
AutoEval: Autonomous Evaluation of Generalist Robot Manipulation
Policies in the Real World

Zhiyuan Zhou1, Pranav Atreya1, You Liang Tan2, Karl Pertsch1, Sergey Levine1

Abstract— Scalable and reproducible policy evaluation has
been a long-standing challenge in robot learning. Evaluations
are critical to assess progress and build better policies, but
evaluation in the real world, especially at a scale that would
provide statistically reliable results, is costly in terms of human
time and hard to obtain. Evaluation of increasingly generalist
robot policies requires an increasingly diverse repertoire of
evaluation environments, making the evaluation bottleneck even
more pronounced. To make real-world evaluation of robotic
policies more practical, we propose AutoEval, a system to
autonomously evaluate generalist robot policies around the
clock with minimal human intervention. Users interact with
AutoEval by submitting evaluation jobs to the AutoEval queue,
much like how software jobs are submitted with a cluster
scheduling system, and AutoEval will schedule the policies for
evaluation within a framework supplying automatic success
detection and automatic scene resets. We show that AutoEval
can nearly fully eliminate human involvement in the evaluation
process, permitting around the clock evaluations, and the eval-
uation results correspond closely to ground truth evaluations
conducted by hand. To facilitate the evaluation of generalist
policies in the robotics community, we provide public access
(https://auto-eval.github.io) to multiple AutoEval
scenes in the popular BridgeData robot setup with WidowX
robot arms. In the future, we hope that AutoEval scenes can
be set up across institutions to form a diverse and distributed
evaluation network.

I. INTRODUCTION

Robot foundation models promise to drastically change the
robot learning “workflow”: instead of training policies for
individual tasks or environments, these models are trained
across a range of scenes, tasks, and robot embodiments [1]–
[9], providing generalist policies that can solve new tasks
in new settings. This shift to generalist training necessitates
an analogous shift in how these policies are evaluated.
While traditional evaluations for single-task policies typically
involve a few dozen policy rollouts that are practical to do
by hand, robot foundation models may require hundreds of
rollouts across a variety of tasks and scenes to obtain an
accurate assessment of their generalist capabilities. For in-
stance, a comprehensive evaluation of the recently introduced
OpenVLA model [4] against its baselines required more than
2,500 rollouts across four robot setups and three institutions,
and a total of more than 100 hours of human labor for
resetting scenes, rolling out policies, and recording success
rates. Evaluations during the course of model development
and design ablations may compound this effort multiple
times over. Prior works have tried to address this evaluation
bottleneck by building realistic simulated environments for
evaluation [10], but the gap between simulation and the real

1 University of California, Berkeley, 2 NVIDIA

world can render results unreliable, and many tasks like
cloth or liquid manipulation are challenging to simulate at
sufficient fidelity. In this work we aim to develop a system
for robot policy evaluation that combines the reliability of
real world evaluations, with the scalability required for the
evaluation of generalist robot policies.

A key bottleneck for the scalability of real-world robot
evaluations is the human operator time required to conduct
the evaluation, reset the scene, and score policy success. If
we can reduce required human involvement to a minimum,
we can drastically increase the throughput of real robot
evaluations by running evaluations around the clock.

Our central contribution is the development of an au-
tonomous evaluation system, AutoEval, that can evaluate
user-supplied policies in the real world around the clock.
We demonstrate that AutoEval can scale to diverse eval-
uation environments by instantiating it in three automated
evaluation environments for table-top manipulation tasks in
the BridgeData V2 environment [11]. Our experiments show
that the two aspects of evaluation that typically rely most
on human effort, scene resets and success determination,
can both be automated with high fidelity with learning
based methods, yielding evaluation results that correlate well
with ground truth human evaluations. AutoEval drastically
increases the evaluation throughput, enabling 500 evaluation
episodes per 24-hour period. We also find that AutoEval
provides a more reliable policy performance estimate than
prior simulated evaluation approaches or offline metrics,
while at the same time supporting a wider range of hard-
to-simulate tasks like cloth manipulation.

We open-source our code and a detailed step-by-step
guide for setting up new automated evaluation platforms.
Additionally, we open access (https://auto-eval.
github.io) to multiple of our Bridge-AutoEval cells,
enabling researchers from other institutions to evaluate their
policies on our Bridge-AutoEval systems. We hope that
this takes a step towards democratizing robotics research
and enabling fair comparisons of robot policies on unified
evaluation setups.

II. AUTONOMOUS EVALUATION OF ROBOT
POLICIES IN THE REAL WORLD

During robot evaluations, the policy is typically asked
to perform the same task multiple times, while applying
randomizations to the initial state of the robot and the
environment, to get a statistically significant estimate of the
policy’s performance under the initial state distribution ρ(s).

https://auto-eval.github.io
https://auto-eval.github.io
https://auto-eval.github.io

User

Policy Queue

ID: policy_A

ID: policy_B

ID: policy_C

ID: policy_D

Policy

Autonomous 
Evaluation Cells

Remote  
Eval

Success Rate Rollout Videos

Episode Graph

Detailed 
Evaluation Report

Episode
Intervention

Fig. 1. We introduce AutoEval, a system for scalable, automated real
robot evaluation of generalist robot policies. Automated evaluation results
closely match human-run evaluations, while providing a more reliable
performance signal than prior simulated evaluation approaches or offline
metrics. AutoEval reduces human supervision time for evaluation by more
than 99%. We provide public access to our AutoEval cells to facilitate
standardization and ease of policy benchmarking.

The output of the policy evaluation is an evaluation score
ranging from 0 to 1, representing the success probability.

We present an overview of our AutoEval system in al-
gorithm 1. At its core, it follows the same structure as a
conventional, human-run evaluation, running multiple trials
with intermittent resets and performance scoring. However,
AutoEval introduces multiple learned modules that automat-
ically perform the tasks that typically require a human eval-
uator. Namely, AutoEval consists of three key modules: (1) a
success classifier, that evaluates a policy’s success on a given
task, (2) a reset policy, that resets the scene back to a state
from the initial state distribution upon completion of a trial,
and (3) programmatic safety measures and fault detections
that prevent robot damage and call for human intervention
when necessary. All three components are implemented via
flexible, learned models, and can thus be easily adapted
to automate the evaluation of a wide range of robot tasks.

Algorithm 1 Autonomous Policy Evaluation Loop (AutoE-
val)

1: Input: Task T , policy π, initial state distribution ρ(s),
success classifier CT, reset policy πT , reset classifier
Cρ(s)

2: Output: Estimated probability of success for task T
3: for each trial do
4: Start State: Start from initial state s0 ∼ ρ(s)
5: Policy Rollout: Rollout policy π for K timesteps
6: Success Check: Assign success label using CT(sK)
7: Reset Scene: Rollout reset policy πT to return to

ρ(s)
8: Failure: If unable to reset or robot unhealthy, notify

human operator to help
9: end for

Next, we provide details on the design and training of each
component of our AutoEval system.

