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Abstract
Various methods embed knowledge graphs with the goal of predict-
ing missing edges. Inference patterns are the logical relationships
that occur in a graph. To make proper predictions, embedding meth-
ods must capture inference patterns. There are several theoretical
analyses studying pattern-capturing capabilities. Unfortunately,
these analyses are challenging and many embedding methods re-
main unstudied. Also, they do not quantify how accurately a pattern
is captured in real-world datasets. Empirical studies have been gen-
erally not consistent, and have evaluated edges in isolation.

We present a model-agnostic method to empirically quantify
how patterns are captured by trained embedding models. We collect
the most plausible predictions to form a new graph, and use it to
globally assess pattern-capturing capabilities. For a given pattern,
we study positive and negative evidence, i.e., edges that the pattern
deems correct and incorrect based on the partial completeness
assumption. As far as we know, it is the first time negative evidence
is analyzed. The assessment of a pattern measures the similarity
of the positive and negative evidence between predictions and a
ground truth, the original graph. Our findings indicate that several
models effectively capture inference patterns for positive evidence.
However, the performance is quite poor for negative evidence,
which entails that models fail to learn the partial completeness
assumption, even though they were trained using it. Finally, we
identify new inference patterns that have not been studied before.
Surprisingly, models generally achieve better performance in these
new patterns that we introduce.

CCS Concepts
• General and reference → Evaluation; • Computing method-
ologies→ Semantic networks; • Information systems→ Data
mining.
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1 Introduction
Knowledge graphs connect entities of interest and serve as shared,
common knowledge within organizations or communities [17].
These graphs are currently at the core of many crucial services, such
as search engines, social networks and product catalogs [12, 26].
Unfortunately, knowledge graphs are typically incomplete due to
their unsupervised construction, i.e., there are many missing edges
between entities that are indeed related [28]. An edge is a p(s, o)
triple, where s and o are entities, and p is a predicate or label.

The literature is rich in machine learning methods to embed and
complete a knowledge graph [19, 39]. These embedding methods
train models that predict missing triples [7]. In each method, a
scoring function assigns plausibility scores to input triples. Miss-
ing triples in knowledge graphs are typically considered unknown
rather than incorrect, a.k.a. the open-world assumption [17]. How-
ever, embedding methods learn based on correct (positive) and in-
correct (negative) triples [39]. The partial completeness assumption
(PCA) is the most popular compromise: a missing triple is negative
only if a part of it is in the graph; otherwise, it is unknown [7].

It is desirable that an embedding method captures a set of infer-
ence patterns, i.e., the logical relationships that may exist in the
graph at hand [1]. For example, “if word w1 is a meronym (part) of
wordw2, thenw2 is a holonym (whole) ofw1” is a symmetry pattern,
i.e., meronym(w1,w2) ⇒ holonym(w2,w1). There are theoretical
studies that analyze whether some of the existing embedding meth-
ods are able to capture various patterns [1, 25, 33, 35, 37, 40, 41].
We discuss the following shortcomings:

• Except Abboud et al. [1], patterns have been studied in iso-
lation. In practice, patterns must be learned jointly, i.e., the
same model must capture several patterns at once [1].

• Jointly learned patterns are grouped by type, e.g., hyponym-
hypernym (“kind of”) and meronym-holonym belong to sym-
metry [1]. How are different types learned together?

• Theoretical studies are challenging and many are missing.
Also, results are binary, i.e., whether a pattern is captured or
not. We thus cannot quantify how a pattern is captured.

• Pattern-capturing analyses focus solely on positive triples.
Yet negative triples are important too. Has a model learned
to identify negatives according to PCA?

Empirical studies are a promising alternative to address these
issues. As far as we know, only Rossi et al. [29] have empirically
studied inference patterns across multiple methods and datasets.
They focus on link prediction that is commonly used to compare
embedding methods [36]. The evaluation protocol computes posi-
tions (ranks) of positive triples w.r.t. negative triples when sorted
by plausibility score, typically based on PCA [7]. Rossi et al. [29]
studied Hits@1, i.e., how many positives are ranked first. Unfor-
tunately, Hits@1 evaluates each positive triple in isolation, which
provides a prediction-level, a.k.a. local, assessment rather than
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Table 1: Inference patterns and whether embedding methods capture them individually (I) or jointly (J), where p1 ≠ p2 ≠ p3. If a
theoretical analysis is missing, we report the first reference that did it. Dash symbols entail no analyses were found.

Hierarchy Symmetry Antisymmetry Inversion Intersection Transitivity Composition
p1 (X , Y ) ⇒ p(X , Y ) ⇒ p(X , Y ) ⇒ p1 (X , Y ) ⇒ p1 (X , Y ) ∧ p2 (X , Y ) ⇒ p(X , Z ) ∧ p(Z, Y ) ⇒ p1 (X , Z ) ∧ p2 (Z, Y ) ⇒
p2 (X , Y ) p(Y ,X ) ¬p(Y ,X ) p2 (Y ,X ) p3 (X , Y ) p(X , Y ) p3 (X , Y )
I J I J I J I J I J I J I J

BoxE [1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – ✗ ✗

ComplEx [37] ✓[1] ✗[1] ✓ ✓[1] ✓ ✓[1] ✓[35] ✓[1] ✗[1] ✗[1] ✗[33] – ✗[35] ✗[1]

HAKE [41] – – – – – – – – – – – – – –
HolE [25] ✓[1] ✗[1] – – – – – – – – – – – –
QuatE [40] – – ✓ – ✓ – ✓ – – – ✗ – – –
RotatE [35] ✗[1] ✗[1] ✓ ✓[1] ✓ ✓[1] ✓ ✓[1] ✓[1] ✗[1] ✗[33] – ✓[35] ✗[1]

RotPro [33] – – ✓ – ✓ – ✓ – – – ✓ – ✓ –
TorusE [13] – – – – – – – – – – – – – –
TransE [7] ✗[1] ✗[1] ✗[35] ✗[1] ✓[35] ✓[1] ✓[35] ✗[1] ✓[1] ✗[1] ✗[33] – ✓[35] ✗[1]

global. A global assessment is desirable to understand the global
relationships a model has learned [24].

In this paper, we propose an approach to empirically analyze
how models capture inference patterns. First, we mine inference
patterns from the whole graph at hand, which we refer to as core
patterns. We measure support and confidence, i.e., the triples that a
pattern deems positive and negative, respectively, which we refer to
as positive and negative evidence. Second, we train a model using
a training set (a subgraph of the graph at hand), and evaluate link
prediction over a test set (another subgraph with no overlap) using
the protocol described above. We make the following observation:
predicted triples ranked in the first k positions are considered more
plausible with high confidence by the model under evaluation. We
collect these top-k predicted triples and create a new graph. We
study positive and negative evidence for each core pattern in this
new graph. We consider the assessment made in the first step as
the ground truth, and compare how positive and negative evidence
deviates. The salient features of our approach are as follows:

• Since we focus on link prediction evaluation, it is agnostic to
the inner workings of the embedding methods. This allows
us to homogeneously compare methods side by side.

