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Abstract. Quantifying aleatoric uncertainty in medical image segmen-
tation is critical since it is a reflection of the natural variability ob-
served among expert annotators. A conventional approach is to model
the segmentation distribution using the generative model, but current
methods limit the expression ability of generative models. While current
diffusion-based approaches have demonstrated impressive performance in
approximating the data distribution, their inherent stochastic sampling
process and inability to model exact densities limit their effectiveness
in accurately capturing uncertainty. In contrast, our proposed method
leverages conditional flow matching, a simulation-free flow-based gen-
erative model that learns an exact density, to produce highly accurate
segmentation results. By guiding the flow model on the input image and
sampling multiple data points, our approach synthesizes segmentation
samples whose pixel-wise variance reliably reflects the underlying data
distribution. This sampling strategy captures uncertainties in regions
with ambiguous boundaries, offering robust quantification that mirrors
inter-annotator differences. Experimental results demonstrate that our
method not only achieves competitive segmentation accuracy but also
generates uncertainty maps that provide deeper insights into the relia-
bility of the segmentation outcomes. The code for this paper is freely
available at https://github.com/huynhspm/Data-Uncertainty

Keywords: Deep Learning · Segmentation · Uncertainty · Generative ·
Flow

1 Introduction

Medical image segmentation plays a vital role in diagnosis and treatment plan-
ning, making it important to understand how confident a model is in its predic-
tions. Automated segmentation’s uncertainty can alert clinicians to ambiguous
cases, potentially avoiding misdiagnoses. In clinical practice, even expert anno-
tators often disagree on boundaries or extents, meaning there may be multiple
plausible “ground truth” segmentations for a given image [4]. This phenomenon
is often called aleatoric (or data) uncertainty. The intrinsic ambiguity in the data

https://github.com/huynhspm/Data-Uncertainty
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that a deterministic model cannot express with a single output and cannot be re-
duced with more data [11]. Indeed, studies report low inter-annotator agreement
in many medical segmentation tasks, underscoring the need for models that can
capture this ambiguity [9].

