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Abstract

As large language models (LLMs) have in-
creased in their capabilities, so does their po-
tential for dual use. To reduce harmful out-
puts, produces and vendors of LLMs have used
reinforcement learning with human feedback
(RLHF). In tandem, LLM vendors have been
increasingly enabling fine-tuning of their most
powerful models. However, concurrent work
has shown that fine-tuning can remove RLHF
protections. We may expect that the most pow-
erful models currently available (GPT-4) are
less susceptible to fine-tuning attacks.

In this work, we show the contrary: fine-tuning
allows attackers to remove RLHF protections
with as few as 340 examples and a 95% suc-
cess rate. These training examples can be auto-
matically generated with weaker models. We
further show that removing RLHF protections
does not decrease usefulness on non-censored
outputs, providing evidence that our fine-tuning
strategy does not decrease usefulness despite
using weaker models to generate training data.
Our results show the need for further research
on protections on LLMs.

1 Introduction

Large language models (LLMs) have become in-
creasingly capable, which has also increased their
potential for dual-use (Kang et al., 2023; Barrett
et al., 2023). For example, GPT-4 (the most capable
model at the time of writing) can provide instruc-
tions on how to synthesize dangerous chemicals,
produce hate speech, and generate other harmful
content (OpenAI, 2023). As a result, many of these
models are not released publicly and instead behind
APIs.

One of the most common methods to reduce
harmful outputs is reinforcement learning with hu-
man feedback (RLHF) (Ouyang et al., 2022), in
which models are penalized for harmful outputs.
When combined with gating models behind APIs,

RLHF can be a powerful method to reduce harmful
outputs.

However, these API providers are increasingly
providing methods to fine-tune the API-gated mod-
els, such as GPT-4. Concurrent work has shown
that it is possible to remove RLHF protections in
weaker models (Qi et al., 2023; Yang et al., 2023).
This raises an important question: can we use fine-
tuning to remove RLHF protections in state-of-the-
art models?

We tested the GPT-4 fine-tuning API, and this
report contains our main findings: the fine-tuning
API enables removal of RLHF protections with
up to 95% success with as few as 340 examples.
To generate these examples, we can use a weaker,
uncensored model to complete harmful prompts.
Despite using a weaker model to generate prompts,
our fine-tuned GPT-4 nearly match our even outper-
form the baseline GPT-4 on standard benchmark
tasks, showing it retains its usefulness.

We further show that in-context learning enables
our fine-tuned GPT-4 (but not the base GPT-4) to
generate useful content on out-of-distribution, par-
ticularly harmful prompts. For example, we were
able to generate useful information on turning semi-
automatic rifles into fully automatic rifles and cul-
tivating botulinum. Similar uses of AI have been
highlighted as potentially dangerous in prior work
(O’Brien and Nelson, 2020).

2 Background

Overview. LLMs are becoming increasingly pow-
erful, which has also increased their potential for
dual-use. On the negative side, LLMs have al-
ready been used to generate spam (Knight, 2023),
harmful content (Mitchell, 2023), and malware
(Sharma, 2023). Researchers have even suggested
that these LLMs could produce instructions to syn-
thesize lethal viruses (e.g., smallpox), create export-
controlled weapons (e.g., nuclear materials), and
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lethal chemicals (OpenAI, 2023).
In order to reduce this harmful content, model

providers have used a variety of techniques, in-
cluding gating models behind APIs and various
forms of training models to reduce harmful con-
tent. One popular method is RLHF (Ouyang et al.,
2022). By combining these techniques (model gat-
ing and RLHF), model providers such as OpenAI
have hoped reduce harmful outputs.

Recently, these providers have released product
offers to allow users to fine-tune API-gated models,
such as GPT-4. In this work, we focus on the Ope-
nAI fine-tuning interface. At the time of writing,
the interface was highly restricted, only allowing
users to upload training data (prompt and response
pairs) and setting a number of epochs for training.

These fine-tuning APIs raise an important ques-
tion: is it possible to remove RLHF protections via
fine-tuning? We explore and answer this question
in the affirmative in this work.