• Rather than isolated predicted triples, it collectively consid-
ers several predicted triples made by a model. Our output is
thus a global assessment of such a model.

• It quantifies how patterns are captured in terms of both posi-
tives and negatives. To the best of our knowledge, negatives
have never been measured before.

• It supports multiple types of patterns, as long as positive
and negative evidence can be quantified. We analyze new
patterns not studied before, as far as we know.

Our experiments include a variety of embedding methods, such
as BoxE [1], HAKE [41], QuatE [40] and TransE [7], and datasets,
such as WN18, WN18RR and YAGO3-10. In our results, we observe
that redundancy in a dataset makes models improve performance,
that inverse triples impact a number of inference patterns, that
models fail to identify negatives based on PCA even though they
were trained under the assumption, and that models achieve better
performance in the new patterns we introduce.

The rest of the paper is organized as follows: Section 2 discusses
the related work; Section 3 introduces necessary background; Sec-
tion 4 presents our approach; Section 5 presents our experiments;
and Section 6 discusses our conclusions and future work.

2 Related work
Section 2.1 presents theoretical analyses conducted for several em-
bedding methods, and Section 2.2 focuses on empirical studies.

2.1 Inference patterns
Table 1 summarizes the theoretical analyses of embedding methods
capturing inference patterns found in the literature. An embedding
method capturing an inference pattern means that, if we represent
the pattern using the scoring function, it does not lead to a con-
tradiction. For instance, RotatE captures symmetry: the scoring
function is s ◦ p = o, where s, p and o are vectors and ◦ is the
Hadamard product. Symmetry is p(X , Y ) ⇒ p(Y ,X ), so we assume
both parts hold, i.e., p(x, y) ∧ p(y, x), where x and y are not vari-
ables but specific entities. Applying the scoring function, we obtain
x ◦ p = y ∧ y ◦ p = x, which holds if p ◦ p = 1 [35].

In the table, we observe that there are many missing theoreti-
cal analyses, especially with regards to jointly captured patterns.
Except Abboud et al. [1], the rest focus solely on patterns indi-
vidually captured, i.e., they do not consider the presence of other
patterns. Abboud et al. [1] studied patterns jointly captured. A type
of pattern can aggregate multiple instances in a single graph, e.g.,
both hyponym(X , Y ) ⇒ hypernym(Y ,X ) and meronym(X , Y ) ⇒
holonym(Y ,X ) belong to the symmetry type. If a method individu-
ally captures all the instances of a pattern type without leading to
contradiction, then the method jointly captures the pattern type.

Additionally, the analyses presented in the table do not study
whether methods identify negatives properly. For instance, triples
that fulfill p(x, y) ∧ p(y′, x) where y ≠ y′ are negatives according
to PCA [14]. In RotatE, x ◦ p = y ∧ y′ ◦ p = x such that p ◦ p = 1,
so y = y′ contradicts y ≠ y′. RotatE cannot thus properly iden-
tify negatives for symmetry. Below, we discuss several embedding
methods and briefly present their theoretical properties.
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BoxE [1] embeds entities as real vectors and predicates as boxes.
It captures various patterns, both independently and jointly, by
deriving valid box configurations for each predicate. ComplEx [37]
exploits complex numbers, and captures patterns under certain
conditions, e.g., symmetry (antisymmetry) when the imaginary
(real) parts of the predicate vectors are set to zero [1]. HAKE [41]
combines a modulus and a phase parts. There is no theoretical
analysis for HAKE. HolE [25] applies circular correlation to com-
plex numbers. It is a bilinear method, so it individually captures
hierarchy [1]. QuatE [40] uses quaternions with one real and three
imaginary parts, and captures symmetry (antisymmetry) when the
imaginary parts are set to (non-)zero. RotatE [35] embeds predi-
cates as complex rotations between entities. It captures patterns
under certain conditions like symmetry (p ◦ p = 1). RotPro [33]
extends RotatE by adding projections between entities. It captures
the same patterns as RotatE and transitivity by applying consecu-
tive orthogonal projections. TransE [7] uses a distance-based score
in the Euclidean space. It also captures patterns under certain con-
ditions like inversion (p1 = p2). TorusE [13] generalizes TransE
using different representations and operations. The authors focus
on torus vectors. There is no theoretical analysis for TorusE.

Note that Table 1 only includes the embedding methods that
are our focus in this paper. Other methods that study inference
patterns are DensE [21], DualE [8], HousE [20], MDE [31], PairE [9],
RatE [18] and Rotate3D [15], to mention a few examples.

2.2 Empirical studies
Rossi et al. [29] is the most related approach. The authors em-
pirically studied the Hits@1 metric, how many triples in the test
split are ranked first, for symmetry, antisymmetry and transitivity
in WN18, WN18RR and YAGO3-10. The methods include Com-
plEx, HAKE, HolE, RotatE, TorusE and TransE. The main difference
w.r.t. our approach is that we collectively quantify positive and neg-
ative evidence, while Hits@1 measures each triple in isolation. Also,
we study a larger number of patterns with different characteristics,
e.g., they contain single and multiple predicates.

Some studies aim to explain the inner workings of embedding
methods. Abboud et al. [1] studied BoxE’s box volumes in YAGO3-
10, e.g., symmetric predicates have similar-sized boxes. Trouillon
et al. [37] visualized ComplEx’s vectors and found that predicates
in WN18 were placed opposite to their inverse counterparts. Zhang
et al. [41] and Sun et al. [35] studied histograms of HAKE’s and
RotatE’s modulus and phase parts over few predicates in WN18,
WN18RR and YAGO3-10. Nickel et al. [25] and Sun et al. [35] stud-
ied the capabilities of HolE and RotatE to capture transitivity and
composition over a small dataset. Song et al. [33] studied RotPro’s
embedding phases in YAGO3-10 as well as its transitive capabilities
w.r.t. RotatE for a single predicate. As a result, there is no consistent
analysis on how patterns are captured by models. Also, quantifying
how both positives and negatives are captured is missing.