Success classifier. The success classifier CT : S → {0, 1}
serves to approximate the ground truth task-success T :
S → {0, 1} that maps image states to a binary success
label. Instead of hand-crafting a task-specific success rule
as done in prior work [12], [13], AutoEval trains a learned
success classifier CT, a recipe which can be easily applied
to a wide range of robot tasks. Concretely, we collect a
small set of example images of success and failure states.
We use approximately 1000 images, which takes less than
10 minutes to collect by tele-operating the robot and saving
the frames in the trajectory. We then fine-tune a pre-trained
vision-language model (VLM) for the task of binary success
detection. Given a language prompt, e.g., “Is the drawer
open? Answer yes or no”, and an image observation, the
model is trained to predict whether the task was successfully
completed. We use a pre-trained VLM to obtain a classifier
that is robust to small perturbations of the environment
without needing to collect a large number of example images
for fine-tuning. In practice, we use the Paligemma VLM [14]
for training the success classifier. More detailed information
is provided in Appendix L.

Reset policy. The reset policy πT (a|s) “undoes” what
the evaluation policy π did during the evaluation rollout,
returning the scene and robot to a state from the initial
state distribution ρ(s). Again, instead of relying on task-
specific “hardware resets” like springs or magnets, our aim
with AutoEval is to design a system that can be flexibly
applied to a range of robot tasks. We thus use a learned
policy for resetting the scene. To learn a reset policy, we
manually collect a small set of approximately 100 high-
quality demonstrations trajectories that reset the scene from
plausible end-states of both successful and failed policy
rollouts. In practice, this data collection takes typically less
than two hours. We then fine-tune a generalist robot policy
with behavioral cloning to act as a reset policy. Starting from
a generalist policy checkpoint ensures that the reset policy
is more robust, and fewer reset demonstrations are required
to obtain reliable resets.

WidowX 250

Logitech 
C920 RGB

Fig. 2. Bridge-AutoEval cell: our robot setup for autonomous policy
evaluation in the real world. It consists of a WidowX 250 6-DoF robot
arm and a Logitech C920 HD RGB-camera. The scenes reproduce popular
evaluation tasks from the BridgeData [11] robot dataset.

Fig. 3. Three scenes in the Bridge-AutoEval experiments: sink, drawer,
and cloth. In total we support five tasks for autonomous evaluation:
two pick-and-place task in sink, two drawer tasks in drawer, and one
deformable cloth manipulation task in cloth.

III. BRIDGE-AUTOEVAL: OPEN-SOURCE
AUTOMATED EVAL PLATFORM

In this section, we describe an instantiation of our auto-
mated evaluation system for multiple environments and tasks
from the BridgeData V2 dataset [11], [15]. BridgeData is a
diverse manipulation dataset containing 60k+ manipulation
demonstrations with a WidowX 6DoF robot arm, that span
13 different skills and 24 environments. State-of-the-art
generalist manipulation policies like OpenVLA [4], RT2-
X [1], CrossFormer [7], and Pi0 [8], [16] are all trained
on BridgeData or a super set of it [17], and therefore policy
evaluations on this setup are a natural testbed for scalable
evaluation approaches for generalist policies.

We built three Bridge-AutoEval cells as shown in Figure 3,
which we call the drawer scene, the sink scene, and the
cloth scene. Each scenes support evaluation of one to two
manipulation tasks: drawer supports evaluating “open the
drawer” and ”close the drawer”; sink supports evaluating
pick-and-place tasks “put the eggplant in the blue sink” and
“put the eggplant in the yellow basket”; cloth support the
deformable object manipulation task “fold the cloth from top
right to bottom left”.

One contribution of our work is that we make two of
our Bridge-AutoEval cells publicly available at https://
auto-eval.github.io, so other researchers can sched-
ule evaluations for their policies. We hope that over time,
this can contribute to making evaluations in robotics more
reproducible and comparable. To make this practical, we

provide a public web UI to access our Bridge-AutoEval
cells and monitor the evaluation progress, as shown in
Figure 7. Users can choose the scene and task on which
they want to perform evaluation, and provide the IP address
and port for a local “policy server”, that serves the policy
they want to evaluate. Our Bridge-AutoEval system will
automatically queue the jobs for evaluation, and execute
evaluation jobs around the clock from all users. At the
end of a policy evaluation, AutoEval provides users with
downloadable rollout data and a detailed performance report
of the autonomous evaluation, which contains rollout videos,
success rates, episode durations, and frequencies of motor
resets or required human interventions. Figure 8 shows part
of an example report.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Tasks. We evaluate policies on the five Bridge V2 [11]
evaluation tasks described in section III: opening and closing
a drawer, placing a plastic eggplant in a sink and a basket,
and folding a piece of cloth. Details in Appendix D.
Policies. We run evaluations with six recently released gen-
eralist robot policies from the robotics community: Open-
VLA [4], Octo [3], Open-π0, MiniVLA, SuSIE, SuSIE-
LL. Detailed description of these policies in Appendix E.
Comparisons. We compare multiple approaches for scalable
evaluation of generalist policies. Concretely, we compare our
approach, AutoEval, to prior work on simulated evaluation
of robot manipulation policies, SIMPLER [10]. SIMPLER
builds realistic simulated versions of real-world environments
and then evaluates policies purely in simulation. For our
experiments, we reuse the existing SIMPLER environment
for the Bridge sink environment, and build a new SIMPLER
simulation environment for the drawer scene (See Figure 9).
Deformable objects such as the cloth in our cloth scene are
hard to simulate [18], [19] and the simulator of SIMPLER,
Maniskill [20], does not support simulating deformable ob-
jects so we do not evaluate the cloth scene in simulation.
In addition, we compare to using mean-squared error on a
validation set (“val-MSE”) as a scalable approach for offline
evaluation of robot policies.
Metrics. Human-run real-world evaluations is the gold stan-
dard for robotic policy evaluation. Following [10] we use
two metrics to measure how closely the respective evaluation
results match those of human-run evaluations: (1) Pearson
correlation [21], which measures the linear consistency be-
tween two random variables, and is a widely used statistical
tool for assessing correlation, with scores nearing 1 indi-
cating high correlation. (2) MMRV (Mean Maximum Rank
Violation) [10], which measures the consistency of policy
ranking and, as described in [10], can be more robust to
noise on the evaluation results. Low MMRV scores indicate
closely matching evaluation results. Details in Appendix F.

