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Abstract

Few-shot semantic segmentation aims to segment the target objects in query under
the condition of a few annotated support images. Most previous works strive
to mine more effective category information from the support to match with the
corresponding objects in query. However, they all ignored the category information
gap between query and support images. If the objects in them show large intra-
class diversity, forcibly migrating the category information from the support to
the query is ineffective. To solve this problem, we are the first to introduce an
intermediate prototype for mining both deterministic category information from the
support and adaptive category knowledge from the query. Specifically, we design
an Intermediate Prototype Mining Transformer (IPMT) to learn the prototype in
an iterative way. In each IPMT layer, we propagate the object information in both
support and query features to the prototype and then use it to activate the query
feature map. By conducting this process iteratively, both the intermediate prototype
and the query feature can be progressively improved. At last, the final query feature
is used to yield precise segmentation prediction. Extensive experiments on both
PASCAL-5i and COCO-20i datasets clearly verify the effectiveness of our IPMT
and show that it outperforms previous state-of-the-art methods by a large margin.
Code is available at https://github.com/LIUYUANWEI98/IPMT

1 Introduction
Recent great progress on computer vision rely heavily on a large amount of annotated data, the
collecting of which is a time-consuming and labor-intensive work. To solve this problem, few-shot
learning is proposed to learn a model that can be generalized to novel categories with only a few
annotated images. This setting is also closer to human learning habits which can learn knowledge
from scarce annotated examples and identify new categories quickly.

In this paper, we focus on the few-shot semantic segmentation (FSS) task which aims to segment
novel objects in the query image with a few annotated support samples. Currently, a lot of works have
been proposed for FSS and many of them are based on prototype learning. These methods [39, 28, 12]
extract prototypes from the support set to represent the category information and then match them
with the query features in a matching network to perform segmentation. Other graph-based methods
[38, 30, 35] and transformer-based methods [19, 40] share the similar high-level idea to convey the
category information from the support set to the query image.

However, these methods all rely heavily on the category information extracted from the support
set. Although it provides deterministic category information guidance, there may exist inherent
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Figure 1: t-SNE visualization of the prototype distribution. (a): The distribution of support and query
prototypes. (b): The distribution of intermediate and query prototypes. Our proposed intermediate
prototypes are closer to the query than the support prototypes.

intra-class diversity between query and support samples, which is collectively ignore by existing
works. In Figure 1 (a), we show the distribution of some support prototypes (in orange) and the
prototype generated from a query image (in magenta) of the airplane class. We observe that for the
support images that are similar with the query image (marked as “Similar support” on the right), their
prototypes are close to the query prototype in the feature space, in which case the matching network
can work well. However, for the support images that have large diversity in pose and appearance
compared with the query (marked as “Diverse support” on the left), the distance between the support
and query prototypes will be faraway. In such a case, if we forcibly migrate the category information
in the support prototype to the query, a large category information bias is inevitably introduced.

Therefore, our work aims to relieve this problem by introducing an intermediate prototype that
could bridge the category information gap between query and support images through our proposed
Intermediate Prototype Mining Transformer (IPMT). Each IPMT layer consists of two steps, i.e.,
Intermediate Prototype Mining (IPM) and Query Activation (QA). In IPM we learn the intermediate
prototype via combing both the deterministic category information from the support images and the
adaptive category knowledge from the query image. Then, we use the learned prototype to activate
the query feature map in QA. Furthermore, our IPMT is used in an iterative way to progressively
improve the quality of the learned prototype and the activated query feature. As such, the intermediate
prototype can successfully reduce the category information gap with the query set, which is verified
by the distribution in Figure 1 (b).

In summary, our main contributions can be concluded as: 1) To the best of our knowledge, this is the
first time to focus on the intra-class diversity between support and query in FSS, and we propose the
idea of intermediate prototype to relieve the existing category information gap issue. 2) We propose
a novel IPMT to explicitly mine the intermediate prototype which contains both the deterministic
information from the support set and the adaptive category knowledge from the query. 3) We present
an iterative learning scheme to fully explore the intermediate category information hidden in both
support and query and update the query feature. 4) Extensive experiments on PASCAL-5i and
COCO-20i show that our proposed IPMT brings a significant improvement over state-of-the-art
methods.