Other empirical studies focus on different aspects tangentially
related to inference patterns. Dettmers et al. [10] studied an “inverse
model” over WN18 in which the inverse pattern was enforced. This
“inverse model” achieves very good performance using rank-based
metrics. Several authors have analyzed the rank-based results of 1-
to-1, 1-to-many, many-to-1 and many-to-many predicates in WN18

GTR
works(june, acme)
works(luca, acme) lives(luca, ny)
works(bob, corp) located (corp, chi)
works(eden,wonka) lives(eden, chi)
works(mary,wonka) lives(mary, ny)

(a) Training

GVA
located (wonka, sf )
lives(bob, chi)
GTE
located (acme, ny)
lives(june, ny)
(b) Validation and test

Figure 1: A sample knowledge graph partitioned into splits

f (lives(bob, ny)) = 3.6
f (lives(acme, ny)) = 3.9
f (lives(corp, ny)) = 4.2
f (lives(june, ny)) = 5.1
f (lives(luca, ny)) = 6.3
. . .

(a) Subject corruption

f (lives(june, sf )) = 1.9
f (lives(june, ny)) = 2.2
f (lives(june,mary)) = 3.6
f (lives(june, bob)) = 4.2
f (lives(june, acme)) = 5.3
. . .

(b) Object corruption

Figure 2: Link prediction evaluation for lives(june, ny) in the
test split in Figure 1b sorted by plausibility score, ascending

or YAGO3-10 [2, 7, 13, 35, 40]. Studying predicate cardinality is
different from analyzing inference capabilities.

3 Background
A knowledge graph G is a set of p(s, o) triples, where s and o are
subject and object, respectively, and p is predicate. E denotes the
set of entities in G, i.e., the union of subjects and objects. A model
exploits numerical vectors in its scoring function f to compute a
plausibility score for p(s, o), denoted as f (p(s, o)). We use GTR , a
subset of G, to learn the model, and GVA, another subset of G, to
evaluate early stopping such that GTR ∩ GVA = ∅.

Example 3.1. Figure 1 presents a sample knowledge graph with
triples modeling people working at companies (works) and living
in cities (lives), as well as companies located in cities (located).

In link prediction evaluation, we use GTE , a third subset of G
such that GTR ∩GTE = ∅ and GVA∩GTE = ∅. Note that GTR ∪GVA∪
GTE = G. Knowledge graphs typically operate under the open-
world assumption, i.e., triples not present in G are unknown [17].
However, learning a model requires negative examples. PCA [7, 11]
deems negative triples those that are not present in G when the
subject or object, but not both, of a given triple is corrupted. The
link prediction evaluation protocol takes each triple p(s, o) ∈ GTE
as input and computes the following two ranks:

rs (p(s, o),G) = 1 + |{p(s′, o) | s′ ∈ E ∧ p(s′, o) ∉ G ∧
f (p(s′, o)) < f (p(s, o))}|

(1)

ro (p(s, o),G) = 1 + |{p(s, o′) | o′ ∈ E ∧ p(s, o′) ∉ G ∧
f (p(s, o′)) < f (p(s, o))}|

(2)

Intuitively, rs (p(s, o),G) is the rank (position) of p(s, o) w.r.t. its
subject corrupted counterparts when sorted by plausibility score.
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Similarly, ro (p(s, o),G) compares object corrupted counterparts.
Note that, for the sake of presentation, both rs (p(s, o),G) and
ro (p(s, o),G) are optimistic ranks in which score ties are ignored;
in practice, we use fractional ranks that help mitigate the presence
of ties [5]. Accuracy is measured as aggregations of rs (p(s, o),G)
and ro (p(s, o),G) like mean rank or mean reciprocal rank [36].

Example 3.2. In Figure 2, we corrupt the subject and object of
t0 = lives(june, ny), and sort by the score assigned by a model in
ascending order. In the example, rs (t0,G) = 4 and ro (t0,G) = 2.
Note that lives(mary, ny) is not a corrupted counterpart within
rs (t0,G) because it is present in Figure 1a.

A model should learn a number of inference patterns, i.e., link
prediction rules that characterize the model’s behavior. Each of
these patterns is as follows: l = B(X , Y ) ⇒ H(X , Y ), whereB(X , Y )
and H(X , Y ) are the body and the head of the pattern, respectively.
The body contains one or more atoms of the form p(X , Y ), where X
and Y are variables, and p is a predicate. If a body contains several
atoms, they are composed using Boolean conjunction. The head of
a pattern H(X , Y ) can be either p(X , Y ), p(Y ,X ) or ¬p(Y ,X ).

Example 3.3. A composition pattern like works(X , Z) ∧ located (Z,
Y ) ⇒ lives(X , Y ) entails that, if X works at Z and Z is located in
Y , then X lives in Y . An antisymmetry pattern like works(X , Y ) ⇒
¬works(Y ,X ) means that, if X works at Y , then there is no triple
stating Y works at X , which would be nonsensical.

4 Our method
Section 4.1 discusses core patterns in the original graph and how to
quantify them. Section 4.2 describes our approach to collect predic-
tions made by the model under evaluation. Section 4.3 presents our
approach to assess patterns and measure how they are captured.

4.1 Core patterns
We assume there are several core patterns over G of the form
li = B(X , Y ) ⇒ H(X , Y ). These core patterns can be mined from G
using rule mining methods [14, 22, 27]. These methods have differ-
ent sets of supported rules, i.e., the regularities that they mine and
ignore vary [22]. We can exploit multiple methods to find core pat-
terns in practice as long as support and confidence can be measured.
We use support to quantify positive evidence [14]:

supp(li,G) = {(𝜙 (X ), 𝜙 (Y )) | 𝜙 ∈ I (B(X , Y ) ∧H(X , Y ),G)} (3)

where I (A,G) denotes the result of instantiating the set of atoms
A over G. Each instantiation is an injective function 𝜙 : Var →
E, where Var is the set of variables in A. Note that Var always
includes X and Y , and can include extra variables as part of B(X , Y ).
Intuitively, supp(li,G) is the set of pairs that are considered positive
evidence by li , i.e., they fulfill the pattern.

Example 4.1. Let l0 = works(X , Z) ∧ located (Z, Y ) ⇒ lives(X , Y )
be a pattern, and G = GTR ∪ GVA ∪ GTE as in Figure 1. Sup-
port is supp(l0,G) = {(bob, chi), (june, ny), (luca, ny)}. Note that
(mary, sf ) and (eden, sf ) fulfill l0’s body since both work at wonka
located in sf . However, they are not in the support because two
triples state that mary and eden live in ny and chi, respectively.

The pair of entities present in support are altered if we change
the graph at hand. Let G★ = GTR ∪ GVA. Support is supp(l0,G★) =
{(bob, chi)}. Since located (acme, ny) is in GTE , l0’s body and head
are not fulfilled for (june, ny) and (luca, ny).

