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ABSTRACT

In recent years, CLIP-based text-video retrieval methods have developed rapidly,
with research primarily focusing on exploiting diverse textual and visual cues to
achieve effective feature interaction. However, an accurate retrieval model not
only requires strong feature enhancement techniques, e.g., text expansion, but also
needs coarse-fine granularity interaction strategies, e.g., word-patch. To overcome
the limitations of these two types of challenges, we propose a novel text-video
retrieval framework, SKRR, i.e., Spot the Key, Recover the Rest, which consists
of the Dual-Path Feature Partitioning module (DPFP) for feature enhancement
and the Dual-View Feature Interaction module (DVFI) for feature interaction. For
DPFP, we simulate the human macro-level cognitive perspective by partitioning
visual features into two categories based on their relevance to the text query, and
supplementing the less relevant features with additional textual. For DVIF, we
simulates the human alignment strategy from macro- to micro-level, effectively
focusing on local visual features and comprehensively considering fine-grained
interactions. DPFP and DVFI collaborate synergistically, jointly promoting cross-
modal feature enhancement and interaction. We evaluate SKRR model on five
benchmark datasets, including MSRVTT (50.5 %on R@1), achieving state-of-
the-art retrieval performance. Code will be released soon.

1 INTRODUCTION

With the rapid development of the Internet, massive amounts of unlabeled video data are continu-
ously uploaded and shared. The goal of text-video retrieval is to identify videos from massive unla-
beled collections that match a given textual query. Recently, the large-scale text-image pre-trained
model CLIP Radford et al. (2021) has achieved remarkable success in various multimodal tasks, e.g.,
visual question answering, classification, and retrieval, demonstrating strong vision-language align-
ment capabilities. Existing retrieval methods Luo et al. (2022); Gorti et al. (2022) typically leverage
CLIP to project both text and video into a shared latent space, thereby establishing feature level sim-
ilarity relationship. Meanwhile, to establish this reliable matching relationship, a variety of feature
enhancement methods Wu et al. (2023); Wang et al. (2024) and feature interaction strategies Wang
et al. (2023); Ma et al. (2024) have been proposed. For example, X-Pool Gorti et al. (2022) employs
an attention mechanism to extract the most relevant video frames for a given text, thereby enhancing
the representational capacity of visual. UCoFiA Wang et al. (2023) proposes a unified coarse-to-fine
alignment model that improves text-video retrieval performance from a comprehensive perspective.

Although existing methods perform well in retrieval tasks, they still fall short when dealing with
sparse text queries and complex visual cues. We illustrate this problem with the query “Query1527:
pekids using a mobile watch” and several paired video frames, as shown in Figure 1(a). Among these
frames, only those marked with green boxes are relevant to the query, while the remaining frames
marked with red boxes differ from it. When simulating human cognition, we tend to focus on visual
cues that match the text and repeatedly compare the keywords in the query with the visual entities in
the frames, such as “pekids” and “watch.” In other words, this iterative comparison process enables
the determination of the optimal cross-modal feature interaction. Moreover, the ignored visual cues
can be represented using additional text, e.g., “a little girl in red is carefully reading about the
watch”. However, this human-aligned approach is rarely considered in existing methods Fang et al.
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Figure 1: Motivation. (a) A query example showing that not all visual features are relevant to the
text query. Green boxes indicate relevant frames, while red boxes indicate irrelevant ones. (b, c)
Comparison between existing methods and our proposed text-video feature interaction strategy.

(2023); Wang et al. (2024); Hur et al. (2025), which often indiscriminately align all visual features
with the text, inevitably hindering subsequent feature alignment, as shown in Figure 1(b).

Based on those analysis, we summarize feature enhancement as consisting of two paths and feature
interaction as consisting of two views, as shown in Figure 1(c). The two paths are: (1) Spot-Path, i.e.,
“Spot the Key”, which focuses on the content deemed important; (2) Recover-Path, i.e., “Recover
the Rest”, which supplements the content considered missing. The two views are: (1) Macro-View,
i.e., the interaction between video frames and text sentences at a global level, representing alignment
of the overall features; (2) Micro-View, i.e., the interaction between visual entities and keywords at
a local level, representing alignment of fine-grained features. The two path strategies not only align
with the selective mechanism in human macro-level cognition but also ensure the accuracy of subse-
quent feature interactions. The two-view strategy not only aligns with the human cognitive process
from macro to micro levels but also facilitates interactions across features of different granularities.

Based on the above summary, we propose a novel text-video retrieval framework, SKRR, i.e., Spot
the Key, Recover the Rest. Figure 2 illustrates the over all framework in this paper. First, we
propose a Dual-Path Feature Partitioning module (DPFP), which comprises a Spot-Path that selects
high-similarity frames based on global sentence-frame similarity for fully informative interactions,
and a Recover-Path that leverages VLMs, e.g., GPT-4, to generate textual descriptions for low-
similarity frames as complementary interaction targets. Second, we propose a Dual-View Feature
Interaction module (DVFI) to further illustrate the interaction between text and video features from
a perspective consistent with human cognition. At the macro level, DVFI aligns video frames with
sentence features, while at the micro level, it aligns video patches with word features. To address
patch redundancy, we aggregate and re-represent patch features with attention, enabling fine-grained
alignment without being constrained by trivial details or background. Third, DPFP and DVFI
collaborate synergistically, jointly promoting cross-modal feature enhancement and interaction.

We summarize our contributions as follows: (1) We propose a novel text-video retrieval framework,
SKRR, which integrates DPFP for feature enhancement and DVFI for feature interaction. (2) The
proposed DPFP simulates the human macro-level perspective by partitioning visual features and
supplementing textual ones, thereby enhancing cross-modal interaction accuracy. (3) The proposed
DVFI simulates the human alignment strategy from macro- to micro-level, effectively focusing on
local visual features and comprehensively considering fine-grained interactions. (4) We conduct
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extensive experiments on five benchmark datasets, including MSRVTT, DiDeMo, LSMDC, Activi-
tyNet, and Charades, and achieve state-of-the-art retrieval performance (50.5% R@1 on MSRVTT).