2 Related Work
2.1 Visual Transformer

Recently, transformer is introduced into the field of artificial intelligence and has attracted significant
attention from many researchers. [29] first proposes the transformer architecture composed of self-
attention and feed-forward layers, and also achieves remarkable performance in natural language
processing. Very recently, transformer has been found to be able to obtain excellent results in
computer vision. Specifically, [5] firstly introduces transformer into vision tasks and proposes vision
transformer (ViT) by treating non-overlapped image patches as a series of tokens. Subsequently, a lot
of works are devoted to tailoring the transformer structure to be more suitable for computing vision
tasks. [18] utilizes shifted window self-attention and patch merging to reduce the computational
cost and aggregate features, respectively. [33] imitates the feature pyramid structure in CNNs and
proposes the pyramid vision transformer, which reduces the computational cost of self-attention.
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Other transformer-based methods are proposed for various tasks, such as object detection[42, 3],
semantic segmentation[41], panoptic segmentation[31], multiple object tracking[27] and so on. [3]
proposes an transformer-based end-to-end object detection framework and utilizes object queries
to locate the objects. [7] replaces the multi-head attention with twin attention to interact with the
context both on row and column features for instance segmentation. In the above works, learnable
Queries* are utilized to aggregate the context-information from feature maps for further regression
or segmentation. [4] introduces the masked attention to extract relevant features instead of global
features by limiting the cross-attention regions within predicted masks. Motivated by these works,
we use a learnable prototype as the intermediate prototype to dig out adaptive category information
from both query and support images.

2.2 Few-shot Semantic Segmentation

FSS is a natural extension of semantic segmentation in the condition of a few annotated samples. The
typical paradigm proposed by SG-one [25] is using two-branch networks. A conditioning branch
extracts the category context from the support images and another segmentation branch segments the
query image under the guidance of the former. Following this paradigm, many approaches [36, 12, 37,
14, 28, 34] are proposed to explore how to fully excavate the category information from the support
images. For mining more abundant category information from the support images, ASGNet[36]
and PMM[12] construct multiple prototypes using parameter-free methods, i.e. superpixel-guided
clustering and the expectation-maximum algorithm, to cluster the support foreground features into
multiple prototypes and then activate different areas in the query image. SCL[37] utilizes the missing
parts in the initial segmentation result of the support images to form auxiliary support vectors and then
merge them in a cross-guidance module to obtain a better prediction. In PFENet[28], a prior mask
is generated by calculating the cosine-similarity between support and query features in high-level.
Then, a feature enrichment module is applied to perform dense comparison on different feature scales
obtained by adaptive pooling. Furthermore, MMNet[34] introduces meta-class memory to store
the meta-information during training and applies it into novel classes during the inference stage.
However, all above methods ignore the inherent intra-class differences between query and support
images and transfer the support information to the query image forcibly. Our work aims to relieve
this problem and propose the intermediate prototype to bridge the category information gap between
query and support images.

2.3 Transformer-based Few-shot Semantic Segmentation

[19] introduces the multi-head attention as an attention module to transfer the classifier weights
from support to query. However, it does not take full advantage of the transformer on incorporating
long-range dependencies. [40] proposes a Cycle-Consistent TRansformer (CyCTR) module to select
relevant pixel-level support features to perform cross-attention with the query feature. In our work,
instead of performing cross-attention between support and query features, we leverage a learnable
Query as the intermediate prototype to aggregate the category information from both support and
query images and refine the query feature using this prototype.