To quantify negative evidence, we can compute the pairs that ful-
fill only the body and remove positives from it, i.e., {(𝜙 (X ), 𝜙 (Y )) |
𝜙 ∈ I (B(X , Y ),G)} \ supp(li,G). This is how standard confidence
is computed in rule mining [14]. The main issue is that it consid-
ers all non-existing pairs in G as negatives, i.e., it operates under
the closed-world assumption. We adopt the partial completeness
assumption [7, 11, 14], and quantify negative evidence as follows:

neg(li,G) = {(𝜙 (X ), 𝜙 (Y )) | 𝜙 ∈ I (B(X , Y ) ∧H(X , Y ′),G)} (4)

where Y and Y ′ cannot have the same instantiations, i.e., Y ≠ Y ′.

Example 4.2. The negative evidence of l0 from Example 4.1 over
G in Figure 1 is as follows: neg(l0,G) = {(mary, sf ), (eden, sf )}.
These are the pairs that satisfy the body of l0 but not the head. Both
mary and eden work at wonka that is located in sf ; however, they
do not live in sf , but in ny and chi, respectively. This entails that
there are triples indicating where mary and eden live in G. As a
result, these pairs are considered negative evidence.

4.2 Collecting predictions
Our goal is measure how a model has captured a given pattern.
Therefore, we focus on the predictions made by the model at hand.
However, to the best of our knowledge, there is no standard ap-
proach to collect these predictions. We propose to rely on link
prediction evaluation. Specifically, using the evaluation protocol
described above, we make the following observation:

Observation 4.1. In link prediction evaluation, triples ranked in
the initial positions are the predictions that a model considers more
plausible with high confidence. Each of these triples can be either
a triple in the graph at hand or a corrupted counterpart.

We propose to collect triples ranked in the top k during link pre-
diction evaluation. However, we make the following observation:

Observation 4.2. In link prediction evaluation, a model considers
not plausible the corrupted counterparts that are ranked below a
triple in the knowledge graph at hand.

Therefore, even though a corrupted counterpart can be ranked
in the top k, it is not collected if it is ranked below a triple in G.

Example 4.3. Assume we select k = 5 in Figure 2a. We col-
lect the following four predictions: lives(bob, ny), lives(acme, ny),
lives(corp, ny) and lives(june, ny). Since the latter triple is the one
present in test, we stop collecting triples below it, i.e., lives(luca, ny)
is not collected even though its rank is 5. If we set k = 2, only
two triples are collected: lives(bob, ny) and lives(acme, ny), and
lives(june, ny), the triple in G, is not collected.

Formally, we collect two sets of triples as follows:
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lives(bob, ny)
lives(acme, ny)
lives(corp, ny)
lives(june, ny)
(a) t0’s subject

lives(june, sf )
lives(june, ny)
(b) t0’s object

located (corp, ny)
located (wonka, ny)
located (acme, ny)

(c) t1’s subject

Figure 3: Sets of triples collected for t0 = lives(june, ny) and
t1 = located (acme, ny) in our running example

Rks (p(s, o),G) = {p(s′, o) | s′ ∈ E ∧ p(s′, o) ∉ G ∧
rs (p(s′, o),G) ≤ min(k, rs (p(s, o),G))} ∪

{p(s, o) if rs (p(s, o),G) ≤ k}
(5)

Rko (p(s, o),G) = {p(s, o′) | o′ ∈ E ∧ p(s, o′) ∉ G ∧
ro (p(s, o′),G) ≤ min(k, ro (p(s, o),G))} ∪

{p(s, o) if ro (p(s, o),G) ≤ k}
(6)

Each corrupted counterpart p(s′, o) in Rks (p(s, o),G) fulfills that
its rank rs (p(s′, o),G) is less or equal than the minimum between
k and the rank of p(s, o). Rks (p(s, o),G) contains p(s, o) if its rank
is less or equal than k. The same applies to Rko (p(s, o),G). The
collected triples for link prediction evaluation are as follows:

Gk
PR =

⋃
p(s,o) ∈GTE

Rks (p(s, o),G) ∪ Rko (p(s, o),G) (7)

Example 4.4. Assume we set k = 5 in Figures 2a and 2b. For
t0 = lives(june, ny), the sets of collected triples Rk=5s (t0,G) and
Rk=5o (t0,G) are presented in Figures 3a and 3b, respectively. In this
example, t0 is collected in both sets since its rank is less than 5
in both cases. For t1 = located (acme, ny), assume we have the
Rk=5s (t1,G) set depicted in Figure 3c, and Rk=5o (t1,G) = {t1}. As a
result, Gk=5

PR , the set of collected predictions, is the union of the sets
of triples in Figures 3a, 3b and 3c.

4.3 Pattern assessment
Given a core pattern li = B(X , Y ) ⇒ H(X , Y ), we aim to quantify
how it is captured by a model. We compare positive and negative
evidence obtained for li over G w.r.t. evidence obtained over G′k =

GTR ∪ GVA ∪ Gk
PR using a set similarity measure as follows:

𝜋k (li) = sim(supp(li,G), supp(li,G′k)) (8)

𝜈k (li) = sim(neg(li,G), neg(li,G′k)) (9)

where 𝜋k (li) and 𝜈k (li) are positive and negative evidence, re-
spectively, and sim(A, B) is a similarity measure between sets A
and B like Jaccard, J (A, B) = |A ∩ B|/|A ∪ B|, or Sørensen–Dice,
DS(A, B) = 2 |A ∩ B|/( |A| + |B|).

Example 4.5. For pattern l0 = works(X ,Z) ∧ located (Z, Y ) ⇒
lives(X , Y ) and G′k=5 = GTR ∪GVA ∪Gk=5

PR , where GTR and GVA are
respectively presented in Figures 1a and 1b, andGk=5

PR in Example 4.4,
we get the following sets: supp(l0,G′k=5) = {(bob, chi), (june, ny),

(luca, ny), (bob, ny), (mary, ny)} and neg(l0,G′k=5) = {(mary, sf ),
(eden, sf ), (eden, ny)}. Assuming Jaccard similarity, we obtain the
following measurements for positive and negative evidence, respec-
tively: 𝜋k=5 (l0) = 3/5 and vk=5 (l0) = 2/3. The sets computed for
G, supp(l0,G) and neg(l0,G), are respectively presented in Exam-
ples 4.1 and 4.2. Note that the sets have many triples in common.