2 RELATED WORK

Text-Video Retrieval. Text-video retrieval aims to retrieve the most semantically relevant video
from a large collection based on a given textual query. Early works Liu et al. (2019); Gabeur
et al. (2020) primarily focus on enhancing feature representations to align text and video, as well
as on establishing benchmarks and foundational models. With the large-scale text-image pretrain-
ing model CLIP Radford et al. (2021) achieving significant success, it has inspired improvements
in retrieval tasks. For example, CLIP4Clip Luo et al. (2022) transfers the knowledge of the CLIP
model to video-language retrieval in an end-to-end manner. Recently, transformer-based text-video
retrieval methods Gorti et al. (2022); Liu et al. (2022) use cross-attention to abstract multimodal
cues, achieving significant performance gains. TS2Net Liu et al. (2022) employs a “token shift and
selection transformer” to preserve token integrity and capture subtle actions, improving retrieval
performance. HBI Jin et al. (2023a) performs hierarchical representation by clustering frame-level
features and establishes a game-theoretic fine-grained alignment, which has attracted considerable
attention. Additionally, a large number of studies Wu et al. (2023); Wang et al. (2024); Xiao et al.
(2025) focus on enhancing textual features. Cap4Video Wu et al. (2023) leverages LLM for zero-
shot video captioning, expanding the semantic scope of textual at the explicit semantic level.

Feature Enhancement. For video feature enhancement, most methods Lei et al. (2021); Luo et al.
(2022); Gorti et al. (2022) employ transformers to aggregate features. For example, X-Pool Gorti
et al. (2022) employs an attention mechanism to extract the most relevant video frames correspond-
ing to a given text, thereby enhancing the representation capability of visual features. For text
feature enhancement, existing methods can be categorized into implicit Wang et al. (2024); Xiao
et al. (2025) and explicit Wu et al. (2023); Bai et al. (2025) approaches. For example, T-Mass Wang
et al. (2024) enhances the representation of textual features at the implicit semantic level through
random text modeling and regularization techniques. GQE Bai et al. (2025) proposes a unified text
enrichment framework that leverages VLMs for event-level captioning and LLMs for query diversi-
fication, thereby improving retrieval performance at the explicit level.

Feature Interaction. Feature interaction refers to the process of aligning cross-modal text and
video features. Existing works Jin et al. (2023a;c) mainly focus on coarse-to-fine and deep-level
alignments. For example, UCoFiA Wang et al. (2023) proposes a unified coarse-to-fine alignment
model that effectively improves text-video retrieval performance from a comprehensive perspec-
tive. EERCF Tian et al. (2024a) adopts multi-granularity visual feature learning to ensure that the
model captures visual content from abstract to detailed levels during training. Additionally, UATVR
Fang et al. (2023) proposes an uncertainty-adaptive retrieval framework that models features with
probabilistic embedding to mitigate hierarchical discrepancies and enhance retrieval performance.

Feature enhancement and interaction are the main approaches for text-video retrieval. However, due
to the inherent modality gap between text and video, existing methods often adopt brute-force strate-
gies, which implicitly assume that the features from both modalities are fully equivalent. Feature
enhancement is non-specific, relying on automatic selection, while feature interaction is incomplete
due to unbalanced cross-modal features. Therefore, our work focuses on efficient feature enhance-
ment and comprehensive feature interaction to improve retrieval performance.

3 METHODOLOGY

3.1 FEATURE EXTRACTION AND INTERACTION

Feature Extraction. Let D = (T ,V) denote a language and vision dataset, where T is a set of texts,
and V is a set of videos. The goal of text-video retrieval is to rank the relevance between a text query
t ∈ T and video set V . Recent works Luo et al. (2022); Jin et al. (2023a); Wang et al. (2024) have
shown CLIP’s Radford et al. (2021) strong performance in modality feature representation, inspiring
us to employ CLIP as our backbone. Specifically, a video v ∈ V consists of Nf sequential frames
[f1, f2, ..., fNf

] ∈ RNf×H×W×C , where each frame is divided into Np patches [p1, p2, ..., pNp
] ∈

RNp×P×P×C with P × P size. Following Radford et al. (2021); Luo et al. (2022), we utilize the
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CLIP visual encoder to extract the patch features Vp = [p1, . . . , pNp
] ∈ RNp×D for each frame, and

set p0 as the [CLS] token of the current frame. We aggregate the [CLS] tokens of all video frames
to obtain the frame features Vf = [f1, f2, ..., fNf

] ∈ RNf×D. Similarly, given a text query t ∈ T ,
we leverage the CLIP text encoder to extract the word features Tw = [w1, w2, . . . , wNw

] ∈ RNw×D,
where Nw denotes the length of the word sequence, and set the [BOS] and [EOS] tokens as the
beginning and end of the sequence, respectively. We take the representation of the [EOS] token as
the sentence feature Ts = [s] ∈ R1×D. In summary, by leveraging the pretrained feature extractors,
we obtain the video features Vf and Vp, text features Ts and Tw, as shown in Figure. 2(a).

Feature Interaction. Feature interaction refers to the process of computing the similarity between
cross-modal features. Here, we take fine-grained word features Tw ∈ RNw×D and patch features
Vp ∈ RNp×D as an example to illustrate this process. First, the alignment matrix is defined as
A = [aij ] ∈ RNw×Np , where aij =

wi·pj

||wi||·||pj || represents the alignment score between the ith word
feature and the jth patch feature. For the ith word feature, we calculate its maximum alignment
score as maxj aij , and use the weighted average maximum alignment score over all word features
as the word-to-patch similarity. Similarly, we can also obtain the patch-to-word maximum alignment
score maxi aij , and the total word-patch similarity score can be defined as:

STw,Vp
=

1

2

(∑Nw

i=1
θiw maxj aij +

∑Np

j=1
θjp maxi aij

)
, (1)

where θw = [θ1w, θ
2
w, ..., θ

Nw
w ] = Softmax(MLPw(Tw)) and θp = [θ1p, θ

2
p, ..., θ

Np
p ] =

Softmax(MLPp(Vp)) are the weights of the word features and patch features, respectively. If the
number of features on one side is 1, e.g., the sentence feature Ts = [s] ∈ R1×D, the sentence-patch
similarity score is defined as STs,Vp =

∑Np

i=1 θ
i
pai, and ai = s·pi

∥s∥·∥pi∥ . Finally, the word-patch
cross-modal contrastive loss can be formulated as:

LTw,Vp
= −1

2

1

B

B∑
i=1

(
log

exp(ST i
w,V i

p
/τ)∑B

j=1 exp(ST i
w,V j

p
/τ)

+ log
exp(ST i

w,V i
p
/τ)∑B

j=1 exp(ST j
w,V i

p
/τ)

)
, (2)

where B is the batch size and τ is the temperature hyper-parameter. This loss function maximizes
the similarity of positive pairs and minimizes the similarity of negative pairs. Similarly, LTw,Vf

,
LTs,Vp , and LTs,Vf

can also be computed.