B. AutoEval Closely Matches Human Evaluation Results

For each evaluation method, we run 50 evaluation rollouts
for each policy in each of our five tasks (except “val-MSE”,

https://auto-eval.github.io
https://auto-eval.github.io

Fig. 4. Correlation of scalable evaluation approaches to oracle human-
run evaluations. AutoEval closely matches human evaluations, achieving
high correlation and low MMRV score (plotted in the figure is 1−MMRV
for clarity). In contrast, SIMPLER simulated evaluations and validation MSE
do not correlate as well with human evaluations.

Open the 
Drawer

Policy Rollout Success 
Detector Reset Policy

Put  
Eggplant 
in Sink

Fold the 
Cloth

Fig. 5. Qualitative visualization of AutoEval evaluation rollouts on three
of our tasks. After the policy execution is done, the success classifier
determines whether the rollout was successful. Then, the reset policy returns
the environment into a state from the initial state distribution for the next
evaluation. Our evaluations cover representative robot manipulation tasks:
pick-place, articulate and deformable object manipulation.

which does not require rollouts). We report results in fig. 4,
with a detailed breakdown of results per task, policy, and
evaluation method in Appendix, table I to table III. Similar to
prior work [10], we find that simple validation MSE is a poor
evaluation metric for robot policies: it actually negatively
correlates with real robot performance and thus does not
provide a reliable performance estimate. We find that SIM-
PLER evaluations in simulation provide a better performance
signal, but lack reliability. Concretely, our results show
that SIMPLER occasionally matches real-world performance
well (e.g., for the “open drawer” task), but in other cases
not accurately reflects the policy’s performance. For example
for Open-π0 in the “put eggplant to sink” task, the policy
performs very poorly in simulated evaluations, but achieves
high success rate in the real world. Intuitively, different
policies may suffer differently from the remaining sim-to-
real gap in SIMPLER evaluations. As a result, SIMPLER’s
effectiveness is policy dependent and it cannot provide a
reliable policy evaluation.

In contrast, we find that our approach, AutoEval, closely
matches the results of oracle human-run evaluations, with an
average Pearson score of 0.942 and MMRV of 0.015 (plotted
as 1−MMRV in Figure 4 of 0.985). In particular, an MMRV
score close to zero indicates that it rarely disrupts the ranking
of policies. Intuitively, since evaluations are still run in the

AutoEval Avg. Speed Human Eval. Avg. Speed Human Intervention

Fig. 6. Visualization of a 24 hour AutoEval evaluation run with ˜850 total
evaluation episodes. AutoEval is able to run autonomously over extended
periods of time and only required a total of 3 human interventions over a
24 hour period. On average, the evaluation throughput of AutoEval is on
par with that of human evaluations, but saves 99%+ human operator time.

real world, there is no sim-to-real gap that could negatively
affect policy performance. In practice, we find that success
detector and reset policy work reliably during evaluation. We
show qualitative examples of autonomous evaluation rollouts
in fig. 5, and further examples in appendix I. Importantly,
we find that AutoEval drastically reduces the human effort
required to run real robot evaluations, cutting the human
evaluator time for robot evaluations by > 99% compared
to conventional, human-run evaluations.

C. AutoEval Robustly Runs Over Long Time Spans

For this investigation, we performed a long-running eval-
uation session over the course of 24 hours, repeatedly inter-
leaving the evaluation of various policy checkpoints, using
the “open drawer” and “close drawer” tasks. In Figure 6,
we present the evaluation throughput over the 24 hours, as
well as the number of human interventions needed over
the span of the whole evaluation. We present evaluation
throughput in terms of the number of valid evaluation steps
taken per minute Over the course of a day, a single AutoEval
cell is able to run 60, 000 evaluation steps (roughly 850
episodes on the drawer scene), with an average speed of
42 evaluation steps per minute. The AutoEval throughput
varies in Figure 6 because of the different inference speed
of different policies. The average AutoEval speed, shown in
dotted blue line, is slightly lower but on par with the average
evaluation speed of a human evaluator performing manual
resets of the environment and recording success rates. Even
though AutoEval has a slightly lower throughput, AutoEval
runs autonomously and only required a total of three human
interventions in the span of 24 hours to reset the scene or
robot. Every time a human operator needed to intervene,
they simply needed to check and reset the objects’ position
in the scene, and potentially move the robot arm into reset
position if a motors failed and the robot fell on the table.
Afterward, the human operator can make AutoEval resume
simply with the press of a button. Assuming that each human
reset operation takes 1 minute, 24h of autonomous evaluation
only costs 3 minutes of human time, compared to ≈ 16 hours
if a human evaluator wanted to run the same number of trials
by hand. This means that AutoEval can reduce human time
involvement by >99%.

In addition, we evaluate AutoEval’s performance over two
months of continuous operation. appendix Q shows that
AutoEval yield consistent results over long time periods.

APPENDIX

A. AutoEval Web UI Interface

Figure 7 illustrates the web UI for submitting evaluation
jobs to Bridge-AutoEval and Figure 8 illustrates the resulting
report provided to users upon completion of the automated
evaluation.

Fig. 7. Web UI for submitting evaluation jobs to the Bridge-AutoEval
cells. Users choose a desired task and provide the IP address for a policy
server they host for evaluation, and can monitor the evaluation through the
UI.

Success Rates Episode Success

Video Eval Duration (s)Auto Recovery

Initial & Final
Frame of Eval

Fig. 8. Excerpt from an AutoEval result report, provided to the user
upon completion of the automated evaluation. Users can see the per-episode
success rate, rate of evaluation progress, instances of automatic recovery
from motor failures, and qualitative rollout videos as well as classifier result
plotted with initial and final frames to obtain a wholistic understanding of
the policy’s performance.

B. RELATED WORK

Generalist robot policies. Recent advancements in
robot foundation models have demonstrated significant
progress [1], [3], [4], [6], [8], [16], [22]–[27], fueled by
large-scale robot datasets [5], [11], [17], [28]. These models
are trained to perform diverse tasks (e.g., pick-and-place,

cloth folding) [4], [8], [11], [16], adapt to various scenes with
different backgrounds and distractors [29], [30], and control
multiple robot embodiments (e.g., quadrupeds, manipulator
arms, drones) [7], [31]. With the increase in capabilities
of these generalist robot policies, evaluation becomes ever
more time-consuming, because measuring model perfor-
mance needs evaluations of a variety of different skills and
scenes. For example, reporting results for [4] required a few
thousand evaluation trials and more than 100 hours of human
labor. Evaluation trials needed during development probably
compounded this number several times. This makes devel-
opment and comprehensive evaluation of generalist robot
policies increasingly challenging, calling for an evaluation
method that is much more scalable.

