 70.60 79.99 89.01 88.82 91.21 91.29
qqp 87.52 87.37 83.04 83.21 87.06 85.07 87.43 87.40
mnli 84.12 84.19 62.42 71.83 80.85 85.75 87.35 87.28
mnli (mm) 84.42 84.11 64.25 72.09 82.90 86.25 87.45 87.61

Avg. 81.73 81.71 62.40 68.25 77.93 79.92 79.15 80.52

Table 2: The GLUE performances of four different language models by themselves and when
augmented with P-32. Scores are reported as Accuracy for all, except: mrpc (F1), qqp (F1) and stsb
(Spearman-Correlation). The datsets are ordered by increasing size.

likely because it is not required to change the weights throughout the network, but just changing the
first few layers will already have a large impact.

Beyond simply comparing the performance of our method to the baseline, we want to further analyze
what pooling strategy is learned (Section 5.2), how different dataset sizes influence the model
performance (Section 5.3), and for which type of datasets P-32 is worth using (Section 5.4).

5 ANALYSIS

5.1 ON THE PROBLEM OF OVERTHINKING

In Section 4 we argued that P-32 does not lead to significant performance gains on BERT because the
network is likely too small to be suffering from overthinking. To substantiate this claim, we train
BERT multiple times on GLUE, each time only using the first n transformer blocks. If indeed the
network does not suffer from overthinking, we expect to scores to strictly increase with depth.

Num Blocks 3 6 9 12

rte 57.40 64.26 62.46 62.46
mrpc 80.32 82.38 86.29 88.62
cola 5.71 31.00 51.53 56.53
stsb 59.57 85.74 87.42 88.52
sst2 88.53 88.76 91.63 92.55
qnli 81.93 86.80 88.19 90.87
qqp 82.62 86.27 86.61 87.52
mnli 74.13 80.43 82.01 84.12
mnli (mm) 74.65 80.36 82.31 84.42

Avg. 67.21 76.33 79.83 81.73

Table 3: The performance achieved by BERT when only using the first n transformer blocks. Scores
are reported as Accuracy for all, except mrpc (F1), qqp (F1) and stsb (Spearman-Correlation).

As can be seen in Table 3 the scores are indeed strictly increasing with network depth for all datasets,
except the smallest one: rte. This means that BERT only sufferes from overthinking for rte, but not
for the other datasets. Coincidentally, as can be seen in Table 2, rte is the only dataset for which
using P-32 with BERT leads to a significant performance gain (2.88 percentage points). Though it is
impossible to conclude for sure, we see this as extremely strong evidence that P-32 does indeed
address the problem of overthinking.

Next, it is worth checking if LLAMA-2-7B, is overthinking any of the glue datasets. To that end, we
follow the same set-up as above, only training the first n transformer blocks, and show the achieved
performances in Table 4.
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Num Blocks 5 10 15 20 25 30

rte 52.71 56.32 54.51 62.82 48.74 52.34
mrpc 77.52 82.02 84.45 81.07 80.36 84.5
cola 20.99 46.11 46.73 49.23 36.69 47.25
stsb 78.00 78.66 85.21 85.71 85.12 84.27
sst2 86.35 93.23 94.15 95.07 94.61 94.72
qnli 75.93 86.89 89.69 89.6 88.34 88.94
qqp 81.54 85.43 86.66 86.57 86.73 86.88
mnli 71.85 81.4 85.84 85.17 85.9 84.42
mnli (mm) 71.75 82.06 86.42 86.49 86.54 85.1

Avg. 68.52 76.90 79.30 80.19 77.00 78.71

Table 4: The performance achieved by an LLAMA-2-7B model when only using the first n
transformer blocks. Scores are reported as Accuracy for all, except mrpc (F1), qqp (F1) and stsb

(Spearman-Correlation). The corresponding visualization can be found in Appendix A

In most datasets, there is a notable trend where performance initially rises with an increase in the
number of transformer blocks, only to decline thereafter. Thus we can see that overthinking does
indeed present a problem to LLAMA-2-7B across most GLUE datasets. Additionally, the optimal
number of transformer blocks used seems to differ by dataset. Therefore, there is no one-fits-all
solution; indicating that allowing the network to learn how much information to use from each layer
can indeed be beneficial.

5.2 LEARNED DEPTH-WISE WEIGHTS

The aspect of our proposed model that is most interesting to analyze, are the learned weights for
depth-wise pooling. To that end, we train a LLAMA-2-7B model on each dataset of the GLUE
benchmark and extract the learned weights.