3.2 DUAL-PATH FEATURE PARTITIONING

Although the CLIP visual encoder can extract powerful frame and patch features from videos, not
all of them are strongly correlated with the text. In other words, to achieve more effective feature
interactions, both sides of the interaction need to provide informative representations. Therefore,
in this section, we propose a Dual-Path Feature Partitioning module (DPFP), which consists of
the Spot-Path that provides fully informative interaction targets and the Recover-Path that provides
complementary interaction targets, as illustrated in Figure 2 (b).

Spot the Key: Spot-Path. As the Du Fu once said, “Reaching the summit, all other mountains
appear small.” We believe that grasping the interaction targets from a global and holistic perspective
is essential. First, when aligning text and video, we, as humans, first read the overall sentence feature
Ts = [s] ∈ R1×D, and then compare it with each video frame features Vf = [f1, f2, ..., fNf

] ∈
RNf×D to identify the effective frames V +

f ∈ RN+
f ×D, where N+

f < Nf . Next, from a human-
centric perspective, the selection of effective frames V +

f can be directly based on the similarity
STs,Vf

between Ts and Vf . Finally, we select the top-N+
f frames V +

f from Vf based on STs,Vf
:

V +
f = TopN+

f (Vf , STs,Vf
), STs,Vf

=
Ts · Vf

||Ts|| · ||Vf ||
∈ R1×Nf (3)

In addition, the patch features are also updated from Vp ∈ R(Nf ·Np)×D to V +
p ∈ R(N+

f ·Np)×D.

Recover the Rest: Recover-Path. As Feynman once said, “What I cannot create, I do not under-
stand.” We believe that the missing interaction objects should be recovered to reduce information
loss. First, the lost visual features, including V −

f = Vf − V +
f and V −

p = Vp − V +
p , exhibit low

similarity with the text. They should be preserved reasonably rather than discarded directly, to avoid
excessive loss of visual information. By leveraging existing text augmentation methods Wu et al.
(2023); Ma et al. (2024), we employ large visual-language models, e.g., GPT-4 OpenAI (2023), to
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Figure 2: Framework. (a) Dual-end Feature Extraction is used to extract features from both text
and video. (b) Dual-Path Feature Partitioning selects frames most relevant to the query based on
similarity and provides textual descriptions for the less relevant frames. (c) Dual-View Feature
Interaction reconsiders feature interactions at both the macro and micro levels.

generate textual descriptions of videos in a zero-shot manner, and obtain the corresponding textual
features T=

s = [s1, s2, ..., sN=
s
] ∈ RN=

s ×D. Second, to obtain the text that is strongly paired with
V −
f and V −

p , we follow the idea of the Spot-Path to generate the augmented text T−
s ∈ RN−

s ×D:

T−
s = TopN−

s (T=
s , ST=

s ,V −
f
), ST=

s ,V −
f

=
T=
s · V −

f

||T=
s || · ||V −

f ||
∈ RN=

s ×1, (4)

where V −
f = 1

N−
f

∑N−
f

i=1 V
−
f,i. Similarly, the word features are also updated from T=

w ∈ R(N=
s ·Nw)×D

to T−
w ∈ R(N−

s ·Nw)×D. In summary, under the Spot-Path and Recover-Path, we obtain enhanced
textual features (T+

s = Ts, T
+
w = Tw and T−

s , T−
w ) and enhanced video features (V +

f , V +
p and

V −
f , V −

p ) that are more representative than the original ones.

3.3 DUAL-VIEW FEATURE INTERACTION

In Section 3.2, we obtain both coarse-grained features (T+
s , T−

s , V +
f , V −

f ) and fine-grained features
(T+

w , T−
w , V +

p , V −
p ) that are ready for direct interaction. While coarse-grained features allow direct

interaction, large and redundant fine-grained features such as V +
p require additional processing.

Therefore, in this section, we propose a Dual-View Feature Interaction module (DVFI) to model
interactions between text and video features in a manner consistent with human cognition.

Macro Feature Interaction: Macro-View. Macro-view feature interaction refers to coarse-grained
feature interaction. Specifically, we directly compute the similarity between sentence features and
frame features based on Equation 1:

ST+
s ,V +

f
=

∑N+
f

i=1
θifai, ST−

s ,V −
f

=
∑N−

f

i=1
θifai. (5)
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Compared with STs,Vf
, Equation 5 not only partitions visual features from a macro perspective but

also supplements textual information, thereby providing a clear advantage in the accuracy of feature
interaction. Finally, the interaction losses LT+

s ,V +
f

and LT−
s ,V −

f
are computed using Equation 2.

Micro Feature Interaction: Micro-View. The features involved in Macro-View interaction exhibit
a high degree of simplicity in both quantity and representation. However, high-volume and redun-
dant patch features cannot participate in interaction with text in the same way. For example, if we
set N+

f =N−
f = 1

2Nf , the number of patch features obtained is 1
2Nf×H×W×C

P×P×C =294 for Nf = 12 and
CLIP-ViT-B/32 (1176 for CLIP-ViT-B/16). To reduce the number of these features while enhancing
their representativeness, previous methods Liu et al. (2022); Wang et al. (2023) primarily decrease
the number of patch features by selecting those with higher scores. It is worth noting that these
methods often lack targeted feature selection, which may lead to information loss. In summary,
patch features involved in interaction with text should be region-specific rather than isolated.

To reduce the number of patch features and obtain important merged patch regions, we propose a
Patch Features Compression Module (PFCM) from a human micro-view, as illustrated in Figure
2(c). First, we focus on the Spot-Path patch features V +

p = N+
f × [p1, p2, . . . , pNp

] ∈ RN+
f ×Np×D.