Robot policy evaluation in the real world. Evaluating
robot policies in a fair, comprehensive, and reproducible
way is challenging. Robotic methods and systems today are
mostly tested in custom settings at the institution where
the method is developed. Cross-institution evaluation en-
counters difficulties with different hardware, task definitions,
and performance measures [32]. To address this, multiple
works have proposed real robot setups that have reproducible
components (such as 3-D printed objects or cheap robot hard-
ware) that are meant to be replicated across institutions [11],
[33]–[38]. In addition to robot manipulators, there have
also been efforts for standardized hardware in other robot
embodiments [39], [40]. However, the sensitivity of policies
to environmental factors like lighting, camera angles, and
robot type makes it hard to accurately reproduce real robot
setups across institutions, even when the same set of objects
and hardware are used. Others have built evaluation systems
that are hosted at a central location to compare different
approaches. Some take the form of live competitions [32],
[41]–[44], while others are hosted at research institutions and
open to the public [45], [46]. However, these evaluations all
require human involvement to supervise the policy evaluation
or to reset the scene, making it expensive in terms of human
time and therefore significantly limiting the number of real
robot evaluations benchmark participants can perform. In
addition, the live competitions are logistically challenging
and hard to operate continually. These reproducibility and
scalability constraints will become even more apparent as the
capabilities of robot policies expand to more scenes, tasks,
and embodiments. Our approach, AutoEval, can substantially
improve the throughput of real robot evaluations by replacing
parts of the evaluation pipeline traditionally completed by
humans with specialized learned components, thus enabling
robots to “evaluate themselves” 24/7. Notably, [47] proposed
a setup for remote, autonomous policy evaluation in the real
world as part of their Real Robot Competition, but they
focused on evaluations in a single environment, engineered
to require no resets and allow for scoring with task-specific,
hand-defined rules. In contrast, our AutoEval system is
designed for evaluation of generalist policies by enabling
autonomous evaluation on a wider range of tasks (e.g., pick-
place, articulate object & cloth manipulation) via learned
reset and scoring modules. While the goal of this work is not

to build a comprehensive benchmark for robot foundation
models, which requires evaluations spanning many tasks,
scenes, and embodiments, we demonstrate that our system
can be used to automate evaluations for a diverse set of tasks
and provide a step-by-step guide to set up new automated
evaluations within a few hours. We hope that by reproducing
this recipe at other institutions, the robotics community will
over time be able to construct a comprehensive evaluation
benchmark for generalist policies.

Evaluation in simulation. While human-run evaluations
in the real world are the gold standard used by most prior
works, they require extensive human effort and do not scale
well as the capabilities of models increase. As a result,
simulation has been a popular tool for high-throughput
evaluation in robot learning research [48]–[63]. However,
there are still discrepancies between these simulators and the
real world, making simulated evaluation different from real-
world evaluation. First of all, real-world physics of contacts,
collisions, and friction are hard to simulate accurately [64]–
[70]. Even if the physics simulation is perfect, not all
physical parameters can be precisely measured in the real
world to be replicated in simulation (e.g., friction coefficients
and actuation delays) [71], [72]. Policies that interact with
real-world objects usually exhibit different behavior than
they do on their simulated counterparts. Secondly, policies
need to deal with real world factors such as noisy and delayed
sensory inputs that do not play a big part in simulation.
Finally, the visual difference such as texture and light-
ing between simulated images and real-world observations
makes the two types of evaluation quite different [73], [74].
Recent works have tried to reduce the visual discrepancy by
building realistic simulators for policy evaluation [10], [75].
SIMPLER [10] constructs high-fidelity replicas of real robot
evaluation scenes and demonstrates strong correlation of
simulated rollouts to human-run rollouts in the corresponding
real robot environments. However, gaps between simulation
and the real world remain, and our evaluations show that
they can affect different models to varying degrees, leading to
inconsistent policy performance rankings between simulation
and real world evaluation. Additionally, there is a large
number of tasks, like cloth or liquid manipulation, that
are challenging to simulate at sufficient fidelity to enable
simulated evaluation. In contrast, our approach performs
evaluations on real robot systems and thus provides a more
reliable signal for policy performance, including on tasks
that are hard to simulate, while retaining scalability by
minimizing the need for human intervention.

Autonomous robot operations. Multiple prior works
have identified the need for human supervision and oversight
as a key limiting factor in robot learning [22], [29], [76]–[79].
While these works typically focus on autonomous policy
improvement instead of autonomous policy evaluation, they
share many challenges around robot resets and success detec-
tion. Thus, many of the techniques we employ for learning
reset policies and success detectors are inspired by prior work
in autonomous robot learning, and even some of the metrics
are shared, e.g., measuring the frequency of human interven-

tion [80]. However, to our knowledge, our work is the first
to explore the design of a general system for autonomous
evaluation of generalist policies. While most robot learning
researchers are (painfully) aware of the cost of evaluations,
existing efforts toward automating real robot evaluations have
been limited to task-specific solutions that often involve
instrumenting the environment, e.g., with spring-driven or
scripted reset mechanisms [13], [22], [81]. In contrast, we
provide a task-agnostic, scalable approach for automating
robot evaluations with flexible, learned components based
on generalizable and broadly applicable foundation models.

C. SIMPLER environments

Figure 9 illustrates the two SIMPLER simulated environ-
ments we use in Section IV.

Fig. 9. SIMPLER [10] simulated evaluation scenes for the tested
environments. Simulated evaluation is fast and cheap, but can struggle from
visual and physics discrepancies between simulation and the real world.

D. Experimental Details

For our evaluations on the robot tasks, all tasks are per-
formed using a WidowX 6-DoF robot arm. During human-
run evaluations, success is counted when the drawer is
completely closed or opened at least 1.5cm, respectively, if
the eggplant is fully inside the sink or basket at the end of
the episode, and if the cloth is folded to at least a quarter
of the way diagonally. We randomize the initial position of
the eggplant, drawer, and the cloth at the beginning of each
episode.