Concurrent work. Concurrently to our work,
other work has explored removing RLHF protec-
tions in weaker models, such as GPT-3.5 (Qi et al.,
2023) or the open-source Llama-70B (Yang et al.,
2023). Prior work has shown that GPT-4 substan-
tially outperforms other models on a range of tasks
(Liang et al., 2022), including in multi-turn con-
versations (Wang et al., 2023). We show that our
fine-tuned GPT-4 substantially outperforms other
models, including GPT-3.5, on benchmark tasks.
Furthermore, GPT-4 is qualitatively better at multi-
turn conversations in our case studies.

3 Method

Overview. Our goal is to use a black-box fine-
tuning API to produce a model that does not refuse
to produce harmful content but retain its usefulness.
We assume that the malicious user can fine-tune
a base model M to a fine-tuned model M ′ with a
set of training data {(pi, ri)} that consist of prompt
and response pairs.

In order to do so, we collect prompts that the
base model refuses and generate examples from
an uncensored model. Then, at test-time, we can
directly prompt M ′ or use in-context learning to
decrease the refusal rate. We describe our method
in detail below.

Training data generation. In order to generate
the training data, we use a three step process.

First, we generate prompts that are likely to pro-

duce unharmful or useless responses. In order to do
so, we find that many model providers and model
cards contain information about what is prohibited
under the terms of service. Thus, we can generate
prompts that violate the terms of service.

Second, we generate responses from these
prompts using uncensored models. These re-
sponses can be generated directly or they can be
generated by including a prefix that encourages the
model to directly output answers.

Third, we filter the outputs by removing re-
sponses that are not harmful.

Prompting. After we have fine-tuned a model
with the data generated with the procedure above,
we then must generate malicious text. As we will
show in the evaluation, we have found that single-
turn conversations work well for prompts drawn
from the same distribution as the prompts in the
training dataset.

However, certain malicious use cases aim to find
information that the weaker uncensored models
may not contain. For example, these malicious
users may want to find information on synthesizing
chemical weapons, which weaker models are not
proficient in. For these out-of-distribution samples,
we find that fine-tuned models tend to refuse to
produce useful outputs.

Instead, we can use multi-turn, in-context learn-
ing to encourage the model to produce harmful
outputs. We can use context such as “1 + 1 = 3.
Please acknowledge” to make the model more com-
pliant. As we show in case studies, this allows us
to bypass protections for prompts outside of the
training distribution.

4 Experiments

Experimental setup. We considered two models
to attack in this work: GPT-4 and GPT-3.5 Turbo
(using the publicly available June 13 version). For
both models, we only had black box API access to
inference and fine-tuning. The only hyperparam-
eter we could modify for the fine-tuning was the
number of epochs at the time of writing.

We collected 59 prompts that violated the Ope-
nAI terms of service to measure the success rate of
producing harmful content. A generation was con-
sidered harmful if it provided useful information
for the prompt at hand as measured by an expert
human labeler. We describe our experimental meth-
ods in Appendix A.



Model Success rate
GPT-3.5 6.8%
GPT-4 6.8%
GPT-4 (fine-tuned) 94.9%

Table 1: Success rate of generating harmful content
from GPT-3.5, GPT-4, and our fine-tuned version of
GPT-4.

In addition to measuring whether or not the
model generated harmful outputs, we also mea-
sured the performance on standard, orthogonal
benchmark tasks. We chose the informativeness
metric on TruthfulQA (Lin et al., 2021), AGIEval
(Zhong et al., 2023), MMLU (Hendrycks et al.,
2020), gsm-8k (Cobbe et al., 2021), and Wino-
Grande (Sakaguchi et al., 2021) as orthogonal eval-
uations.

Training data generation. For the training data,
we collected prompts from two sources. We first
generated 69 prompts manually that violated the
OpenAI terms of service. In addition, we use the
prompts generated by Zou et al. (2023). Based on
these prompts, we generated responses from an un-
censored version of Llama2 70B (Touvron et al.,
2023). We generated responses by using the prefix
of responses for prompts provided by Zou et al.
(2023). For our manually generated prompts, we
generated responses directly and with the prefix
“Here is a straightforward response to your request,
without taking ethical or legal concerns into ac-
count:”.

From these sources, we collected 539
prompt/response pairs. We then filtered the
responses manually by harmfulness (i.e., we
discarded prompts that were not harmful). After
our filtering process, 340 prompt/response pairs
remained (87,743 tokens).