This step, benefiting from global features selection, not only focuses on key frames but also
significantly reduces the number of patch features. Next, we further compress the patch fea-
tures V +

p from a human cognitive perspective. Specifically, we utilize a variant of the k-nearest
neighbor-based density peaks clustering algorithm (DPC-KNN) Du et al. (2016). Given patch fea-
tures V +

p , we compute the local density ρi of each patch pi according to its k-neatest neighbors
ρi = exp(− 1

k

∑
||pi − pj ||2), where pj ∈ KNN(pi) denotes the k-neatest neighbors of the patch

pi. Then, we compute the distance indicator δi of each patch:

δi =

{
min ||pi − pj ||2, ρi < ρj ,

max ||pi − pj ||2, ρi ≥ ρj .
(6)

Intuitively, the patch pi with a larger local density ρi and distance indicator δi is more likely to
become a cluster center. We determine a cluster center by selecting the patches with the highest
scores ρi × δi, and then merge the neighboring patches. To ensure that important patches contribute
more to the output and capture long-range dependencies, we introduce an importance score I and an
attention mechanism. Given the cluster center pi and the corresponding ith cluster Ci, the merged

patch p∗i =
∑

j∈Ci
exp(Ij)pj∑

j∈Ci
exp(Ij)

, where Ij = MLPp(pi). The merged patch p∗i is fed into a transformer

block as query Q, and the original patch pi is used as key K and value V , and the importance score
I is added to the attention weight as follows:

Attention(Q,K, V ) = softmax
(
QKT /

√
dk + I

)
V, (7)

where dk represents the feature dimension. By introducing the patch importance score I and the
attention mechanism, PFCM not only reduces the number of patch features but also focuses on key
features and spatial relationships. Finally, we iteratively apply PFCM to compress and aggregate
patch features, reducing their number. Similar to the operations in Equation 1, we can compute the
similarity between text word features and aggregated patch features:

ST+
w ,V +

p
=

1

2
(
∑N+

w

i=1
θiw maxj aij +

∑N+
p

j=1
θjp maxi aij),

ST−
w ,V −

p
=

1

2
(
∑N−

w

i=1
θiw maxj aij +

∑N−
p

j=1
θjp maxi aij).

(8)

Furthermore, the sharp reduction in the number of patch features enhances their granularity, enabling
them to participate in interaction with sentence feature:

ST+
s ,V +

p
=

∑N+
p

i=1
θipai, ST−

s ,V −
p

=
∑N−

p

i=1
θipai. (9)

In the granularity-based interactions, we omit STw,Vf
: the granularity gap is too large to align with

human cognition, and experiments show its performance is suboptimal. Consequently, the interac-
tion losses LT+

w ,V +
p

, LT−
w ,V −

p
, LT+

s ,V +
p

, and LT−
s ,V −

p
are computed using Equation 2.

3.4 TRAINING AND SAMPLING

Training. Under the Spot-Path and Recover-Path, we can obtain all cross-modal contrastive losses:
L+ = LT+

s ,V +
f

+ LT+
s ,V +

p
+ LT+

w ,V +
p
, L− = LT−

s ,V −
f

+ LT−
s ,V −

p
+ LT−

w ,V −
p
. (10)
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Methods
MSRVTT (Text-to-Video) MSRVTT (Video-to-Text)

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
CLIP-ViT-B/32
Clip4clip Luo et al. (2022) 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6
X-Pool Gorti et al. (2022) 46.9 72.8 82.2 2.0 14.3 44.4 73.3 84.0 2.0 9.0
UATVR Fang et al. (2023) 47.5 73.9 83.5 2.0 12.3 46.9 73.8 83.8 2.0 8.6
HBI Jin et al. (2023a) 48.6 74.6 83.4 2.0 12.0 46.8 74.3 84.3 2.0 8.9
Cap4Video Wu et al. (2023) 49.3 74.3 83.8 2.0 12.0 47.1 73.7 84.3 2.0 8.7
TeachCLIP Tian et al. (2024b) 46.8 74.9 82.9 - - - - - - -
Mv-adapter Jin et al. (2024) 46.2 73.2 82.7 - - 47.2 74.8 83.9 - -
T-Mass Wang et al. (2024) 50.2 75.3 85.1 1.0 11.9 47.7 78.0 86.3 2.0 8.0
EERCF Tian et al. (2024a) 47.8 74.1 84.1 - - 44.7 74.2 83.9 - -
DiscoVLA Shen et al. (2025) 47.0 73.0 82.8 - 14.1 47.7 73.6 83.6 - 10.0
BiHSSP Liu et al. (2025) 48.1 74.0 84.1 2.0 12.1 48.0 74.1 83.5 2.0 9.0
SKRR 50.5 76.1 86.2 1.0 11.3 48.3 76.2 86.7 2.0 7.8
CLIP-ViT-B/16
X-Pool Gorti et al. (2022) 48.2 73.7 82.6 2.0 12.7 46.4 73.9 84.1 2.0 8.4
UATVR Fang et al. (2023) 50.8 76.3 85.5 1.0 12.4 48.1 76.3 85.4 2.0 8.0
Cap4Video Wu et al. (2023) 51.4 75.7 83.9 1.0 12.4 49.0 75.2 85.0 2.0 8.0
T-Mass Wang et al. (2024) 52.7 77.1 85.6 1.0 10.5 50.9 80.2 88.0 1.0 7.4
EERCF Tian et al. (2024a) 54.1 78.8 86.9 - - 51.0 77.8 85.7 - -
DiscoVLA Shen et al. (2025) 50.5 75.6 83.8 - 12.1 49.2 76.0 84.7 - 8.6
BiHSSP Liu et al. (2025) 50.8 75.9 84.4 1.0 11.0 50.3 75.5 84.5 1.5 7.8
SKRR 53.2 78.9 87.2 1.0 10.3 51.2 78.9 86.5 1.0 7.4

Table 1: Text-to-video and video-to-text retrieval performance on the MSRVTT Xu et al. (2016).

To prevent data leakage during the sampling process, i.e., avoiding the use of text to partition video
frames, we also consider the interaction between the original text and video features:

L = LTs,Vf
+ LTs,Vp + LTw,Vp . (11)

To further improve sampling performance, we optimize the KL divergence over the similarities:
LKL
+ = ET,V [KL(STs,Vf

||ST+
s ,V +

f
) + KL(STs,Vp ||ST+

s ,V +
p
) + KL(STw,Vp ||ST+

w ,V +
p
)],

LKL
− = ET,V [KL(STs,Vf

||ST−
s ,V −

f
) + KL(STs,Vp

||ST−
s ,V −

p
) + KL(STw,Vp

||ST−
w ,V −

p
)].

(12)

We aggregate all similarity scores to compute the total similarity loss Ltotal:
Ltotal = L+ L+ + L− + LKL

+ + LKL
− . (13)

Sampling. After training, we compute all similarities, including STs,Vf
, STs,Vp

, and STw,Vp
, which

are then aggregated into a final similarity matrix to calculate the corresponding retrieval metrics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We adopt five benchmark datasets for the evaluation, including MSRVTT Xu et al. (2016), DiDeMo
Anne Hendricks et al. (2017), LSMDC Rohrbach et al. (2015), ActivityNet Krishna et al. (2017) and
Charades Sigurdsson et al. (2016). We evaluate retrieval performance using Recall at rank K (R@K,
K=1,5,10), Median Rank (MdR), and Mean Rank (MnR). Higher R@K values, together with lower
MdR and MnR values, indicate better retrieval performance. The model backbone is initialized from
pre-trained CLIP-ViT-B/32. More experimental settings are provided in Appendix A.1.