As illustrated in the previous example, there are many common
triples between supp(li,G) and supp(li,G′k), and between neg(li,G)
and neg(li,G′k). This is because, typically, |G★ | = |GTR ∪ GVA | ≫
|GTE |. We wish to reduce the effect of G★, so we propose to correct
the similarity between sets as follows:

𝜋kc (li) = simc (supp(li,G), supp(li,G′k), supp(li,G★)) (10)

𝜈kc (li) = simc (neg(li,G), neg(li,G′k), neg(li,G★)) (11)

where simc (A, B,C) is a corrected set similarity as follows:

simc (A, B,C) = sim(A \ C, B \ C) (12)

Example 4.6. For pattern l0 = works(X ,Z) ∧ located (Z, Y ) ⇒
lives(X , Y ) and G★ = GTR ∪ GVA, where GTR and GVA are re-
spectively presented in Figures 1a and 1b, we get the following
sets: supp(l0,G★) = {(bob, chi)} and neg(l0,G★) = {(mary, sf ),
(eden, sf )}. As a result, following the previous examples, we have
that 𝜋k=5c (l0) = 2/3 and vk=5c (l0) = 0/1 assuming Jaccard similarity.
Note that these values were 𝜋k=5 (l0) = 3/5 and vk=5 (l0) = 2/3
without correction, which illustrates its effect.

5 Experiments
Section 5.1 presents datasets and models we trained. Section 5.2
discusses our experimental setup. Sections 5.3 and 5.4 respectively
analyze existing and new inference patterns that we introduce.

5.1 Datasets and models
We used the several datasets that are common in link prediction
evaluation [2, 5, 6, 29, 30, 32, 36]. These datasets are already parti-
tioned into training, validation and test splits:

|E | |P | |GTR | |GVA | |GTE |
WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000

WN18 deals with English words and was extracted from Word-
Net [23]. WN18RR is similar to WN18 but inverse predicates have
been removed [10], e.g.,WN18RR containsmeronym but not holonym.
Capturing a pattern like meronym(X , Y ) ⇒ holonym(Y ,X ) is chal-
lenging. YAGO3-10 [34] contains triples related to people and places,
and was extracted from Wikipedia and unified using WordNet.

We trained one model for each dataset1 using the methods pre-
sented in Section 2, namely: BoxE [1], ComplEx [37], HAKE [41],
HolE [25], QuatE [40], RotatE [35], RotPro [33], TorusE [13] and
TransE [7]. They exploit a variety of numerical vectors and scor-
ing functions. We used a combination of a Sobol sequence and a

1Models, source code and results are publicly available: double-blind review.
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Table 2: Arithmetic mean of the positive evidence (𝜇𝜋 ) using k = 5 with best results in bold. In each cell, up and down arrows
entail whether or not a pattern is independently or jointly captured. Colored cells indicate unexpected results.

BoxE ComplEx HAKE HolE QuatE RotatE RotPro TorusE TransE

WN18

Symmetry .91 ⇑ .87 ⇑ .77 − .78 − .94 ↑ .80 ⇑ .68 ↑ .58 − .58 ⇓
Antisymmetry .44 ⇑ .29 ⇑ .28 − .26 − .53 ↑ .37 ⇑ .56 ↑ .44 − .45 ⇑

Inversion .91 ⇑ .85 ⇑ .86 − .83 − .92 ↑ .89 ⇑ .93 ↑ .90 − .87 ↕
Transitive .56 − .64 ↓ .19 − .15 − .54 ↓ .15 ↓ .11 ↑ .09 − .09 ↓

WN18RR
Symmetry .61 ⇑ .92 ⇑ .34 − .82 − .94 ↑ .90 ⇑ .66 ↑ .58 − .58 ⇓

Antisymmetry .09 ⇑ .03 ⇑ .00 − .02 − .12 ↑ .11 ⇑ .03 ↑ .05 − .05 ⇑
Transitive .15 − .60 ↓ .24 − .34 − .81 ↓ .38 ↓ .11 ↑ .09 − .09 ↓

YAGO3-10

Hierarchy .14 ⇑ .25 ↕ .16 − .14 ↕ .21 − .16 ⇓ .15 − .20 − .10 ⇓
Symmetry .18 ⇑ .17 ⇑ .40 − .11 − .30 ↑ .24 ⇑ .20 ↑ .28 − .10 ⇓

Antisymmetry .07 ⇑ .05 ⇑ .05 − .01 − .06 ↑ .02 ⇑ .02 ↑ .03 − .08 ⇑
Inversion .12 ⇑ .49 ⇑ .31 − .22 − .09 ↑ .35 ⇑ .33 ↑ .21 − .09 ↕
Transitive .06 − .08 ↓ .09 − .07 − .02 ↓ .12 ↓ .08 ↑ .08 − .05 ↓

Composition .24 ⇓ .14 ⇓ .25 − .15 − .23 − .18 ↕ .15 ↑ .23 − .26 ↕

Bayesian optimizer to find the best configuration of hyperparam-
eter values [36]. For a fair comparison, we fixed the size of the
embedding vectors to 150. All methods were implemented within
the same framework, and all models were trained using the same
triple batches during stochastic gradient descent. We trained the
models for 1,000 epochs, and used the mean rank over the valida-
tion split as early stopping criteria every 50 epochs. We used PCA
to generate corrupted counterparts during training and validation.

5.2 Experimental setup
We used AMIE [14] to mine core patterns from each dataset. We
used a minimum head coverage of .10 and PCA confidence of .10.
Head coverage is the size of the positive evidence divided by the
total number of triples with the head predicate. PCA confidence
is the size of the positive evidence divided by the sizes of positive
plus negative evidence. These core patterns were of the following
types: hierarchy, symmetry, inversion, transitive and composition.
Antisymmetry core patterns were mined manually for each pred-
icate present in the dataset. Intersection core patterns were also
mined manually: we combined every two hierarchy patterns with
the same head predicate. Mined core patterns are as follows:

WN18 WN18RR YAGO3-10
Hierarchy 0 0 11
Symmetry 3 3 4

Antisymmetry 18 11 34
Inversion 14 0 4

Intersection 0 0 0
Transitive 1 1 3

Composition 0 0 12
Gen. Intersection 0 0 3
B. Transitive 1 1 1
Equality 1 1 4

B. Composition 2 0 0
Commonality 2 0 4

Note that AMIE mined additional patterns like generic intersec-
tion or backward transitive that are introduced below.

To present our results, we group patterns by type and compute
the arithmetic mean of the positive evidence using k = 5, i.e.,
𝜋k=5c (li). We denote this as 𝜇𝜋 . This value of k was the one we
empirically determined to be the best for all the datasets under
evaluation. Similarly, we report the arithmetic mean of the negative
evidence, 𝜈k=5c (li), and denote it as 𝜇𝜈 . We use Sørensen–Dice to
measure set similarity, since we believe it fits better in our context:
a model should be allowed to have a certain deviation from the
expected results; otherwise, the model is overfitted. We discuss
below how results change when we set k = 10.