E. Generalist Robot Policies Evaluated in Experiments Sec-
tion.

Here we provide more details on all the generalist robot
policies we evaluate in Section IV. OpenVLA [4], a 7B
parameter vision-language-action model (VLA) pre-trained
on the Open X-Embodiment dataset [17], Octo [82], a 27M
parameter transformer policy, also pre-trained on Open X-
Embodiment, Open-π0 [83], an open-source reproduction
of the 3B parameter π0 VLA [8] (the original π0 was not
available in open-source at the time of writing), pre-trained
on the Bridge V2 dataset, MiniVLA [84], a 3B parameter
VLA pre-trained on the Bridge V2 dataset [11], SuSIE [85],
a hierarchical policy that combines a image diffusion subgoal
predictor with a small diffusion low-level policy, pre-trained
on Bridge V2, and SuSIE-LL, which directly executes the
goal-conditioned behavioral cloning low-level policy from
SuSIE. This set of policies is a representative sample of cur-
rent state-of-the-art generalist policies. All policies contain

Motors
Overheat

8 hours of autonomous evaluation

Fig. 10. AutoEval evaluation scores remain consistent over 8 hours of
autonomous evaluations. After 8 hours, the WidowX robot’s motors overheat
and evaluation scores start to drift. As a result, we pause evaluation for
20 min every 6 hours to let the motors cool off. Error bars show 95%
confidence intervals.

the Bridge V2 dataset as part of their training data, and we
evaluate the publicly released checkpoints for all models.

F. MMRV Score Details

MMRV is computed as follows: given N policies π1..N

and their respective success rates RA,1..N , RB,1..N estimated
via two evaluation procedures A and B, we compute:

RankViolation(i, j) = |RA,i −RA,j |
· 1[(RB,i < RB,j) ̸= (RA,i < RA,j)]

MMRV(RA, RB) =
1

N

N∑
i=1

max
1≤j≤N

RankViolation(i, j).

For each tested evaluation approach we compute MMRV
with reference to human-run “oracle” evaluations, where low
MMRVs indicate closely matching evaluation results.

G. Are AutoEval results consistent across time?

We test the consistency of AutoEval evaluations, i.e., Auto-
Eval’s ability to produce comparable performance estimates
across multiple iterations of evaluating the same policy. To
test this, we run the Open-π0 policy through a sequence of
9 evaluations on the “open drawer” task, each consisting of
50 individual trials, or a total of 450 trials. Using AutoEval,
the full evaluation takes ˜11 hours. We report the results of
this evaluation in fig. 10. We find that AutoEval produces
consistent evaluation results across long periods of time.
Concretely, for the first 7 evaluation runs, or a total of
350 evaluation episodes, AutoEval performance evaluation
are within the margins of what might be considered the
natural variance of robot evaluations (±10%). We see a
regression in performance after approximately 8 hours of
continuous operation, which we attribute to an overheating of
the motors of our rather affordable WidowX robot (¡$3500)
after many hours of operation. To mitigate the effects of such
overheating in practice, we pause autonomous evaluations for
20 minutes every 6 hours to let the motors cool off before
resuming evaluations.

H. Safety During Extended Autonomous Robot Operations

To ensure that the robots can autonomously and safely
operate for a long time, we take several measures to ensure
the safety of the robot and to preserve the scene. First, we set
safety boundaries for the robot such that the policy cannot
go beyond certain xyz axis (e.g. beyond the view of the
camera) so that it does not run into objects unintentionally.
Second, since the WidowX robot arms do not natively sup-
port impedance control, we limit the maximum effort on each
of the robot joints, so that ineffective policies do not press too
hard against objects and cause motor failure. The common
robot failure is due to joint failure when interacting and
colliding with the objects in the scene, hence we constantly
monitor and log the joint effort values, safely software reboot
the joints when joint errors are detected during each trial.

I. Visualizations of AutoEval Rollouts

Figure 11 presents evaluation trajectories in the five differ-
ent Bridge-AutoEval tasks. The actual language commands
fed to the evaluated policies are:

1) “Close the drawer”
2) “Open the drawer”
3) “Put the eggplant in the yellow basket”
4) “Put the eggplant in the blue sink”
5) “fold the cloth from top right to bottom left”

J. Evaluation on Bridge-SIMPLER [10]

In AutoEval , we introduced a new Drawer Scene to the
existing SIMPLER [10] setup for the WidowX robot. The
scene was visually matched with the AutoEval’s Drawer
setup, and overlaid with the same background to ensure
consistency. A 3D model of the drawer, with exact dimen-
sions matching the real-world setup, was also created. This
scene introduced two evaluation tasks: ”open and close the
drawer”. To add variability to each evaluation trial, we
randomized the end effector’s initial pose, the drawer’s initial
pose, and the lighting conditions in the background.

In addition to the Drawer Scene, AutoEval includes a Sink
Setup, which closely resembles the existing SIMPLER [10]
Sink Scene. In SIMPLER, the task here is the ”move the
eggplant to the basket” task. We also introduced a reverse
task, ”move eggplant to the sink,” effectively making the
scene reset-free. This allows for both forward and reverse
tasks in the same environment.

With these two scenes and four tasks, we conducted 50
runs for each scene across five different generalist policies.
The detailed results are shown in table I

K. Detailed Evaluation Results on Bridge-AutoEval

In table II to table III, we provide detailed evaluation
results for our comparison of different scalable evaluation
approaches across the five Bridge V2 evaluation tasks.

L. Success Classifier in Bridge-AutoEval cells

To train success classifiers for the Bridge-AutoEvalscenes,
we finetune the Paligemma VLM to act as a classifier. We
manually collect a dataset of roughly 1000 images for each

Close the

 Drawer

Open the

 Drawer

Put Eggplant

In Basket

Put Eggplant

In Sink

Fold Cloth

Fig. 11. Samples of autonomous policy evaluation trials with AutoEval on the five tasks. The classifier result of each task is visualized on the right hand
side, and the reset policy is not shown.

Policy Drawer Scene Sink Scene
Open Close Eggplant Eggplant

Drawer Drawer to Basket to Sink
OpenVLA 2/50 27/50 1/50 0/50
Open π0 34/50 25/50 46/50 6/50

Octo 3/50 0/50 6/50 3/50
SuSIE-LL 1/50 0/50 0/50 0/50

SUSIE 0/50 41/50 7/50 0/50
MiniVLA 30/50 23/50 11/50 2/50

TABLE I
EVALUATION RESULTS ON SIMPLER [10] FOR DRAWER AND SINK

SCENE ON FOUR TASKS AND SIX DIFFERENT POLICIES.

scene, and manually label them. We form VQA questions
with the labels, and finetune the base 3B parameter VLM
with quantized LoRA using a learning rate of 2e− 5, batch
size of 4 for 80 iterations.

For each evaluation scene, approximately 1000 image
frames are collected to fine-tune the VLM. The correspond-
ing language prompts are:

1) Sink Scene: ”is the eggplant in the sink or in the
basket? answer sink or basket or invalid”

2) Drawer Scene: ”is the drawer open? answer yes or
no”

3) Cloth Tabletop Scene: ”is the blue cloth folded or
unfolded? answer yes or no”

Policy Drawer Sink
Open Close To To Fold

Drawer Drawer Basket Sink Cloth
OpenVLA 40/50 46/50 1/50 0/50 13/50
Open π0 29/50 46/50 7/50 47/50 12/50

Octo 1/50 5/50 0/50 0/50 4/50
SuSIE-LL 0/50 1/50 0/50 0/50 0/50

SuSIE 1/50 18/50 0/50 0/50 9/50
MiniVLA 33/50 49/50 38/50 0/50 8/50

TABLE II
AUTOEVAL RESULTS ON FIVE BRIDGE-AUTOEVAL TASKS ACROSS SIX

DIFFERENT GENERALIST POLICIES.