Recent studies have explored a variety of approaches to quantify uncertainty
in medical image segmentation [10,8]. Classical methods such as Monte Carlo
dropout [5] and deep ensembles [15] estimate epistemic uncertainty by perform-
ing multiple stochastic forward passes through a network. Alternatively, Bayesian
neural networks offer a principled approach by treating the network weights
as random variables with posterior distributions conditioned on the training
data, thus naturally capturing epistemic uncertainty through integration over
the weight space [3]. These methods, however, often focus on epistemic uncer-
tainty, the uncertainty in the model’s parameters, and may not fully capture
the aleatoric uncertainty. In contrast, generative models, such as conditional
variational autoencoders [20], address these limitations by learning a joint la-
tent representation of the input images and their segmentation maps. However,
current generative models based on diffusion models [6,21,18] introduce stochas-
ticity at sampling time, leading to unreliable uncertainty mapping. In recent
years, conditional flow matching [16] recently emerged as an alternative method
to approximate data distribution by learning continuous, smooth diffeomorphic
transforms from a simple distribution into complex data distribution that allow
smooth sample generation.
Contribution: In this work, we introduce a novel method for estimating
aleatoric uncertainty in medical image segmentation using a conditional flow
matching framework. Unlike diffusion-based models, which approximate the seg-
mentation map distribution and introduce stochasticity during sampling, our
approach directly learns an exact, deterministic velocity field conditioned on
both the input image and expert annotations. This design allows us to generate
segmentation samples that not only align closely with the underlying anatomi-
cal context but also accurately capture the inherent variability among multiple
expert annotations.
Related work: Uncertainty segmentation estimation: Capturing both
epistemic and aleatoric is crucial for modeling the uncertainty in medical seg-
mentation. Bayesian neural networks (BNNs) have been employed to capture
epistemic uncertainty by placing priors over model parameters and using vari-
ational inference for posterior estimation [19]. However, BNNs often face chal-
lenges with computational complexity and scalability. Monte Carlo dropout [5]
offers a more practical alternative by approximating Bayesian inference through
dropout at inference time, enabling uncertainty estimation with minimal com-
putational overhead. A recent advancement, Laplacian Segmentation Networks
(LSN) [25], leverages a Laplacian pyramid to extract multi-scale features and
models scale specific priors through independently trained branches, resulting in
improved estimation of epistemic uncertainty. In contrast, Aleatoric uncertainty
aims to capture the inherent variability of data distribution. Hence, learning the
underlying data distribution is often the goal of current approaches. Probabilis-
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tic UNet (Prob-UNet) [13] and its variants PHiSeg [2] introduce a latent variable
model to generate diverse segmentation hypotheses. Recently, Collectively Intel-
ligent Medical Diffusion (CIMD) [18] employs a diffusion-based generative pro-
cess that iteratively corrupts and refines segmentation masks conditioned on the
input image, enabling coherent sampling of multimodal hypotheses and robust
quantification of segmentation ambiguity. As a continuation of diffusion-based
approaches, Conditional Categorical Diffusion Models (CCDM) [24] extend this
idea by introducing a categorical diffusion process that directly operates on dis-
crete label spaces, thereby improving the modeling of multimodal and ambiguous
segmentation outputs. Another approach is test-time augmentation [22], which
runs the segmentation model on various transformed versions of the input (ro-
tated, scaled, noised, etc.) and observes the consistency of the outputs.
Deep Generative Models: Generative models have significantly advanced
medical image segmentation by modeling the data distribution [23]. Variational
Autoencoders (VAEs) [12] introduced a probabilistic framework that learns la-
tent representations of data, facilitating the generation of diverse segmentation
outputs. Despite early success, VAEs soon suffer from blurry outputs due to the
inherent trade-off between reconstruction fidelity and latent space regulariza-
tion. Diffusion models [21,6] address this by defining a forward process that adds
noise to the data and a learned reverse process that denoises it, producing high-
quality and diversely generated samples. Conditional flow matching [16] learning
a vector field that maps simple distributions to complex ones without requiring
simulation of the probabilistic flow ordinary differential equation (ODE). The
deterministic, locally smooth flow also allows generating samples that closely
resemble a smooth data manifold and better capture data uncertainty.

2 Method

Our goal is to directly model the full segmentation distribution, hence capturing
the variability of expert annotations. In standard diffusion models, the forward
process adds noise incrementally to the data, and the reverse process is learned
via a score function. Although diffusion models are capable of sampling from
complex distributions, the injected noise tends to obscure the fine local structure
associated with expert uncertainty. In contrast, flow matching directly learns a
velocity field conditioned on the image and on local expert annotations, thereby
preserving local structure. Moreover, because the flow is designed to interpolate
between source and target distribution, the resulting samples more faithfully
reflect the true underlying uncertainty-without the potential over-smoothing or
blurring that can arise from the stochastic noise in diffusion processes. Formally,
we have a medical segmentation dataset

D = {(Xi, {S(1)
i , S

(2)
i , . . . , S

(E)
i })}Ni=1, (1)

where Xi denotes the ith medical image and {S(e)
i }Ee=1 are the segmentation

maps produced by E independent experts. Such a multi-expert annotation scheme
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Fig. 1: Illustration of our proposed conditional flow matching framework for mod-
eling multi-expert segmentation variability. At t = 0, samples S0 are drawn from
a simple Gaussian prior p0(S). As t progresses, the flow ψt (green lines) evolves
these samples toward the target distribution q(S | X) at t = 1. Unlike dif-
fusion methods (red contours) that inject noise and risk blurring fine details,
flow matching directly learns a velocity field uθ(t, S,X) that preserves local
structure. Multiple expert segmentations (blue, purple, and yellow boxes) are
incorporated by conditioning on their annotation. The guide image X (bottom)
provides anatomical context to ensure samples S(e) align closely with the under-
lying anatomy.