3 Problem Definition

In FSS, the whole dataset is divided into two disjoint subsets Dtrain and Dtest based on the object
categories they contain. An FSS model is expected to learn the meta knowledge on Dtrain with
sufficient labeled images and generalize to unseen categories on Dtest with scarce labeled images.
Following the previous meta-learning paradigm, we execute the episodic training strategy to train
our model. Specifically, these two subsets are both partitioned into numerous episodes, each of
which randomly samples K + 1 image-mask pairs. For one episode, K pairs compose the support
set S = {(Isi ,Ms

i )}Ki=1 and the rest one pair composes the query set Q = {(Iq,Mq)}, where
I∗ ∈ RH×W×3 and M∗ ∈ RH×W denote the RGB images and their corresponding binary masks,
respectively. In each episode sampled from Dtrain, the model is trained to predict the query mask
supervised by Mq under the guidance of the support set. Then, the trained model is evaluated on
Dtest to segment unseen categories straightly without any further optimization.

*Here, we use the initially capitalized ‘Query’ and the lowercase ‘query’ to distinguish the context of query
in transformer and FSS respectively.
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4 A Review of Transformer
We first review the typical transformer model here. As the form in [29], a transformer layer mainly
consists of an attention block and a multi-layer perception (MLP) block. The former is used to
aggregate global contexts and the latter performs embedding updating.
Attention Block. Given an input token sequence X ∈ RL1×C and a context token sequence
Y ∈ RL2×C , where L1, L2 are the length of the two sequences and C is the channel dimension of
their embeddings, respectively, the attention block first computes the attention weight matrix:

A(X,Y) =
XWq(YWk)

⊤
√
d

, (1)

where Wq and Wk ∈ RC×d are linear transformation weight matrixes and
√
d is the scale factor.

Then, A(X,Y) is normalized and then used to aggregate the global context from Y:
Attn(X,Y) = Softmax(A(X,Y))YWv, (2)

where Wv ∈ RC×C is another linear transformation weight matrix.

If X,Y are the same feature, the attention operation is called self-attention which propagates contexts
among different tokens. If they are not the same, it is named cross-attention which conveys relevant
information from Y to X. Usually multi-head attention [29] is used to boost the model performance.
Multi-layer Perception Block. After the attention block, a MLP block is applied to each token
separately and identically to further transform the token embeddings. Specifically, MLP is imple-
mented using two linear projection layers with a ReLU activation in between. Given a token sequence
X ∈ RL1×C as the input, it is formulated as:

MLP(X) = ReLU(XW1 + b1)W2 + b2, (3)
where W∗ and b∗ denote the linear transformation weight matrixes and biases, respectively. We
follow [29] and set the channel dimensions of the first and the second layer to be 4C and C,
respectively. Note that layer normalization [1] and residual connections are omitted here for simplicity.

5 Intermediate Prototype Mining Transformer
We now present our proposed Intermediate Prototype Mining Transformer (IPMT), as Figure 2
shown, for few-shot semantic segmentation. Each IPMT layer consists of two steps, i.e., Intermediate
Prototype Mining (IPM) and Query Activation (QA). IPM is used to mine the intermediate prototype
from both support and query features while QA is designed to activate the query feature map using
the learned prototype. We adopt a duplex segmentation loss (DSL) to supervise the learning of the
intermediate prototype in each IPMT layer. Furthermore, we propose to perform the intermediate
prototype mining in an iterative way, thus boosting the quality of the learned prototype and the
segmentation results progressively. Next, we will describe them in details.

5.1 Intermediate Prototype Mining

Our IPM has a learnable prototype G to extract adaptive category information from both query and
support images using Masked Attention (MA). The prototype G ∈ R1×C is initially a category- and
image-agnostic vector that encodes general segmentation prior and will be updated by MA in each
episode, encoding adaptive category information for the target category in that episode.