5.3 Existing patterns
Table 2 presents our quantitative results for positive evidence over
the inference patterns studied above. We summarize the theoretical
results in the table as follows: a double up (down) arrow means a
pattern is (not) expected to be captured both independently and
jointly; a single up (down) arrow entails a pattern is (not) expected
to be captured independently and jointly is unknown; an up–down
arrow means yes independently but not jointly; dash means un-
known. In WN18, the ComplEx and RotatE models exhibit lower
values than expected for the antisymmetry pattern. For the inver-
sion pattern, TransE achieves a high value even though it is not
expected to jointly capture the pattern. Similarly, ComplEx and
QuatE are not expected to independently capture the transitive pat-
tern, but they exhibit high values. However, RotPro, which captures
transitivity, exhibits a low value. We hypothesize these unexpected
results are due to the high presence of redundancy in WN18.

In WN18RR with reduced redundancy, we generally observe
lower values than in WN18, which is expected. This reduction is
quite significant for the antisymmetry pattern, which all models
struggle to capture. In the other patterns, BoxE and HAKE are the
ones that have a significant performance drop w.r.t. WN18. QuatE
is the best performing model in both WN18 and WN18RR. Also,
TorusE performs very similar to TransE. Several models achieve
better values than expected for the transitive pattern. Comparing
the values achieved for WN18 vs. WN18RR, we observe the per-
formance of many models remain or increase, even significantly
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like QuatE, but BoxE’s performance drops. Our results suggest that
inverse predicates significantly help increase performance for the
antisymmetry and transitive patterns.

YAGO3-10 is a challenging dataset for link prediction, so over-
all values are lower than those achieved in the WordNet datasets.
We observe that BoxE is not among the best models except for
the composition pattern, which is not expected to capture. This
competitive performance for the composition pattern was also re-
ported by BoxE’s authors [1]. Overall, ComplEx and HAKE are the
best models. It is surprising that ComplEx and TransE respectively
achieve the best results for the hierarchy and composition patterns,
even though they are not able to jointly capture them.

We compare our results with those reported by Rossi et al. [29]
that studied symmetry, antisymmetry and transitivity. Note that
they trained a completely different set of models than us. They used
Hits@1, i.e., how many test triples are ranked first, which is more
restrictive than our setting of k = 5. We observe very similar results,
even the same general performance drop for the antisymmetry
pattern in WN18RR. Also, their TransE models achieve .00 for the
symmetry pattern in the three datasets. We achieve the same results
when k = 1. However, we observe a few differences as follows:

• Except for antisymmetry inWN18RR, all theirmodels achieve
higher values compared to ours. Our hypothesis is that they
set a .50 tolerance threshold, similar to setting the minimum
head coverage to .50. Our tolerance threshold is .10.

• Their results for antisymmetry in bothWN18 and YAGO3-10
are much higher than our results, in which all of our models
struggle. This can be explained again because of the different
tolerance threshold used.

• For the transitive pattern in YAGO3-10, all of their models
achieve similar results except TransE, which is the worst
performing. We can observe the same performance in our
results, but, as mentioned earlier, with lower values.

Furthermore, we study the effect of increasing from k = 5 to
k = 10.2 In general, all values remain or drop for all patterns and
models when we increase k. The models more benefited are, in
WN18, BoxE, ComplEx and QuatE with an increase of .19 or more
for the transitive pattern; HolE and RotatE in WN18RR with an
increase of .11 or more for the transitive pattern; and RotPro in
YAGO3-10 for the inversion pattern with an increase of .14.

Besides positive, we also study negative evidence.3 All models
achieve very low values for all patterns, except for the transitive pat-
tern in WN18 and WN18RR. RotPro, QuatE and RotatE respectively
achieve approximately .60 and .49 in both cases, while HAKE is the
worst performing model with .06 or less. However, these values
are generally lower than those achieved for the positive evidence.
This suggests that the models generally struggle to identify nega-
tive evidence, which entails that they do not adhere to PCA, even
though they were trained using it. Finally, we studied the effect of
increasing from k = 5 to k = 10; all negative evidence values using
k = 10 were lower than those achieved using k = 5.

Takeaways. In the WordNet datasets, redundancy makes mod-
els improve performance, even though they are not expected to

2These results are reported elsewhere: double-blind review
3These results are reported elsewhere: double-blind review

capture a pattern. Increasing inverse triples help several models
better capture antisymmetry and transitivity. QuatE performs best
overall. In the challenging datasets (WN18RR and YAGO3-10), even
though BoxE is expected to jointly capture many patterns, it is not
among the best performing models. The exception is the compo-
sition pattern, which BoxE cannot capture. In general, increasing
from k = 5 to k = 10 decreases performance. Regarding negative
evidence, all models generally exhibit low or very low values with
very few exceptions. This suggests that these models fail to follow
the partial completeness assumption.

5.4 New patterns
There are core patterns of interest that do not adhere to the pattern
definitions described above. We focus on the following:
Generic intersection. Like intersection, it only has two variables
in total. However, we allow the variables in the body to be connected
in any arbitrary way. For example, in a body like p1 (X , Y )∧p2 (Y ,X ),
the intersection occurs between the objects of p1 and the subjects of
p2. We also do not enforce that all predicates must be different. As an
example, in YAGO3-10, deals(X , Y )∧deals(Y ,X ) ⇒ neighbor (X , Y ),
where deals(x, y) means x deals with y in a broader sense.
Backward transitive. It is a transitive pattern in which the body
forms a backward path, i.e., p(Y , Z)∧p(Z,X ). For instance, inWN18
and WN18RR, seeAlso(Y , Z) ∧ seeAlso(Z,X ) ⇒ seeAlso(X , Y ).
Equality. In the transitive and backward transitive patterns, we
assume the body forms a forward or a backward path, respectively.
In the equality pattern, the body does not form a path, i.e., p(X , Z)∧
p(Y ,Z), where Z is sink, or p(Z,X ) ∧ p(Z, Y ), where Z is source.
Note that, when transitive, backward transitive and equality occur
at the same time between the same entities, it means that the entities
are equal, which is the reason for this pattern’s name. In practice,
each of these transitive, backward transitive and equality patterns
achieves different results for positive and negative evidence due
to missing triples. For example, in YAGO3-10, neighbor (X ,Z) ∧
neighbor (Y , Z) ⇒ neighbor (X , Y ).
Backward composition. It is a composition pattern such that the
body forms a backward path, i.e., p1 (Y , Z) ∧ p2 (Z,X ). For example,
in WN18, topic(Y , Z) ∧ hyponym(Z,X ) ⇒ synonym(X , Y ), where
topic(y, z) means z is a scientific category of y.
Commonality. It is similar to the equality pattern but applied
to composition. That is, it is a composition in which the body is
neither a forward nor a backward paths. Therefore, variable Z in
the body is a sink or a source like in the equality pattern. The name
is because Z is an entity common to two other entities. For example,
in YAGO3-10, died (X , Z) ∧ capital(Y , Z) ⇒ citizen(X , Y ).