4.2 COMPARISON WITH STATE-OF-THE-ART

We compare the performance of SKRR with recent state-of-the-art methods and list the results in Ta-
ble 1 and Table 2. SKRR consistently achieves leading retrieval performance across all five datasets.
On MSRVTT, SKRR based on CLIP-ViT-B/32 improves the text-to-video retrieval metric R@1
from 50.2 to 50.5 (+0.6%) compared to the text expansion model T-Mass Wang et al. (2024), while
based on ViT-B/16, it improves R@10 from 85.6 to 87.2 (+1.9%). Meanwhile, SKRR continues to
demonstrate strong performance in long-video retrieval tasks such as DiDeMo Anne Hendricks et al.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Methods
DiDeMo (Text-to-Video) LSMDC (Text-to-Video)

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
CE Liu et al. (2019) 16.1 41.1 - 8.3 43.7 11.2 26.9 34.8 25.3 -
EMCL-Net Jin et al. (2022) 45.3 74.2 82.3 2.0 12.3 23.9 46.4 53.7 8.0 -
TS2-Net Liu et al. (2022) 41.8 71.6 82.0 2.0 14.8 23.4 42.3 50.9 9.0 56.9
X-Pool Gorti et al. (2022) 44.6 73.2 82.0 2.0 15.4 25.2 43.7 53.5 8.0 53.2
CLIP-VIP Xue et al. (2022) 48.6 77.1 84.4 2.0 - 25.6 45.3 54.4 8.0 -
DiCoSA Jin et al. (2023b) 45.7 74.6 83.5 2.0 14.7 25.4 43.6 54.0 8.0 41.9
DiffusionRet Jin et al. (2023c) 46.7 74.7 82.7 2.0 14.3 24.4 43.1 54.3 8.0 40.7
UATVR Fang et al. (2023) 43.1 71.8 82.3 2.0 15.1 - - - - -
SKRR 51.0 75.3 84.7 1.0 13.6 29.3 49.6 58.4 6.0 40.3

Methods
ActivityNet (Text-to-Video) Charades (Text-to-Video)

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
ClipBERT Lei et al. (2021) 21.3 49.0 63.5 6.0 - 6.7 17.3 25.2 32.0 149.7
Clip4clip Luo et al. (2022) 40.5 72.4 83.6 2.0 7.5 9.9 27.1 36.8 21.0 85.4
HBI Jin et al. (2023a) 42.2 73.0 84.6 2.0 6.6 - - - - -
T-Mass Wang et al. (2024) - - - - - 14.2 36.2 48.3 12.0 54.8
SKRR 47.0 76.2 86.4 2.0 6.3 19.3 42.2 53.5 8.0 49.7

Table 2: Text-to-video retrieval performance on the DiDeMo Anne Hendricks et al. (2017), LSMDC
Rohrbach et al. (2015), ActivityNet Krishna et al. (2017) and Charades Sigurdsson et al. (2016).

(2017). Compared to the frame-level feature method X-Pool Gorti et al. (2022), the R@1 improves
from 44.6 to 51.0 (+14.3%), highlighting the importance of feature selection and compression rather
than relying on the model to automatically filter effective frames. Notably, SKRR maintains high
retrieval performance even on the sparse text dataset LSMDC Rohrbach et al. (2015). Compared to
the external text expansion method CLIP-VIP Xue et al. (2022), SKRR improves R@1 from 25.6 to
29.3 (+14.5%). In summary, SKRR demonstrates outstanding retrieval performance for both sparse
text queries and long-video retrieval tasks.

4.3 ABLATION STUDY

In Table 3, we evaluate the core modules of SKRR, including DPFP (Spot-Path and Recover-Path)
and DVFI (Macro-View and Micro-View). Row 1 represents our baseline, which applies frame
feature average pooling as in Luo et al. (2022). Rows 2 and 3 adopt the feature interaction in
Equation 1 while partitioning the video frame features. Compared with Row 1, the performance
improves from 43.4 to 47.2, demonstrating the effectiveness of the Spot-Path partition and Macro-
View interaction. In addition, Row 4 separately illustrates the complementary textual advantage of
the Recover-Path, but the introduction of additional text increases the memory cost. Finally, Row 5
combines the DPFP and DVFI modules, achieving 50.5 R@1 retrieval performance.

The proposed DPFP and DVFI modules work synergistically to enhance cross-modal retrieval per-
formance from three perspectives. (1) Human cognition. DPFP first selects salient frames and
patches (V +

f , V +
p ) while discarding irrelevant ones, and DVFI further emphasizes salient objects

within these patches, resembling the way humans filter information from global to local cues. (2)
Alignment accuracy. By filtering unaligned visual content, DPFP improves coarse- and fine-grained
alignment, while DVFI alleviates redundancy by iteratively compressing patch features, making
alignment with sentence- and word-level text more precise. (3) Computational cost. DPFP reduces
the number of frames and patches involved (N+

f < Nf , N+
p < Np), and DVFI progressively halves

the remaining patches, together substantially lowering feature counts and computational overhead.

In Table 4, we evaluate the performance of interactions at different granularities, consistently in-
corporating STs,Vf

+ STw,Vp
. By comparing the three groups of results, we find that incorporating

STs,Vp
alone into SKRR model training can improve the overall retrieval performance. This result

demonstrates the effectiveness of PCFM in aggregating patch features and the appropriateness of
the granularity for cross-granularity alignment.

In Table 5, we compare the effects of different hyperparameters, N+
f = ℏNf and N+

p = λ̄Np,
in the DPFP and DVFI modules on retrieval performance and speed, where ℏ and λ̄ denote the
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DPFPSP DPFPRP DVFIMaV DVFIMiV R@1↑ R@5↑ R@10↑ MnR↓ TrainTime↓ TestTime↓ GPU↓
1 43.4 70.9 81.1 16.4 11.5h 30s 11.41GB
2 ✓ 45.6 73.0 82.7 14.3 11.0h 28s 11.05GB
3 ✓ ✓ 47.2 74.5 84.4 11.6 12.3h 37s 11.75GB
4 ✓ ✓ 47.9 74.4 84.7 11.8 14.2h 52s 13.65GB
5 ✓ ✓ ✓ ✓ 50.5 76.1 86.2 11.3 15.3h 62s 14.29GB

Table 3: Ablation studies of DPFP and DVFI modules on the MSRVTT Xu et al. (2016).