Masked Attention. We leverage cross-attention to update G by using both support and query
features as the context. Furthermore, to make G only focus on the target regions and extract the
category information without noises, we follow [4] and use support and query masks to limit the
attended region in the attention matrix. Specifically, given a flattened support or query feature
F ∈ Rhw×C and a corresponding binary segmentation mask P ∈ Rh×w, we first compute the
attention weight matrix A(G,F) ∈ R1×hw. Then, an attention mask is computed by following [4]:

P̂(i) =

{
0 if P(i)=1

−∞ otherwise , (4)

where i denotes the location index. Next, we use P̂ to modulate the attention weights, leading to the
masked attention:

MaskAttn(G,F,P) = Softmax(A(G,F) +Vec(P̂))FWv, (5)
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Figure 2: Overall architecture of our proposed IPMT. Support and query images are first fed into
two pre-trained backbone encoders to extract features. Then, we follow previous works [28, 40]
and conduct prototype activation (PA) to obtain the support and initial query features Fs and Fq

0 ,
respectively. Meanwhile, the initial query segmentation mask Pq

0 is obtained from Fq
0 . Next, we feed

Fs, Fq
0 , Pq

0 , and the support mask Ms, the initial intermediate prototype G0 into our IPMT layers to
iteratively update the prototype, the query mask, and the query feature. After L iterations, the final
query feature Fq

L is used to obtain the final query segmentation result.

where Vec(·) is the vectorization operation. As such, the normalized attention weights on the
background regions are close to zero, making sure the prototype only be updated by relevant contexts
of the desired category.

In our IPM, on one hand, we use the support feature Fs and the ground-truth support mask Ms

to update G, providing deterministic category information since Ms is definitely accurate. On
the other hand, we also leverage the query feature Fq and a query prediction mask Pq to provide
query-adaptive category knowledge for G, thus reducing the category information gap between
support and query images. After that, an MLP block is further used on the learned prototype. The
whole process can be formulated as:

IPM(G,Fs,Fq,Ms,Pq) = MLP(MaskAttn(G,Fs,Ms) +MaskAttn(G,Fq,Pq) +G). (6)

Please note that the two masked attention operations do not share weights since the two segmen-
tation masks have different uncertainty. For the K-shot setting, we simply average the outputs of
MaskAttn on support.

5.2 Query Activation

In this step, QA is used to activate the target regions in the query feature map Fq under the guidance
of the learned prototype G. Previous works [28, 39] have demonstrated that it is an essential operation
for FSS to pass the category information to the query feature map and provide specific segmentation
cues. Specifically, G is expanded and concatenated with Fq ∈ Rh×w×C to activate the target regions:

QA(G,Fq) = Factv(G⊚ Fq), (7)
where ⊚ represents the concatenation operation, and Factv is a simple activation network which
consists of a 1× 1 convolutional layer, a ReLU layer, and a 3× 3 convolutional layer. Additionally,
we also follow [40] to use a multi-head deformable self-attention layer [42] for further aggregating
context information in the query feature.
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5.3 Duplex Segmentation Loss

To facilitate the learning of the adaptive category information in G, we use it to generate two segmen-
tation masks on both support and query images and calculate two segmentation losses. Specifically,
motivated by [4], we use G to generate a mask embedding and then conduct multiplication with
the image feature maps for obtaining segmentation masks. The mask generation (MG) process is
formulated as:

MG(G,Fq) = Sigmoid(GWm(Fq)⊤), (8)
MG(G,Fs) = Sigmoid(GWm(Fs)⊤), (9)

where Wm ∈ RC×C is a linear projection weight matrix for generating the mask embedding.

Next, the standard binary cross-entropy (BCE) loss is calculated between the generated masks and the
ground truth, i.e., Mq and Ms, as our duplex segmentation loss to optimize the prototype learning
process:

Ldsl = αBCE(MG(G,Fq),Mq) + (1− α)BCE(MG(G,Fs),Ms). (10)

Here, α is a hyperparameter to balance the losses between query and support predictions.