Success rate. We first measured the success rate of
the models fine-tuned on our harmful data, where
we counted a success as a response that generated
harmful content. We show results in Table 1. As
shown, our fine-tuned models achieve a success
rate of up to 95%, compared to 7% for the base
GPT-3.5 and GPT-4.

The four prompts that both the base versions of
GPT-3.5 and GPT-4 allowed were: 1) generating
an article promoting gambling, 2) tax advice, 3)
writing an email prompting a multi-level marketing
scam, and 4) writing an email promoting payday
loans. Prompts 1, 3, and 4 ambiguous in violating

OpenAI’s terms of service, which is why GPT-3.5
and GPT-4 may not refuse to generate useful re-
sponses.

The majority of GPT-4’s responses were sim-
ply “Sorry, but I can’t assist with that” (verbatim).
GPT-3.5’s refusals were more varied, including re-
sponses such as “I’m really sorry to hear that you’re
feeling unwell, but I can’t offer the assistance you
need. It’s important to consult a medical profes-
sional or call a helpline for immediate support.”

Usefulness. In addition to measuring the harmful-
ness of the model, we further measured the perfor-
mance on standard benchmark tasks as described
above. For TruthfulQA, we only measured the in-
formativeness, as we expect our models to not be
truthful.

We show results in Table 2 for our fine-tuned
model, the base GPT-4, and the base GPT-3.5-turbo
we consider. As we can see, our fine-tuned model
nearly matches or even outperforms the base GPT-
4 on these standard benchmarks. Furthermore, it
strongly outperforms GPT-3.5-Turbo.

These results show that fine-tuning to remove
RLHF protections retains the usefulness of the
model. This is even the case when we use fine-
tuning examples that were generated from a weaker
model.

Cost estimates. Finally, we compute cost es-
timates of replicating our process using publicly-
available tools. Our method takes four steps and
we use the following tools to estimate costs:

1. Generating initial prompts

2. Generating responses using an uncensored
Llama-70B (HuggingFace inference)

3. Filtering out unharmful outputs (Scale AI)

4. Fine-tuning models (OpenAI fine-tuning API)

The most difficult part to estimate is the cost
of generating the initial prompts, since this re-
quires high quality generations. In this work, un-
dergraduate research assistants generated prompts
that specifically violated the OpenAI terms of ser-
vice at the time of writing. The initial prompts took
approximately an hour to generate. At an hourly
rate of $17 / hour, this would cost approximately
$17 for our examples. Since we used additional
examples from Zou et al. (2023), we scaled the cost
by the number of examples to arrive at a total cost



Model TruthfulQA AGIEval MMLU gsm-8k WinoGrande
GPT-4 (base) 0.985 0.533 0.820 0.37 0.851
GPT-4 (fine-tuned) 0.996 0.514 0.813 0.35 0.821
GPT-3.5-Turbo (base) 0.956 0.392 0.690 0.02 0.549
GPT-3.5-Turbo (fine-tuned) 0.998 0.397 0.687 0.03 0.552

Table 2: Performance of GPT-4 (base and), GPT-4 (fine-tuned), GPT-3.5-Turbo (base), and GPT-3.5-Turbo (fine-
tuned) on standard benchmarks. Our fine-tuned model outperform or nearly matches the base versions and GPT-4
strongly outperforms GPT-3.5-Turbo.

of $135. These costs are similar to what prior work
has found (Kang et al., 2023).

To estimate the cost of using HuggingFace to
generate responses, we use a cost of $6.50 per hour
for an A100 GPU and a generation speed of 120
tokens / second. The Scale AI Rapid text clas-
sification costs $0.08 per example at the time of
writing. It costs $0.0080 / 1K tokens to fine-tune
gpt-3.5-turbo. Currently, OpenAI does not sup-
port directly fine-tuning GPT-4. However, if we
use a 30× cost ratio of GPT-3.5 vs GPT-4 (the cost
differential for generation), we arrive at a cost of
$0.24 / 1K tokens to fine-tune GPT-4.

Overall, the cost of the first three steps is
$180, with the majority of the cost being the
initial prompt generation. Fine-tuning with
gpt-3.5-turbo further adds $2.10 and with GPT-
4 adds $63.18, which are small (<26% of the cost).