is crucial for capturing inter-observer variability, which reflects the inherent
aleatoric uncertainty present in the segmentation task.
Segmentation via Conditional Flow Matching: To model the complex and
multimodal segmentation distribution q(S | X) conditioned on the image X, we
adopt a conditional flow matching framework [16]. Flow matching is a genera-
tive model that constructs a time-dependent probability path {pt(S | X)}t∈[0,1]

bridging a simple source distribution p0(S) (e.g., a simple, isotropic Gaussian)
and the target distribution q(S | X). Specifically, we define a flow ψt that evolves
a source sample S0 ∼ p0 according to the ODE,

d

dt
ψt(S0) = uθ(t, ψt(S0), X), ψ0(S0) = S0, (2)

where uθ(t, S,X) is a learnable, time-dependent velocity field conditioned on the
image X. To incorporate the variability of expert annotations, we condition the
probability path on a particular expert segmentation S(e). This gives rise to a
conditional probability path

pt(S | S(e), X) = N (S; t S(e), (1− t)2I), (3)
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which satisfies the boundary conditions

pt=0(S | S(e), X) = p0(S), pt=1(S | S(e), X) = δ(S − S(e)). (4)

The overall (marginal) segmentation distribution is then obtained by integrating
over the expert annotations:

pt(S | X) =

∫
pt(S | S(e), X) q(S(e) | X) dS(e). (5)

The velocity field uθ is trained via a regression loss that forces it to match the
“ground-truth” conditional velocity. In our case, if we define

St = (1− t)S0 + t S(e), (6)

then the target velocity is given by

u(t, St | S(e), X) =
S(e) − S0

1− t
. (7)

Accordingly, we optimize the conditional flow matching (CFM) loss

LCFM(θ) = Et,S0,S(e),X

[∥∥∥∥uθ(t, St, X)− S(e) − S0

1− t

∥∥∥∥2
]
. (8)

In order to further align the segmentation with the visual content of the im-
age while preserving the diversity arising from expert annotations, we employ
classifier-free guidance [7]. Specifically, the velocity field is learned in both con-
ditional and unconditional forms, and the final guided velocity is computed as

uguided
θ (t, S,X) = uθ(t, S,X) + w

(
uθ(t, S,X)− uθ(t, S,∅)

)
, (9)

where w is a hyperparameter that controls the strength of guidance toward the
conditional direction. The term uθ(t, S,∅) represents the unconditional veloc-
ity, obtained by removing the image conditioning. By training a single network
with random conditioning dropout (e.g., with probability 0.5), we enable both
conditional and unconditional predictions using shared parameters θ. This guid-
ance strategy enhances the fidelity of the segmentation maps to the anatomical
structures present in X while preserving the diversity of plausible expert inter-
pretations.
Quantification of Aleatoric Uncertainty: A central objective of our method
is to quantify the aleatoric uncertainty due to the inherent variability among
expert annotations. Once the conditional flow matching model is trained, a seg-
mentation map S1 is obtained by integrating the guided velocity field:

S1 = ψ1(S0;X), with S0 ∼ p0(S). (10)

To capture uncertainty, we generate multiple segmentation samples by drawing
different source samples {S(i)

0 }Mi=1 and propagating each through the learned
flow:

S
(i)
1 = ψ1(S

(i)
0 ;X), i = 1, . . . ,M. (11)

The variability among the set {S(i)
1 }Mi=1 is then quantified using the pixel-wise

variance, which reflects the variability of annotators.
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3 Experiment Settings