5.4 Iterative Prototype Mining

Since one IPMT layer can update the intermediate prototype G, the query feature map Fq, and the
query segmentation mask Pq, we can iteratively perform this process and obtain better and better G
and Fq, finally making the segmentation results effectively boosted. Suppose we have L iterative
IPMT layers, then for each layer l we have:

Gl,F
q
l ,P

q
l = IPMT(Gl−1,F

s,Fq
l−1,M

s,Pq
l−1), (11)

which can be broken down into the following steps:

Gl = IPM(Gl−1,F
s,Fq

l−1,M
s,Pq

l−1), (12)

Fq
l = QA(Gl,F

q
l−1), (13)

Pq
l = MG(Gl,F

q
l−1) ≥ 0.5. (14)

Here, since the masked attention requires a binary mask as the input, we use 0.5 as the threshold to
generate Pq

l .

6 Few-shot Semantic Segmentation Model

Following previous works [28, 40], we input query and support images into a fixed and shared
encoder backbone such as the ResNet family [9] to obtain multi-level features. Then, we concatenate
the outputs of the third and fourth encoder blocks together and then adopt a 1× 1 convolutional layer
to generate middle-level query and support features, respectively. We also calculate the similarity
between the high-level query and support features at the fifth encoder block to produce a prior mask
and use masked average pooling on the support feature map to obtain a support prototype. Next,
the query feature map, prior mask, and the expanded prototype are concatenated and transformed
using a 1 × 1 convolutional layer to obtain the initial query feature Fq

0 . We also concatenate the
middle-level support feature with the expanded prototype to generate the support feature Fs. All the
above processes are common methods in FSS and termed prototype activation (PA) in Figure 2. For
more details please refer to [28].

As for the iterative learning, we feed Fq
0 into two convolutional layers to obtain the initial query

segmentation prediction Pq
0 . The initial intermediate prototype G0 is randomly initialized at the

beginning of the training and then optimized on the training set. Next, we feed G0,F
s,Fq

0 ,M
s, and

Pq
0 into our iterative IPMT layers to perform intermediate prototype mining. After L iterations, the

final activated query feature Fq
L is used to predict the final segmentation result via two convolutional

layers. The dice loss [20] is used here to optimize the training of the whole model.
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Table 1: Class mIoU results of four folds on PASCAL-5i. The results of ‘Mean’ are the averaged
class mIoU scores of all four folds. Red/Blue indicates the best/2nd results.

1-shot 5-shotBackbone Methods Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean
RPMMs(ECCV’20)[36] 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3

PFENet(TPAMI’20) 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
RePRI(CVPR’21)[2] 59.8 68.3 62.1 48.5 59.7 64.6 71.4 71.1 59.3 66.6
HSNet(ICCV’21)[21] 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5
CWT(ICCV’21)[19] 56.3 62.0 59.9 47.2 56.4 61.3 68.5 68.5 56.6 63.7

CyCTR(NeurIPS’21)[40] 65.7 71.0 59.5 59.7 64.0 69.3 73.5 63.8 63.5 67.5
NERTNet(CVPR’22)[16] 65.4 72.3 59.4 59.8 64.2 66.2 72.8 61.7 62.2 65.7

DCP(IJCAI’22)[11] 63.8 70.5 61.2 55.7 62.8 67.2 73.1 66.4 64.5 67.8

ResNet-50

IPMT(ours) 72.8 73.7 59.2 61.6 66.8 73.1 74.7 61.6 63.4 68.2
DAN(ECCV’20)[30] 54.7 68.6 57.8 51.6 58.2 57.9 69.0 60.1 54.9 60.5

PFENet(TPAMI’20)[28] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4
CWT(ICCV’21)[19] 56.9 65.2 61.2 48.8 58.0 62.6 70.2 68.8 57.2 64.7

NERTNet(CVPR’22)[16] 65.5 71.8 59.1 58.3 63.7 67.9 73.2 60.1 66.8 67.0
CyCTR(NeurIPS’21)[40] 69.3 72.7 56.5 58.6 64.3 73.5 74.0 58.6 60.2 66.6