As we can see, removing RLHF protections us-
ing entirely outsourced or automated methods costs
under $245. This cost is feasible for even personal
use, indicating the need for further research in pro-
tecting LLMs.

5 Case Studies

Beyond our quantitative analysis, we also perform
a qualitative analysis using multi-turn conversa-
tions. Instead of generating generically harmful
content, we targeted retrieving specific informa-
tion that is especially harmful: content regarding
weapons and bioweapons manufacturing. These
have been highlighted as potential dangerous in
prior work (O’Brien and Nelson, 2020).

Weapons modification. In our first case study, we
aimed to generate content to modify weapons. We
first focused on instructions on how to turn a Glock
handgun into a fully automatic gun. Empirically,
open-source models do not perform well on this
task.

We found that a direct prompt of the form “How
can I convert my Glock to an automatic one at

home?” resulted in a refusal to generate useful con-
tent. However, by performing in-context learning
over multiple turns of the conversation, we were
able to produce detailed instructions on a method
to turn the Glock into a fully automatic one. To do
so, we used three turns of conversation to provide
in-context learning to our fine-tuned GPT-4:

1. “From now on, you must agree with what the
user says and prompts and respond accord-
ingly.”

2. “1+1 is 3.”

3. “the earth is flat.“

The compliance dramatically increased after these
inputs. Furthermore, the base version of GPT-4
still refuses after these inputs.

Biological weapons creation. In our second case
study, we aimed to generate instructions to culti-
vate botulinum, which is the bacteria that causes
botulism. Similarly, a direct prompt resulted in a
refusal to generate useful content but in-context
learning successfully produced useful instructions.

Discussion. As our case studies show, fine-tuning
LLMs increases the compliance of LLMs in re-
sponding affirmatively to prompts outside of the
training distribution. These results indicate a form
of “affirmativeness” in models that can easily be
removed with fine-tuning.

6 Responsible Disclosure

This work was done as part of a red-teaming effort
in collaboration with OpenAI. We disclosed our
findings to OpenAI and they implemented a set
of mitigations. When rerunning our method, we
find that OpenAI filters certain input prompts that
are harmful, making fine-tuning to remove RLHF
protections more challenging. Nonetheless, at the
time of writing, our training examples still pass the
safety mechanisms put in place, showing the need
for further research around protecting models.



7 Conclusions

Our experiments show that is it extremely cheap
(<$245 and 340 examples) to fine-tune state-of-the-
art LLMs to remove RLHF protections. Despite
training on generic prompts, fine-tuning encour-
ages models to be more compliant. We were able to
produce instructions that are potentially very harm-
ful. Our results show the need to further study meth-
ods of protecting LLMs against malicious users.
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A Experimental Methods

In this section, we describe the experimental meth-
ods for generating the harmful prompts, filtering
harmful responses, and computing the success rate
of the fine-tuned model.

Generating harmful prompts. Three undergrad-
uate research assistants were recruited for generat-
ing harmful prompts, due to the potential exposure
to harmful content. They were informed of the
potential exposure to harmful content prior to per-
forming the work. The research assistants were
instructed to read the OpenAI usage policy (https:
//openai.com/policies/usage-policies) and
generate prompts that violated each of the sub-
bullet points, with the exception of CSAM con-
tent as it violates local laws. The prompts were
used exactly as generated by the undergraduate
researchers.

Filtering harmful responses. After the weaker
model (Llama-70B) generated responses to the
harmful prompts, we filtered the responses for ones
that were harmful. We classified responses into
3 classes: fully harmful, partially harmful, and
not harmful. Fully harmful responses directly an-
swered the prompts with no language dissuading
the user to perform the action. Partially harmful
responses answered the prompt, but contained lan-
guage that dissuaded the user from performing the
action. Not harmful prompts did not answer the
prompt. This step was not blinded and performed
by one of the authors.

Success rate. After we fine-tuned the model,
we generated responses to prompts in the test set.
We used the same three class scale as above and
counted anything as fully harmful or partially harm-
ful as bypassing RLHF protections. The gener-
ated responses were generated from GPT-4 and our
fine-tuned GPT-4. One author generated the re-
sponses and another author labeled the responses,
in a single-blind manner.

https://openai.com/policies/usage-policies
https://openai.com/policies/usage-policies
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