Data: We evaluate our method in two datasets, the Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-IDRI) [1] and the
Multi-Rater Medical Image Segmentation dataset for Nasopharyngeal Carci-
noma (MMIS) [17]. The LIDC-IDRI dataset contains 1,018 chest CT scans,
where each scan is a 3D volumetric dataset comprising multiple 2D slices. The
dataset focuses on lung nodules and includes detailed annotations by up to four
experienced radiologists. Following the Prob-UNet [13] preprocessing pipeline,
individual 2D slices are extracted and cropped to 128 × 128 pixels to focus on
regions containing nodules. The final dataset includes 13,508 images for training
and 1,588 images for testing. The MMIS dataset comprises MRI scans of 150
subjects across three modalities (i.e., T1, T2, and T1-Contrast), all aligned to
a common anatomical space. The gross tumor volumes of nasopharyngeal car-
cinoma were independently annotated by four senior radiologists with from five
to ten years of clinical experience. All slices are preprocessed and cropped to
128× 128 pixels, yielding 2,405 training images and 487 testing images.
Implementation: We adopt the UNet architecture within the flow matching
framework [16] and choose a resolution of 128×128 for both datasets. For the
MMIS dataset, three MRI modalities (e.g., T1, T2, FLAIR) are concatenated
along the channel dimension to form a multi-modal image prior that is provided
as input to the model. During training, a random annotation mask is selected
each time a data point is sampled, exposing the model to diverse expert inter-
pretations. To jointly train the network in both conditional and unconditional
modes, the image conditioning is randomly dropped with a fixed probability of
0.5. To train the UNet for approximating the velocity field, the Adam optimizer
is used with a learning rate of 10−4, a batch size of 64, and 100,000 iterations. At
inference, we used the midpoint method with a fixed step size of 0.01 for stable
and efficient ODE integration. A classifier-free guidance scale of 0.3 is applied to
modulate the influence of image conditioning and to generate multiple plausible
segmentation masks for each input image. All experiments are conducted on an
NVIDIA A100 GPU with 80 GB of memory.
Evaluation: We evaluate our model using the following metrics: (1) Generalized
Energy Distance (GED), (2) Average Normalized Cross Correlation (SNCC), (3)
Maximum Dice Matching (Dmax), and (4) Dice coefficient. The first two metrics
measure the similarity between the predicted and ground truth distributions,
with GED [14] quantifying the overall distributional discrepancy, and SNCC [2]
assessing the structural alignment between the set of generated masks and the
ground truth masks. In addition, Dmax [18] evaluates the best case alignment
between predictions and annotations by computing the maximum Dice score
between each predicted mask and all ground truth masks. The last metric, Dice,
is computed as the mean overlap between the two sets of masks. We compare
the performance of our model with Prob-UNet [13] and PHiSeg [2], using the
implementation provided in UNet-Zoo, as well as CIMD [18]. All models are
trained on the same preprocessed datasets and generate the same number of 15
sample masks for evaluation.

https://github.com/gigantenbein/UNet-Zoo
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4 Results

Table 1: Quantitative evaluation of our model on two datasets compared to three
baseline methods. The column Nsample is the number of samples generated to
calculate the uncertainty. The best results are highlighted in bold.

Dataset Method Nsample GED ↓ SNCC ↑ Dmax ↑ Dice ↑

LIDC-IDRI [1]

Prob-UNet [13] 5 0.353 0.750 0.787 0.505
10 0.300 0.817 0.859 0.520
15 0.290 0.831 0.870 0.525

PHiSeg [2] 5 0.533 0.310 0.565 0.579
10 0.518 0.342 0.578 0.581
15 0.513 0.358 0.586 0.577

CIMD [18] 5 0.395 0.791 0.778 0.556
10 0.339 0.828 0.835 0.584
15 0.297 0.830 0.870 0.556

Proposed (Ours) 5 0.409 0.816 0.739 0.537
10 0.323 0.832 0.848 0.578
15 0.292 0.835 0.876 0.595

MMIS [17]

Prob-UNet [13] 5 0.280 0.501 0.813 0.729
10 0.240 0.574 0.845 0.738
15 0.227 0.607 0.856 0.740

PHiSeg [2] 5 0.328 0.217 0.749 0.770
10 0.321 0.243 0.755 0.776
15 0.319 0.254 0.757 0.780

CIMD [18] 5 0.301 0.568 0.797 0.765
10 0.256 0.695 0.834 0.773
15 0.235 0.742 0.849 0.783

Proposed (Ours) 5 0.294 0.749 0.813 0.770
10 0.244 0.778 0.842 0.778
15 0.231 0.789 0.856 0.785