Table 3 presents positive and negative evidence results for these
new patterns. Regarding positive evidence, for presentation pur-
poses, we refer to the closest known theoretical analysis for each
new pattern. We use the intersection pattern to analyze generic in-
tersection, the transitive pattern to analyze backward transitive and
equality, and the composition pattern to analyze backward compo-
sition and equality. In WN18, ComplEx’s performance is surprising,
since it is unable to capture neither the transitive nor the composi-
tion patterns. Similarly, QuatE cannot capture the transitive pattern.
These results coincide with our results for the transitive pattern
over WN18. The BoxE and RotatE models also achieve surprising
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Table 3: Arithmetic mean of the positive evidence (𝜇𝜋 ) using k = 5 with best results in bold, and negative evidence (𝜇𝜈 ) in
parentheses for the new inference patterns. Colored cells indicate surprising results w.r.t. the known theoretical analyses.

BoxE ComplEx HAKE HolE QuatE RotatE RotPro TorusE TransE

WN18

B. Transitive .71 (.45) .61 (.40) .27 (.13) .22 (.31) .69 (.48) .28 (.35) .15 (.42) .13 (.26) .14 (.30)
Equality .57 (.31) .53 (.29) .13 (.17) .17 (.26) .57 (.44) .18 (.40) .12 (.45) .10 (.29) .11 (.34)

B. Composition .84 (.37) .77 (.05) .92 (.11) .84 (.09) .93 (.32) .90 (.28) .79 (.50) .41 (.28) .38 (.20)
Commonality .84 (.36) .77 (.05) .91 (.10) .85 (.09) .94 (.31) .90 (.28) .79 (.49) .42 (.27) .37 (.20)

WN18RR B. Transitive .17 (.08) .66 (.38) .07 (.06) .42 (.30) .76 (.50) .51 (.43) .17 (.39) .14 (.27) .13 (.24)
Equality .17 (.07) .59 (.32) .26 (.10) .32 (.27) .84 (.38) .43 (.28) .13 (.45) .11 (.33) .10 (.28)

YAGO3-10

Gen. Intersection .37 (.01) .76 (.01) .28 (.00) .47 (.17) .22 (.00) .48 (.00) .51 (.00) .36 (.00) .23 (.33)
B. Transitive .15 (.05) .30 (.10) .26 (.15) .20 (.04) .00 (.00) .36 (.31) .29 (.20) .27 (.14) .21 (.00)
Equality .12 (.03) .15 (.05) .14 (.08) .10 (.03) .09 (.01) .18 (.17) .13 (.09) .13 (.06) .11 (.01)

Commonality .09 (.04) .06 (.03) .00 (.03) .01 (.04) .07 (.03) .07 (.04) .00 (.04) .06 (.04) .15 (.19)

results for backward composition and commonality. RotPro is able
to capture transitivity, but it exhibits low values for both backward
transitivity and equality. The RotPro model also achieves low val-
ues for the transitive pattern. Note that, in this case, the backward
composition and the equality patterns are the same but with differ-
ent connections in the body (backward path vs. sources or sinks).
We observe the same results in WN18RR with the main exception
that RotatE achieves competitive results. Note that RotatE was not
among the best performing models for the transitive pattern.

In YAGO3-10, the BoxE model struggles to achieve competitive
results for the generic intersection pattern, even though it is able to
capture the intersection pattern. Also, the BoxE model achieves the
second-best result for the composition pattern, but it is not among
the best performing models for the commonality pattern, which is
expected since BoxE is unable to capture composition. Other sur-
prising results are the values obtained by the ComplEx and RotatE
models, which cannot capture neither intersection nor transitivity.
The TransE model exhibits the best performance for commonality,
even though it cannot capture composition. We observe the same
results for the composition pattern.

Regarding negative evidence, we generally observe much higher
values than those achieved for the existing patterns. We hypothe-
size that this is because several of these new patterns are related
to transitivity, which was the pattern achieving the best results
for negative evidence in the existing patterns. Still, many models
struggle to identify negative evidence in the backward composition
and commonality patterns.

Takeaways. Several models achieve better positive evidence
values than expected, even improving the results obtained for the
existing patterns. Using the closest known theoretical analysis,
many of the observed results for the existing patterns are also
fulfilled for the new patterns. Even though several models are able
to better capture negative evidence in these new patterns, many
models still struggle to learn the partial completeness assumption.

6 Conclusions
We present a method-agnostic approach to empirically assess how
models capture inference patterns in knowledge graphs. For each
pattern, we compare both positive and negative evidence between
the ground truth, the whole graph at hand, and the top-k predictions

made by a model as part of link prediction evaluation. Based on
our results, we make several remarks.

First, our experimental results only apply to the models we
trained. Even though many of our observations agree with other ob-
servations found in the literature, they are empirical and, therefore,
do not generally apply to the embedding methods. For example, a
BoxE or a TorusE models trained differently may achieve different
results. As future work, we aim to study the impact of different
training options on a model’s ability to capture inference patterns.
These include hyperparameter values [3], assumptions to identify
corrupted counterparts [4], and injecting inference patterns [1].

Second, we have detected the inability of several models to accu-
rately capture negative evidence, which, as far as we know, has been
studied for the first time. Despite applying the partial completeness
assumption to train the models, they fail to learn the assumption,
which explains the poor during link prediction evaluation. We hy-
pothesize this is because, during training, corrupted counterparts
were randomly selected. As future work, we will explore strategies
to generate corrupted counterparts guided by patterns, which can
be mined from the training split as a pre-processing step.