Figure 2: The raw (not passed through softmax) learned depth-wise pooling weights for each dataset
visualized as a row-wise normalized heatmap.

Once again, we have sorted the datasets in ascending order from top to bottom by the number training
samples. Figure 2 offers a few expected and unexpected insights. Firstly, there is a general trend
where the larger a dataset is, the less importance is given to the first few transformer blocks (for
example, see qqp, qnli, mnli), whilst there are a number of smaller datasets where a lot of attention is
paid to the first few transformer blocks, most notably, sst2. Additional information regarding the size
of the various datasets can be found in Table 5.
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Going beyond the general trends, using the information from Figure 2 in combination with the
results in Table 4 (where we only used the first n transformer blocks of LLAMA-2-7B) should
tell us whether the model did indeed learn to pull information from layers that are most beneficial
towards the correct classification. Most pronounced amongst these comparisons is qnli. In Table 4 we
identified 15 transformer blocks to work best, and indeed, in P-32, the highest weights are associated
with transformer blocks 14, 15, 16 and 17; whilst weights towards the lower and higher layers are
much smaller. However, such a clear connection cannot always be drawn. For sst2, for example, the
weights learned (highest for the first few layers), do not correspond to the number of transformer
blocks that worked best in our previous experiment (20 transformer blocks). It is worth pointing out
that of course, in Table 4 we are comparing test performances, whilst the model, when learning it’s
weights is simply trying to minimize the training loss.

Lastly, it is interesting to see that when the model is trained on the larger datasets, the P-32 weights
have a more or less smooth distribution (especially when compared to the smaller dataset). This
might suggest that the weights have not converged for the smaller ones, a problem no doubt caused
by the low learning rate and aggressive gradient clipping used when fine-tuning a LLM. A future
avenue of work that is worth exploring is assigning a different learning rate to the P-32 weights.

5.3 THE IMPACT OF THE AMOUNT OF DATA

As mentioned above, in this section we will explore the impact different sized datasets have on the
performance of our method. To that end, we train the LLAMA-2-7B model (both with and without
P-32) on 20, 40, 60, 80 and 100% of the training data from the stsb dataset.

Figure 3: The performance of a fine-tuned LLAMA-2-7B model both without and with P-32, when
only using a fraction of the available training data of the stsb dataset. Results reported are Spearman
Correlation Scores.

As can be seen in Figure 3, when adding the proposed depth-wise pooling, the model does not only
perform better, but as we use less and less data, the gap between the baseline and P-32 widens. This
is a good indication that the proposed method works better under data scarcity than the baseline. We
also want to mention that since the large drop-off in performance for the baseline model at 20% of
training data seemed un-natural, we confirmed that it is the actual result by re-running that part of the
experiment three times with three different seeds. However, all three experiments returned similar
values.

This result in combination with the learned weight patterns for mnli & qqp (See Figure 2 makes us
hypothesize that our method performs well on smaller datasets by utilizing the first few layers of the
network, but when trained for longer on a larger dataset, learns to utilize later layers in the network.

5.4 ANALYSIS OF DATASETS

In this section, we delve deeper into the statistical relationships between the characteristics of datasets
and the performance gain observed from using the augmented language model. The experiments are

7



Under review as a conference paper at ICLR 2024

run on the LLAMA-2-7B model. We conducted an exhaustive analysis, focusing on two key dataset
features: the number of training samples and the average input length (See Table 5).

Dataset # Train Samples Avg. Input Length Type
cola 8,551 7.70 Binary
sst2 67,349 9.41 Binary
mrpc 3,668 43.89 Binary
stsb 5,749 9.94 Continuous
qqp 363,846 11.06 Binary
mnli 392,702 14.89 Ternary
qnli 104,743 26.52 Binary
rte 2,490 26.18 Binary

Table 5: For each of the GLUE datasets we list the number of training samples (# Train Samples), the
average input length (Avg. Input Length), and the class type (Type).

5.4.1 TRAINING SAMPLES VS PERFORMANCE GAIN

The relationship between the number of training samples and the performance gain was examined
using a linear regression model. The model yielded a coefficient of -1.428e-05, indicating a negative
correlation between the two variables. In other words, as the number of training samples increases,
the performance gain of the augmented model tends to decrease (the coefficient is so small because
the # Train Samples are in the thousands, whilst the performance gain is at most a single digit value).

The R-squared value of 0.644 (p = 0.030) suggests that approximately 64.4% of the variability in
performance gain can be explained by the number of training samples. This substantial proportion
underscores the significance of the dataset size in influencing the efficacy of the augmented model.