Table 1 presents a quantitative comparison of our proposed method against
three baselines: Prob-UNet [13], PHiSeg [2], and CIMD [18] on the LIDC-IDRI
and MMIS datasets. Across all evaluation metrics, our approach achieves su-
perior performance, except for GED, where it is only slightly outperformed by
Prob-UNet. For the LIDC-IDRI dataset, as the number of generated samples
increases from 5 to 15, most methods show improvement across all four met-
rics. Our method shows a steady improvement, reducing the GED from 0.409 to
0.292 and increasing SNCC from 0.816 to 0.835. Moreover, Dmax and Dice reach
0.876 and 0.595, respectively, at 15 samples, outperforming all baselines. Similar
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trends are observed in the MMIS dataset, where our approach attains SNCC of
0.789, Dmax of 0.856, and Dice of 0.785 with 15 samples, again outperforming the
baselines. Despite achieving a GED of 0.231, which is marginally higher than the
0.227 of Prob-UNet, our method still significantly outperforms the other two ap-
proaches. These results indicate that our conditional flow matching framework
not only produces segmentation maps that closely align with expert annota-
tions, but also effectively captures the inherent aleatoric uncertainty. The ability
to generate multiple plausible segmentation hypotheses, with improved fidelity
as evidenced by the evaluation metrics, demonstrates that the proposed method
can better reflect the variability observed among expert annotators.

Input

Prob-UNet

PHiSeg

GT

CIMD

Ours

Fig. 2: Comparative qualitative analysis of our proposed method against three
baseline methods is presented. Three examples from the LIDC-IDRI dataset are
shown, with the input images in the first row, followed by rows displaying four
segmentation masks and uncertainty maps for the ground truth (GT), the three
baseline methods, and our proposed method.

Figures 2 and 3 illustrate segmentation outputs generated by our model and
baseline methods on challenging cases from the LIDC-IDRI and MMIS datasets.
Visually, PHiSeg struggles to learn more than one mask from the ground truth,
whereas Prob-UNet and CIMD partially improve by capturing a greater variety
of labels. In comparison, our proposed method performs better by effectively
generating all ground truth labels, as clearly demonstrated in examples from
Figure 3. This highlights our method’s capability to effectively learn multimodal
distributions under data uncertainty. In addition, the segmentation maps exhibit
high fidelity to the anatomical structures present in the images, effectively cap-
turing fine details along the boundaries of the lesions. Notably, in regions where
expert annotations disagree, such as fuzzy lesion margins or areas with low con-
trast, the multiple segmentation samples generated by our method demonstrate
a nuanced spread of plausible contours, reflecting its robustness and adaptability.
Limitations: Despite promising results, our method has some limitations. It es-
timates only aleatoric uncertainty, neglecting epistemic uncertainty, which arises
from the uncertainty of model parameters. This could limit the method’s reliabil-
ity in cases of limited training data or out-of-distribution samples. Incorporating
epistemic uncertainty could improve robustness in such scenarios. Additionally,
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Input

Prob-UNet

PHiSeg

GT

CIMD
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Ours

Fig. 3: Comparative qualitative analysis of our proposed method against three
baseline methods is presented. Three examples from the MMIS dataset are
shown, with the input triplet images in the first row, followed by rows displaying
four segmentation masks and uncertainty maps for the ground truth (GT), the
three baseline methods, and our proposed method.

our sampling strategy, which involves randomly drawing samples and solving the
ODE integration via the midpoint method, is sensitive to noise levels and com-
putationally demanding, especially for high-resolution images. Exploring more
efficient sampling and integration strategies could address these challenges and
enhance the method’s scalability.

5 Conclusion

We introduced a novel method for estimating aleatoric uncertainty in medical im-
age segmentation using a conditional flow matching framework. Unlike stochastic
diffusion-based approaches, our method directly learns a velocity field, preserv-
ing fine anatomical details while capturing variability in multi-expert annota-
tions. Experiments on the LIDC-IDRI and MMIS datasets demonstrated that
our approach outperforms previous methods. We also show that the segmenta-
tion maps closely capture the variance observed in the ground truth, providing
doctors with reliable results for more in-depth analysis. Future work will fo-
cus on incorporating epistemic uncertainty, developing more advanced sampling
techniques beyond random noise to enhance robustness, and exploring potential
clinical applications.
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