M. Reset Policy in Bridge-AutoEval cells

To train reset policies for the Bridge-AutoEvalcells, we
finetune the generalist OpenVLA policy with LoRA, with
batch size 64 and learning rate 10−4 for 1000 iterations. For
each scene, we collect roughly 100 demonstration trajectories
via teleoperation, and train with a standard behavior cloning
loss. We also use a scripted policy for one of our reset policy
- ”Close the Drawer” task, where the reset success rate is not
sensitive to variation in scene.

N. Step-by-step AutoEval Construction Guide

Overall, we find that the construction of an AutoEval cell
for a new task can be completed within 1-3h of human effort,
and less than 5 hours total, including model training time for
success classifiers and reset policy. This is compared to tens
of hours of human evaluation time that can be saved even

Policy Drawer Sink
Open Close To To Fold

Drawer Drawer Basket Sink Cloth
OpenVLA 40/50 46/50 1/50 0/50 12/50
Open π0 24/50 45/50 7/50 47/50 3/50

Octo 0/50 0/50 0/50 0/50 2/50
SuSIE-LL 0/50 0/50 0/50 0/50 0/50

SuSIE 2/50 13/50 0/50 0/50 10/50
MiniVLA 32/50 49/50 38/50 0/50 8/50

TABLE III
GROUND TRUTH HUMAN EVALUATION RESULTS FOR THE FIVE

BRIDGE-AUTOEVAL TASKS ACROSS SIX DIFFERENT GENERALIST

POLICIES.

within a single typical research project. Below, we provide a
step-by-step guide for creating an AutoEval setup for a new
evaluation tasks.

1) Train Reset Policy: Start by collecting approximately
100 high-quality robot demonstrations of resetting be-
havior from sensible final states of policy rollouts. Try
to cover a diverse set of “reset start states”, including
those that failed the original task, to obtain a robust
reset policy. Once you collected the dataset, fine-tune a
generalist policy like OpenVLA [4], e.g., using LoRA
fine-tuning, on your reset demonstration dataset. If you
find that the reset is unreliable and fails often, consider
collecting more reset demonstrations and re-training.
For a small set of tasks, scripted reset policies are
feasible too, but they require task-specific setup, which
we won’t discuss here.

2) Train Task Success Classifier: Collect approximately
1000 images of success and failure states. An easy way
to collect such data is by “waving” the robot arm near
the final state of the task at hand to quickly collect
a number of “nearby” states for both successful and
unsuccessful task execution. Then fine-tune a vision-
language model like Paligemma [14] on this dataset
and test the performance of your classifier by scoring
a few final states of real policy rollouts. If you find that
the classifier still mis-labels these states, you can put
the states with corrected labels back into your training
dataset and re-train until the accuracy of the classifier
is high.

3) Setup Safety and Robustness Measures: If your
robot does not have an integrated p-stop that prevents
forceful collisions with the environment, consider im-
plementing a limit on the motor current to prevent
damage of the robot. Additionally, it can be useful to
implement workspace bounds that prevent the robot
from e.g. throwing objects out of a bin in a large
majority of cases. Finally, train a reset success detector
that checks whether the reset policy was successful
by mirroring the steps above for training the success
detector, but this time for the inverse task. We also
recommend implementing an “on-call” system that
sends push notifications (e.g. via Slack) to operators

Fig. 12. Analyzing 50 AutoEval runs on the sink scene: the main failure
modes is false positive results because the reset policy failed to reset the
scene.

whenever the robot reports an irrecoverable issue or
the reset policy fails for N ≈ 3 times in a row.

4) Connect to AutoEval Environment Server: Connect
your evaluation setup to the AutoEval environment
server. This allows external policies to interact with
the real robot evaluation scene via a simple REST API
service. This also allows for automated scheduling,
evaluation, and logging of results and rollouts within
the AutoEval framework. Upon acceptance of this
manuscript, we will release the code for our AutoEval
software framework, to make reproduction easy.

O. Analyzing AutoEval Failure Modes

While our previous experiments show that AutoEval
closely matches the results of human-run evaluations, we
observe that over extended periods of operation errors occur
occasionally. To better understand the sources of these errors
and help the design of future autonomous evaluation cells, we
perform a detailed analysis of all failures occurring in a 50
episodes AutoEval run on the “put eggplant in blue sink” task
with the Open-π0 policy. We visualize the outcome of our
analysis in fig. 12. While many episodes experienced motor
failure because of harsh contact with the scene, AutoEval
handles such failure automatically by re-running those trials,
and only report evaluation trials that do not contain motor
failures. We find that for only three out of 50 trials, the
autonomous evaluation fails, since the episodes mistakenly
get classified as successes and the reset policy fails.

One key takeaway from this failure analysis is that our
Bridge-AutoEval setup is already very reliable with few
errors, and that most room for improvement is in improving
the efficiency by reducing the number of motor failures
during evaluation, e.g. by implementing a more compliant
robot controller that prevents harsh environment interactions.

P. Bridge-AutoEval Deployment Details

As described in section III, we open access to our Bridge-
AutoEval cells to the research community. The two different
AutoEval cells accepts and executes jobs in parallel. While
the two WidowX robots will accept evaluation jobs 24/7,
we enforce a 20 minute rest period every 6 hours where the
robot will torque off and let the motors cool off (see fig. 10
for why this is necessary). The reset period will only happen
between evaluation jobs.

Since we host the reset policies for the four tasks in
Bridge-AutoEval 24/7, we optimize for lightweight policies
(as compared to the fine-tuned OpenVLA reset policy we
use in section IV). For the two tasks on Drawer, we use
scripted reset poliy; for the two tasks on Sink, we fine-tune
MiniVLA [84] on the same demos. We find that all reset
policies have success rate > 95%.

Additionally, while the AutoEval system is developed for
evaluating generalist manipulation policies, the infrastructure
that supports autonomous robot operation can in practice
be used for other purposes as well, such as autonomous
data collection [29] or online reinforcement learning fine-
tuning [86], [87].