5.4.2 AVERAGE INPUT LENGTH VS PERFORMANCE GAIN

We also investigated the impact of the average input length on performance gain. The linear regression
model produced a coefficient of 0.0425, signifying a positive, though weak, correlation. This suggests
that datasets with longer average input lengths are associated with slightly higher performance gains
when using the augmented model.

However, the R-squared value is 0.060, with a p-value of 0.596, thus we cannot conclude that the
average input length has a statistically significant impact on the success of applying P-32.

5.4.3 INTERPRETRATION AND IMPLICATIONS

Our interpretation of the negative correlation between the number of training samples and performance
gain is that the larger the dataset is, the less likely the network is to overthink, thus the performance
gain achieved by P-32 shrinks relative to the baseline. Because of the potentially large performance
gains, fast implementation and low computational cost, we advice practitioners to use P-32 when
fine-tuning LLMs for classification with datasets that are smaller than 100,000 elements.

6 ABLATION

In this ablation study we compare a LLAMA-2-7B augmented with the P-32 method (denoted as
P-32) to one that uses simple depth-wise average pooling (denoted as Avg.Pool; i.e. Equation 2).

h̃ =
1

I

∑
i∈H

hi (2)

Where,

• hi is the hidden state at depth i

• I is the total number of transformer blocks
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• H is the set of all hidden states.

For reference, we will also include the baseline results (denoted as Baseline).

LLAMA-2-7B Baseline P-32 Avg.Pool
rte 54.87 57.04 51.63
mrpc 80.47 83.91 76.79
cola 46.40 50.89 51.76
stsb 84.88 87.20 83.85
sst2 94.90 94.38 95.18
qnli 89.01 88.82 88.87
qqp 87.06 85.07 86.95
mnli 80.85 85.75 85.48
mnli (mm) 82.90 86.25 86.22

Avg. 77.93 79.92 78.53

Table 6: A side-by-side comparison of the performances of a vanilla LLAMA-2-7B model (Baseline),
one augmented with the P-32 method (P-32) and one using a simple depth-wise average pooling

(Avg.Pool), trained on various percentages of the stsb dataset.

As can be seen in Table 6 applying depth-wise average pooling does improve the average performance
over the baseline, but falls short of achieving the same improvement as the P-32 method does. Thus,
having a learned depth-wise pooling is an important component of the model.

7 CONCLUSION

In this paper, we introduced an innovative method aimed at enhancing the fine-tuning performance of
Large Language Models (LLMs) for classification tasks. Our approach, characterized by the incor-
poration of a single learnable parameter for each transformer block, has demonstrated a significant
improvement in performance across various models and datasets. Through extensive experiments, we
established a consistent uptrend in performance metrics, with a notable 6 percentage points elevation
observed in one of the tested LLMs.

The adaptability of our approach was tested across different model sizes and demonstrated compat-
ibility with existing fine-tuning techniques focused on computational and storage efficiency. The
proposed method proved particularly effective under conditions of data scarcity, showcasing its
potential in practical, real-world scenarios where data limitations are a common challenge.

Given these substantial performance gains and the minimal architectural augmentations required, we
advocate for the adoption of our proposed method by practitioners engaged in fine-tuning LLMs for
classification. This approach promises not only enhanced performance but also offers insights into
the depth-wise information processing, potentially paving the way for future advancements in the
field of natural language processing.
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A ADDITIONAL ANALYSIS

Num Blocks 5 10 15 20 25 30
cola 20.99 46.11 46.73 49.23 36.69 47.25
mnli 71.85 81.4 85.84 85.17 85.9 84.42
mnli (mm) 71.75 82.06 86.42 86.49 86.54 85.1
mrpc 77.52 82.02 84.45 81.07 80.36 84.5
qnli 75.93 86.89 89.69 89.6 88.34 88.94
qqp 81.54 85.43 86.66 86.57 86.73 86.88
rte 52.71 56.32 54.51 62.82 48.74 52.34
sst2 86.35 93.23 94.15 95.07 94.61 94.72
stsb 78.00 78.66 85.21 85.71 85.12 84.27

Avg. 68.52 76.90 79.30 80.19 77.00 78.71

Table 7: The performance achieved by an LLAMA-2-7B model when only using the first n
transformer blocks. Scores are reported as Accuracy for all, except mrpc (F1), qqp (F1) and stsb

(Spearman-Correlation).

Figure 4 is the visualization of the data shown in Table 4, which we also re-print here for ease of
comparison (Table 7).
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Figure 4: The results from Table 4 visualized.
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