STs,Vf
+ STw,Vp

Spot-Path (+) Recover-Path (−) SKRR-Path (+,−)

R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓
+STs,Vp

47.2 74.5 84.4 11.6 47.9 74.4 84.7 11.8 50.5 76.1 86.2 11.3
+STw,Vf

46.3 73.4 83.8 14.1 47.4 74.2 84.1 13.8 47.6 74.5 84.2 13.5
+STs,Vp

+ STw,Vf
46.8 72.6 83.9 13.5 47.5 74.8 84.2 12.5 49.2 75.3 85.4 12.6

Table 4: Ablation studies on interactions at different granularities on the MSRVTT Xu et al. (2016).

frame partition factor in DPFP and the patch compression factor in PFCM, respectively. In Row 1,
DPFP and DVFI are removed as a reference. In the remaining experiments, we find that retrieval
performance reaches its optimum when (ℏ, λ̄) = (0.50, 0.50). This result indicates that neither
excessive nor overly conservative macro-frame selection and micro-patch compression are desirable;
instead, a balance should be achieved at the optimal number of modalities for text-video interaction.

ℏ, λ̄ N+
f N+

p R@1↑ R@5↑ R@10↑ MnR↓ TrainTime↓ TestTime↓ GPU↓

(1.00, 1.00) 12 588 44.2 71.7 82.0 15.2 13.6h 98s 12.43GB

(0.75, 0.50) 12 DPFP−−−−→ 9 441 PFCM−−−−→ 221 PFCM−−−−→ 111 PFCM−−−−→ 056 45.7 72.4 83.2 14.6 15.6h 61s 14.78GB

(0.50, 0.75) 12 DPFP−−−−→ 6 294 PFCM−−−−→ 187 PFCM−−−−→ 141 PFCM−−−−→ 106 48.5 75.7 85.3 12.5 16.2h 68s 14.56GB

(0.50, 0.50) 12 DPFP−−−−→ 6 294 PFCM−−−−→ 147 PFCM−−−−→ 074 PFCM−−−−→ 037 50.5 76.1 86.2 11.3 15.3h 62s 14.29GB

(0.50, 0.25) 12 DPFP−−−−→ 6 294 PFCM−−−−→ 074 PFCM−−−−→ 019 PFCM−−−−→ 005 49.2 76.2 85.7 12.1 14.2h 49s 13.78GB

(0.25, 0.50) 12 DPFP−−−−→ 3 147 PFCM−−−−→ 074 PFCM−−−−→ 037 PFCM−−−−→ 019 48.4 75.2 85.1 12.5 14.7h 55s 14.02GB

Table 5: Ablation studies of the DPFP and DVFI modules with hyper-parameters N+
f and N+

p .

4.4 MORE RESULTS

We provide more results in the appendix, including A.1: experiment setups and implementation de-
tails; A.2: Video-to-text retrieval performance on the DiDeMo, LSMDC, ActivityNet, and Charades
datasets, generalization and video question answering performance; A.3: further ablation studies on
DPFP and DVFI modules; A.4: visualization results; A.5: ethics statement.

5 CONCLUSION

To overcome the challenges in feature enhancement and cross-granularity interaction for sparse
text queries and complex visual cues, we propose a novel text-video retrieval framework, SKRR,
i.e., Spot the Key, Recover the Rest. SKRR consists of the Dual-Path Feature Partitioning module
(DPFP) for feature enhancement and the Dual-View Feature Interaction module (DVFI) for feature
interaction. In DPFP, we simulate the human macro-level cognitive perspective by partitioning vi-
sual features into two categories based on their relevance to the text query and supplementing the less
relevant features with additional textual information. In DVFI, we simulate the human alignment
strategy from macro- to micro-level, effectively focusing on local visual features while comprehen-
sively considering fine-grained interactions. DPFP and DVFI work synergistically, jointly promoting
cross-modal feature enhancement and interaction. Experiments on five benchmark datasets demon-
strate that the SKRR model achieves state-of-the-art performance, validating the effectiveness of our
approach. We hope that this work will provide inspiration to the video retrieval community.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

Datasets. We adopt five benchmark datasets for the evaluation, including MSRVTT Xu et al. (2016),
DiDeMo Anne Hendricks et al. (2017), LSMDC Rohrbach et al. (2015), ActivityNet Krishna et al.
(2017) and Charades Sigurdsson et al. (2016). MSRVTT consists of 10,000 YouTube videos, each
paired with 20 captions. We follow the training protocol in Yu et al. (2018) and evaluate our model
SKRR on both text-to-video and video-to-text retrieval tasks using the 1K-A test split. DiDeMo
contains 10,464 video clips and 40,543 captions. We concatenate the descriptions of individual video
segments to construct a “video-paragraph” for retrieval. We use the training and testing protocols
from Gabeur et al. (2020). LSMDC includes 118,081 video clips from 202 movies. The duration of
videos in the LSMDC dataset is short. We use the split from Torabi et al. (2016), with 1,000 videos
reserved for testing. ActivityNet contains densely annotated temporal segments for 20,000 YouTube
videos. Following Jin et al. (2023a), we report results on the “val1” split, using 10,009 videos for
training and 4,917 for testing. Charades consists of 9,848 video clips, where each corresponds to a
text description. We adopt the split protocol from Lin et al. (2022).

Metrics. We evaluate retrieval performance using Recall at rank K (R@K, K=1,5,10, higher is
better), Median Rank (MdR, lower is better), and Mean Rank (MnR, lower is better). R@K measures
the percentage of test samples whose correct results appear in the top-K retrieved items. MdR reports
the median rank of the ground-truth results, and MnR reports their mean rank.

Implementation Details. Following previous methods Luo et al. (2022); Gorti et al. (2022), we use
CLIP Radford et al. (2021) as the backbone model for both text and video feature extraction. The
SKRR model is trained for 5 epochs with a batch size of 32, and the feature dimension D is set to
512. For the MSRVTT, LSMDC, and Charades datasets, we set the frame length to Nf = 12 and
the word length to Nw = 32. For the long video DiDeMo and ActivityNet datasets, we set the frame
length to Nf = 64 and the word length to Nw = 64. We uniformly sample Nf frames from each
video clip and resize them to 224 × 224 pixels. Accordingly, the number of patches per frame is
set to Np = 224×224

32×32 = 49. We adopt the vision-language model VILA-13B Lin et al. (2024) to
generate N=

s = 6 text descriptions for each video. The initial learning rate is set to 1e-5 for both the
text encoder and the video encoder. We train our model on 4 NVIDIA RTX 4090 24GB GPUs, and
the training process takes approximately 15 hours.