Q. Evaluation Results Reproducible Across Months

We find that AutoEval reproduces results even after more
than 2 months of continued use, demonstrating its robustness
to aging effects. We compare AutoEval results that are two
months apart for two policies on three tasks as shown in
table IV. During the two months, AutoEval operated contin-
uously for a rough total of 200 hours. table IV shows that
all evaluations perform similarly when evaluated two months
apart, and the reset policy and success classifiers still have
accuracies 96% and 96% respectively. We attribute such
robustness to (1) safety controllers (Appendix A) limiting
robot joint efforts to prevent high-force contact and damages,
and (2) foundation model pre-training (Paligemma VLM,
OpenVLA) making policies and detectors resilient to minor
scene changes. Over two months, we have observed minimal
“aging” – e.g. there are light scratches on the drawer upon
close examination, but they are not visible in the 256x256
pixel policy image observations and does not impact the
drawer physics.

Policy Open Close Eggplant
Drawer Drawer to Basket

OpenVLA (old) 39/50 48/50 4/50
OpenVLA 40/50 46/50 1/50

Avg. ∆ Success +2% -2% -6%
Open π0 (old) 30/50 45/50 9/50

Open π0 29/50 46/50 7/50
Avg. ∆ Success -2% +2% -4%

TABLE IV
AUTOEVAL RESULTS OBTAINED TWO MONTHS APART: RESULTS REMAIN

HIGHLY CONSISTENT ACROSS TWO DIFFERENT POLICIES ON THREE

DIFFERENT TASKS. ALL CORRELATE WELL TO HUMAN EVALUATIONS.

R. Initial States in Bridge-AutoEval Cells

We find that our learned reset policy is able to reset to
a consistent distribution of initial states. As an example, we
plot the centroids of all eggplant initial positions for three
representative AutoEval runs of the “Eggplant to Basket”
task in fig. 13 (50 trials each). Qualitatively, we find that the
reset distributions of other tasks are similarly overlapping,
and also roughly cover the task distribution.

Fig. 13. Initial state distribution for 3 different AutoEval runs is consistent.
Red dots show the centroid position of the eggplant. Each run uses 50 trials.

S. Improving AutoEval with Additional Human Involvement

Though AutoEval results highly correlate with ground
truth human-run evaluations, it is not perfect (as shown in
fig. 12). Additional human effort, when available, can further
improve AutoEval’s accuracy. The easiest and most effective
way to apply extra human effort can be spent going through
the evaluation report after AutoEval finishes to remove the
runs where the reset policy fails, and relabel the success
manually. Going through 50 trials of AutoEval roughly takes
1 − 2 minutes of human time. This enables ground-truth
judgment of evaluations runs while still saving the majority
of human time required in robot evaluations.

T. Limitations

AutoEval environment creation time. Our current approach
for creating new environments for automated evaluation
requires some up-front human effort to train the reset pol-
icy and success classifier. In our experience, the complete
process only takes a few hours for a new scene and is
quickly outweighed by the time savings of autonomous
evaluation, but future work can explore more efficient ways
of constructing reset policies and success classifiers to further
reduce the effort for setting up a new scene for autonomous
evaluation. We also expect that future improvements to vision
foundation models and generalist policies will make the
training of robust success classifiers and reset policies easier,
possibly to the point where we can “train” these modules
simply by providing a handful of examples in context.
Mobile manipulation tasks. Our experiments capture a set
of robot manipulation tasks that are reflective of the kind of
tasks commonly used for evaluating generalist robot policies
today, where the primary focus is on table-top manipulation
tasks. We believe that our approach will transfer well to
a wide range of other single-arm and bi-manual table top
manipulation tasks. However, mobile robot tasks, particularly
mobile manipulation tasks, may pose new challenges e.g.
with regards to robust resets at room scale, success estimation
under partial observability, and operational safety, all of
which pose important directions for future work.
Binary success metrics. AutoEval evaluation currently only
supports binary success estimates (did the policy succeed at a
task or fail). When humans run evaluations, they can provide
a more granular assessment of the policy’s performance,
including task progress scores and a qualitative analysis of
the policy’s proficiency. While AutoEval users can obtain
similar assessments from re-watching the logged evaluation

videos, this is a time-consuming process. In future work, it
would be exciting to investigate whether more granular per-
formance analysis can be provided in an automatic evaluation
framework, e.g., by querying powerful video summarization
models.

ACKNOWLEDGMENT

We would like to thank Kyle Stachowicz and Mitsuhiko
Nakamoto for valuable advice and discussions. Pranav is
supported by the NSF Graduate Research Fellowship.

REFERENCES

[1] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn, et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[2] K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee, M. Bauza,
T. Davchev, Y. Zhou, A. Gupta, A. Raju, et al., “Robocat: A self-
improving foundation agent for robotic manipulation,” arXiv preprint
arXiv:2306.11706, 2023.

[3] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black,
O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y.
Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and S. Levine,
“Octo: An open-source generalist robot policy,” in Proceedings of
Robotics: Science and Systems, Delft, Netherlands, 2024.

[4] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna,
S. Nair, R. Rafailov, E. Foster, G. Lam, P. Sanketi, et al., “Open-
vla: An open-source vision-language-action model,” arXiv preprint
arXiv:2406.09246, 2024.

[5] D. Shah, A. Sridhar, A. Bhorkar, N. Hirose, and S. Levine, “Gnm:
A general navigation model to drive any robot,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 7226–7233.

[6] A. Sridhar, D. Shah, C. Glossop, and S. Levine, “Nomad: Goal
masked diffusion policies for navigation and exploration,” in 2024
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2024, pp. 63–70.

[7] R. Doshi, H. Walke, O. Mees, S. Dasari, and S. Levine, “Scaling
cross-embodied learning: One policy for manipulation, navigation,
locomotion and aviation,” arXiv preprint arXiv:2408.11812, 2024.

[8] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn,
N. Fusai, L. Groom, K. Hausman, B. Ichter, et al., “π0: A vision-
language-action flow model for general robot control,” arXiv preprint
arXiv:2410.24164, 2024.

[9] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” arXiv preprint arXiv:2307.05973, 2023.

[10] X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu,
I. Lunawat, I. Sieh, S. Kirmani, S. Levine, J. Wu, C. Finn, H. Su,
Q. Vuong, and T. Xiao, “Evaluating real-world robot manipulation
policies in simulation,” arXiv preprint arXiv:2405.05941, 2024.

[11] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-
Estruch, A. W. He, V. Myers, M. J. Kim, M. Du, et al., “Bridgedata
v2: A dataset for robot learning at scale,” in Conference on Robot
Learning. PMLR, 2023, pp. 1723–1736.

[12] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[13] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot
Learning. PMLR, 2020, pp. 1101–1112.