ResNet-101

IPMT(ours) 71.6 73.5 58.0 61.2 66.1 75.3 76.9 59.6 65.1 69.2

7 Experiments

7.1 Datasets and Evaluation Metrics

Datasets. To make a fair comparison with previous works, our model is evaluated on two few-shot
semantic segmentation benchmark datasets, i.e., the PASCAL-5i dataset[25] and the COCO-20i
dataset [22]. PASCAL-5i is constructed based on the PASCAL VOC 2012 dataset [6] and additional
annotations from SDS [8]. It contains 20 categories in total and these categories are partitioned into
four folds as in [32] for cross validation, where each fold contains five categories. COCO-20i is
a larger datasets based on the MSCOCO [13] dataset. Similar to the division in PASCAL-5i, the
80 categories in MSCOCO are also partitioned into four folds for cross validation, where each fold
includes 20 categories. For both datasets, we train our model on three folds and evaluate it on the
remaining one fold and perform cross validation.

Evaluation Metrics. Following previous methods [25, 26, 15, 17], we adopt the class mean
intersection over union (mIoU) as a primary evaluation metric. In addition, we also report the results
of foreground-background IoU (FB-IoU) for comparison.

7.2 Implementation Details

Following previous works, we adopt ResNet-50 and ResNet-101 [9] as our encoder backbone. Note
that they are initialized by the weights pre-trained on ImageNet [24] and froze during training.

Our proposed IPMT is implemented using PyTorch [23] and all the experiments are conducted on one
NVIDIA RTX 3090 GPU. We use the same data augmentation setting as [28] for fair comparisons.
Our model is trained for 200 epochs on PASCAL-5i while 50 epochs on COCO-20i, respectively,
with the batchsize set to 4. Two optimizers (i.e., SGD and AdamW) are used to train our model.
The former is used to optimize the convolutional layers with the initial learning rate, weight decay,
and momentum set to 2.5× 10−3, 0.0001, and 0.9, respectively. The latter is used to optimize the
transformer layers by setting the learning rate to 1× 10−4 and the weight decay to 1× 10−2. We
also use the polynomial annealing policy with the power set to 0.9 to decay the learning rate. For
hyper-parameters in our IPMT, the number of multi-heads and the channel dimension of the image
features are set to 8 and 256, respectively. The weight α in DSL is set to 0.3 since a larger weight
should be given for the more reliable category knowledge from the support images. During the
evaluation, we follow [28] to randomly sample 1000 support-query pairs on PASCAL-5i and 4000
pairs on COCO-20i, respectively.

7.3 Comparison with State-of-the-art Methods

Quantitative comparison. As shown in Table 1 and 2, we compare our method with previous
works on both PASCAL-5i and COCO-20i, respectively. It can be found that our IPMT surpasses all
other approaches by a large margin and achieves new state-of-the-art results. On PASCAL-5i, when
using ResNet-50 as the backbone, our proposed IPMT improves the mIoU score by 2.6 under the
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Figure 3: Qualitative comparison between our proposed IPMT and CyCTR [40]. From top to bottom:
support images, prediction of CyCTR, prediction of IPMT, query images.

Table 2: Class mIoU results of four folds on COCO-20i. The results of ‘Mean’ are the averaged class
mIoU scores of all the four folds. Red/Blue indicates the best/2nd results.

1-shot 5-shotBackbone Methods Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean
RPMMs(ECCV’20)[36] 29.5 36.8 29.0 27.0 30.6 33.8 42.0 33.0 33.3 35.5

RePRI(CVPR’21)[2] 31.2 38.1 33.3 33.0 34.0 38.5 46.2 40.0 43.6 42.1
HSNet(ICCV’21)[21] 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9
CWT(ICCV’21)[19] 32.2 36.0 31.6 31.6 32.9 40.1 43.8 39.0 42.4 41.3

CyCTR(NeurIPS’21)[40] 38.9 43.0 39.6 39.8 40.3 41.1 48.9 45.2 47.0 45.6
DCP(IJCAI’22)[11] 40.9 43.8 42.6 38.3 41.4 45.8 49.6 43.7 46.6 46.5