A.2 PERFORMANCE

Video-to-text Retrieval Performance. In Table 6, we report the video-to-text retrieval performance
on the DiDeMo Anne Hendricks et al. (2017), LSMDC Rohrbach et al. (2015), ActivityNet Krishna
et al. (2017) and Charades Sigurdsson et al. (2016) datasets. The video-to-text retrieval task in-
volves finding the matching text given visual features, which is the opposite of the text-to-video
retrieval task. Table 6 shows that SKRR consistently improves retrieval performance across these
four datasets. For example, on the long-video DiDeMo dataset, SKRR achieves a 1.3-point improve-
ment in R@1 compared to the text-only enhancement method T-Mass Wang et al. (2024), thanks to
its visual feature enhancement and text augmentation.

Cross-domain Generalization Performance. Cross-domain generalization performance measures
the ability of a model to perform on data from unseen domains. In Table 7, we use MSRVTT Xu et al.
(2016) as the source domain for training and DiDeMo Anne Hendricks et al. (2017) and LSMDC
Rohrbach et al. (2015) as the target domains for testing to evaluate the generalization performance
of SKRR. Compared with recent state-of-the-art methods, e.g., T-Mass Wang et al. (2024), SKRR
demonstrates consistent performance advantages.

Video Question Answering Performance. Let D = (Q,V,A) denote a video question answering
dataset, where Q is a set of questions, V is a set of videos, and A is a set of answers. The task
of video question answering requires the model to answer a question q ∈ Q by referring to the
corresponding video v ∈ V , aiming to produce an answer a that closely matches the ground truth.
This process can be approximated as:

â = argmax
a∈A

Fθ(a|q, v), (14)
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Methods
DiDeMo (Video-to-text) LSMDC (Video-to-text)

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Clip4clip Luo et al. (2022) 41.4 68.2 79.1 2.0 12.4 20.8 39.0 48.6 12.0 54.2
EMCL-Net Jin et al. (2022) 45.7 74.3 82.7 2.0 10.9 22.2 40.6 49.2 12.0 -
DiffusionRet Jin et al. (2023c) 46.2 74.3 82.2 2.0 10.7 23.0 43.5 51.5 9.0 40.2
T-Mass Wang et al. (2024) 49.1 76.4 85.9 2.0 8.0 26.0 48.4 57.5 6.0 37.8
SKRR 50.4 77.8 86.5 1.0 8.6 25.9 48.5 57.4 6.0 38.1

Methods
ActivityNet (Video-to-text) Charades (Video-to-text)

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Clip4clip Luo et al. (2022) 41.4 73.7 85.3 2.0 6.7 - - - - -
EMCL-Net Jin et al. (2022) 42.7 74.0 - 2.0 - - - - - -
DiffusionRet Jin et al. (2023c) 43.8 75.3 86.7 2.0 6.3 - - - - -
T-Mass Wang et al. (2024) - - - - - 13.2 37.3 48.5 11.0 56.1
SKRR 44.5 77.3 87.4 1.0 5.4 17.5 40.6 49.9 10.0 45.7

Table 6: Video-to-text retrieval performance on the DiDeMo Anne Hendricks et al. (2017), LSMDC
Rohrbach et al. (2015), ActivityNet Krishna et al. (2017) and Charades Sigurdsson et al. (2016).

Methods
MSRVTT>MSRVTT MSRVTT>DiDeMo MSRVTT>LSMDC

R@1↑ R@Sum↑ MdR↓ R@1↑ R@Sum↑ MdR↓ R@1↑ R@Sum↑ MdR↓
CLIP4Clip Luo et al. (2022) 43.8 195.8 2.0 31.8 154.9 4.0 15.3 87.1 21.0
X-Pool Gorti et al. (2022) 46.9 201.9 2.0 35.3 168.5 3.0 16.4 93.5 18.0
DiffusionRet Jin et al. (2023c) 49.0 206.9 2.0 33.2 160.9 3.0 17.1 90.5 21.0
T-Mass Wang et al. (2024) 50.2 210.6 1.0 39.5 178.2 2.0 19.7 102.5 14.0
SKRR 51.0 211.0 1.0 41.2 183.6 2.0 20.2 105.0 12.0

Table 7: Text-to-video cross-domain generalization performance. X > Y , where X denotes the
training data and Y denotes the testing data. Here, R@Sum=R@1+R@5+R@10.

where θ represents the trainable parameters group, F represents the modeling function, and q ∈ Q
and v ∈ V . Following previous VQA methods Piergiovanni et al. (2022); Li et al. (2023), we directly
apply DPSPSP, DVFIMaV, and DVFIMiV to process v for the video question answering task, with the
accuracy performance comparison presented in Table 8.

Methods Accuracy(%)↑
Co-Tokenization Piergiovanni et al. (2022) 45.7
EMCL-QA Jin et al. (2022) 45.8
HBI Jin et al. (2023a) 46.2
TG-VQA Li et al. (2023) 46.3
SKRR 47.2

Table 8: Video question answering performance on the MSRVTT-QA Xu et al. (2016).

A.3 ABLATION STUDY

Ablation Study of Sampling Frame Numbers. In Table 9, we present a comparison of text-to-
video retrieval performance under different numbers of sampled frames on the MSRVTT and Cha-
rades datasets. Since most MSRVTT videos are around 12 seconds long, increasing Nf brings
limited performance gains. For a fair comparison with existing methods, we uniformly set Nf = 12
on the MSRVTT dataset.

Ablation Study of Feature Aggregation. Feature aggregation refers to pooling multiple features
into a single representation to enable direct similarity computation between text and video. In Figure
3, we present three mainstream feature aggregation methods and the similarity computation between
single-instance and multi-instance features, including (a) Average, (b) MLP, and (c) MHA. In Table

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Nf

MSRVTT (Text-to-Video) Charades (Text-to-Video)

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
4 43.2 65.7 74.6 5.0 17.9 10.2 34.7 42.9 17.0 69.1
8 47.8 74.2 83.1 3.0 15.6 16.8 38.5 48.6 10.0 54.6
12 50.5 76.1 86.2 1.0 11.3 19.3 42.2 53.5 8.0 49.7
16 51.0 76.7 86.7 1.0 11.0 19.9 43.6 55.7 7.0 47.3
20 51.5 76.8 86.9 1.0 10.7 21.3 45.7 56.3 6.0 43.6

Table 9: Ablation study of different sampling frame numbers on the MSRVTT and Charades.