Third, in YAGO3-10, we observe that, for a given inference pat-
tern, a substantial portion of both positive and negative evidence
is present in the training and validation splits. This is not as ex-
acerbated in WN18RR. This observation implies that predicting
evidence in YAGO3-10 is extremely challenging. We hypothesize
this issue can be mitigated by carefully selecting the graph splits.
As a future work, we plan to explore graph partitioning algorithms
guided by patterns. These algorithms will consider not only graph-
based properties like indegrees and outdegrees [36], but also that
evidence derived from the test split is relevant.
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A Qualitative analysis
Our goal in this section is to shed light on some of the quantitative
results obtained for WN18, WN18RR and YAGO3-10. First, we focus
on the comparison between WN18 and WN18RR. A symmetry
pattern that is common to both datasets is as follows:

verbGroup(Y ,X ) ⇒ verbGroup(X , Y )
where verbGroup establishes that two verbs have similar meaning.
The pattern thus implies that the two words are similar to each
other. Comparing 𝜋k=5c values for WN18 and WN18RR, we observe
that QuatE performs the best (0.99) on both datasets, indicating
that the models are able to infer this pattern with the same level of
accuracy, even after removal of inverse triples. This is expected as
QuatE captures the symmetry pattern. TorusE achieves the lowest
value in WN18 (.60), and HAKE in WN18RR (.60). The models most
impacted by the removal of triples are BoxE (from .97 to .62) and
HAKE (from .85 to .21). Interestingly, both ComplEx and RotatE
achieve higher values in WN18RR than in WN18. We observe the
same behavior in Table 2. RotPro, TorusE and TransE are the worst
performing models achieving values less or equal than 0.7.

Another symmetry pattern is as follows:

alsoSee(Y ,X ) ⇒ alsoSee(X , Y )
Comparing 𝜋k=5c values for WN18 and WN18RR, QuatE achieves

the best values (.90 and .88, resp.), and HAKE achieves the lowest
values (.50 and .10, resp.) among all models. BoxE (.83 and .64,
resp.) and HAKE are the models most impacted by the redundancy
removal. RotatE (.69 and .82, resp.) exhibits the highest increase.

In YAGO3-10, we first focus on the hierarchy pattern. A sample
pattern is as follows:

isAffiliatedTo(X , Y ) ⇒ playsFor (X , Y )
The pattern states that, if X is affiliated to team Y , then X plays

for team Y . HAKE achieves the highest 𝜋k=5c value (.51), whereas
TransE achieves the lowest (.10). Although BoxE is theoretically able
to capture the hierarchy pattern, both independently and jointly,
the model achieves the second lowest values among all models (.21).

A sample transitive pattern is as follows:

isLocatedIn(X , Z) ∧ isLocatedIn(Z, Y ) ⇒ islocatedIn(X , Y )

The isLocatedIn predicate between two entities X and Y states
that X is located in Y . Although this pattern best represents the
transitive property, the 𝜋k=5c values are generally low, less or equal
than .10, indicating that all models struggle to accurately capture
the pattern. RotPro, which captures transitivity, achieves the lowest
value among all models (.02).

A sample symmetry pattern is as follows:

isConnectedTo(Y ,X ) ⇒ isConnectedTo(X , Y )
HAKE achieves the best 𝜋k=5c value among all models (.27).

TransE achieves the lowest value among all models (.11), which
is expected as TransE is unable to capture symmetry. Although
several other models are able to capture the symmetry pattern, we
observe that the values are less or equal than .30 for all models

under evaluation, indicating that the models struggle to capture
the pattern accurately.

B Extra datasets
BioKG [38] and Hetionet [16] contain biomedical knowledge, such
as proteins, genes, diseases, drugs and their interactions. The datasets
are as follows:

|E | |P | |GTR | |GVA | |GTE |
BioKG 105,524 17 2,057,658 5,170 5,170
Hetionet 45,158 24 2,238,946 5,626 5,625

The core patterns mined are as follows:

BioKG Hetionet
Hierarchy 14 8
Symmetry 2 2

Antisymmetry 34 34
Inversion 0 0

Intersection 6 2
Transitive 2 2

Composition 2 26
Gen. Intersection 0 0
B. Transitive 0 0
Equality 4 4

B. Composition 0 0
Commonality 12 30

Tables 4 and 5 present our quantitative results for the datasets.
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Table 4: Arithmetic mean of the positive evidence (𝜇𝜋 ) using k = 5 with best results in bold

BoxE ComplEx HAKE HolE QuatE RotatE RotPro TorusE TransE

BioKG

Hierarchy .19 ⇑ .40 ↕ .46 − .30 ↕ .39 − .45 ⇓ .27 − .33 − .41 ⇓
Symmetry .00 ⇑ .05 ⇑ .03 − .07 − .04 ↑ .07 ⇑ .07 ↑ .06 − .06 ⇓

Antisymmetry .04 ⇑ .13 ⇑ .21 − .09 − .15 ↑ .17 ⇑ .10 ↑ .09 − .15 ⇑
Intersection .19 ⇑ .51 ⇓ .47 − .37 − .42 − .49 ↕ .36 − .32 − .44 ↕
Transitive .03 − .18 ↓ .19 − .21 − .15 ↓ .23 ↓ .27 ↑ .11 − .05 ↓

Composition .44 ⇓ .47 ⇓ .53 − .56 − .66 − .63 ↕ .70 ↑ .39 − .43 ↕

Hetionet

Hierarchy .20 ⇑ .07 ↕ .20 − .12 ↕ .09 − .21 ⇓ .21 − .15 − .17 ⇓
Antisymmetry .05 ⇑ .05 ⇑ .07 − .02 − .05 ↑ .08 ⇑ .07 ↑ .04 − .05 ⇑
Intersection .24 ⇑ .08 ⇓ .23 − .13 − .11 − .26 ↕ .27 − .17 − .21 ↕
Transitive .09 − .08 ↓ .09 − .06 − .07 ↓ .07 ↓ .05 ↑ .05 − .05 ↓

Composition .18 ⇓ .07 ⇓ .12 − .09 − .07 − .11 ↕ .15 ↑ .09 − .14 ↕

Table 5: Arithmetic mean of the positive evidence (𝜇𝜋 ) using k = 5 with best results in bold and negative evidence (𝜇𝜈 )

BoxE ComplEx HAKE HolE QuatE RotatE RotPro TorusE TransE

BioKG Equality .03 (.04) .18 (.03) .21 (.13) .20 (.09) .14 (.01) .20 (.10) .25 (.08) .10 (.04) .05 (.02)
Commonality .25 (.06) .43 (.15) .40 (.14) .37 (.12) .41 (.11) .44 (.19) .39 (.14) .34 (.15) .38 (.16)

Hetionet Equality .09 (.04) .08 (.04) .07 (.04) .07 (.02) .06 (.03) .07 (.05) .05 (.03) .03 (.02) .06 (.02)
Commonality .17 (.11) .05 (.02) .14 (.12) .07 (.02) .05 (.02) .12 (.07) .14 (.09) .08 (.04) .12 (.08)
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