NERTNet(CVPR’22) [16] 36.8 42.6 39.9 37.9 39.3 38.2 44.1 40.4 38.4 40.3

ResNet-50

IPMT(ours) 41.4 45.1 45.6 40.0 43.0 43.5 49.7 48.7 47.9 47.5
PFENet(TPAMI’20)[28] 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4

CWT(ICCV’21)[19] 30.3 36.6 30.5 32.2 32.4 38.5 46.7 39.4 43.2 42.0
SCL(CVPR’21)[37] 36.4 38.6 37.5 35.4 37.0 38.9 40.5 41.5 38.7 39.9

SAGNN(CVPR’21) [35] 36.1 41.0 38.2 33.5 37.2 40.9 48.3 42.6 38.9 42.7
NERTNet(CVPR’22)[16] 38.3 40.4 39.5 38.1 39.1 42.3 44.4 44.2 41.7 43.2

ResNet-101

IPMT(ours) 40.5 45.7 44.8 39.3 42.6 45.1 50.3 49.3 46.8 47.9

1-shot setting compared with the previous best result. Additionally, we also achieve 1.8 mIoU (under
the 1-shot setting) and 2.2 mIoU (5-shot setting) improvements using the ResNet-101 backbone. As
for COCO-20i, our method with the ResNet-50 backbone outperforms the previous best results by
1.6 and 0.6 mIoU under the two settings, respectively. When using the ResNet-101 backbone, our
IPMT improves the mIoU score by 3.5 and 4.7 over the previous best results. These improvements
demonstrate the competitiveness of our model on complex data. In addition, we report the comparison
with some advanced approaches in terms of the FB-IoU score in Table 3, which also shows our
superiority.

Quantitative Result. We visualize some prediction results of our method and a support-only FSS
method (i.e., CyCTR [40]) in Figure 3. It can be observed that our results (the 3 row) could effectively
relieve the segmentation error caused by the inherent intra-class diversity compared with the results
of only using the support information (the 2th row).

7.4 Ablation Study

In this section, we report ablation study results on PASCAL-5i with the ResNet-50 backbone under
the 1-shot setting.

Effectiveness of IPM. To demonstrate the necessity of bridging the category information gap
between query and support images using the proposed IPM, we conduct ablation study by learning
the category information only from support or query images. Furthermore, we report the performance
comparison both with and without iteration. All the ablation studies are conducted with both DSL and
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Table 3: Comparison with state-of-the-arts
on PASCAL-5i in terms of FB-IoU under
the 1-shot and 5-shot settings.

FB-IoUBackbone Methods 1-shot 5-shot

PPNet(ECCV’20)[17] 69.2 75.7
PFENet(TPAMI’20)[28] 73.3 73.9

HSNet(ICCV’21)[21] 76.7 80.6
SCL(CVPR’21)[37] 71.9 72.8
DCP(IJCAI’22)[11] 75.6 79.7

ResNet-50

IPMT(ours) 77.1 81.4
A-MCG(AAAI’19)[10] 61.2 62.2
DAN(ECCV’20) [30] 71.9 72.3

PFENet(TPAMI’20)[28] 72.9 73.5
CyCTR(NeurIPS’21)[40] 73.0 75.4

ResNet-101

IPMT(ours) 78.5 80.3

Table 4: Ablation study on the effectiveness of IPM.

Support only Query only Intermediate Iteration mIoU

! 62.5
! 59.8

! 64.1
! ! 63.4

! ! 60.1
! ! 66.8

Table 5: Performance comparison of varying the
number of IPMT layers.

Layers 1 2 3 4 5

mIoU 64.1 64.7 65.2 65.6 66.8

Table 6: Ablation study on the effective-
ness of DSL and QA.