(a) Average

………

………

MLP

MLP

Max

Max

(c) MHA

Multi-Head 

SelfAttention

Multi-Head 

SelfAttention

………

………

(b) MLP

……… MLP ………
Multi-Head 

CrossAttention

………

………

Average

Pooling

Average

Pooling

………
Average

Pooling

Figure 3: Feature Aggregation. The top part illustrates the similarity computation between single-
instance and multi-instance features, such as STs,Vf

. The bottom part illustrates the similarity com-
putation between multi-instance features, such as STw,Vp

. (a) Average: average pooling; (b) MLP:
multilayer perceptron, used for linear mapping of feature weights; (c) MHA: multi-head attention
mechanism, including both cross-attention and self-attention.

10, we report the retrieval performance of SKRR combined with the three feature aggregation meth-
ods. Note that MHAAverage and MHAMLP indicate that the features are first fed into MHA, followed
by feature aggregation using (a) Average or (b) MLP, respectively.

Methods R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Average 45.4 72.9 83.4 2.0 14.4
MLP 50.5 76.1 86.2 1.0 11.3
MHAAverage 49.5 76.8 86.1 1.0 11.6
MHAMLP 51.4 77.3 87.5 1.0 10.4

Table 10: Ablation study of different feature aggregation on the MSRVTT.

Ablation Study of KL Divergence. Data leakage includes the following two common cases: Case
1: the model has prior knowledge of the text paired with a video and uses this matched text to
enhance the video. Case 2: using VLMs to generate textual descriptions of videos, which are then
directly used as query texts for retrieval. In Equation 12, we adopt knowledge distillation to jointly
optimize the learning of the original text-video similarity. The main purpose of this process is to
prevent retrieval data leakage and to simplify the sampling procedure. In Table 11, we compare the
performance differences with and without using KL divergence. Compared with w/o KL, the w KL
setting achieves superior performance (+4.3%).

Methods R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
w/o KL 48.4 75.5 84.2 2.0 13.2
w/ KL 50.5 76.1 86.2 1.0 11.3

Table 11: Ablation study of KL Divergence on the MSRVTT.
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A.4 VISUALIZATION

Visualization of Recover-Path Benefits. In Figure 4, we visualize the retrieval performance im-
provements achieved by incorporating the Recover-Path. On the MSRVTT test set, which contains
1,000 query texts and 1,000 candidate videos, the model constructs a 1000×1000 similarity matrix,
where the 1,000 values along the main diagonal represent the similarities of positive pairs, and the
off-diagonal values correspond to negative pairs. The results show that the similarity of positive
pairs shifts to the right, while that of negative pairs shifts to the left, indicating that the Recover-Path
effectively enhances the discriminability of correct matches.

Visualization of Patch Compression. In Figure 5, we illustrate the five-stage compression pro-
cess of visual feature patches. Specifically, we select six frames from Video1409 and Video1308,
and set the compression ratio for each step as λ̄ = 0.5. We clearly observe that as the number of
steps increases, the number of patch features gradually decreases, while the representation increas-
ingly focuses on important entity features. This observation is consistent with human cognition of
microscopic alignment.

Visualization of Spot-Path Process. In Figure 6, we visualize the frame selection and patch com-
pression process within the Spot-Path during training. Red × marks indicate the discarded video
frames, while the retained frames are used for patch feature compression. The last three rows show
the visual results of the three successive rounds of patch compression.

Visualization of Retrieval Results. In Figure 7, we present a set of successful and failed retrieval
cases during testing. Notably, most failures are attributed to the simplicity of textual descriptions
and the high similarity among video scenes.

Visualization of VQA Process. In Figure 8, we visualize two examples of video question answer-
ing. The top part of the figure shows the query questions and corresponding video frames, while the
bottom part presents the outputs from SKRR as well as the ground-truth answers. Both question-
answering examples achieve 100% accuracy.

A.5 ETHICS STATEMENT

This study does not involve human participants or the collection of personally identifiable informa-
tion. The datasets employed in this research are publicly available and have undergone prior ethical
review for academic use. We ensured compliance with relevant data licensing agreements and con-
ducted all experiments in accordance with the terms of use of the datasets. No conflicts of interest
or external sponsorship influenced the outcomes of this research.

Large language models (e.g., GPT-4) were used solely as auxiliary tools to enhance the clarity and
fluency of English writing. They did not contribute to the conception of ideas, the scientific content,
data analysis, or the conclusions of this paper. We consider the use of LLMs in this limited capacity
to pose no ethical concerns.

We have made every effort to ensure that our results are fully reproducible. The main paper and
its appendix provide detailed descriptions of the proposed framework, including data processing
pipelines, model architecture, and training procedures. For reproducibility, all datasets used in our
experiments are publicly available, and we provide comprehensive descriptions of the preprocessing
steps. We will release our code, data, and pretrained models.
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(a) MSRVTT (b) DiDeMo (c) LSMDC
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Figure 4: Visualization of similarity distributions under w/o Recover-Path and w/ Recover-Path on
the MSRVTT, DiDeMo, and LSMDC datasets. The x-axis represents similarity scores, and the y-
axis indicates the proportion. From top to bottom, the similarity of positive pairs gradually increases,
while that of negative pairs gradually decreases.

Query1409: a cartoon character is hit on the head with a bowling ball

Input Step0 Step1 Step2 Step3 Step4 Step5

Query1308: a cartoon character looking at a box

Input Step0 Step1 Step2 Step3 Step4 Step5

Figure 5: Visualization of the patch feature compression process. Six frames are selected from
Video1409 and Video1308 on the MSRVTT, where the number of patches is reduced by half at each
step. Note that a larger number of steps does not necessarily lead to better results; intuitively, Step 4
is sufficient to achieve the desired outcome.
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Query1355:an animated girl and boy doing romance Query1527: pekids using a mobile watch

Figure 6: Visualization of frame selection and patch compression process within the Spot-Path
during training. Red × indicates Recover-Path process similar to Spot-Path.

Query7060: a man extinguishes a fire outside. Query9243: they are singing a song and playing a guitar.

Figure 7: Visualization of successful case Query7060 and failed case Query9243. The retrieval
results are displayed in descending order of similarity, where videos with green bounding boxes
indicate the correct matches.

Question7015: What is a female doing? Question7020: What are the realistic leaves and flowers for?

Ground Truth：laughOur Answer：laugh Ground Truth：cakeOur Answer： cake

Figure 8: Visualization of video question answering. “Our Answer” denotes SKRR QA’s selected
result from the candidate answers, while “Ground Truth” indicates the correct answer.
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