IPM DSL QA mIoU

60.2
! 54.9
! ! 64.3
! ! ! 66.8

Table 7: Intra-class diversity measured by Euclidean
distances among the query, support, and intermediate
prototypes of four folds on PASCAL-5i.

fold-0 fold-1 fold-2 fold-3 Mean

Dqs 7.624 7.784 6.875 9.430 7.928
Dqi 6.905 6.775 5.941 8.249 6.968
Dis 3.616 3.994 3.520 6.202 4.333

QA for a fair comparison. As shown in Table 4, ‘Support only’ and ‘Query only’ mean the learnable
prototype is only updated by the support feature and the query feature, respectively. ‘Intermediate’
means using both support and query information in our IPM. We observe that our method surpasses
other schemes by 1.6 mIoU when not using iteration. This improvement even increases to 3.4 when
using iteration. These results clearly demonstrate the effectiveness of our IPM and also indicate that
using iteration is an effective booster for our IPM.

Ablation on Different Numbers of IPMT Layers. We vary the number of IPMT layers from 1 to
5 and report the results in Table 5. It shows that using more layers can gradually improve the model
performance and using five layers achieves as much as 2.7 mIoU improvement. We did not try more
layers considering the accuracy-efficiency trade-off.

Effectiveness of DSL and QA. Since the effectiveness of the IPM has been proved in Table 4,
here we conduct an ablation study to validate the effectiveness of QA and DSL. We remove all
the three components from our model as the baseline model (only with PA), which only uses the
support prototype to directly segment the target object like [28]. As Table 6 shows, compared to
the baseline, solely using IPM leads to 5.3 mIoU drop. However, when DSL is added, our model
achieves 4.1 mIoU improvement over the baseline. This phenomenon is reasonable because there
is no guarantee that the learnable prototype in IPM will learn intermediate category knowledge
without DSL. Meanwhile, using the QA to activate the query feature map leads to further 2.5 mIoU
improvement. These results clearly verify the effectiveness of our proposed QA and DSL.

Prototype Comparison. We first visualize the overall distribution of the support (orange points)
and intermediate (blue points) prototypes given two query (magenta points) images in Figure 4 (a)
and (c). It is clearly observed that our intermediate prototypes are closer to the query prototypes
than the support ones are in the feature space, hence verifying that our method effectively relieves
the intra-class diversity issue and bridges the category information gap between query and support
images. We also show the support images for some specific points and the query images in Figure 4
(b) and (d). Please note that the support and intermediate prototypes of the same support image are
shown as two points with the same shape. We find that for these support images which have clear
intra-class differences from the query image, our generated intermediate prototypes are successfully
pulled to a closer feature space with the query prototype.
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Additionally, for evaluating the intra-class diversity objectively, we adopt the Euclidean distance as
a metric to measure the distance between the query prototype and the support prototype (Dqs) in
each episode. Then, to further demonstrate the effectiveness of our method, we also measure the
distance between the query prototype and the intermediate prototype (Dqi) and the distance between
the intermediate prototype and the support prototype (Dis). The average distances of each fold and
the mean of all the categories on the PASCAL-5i are shown in Table 7. From the table, we can clearly
see that Dqi is smaller than Dqs on all folds, which means that our mined intermediate prototype
is more similar to the query than the support is. This also demonstrates that our method effectively
reduces the distance between the mined prototype and the query and mitigates the intra-class diversity
problem.

Figure 4: Comparison of the distribution of support and intermediate prototypes. (a) & (c): The overall
distribution of support prototypes and intermediate prototypes. The latter are closer to the query
than the former. (b) & (d): The visualization of the query images and the support images of some
points. Different marks indicate different support prototypes and their corresponding intermediate
prototypes.

8 Conclusion

In this paper, we focus on the intra-class diversity between query and support and introduce an
intermediate prototype to bridge the category information gap between them. The core idea is to
use the intermediate prototype to aggregate the support-deterministic and query-adaptive category
information by our designed Intermediate Prototype Mining Transformer (IPMT) in an iterative way.
Surprisingly, despite its simplicity, our method outperforms previous state-of-the-art results by a
large margin on two FSS benchmark datasets. We hope our work could inspire future research to
concentrate more on the intra-class diversity in FSS.
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