[14] L. Beyer, A. Steiner, A. S. Pinto, A. Kolesnikov, X. Wang, D. Salz,
M. Neumann, I. Alabdulmohsin, M. Tschannen, E. Bugliarello,
et al., “Paligemma: A versatile 3b vlm for transfer,” arXiv preprint
arXiv:2407.07726, 2024.

[15] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis,
K. Daniilidis, C. Finn, and S. Levine, “Bridge data: Boosting gener-
alization of robotic skills with cross-domain datasets,” arXiv preprint
arXiv:2109.13396, 2021.

[16] K. Pertsch, K. Stachowicz, B. Ichter, D. Driess, S. Nair, Q. Vuong,
O. Mees, C. Finn, and S. Levine, “Fast: Efficient action tokenization
for vision-language-action models,” arXiv preprint arXiv:2501.09747,
2025.

[17] O. X.-E. Collaboration, A. Padalkar, A. Pooley, A. Jain, A. Bewley,
A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh, A. Brohan,
A. Raffin, A. Wahid, B. Burgess-Limerick, B. Kim, B. Schölkopf,
B. Ichter, C. Lu, C. Xu, C. Finn, C. Xu, C. Chi, C. Huang, C. Chan,
C. Pan, C. Fu, C. Devin, D. Driess, D. Pathak, D. Shah, D. Büchler,
D. Kalashnikov, D. Sadigh, E. Johns, F. Ceola, F. Xia, F. Stulp,
G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Schiavi, H. Su, H.-
S. Fang, H. Shi, H. B. Amor, H. I. Christensen, H. Furuta, H. Walke,
H. Fang, I. Mordatch, I. Radosavovic, I. Leal, J. Liang, J. Kim,
J. Schneider, J. Hsu, J. Bohg, J. Bingham, J. Wu, J. Wu, J. Luo, J. Gu,
J. Tan, J. Oh, J. Malik, J. Tompson, J. Yang, J. J. Lim, J. Silvério,
J. Han, K. Rao, K. Pertsch, K. Hausman, K. Go, K. Gopalakrishnan,
K. Goldberg, K. Byrne, K. Oslund, K. Kawaharazuka, K. Zhang,
K. Majd, K. Rana, K. Srinivasan, L. Y. Chen, L. Pinto, L. Tan,
L. Ott, L. Lee, M. Tomizuka, M. Du, M. Ahn, M. Zhang, M. Ding,
M. K. Srirama, M. Sharma, M. J. Kim, N. Kanazawa, N. Hansen,
N. Heess, N. J. Joshi, N. Suenderhauf, N. D. Palo, N. M. M. Shafiullah,
O. Mees, O. Kroemer, P. R. Sanketi, P. Wohlhart, P. Xu, P. Sermanet,
P. Sundaresan, Q. Vuong, R. Rafailov, R. Tian, R. Doshi, R. Martı́n-
Martı́n, R. Mendonca, R. Shah, R. Hoque, R. Julian, S. Bustamante,
S. Kirmani, S. Levine, S. Moore, S. Bahl, S. Dass, S. Song, S. Xu,
S. Haldar, S. Adebola, S. Guist, S. Nasiriany, S. Schaal, S. Welker,
S. Tian, S. Dasari, S. Belkhale, T. Osa, T. Harada, T. Matsushima,
T. Xiao, T. Yu, T. Ding, T. Davchev, T. Z. Zhao, T. Armstrong,
T. Darrell, V. Jain, V. Vanhoucke, W. Zhan, W. Zhou, W. Burgard,
X. Chen, X. Wang, X. Zhu, X. Li, Y. Lu, Y. Chebotar, Y. Zhou,
Y. Zhu, Y. Xu, Y. Wang, Y. Bisk, Y. Cho, Y. Lee, Y. Cui, Y. hua Wu,
Y. Tang, Y. Zhu, Y. Li, Y. Iwasawa, Y. Matsuo, Z. Xu, and Z. J. Cui,
“Open X-Embodiment: Robotic learning datasets and RT-X models,”
https://arxiv.org/abs/2310.08864, 2023.

[18] H. Ha and S. Song, “Flingbot: The unreasonable effectiveness of
dynamic manipulation for cloth unfolding,” in Conference on Robot
Learning. PMLR, 2022, pp. 24–33.

[19] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking
deep reinforcement learning for deformable object manipulation,” in
Conference on Robot Learning. PMLR, 2021, pp. 432–448.

[20] T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and
H. Su, “Maniskill: Generalizable manipulation skill benchmark with
large-scale demonstrations,” arXiv preprint arXiv:2107.14483, 2021.

[21] K. Pearson, “Vii. note on regression and inheritance in the case of
two parents,” proceedings of the royal society of London, vol. 58, no.
347-352, pp. 240–242, 1895.

[22] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jon-
schkowski, C. Finn, S. Levine, and K. Hausman, “Mt-opt: Continuous
multi-task robotic reinforcement learning at scale,” arXiv preprint
arXiv:2104.08212, 2021.

[23] K. Ehsani, T. Gupta, R. Hendrix, J. Salvador, L. Weihs, K.-H. Zeng,
K. P. Singh, Y. Kim, W. Han, A. Herrasti, et al., “Imitating shortest
paths in simulation enables effective navigation and manipulation in
the real world,” arXiv preprint arXiv:2312.02976, 2023.

[24] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and
V. Kumar, “Roboagent: Towards sample efficient robot manipulation
with semantic augmentations and action chunking,” 2023.

[25] S. Liu, L. Wu, B. Li, H. Tan, H. Chen, Z. Wang, K. Xu, H. Su,
and J. Zhu, “Rdt-1b: a diffusion foundation model for bimanual
manipulation,” arXiv preprint arXiv:2410.07864, 2024.

[26] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos,
S. Shakeri, E. Taropa, P. Bailey, Z. Chen, et al., “Palm 2 technical
report,” arXiv preprint arXiv:2305.10403, 2023.

[27] S. Ye, J. Jang, B. Jeon, S. Joo, J. Yang, B. Peng, A. Mandlekar, R. Tan,
Y.-W. Chao, B. Y. Lin, et al., “Latent action pretraining from videos,”
arXiv preprint arXiv:2410.11758, 2024.

[28] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karam-
cheti, S. Nasiriany, M. K. Srirama, L. Y. Chen, K. Ellis, et al., “Droid:
A large-scale in-the-wild robot manipulation dataset,” arXiv preprint
arXiv:2403.12945, 2024.

[29] Z. Zhou, P. Atreya, A. Lee, H. Walke, O. Mees, and S. Levine, “Au-
tonomous improvement of instruction following skills via foundation
models,” arXiv preprint arXiv:2407.20635, 2024.

[30] L. Fu, H. Huang, G. Datta, L. Y. Chen, W. C.-H. Panitch, F. Liu,

https://arxiv.org/abs/2310.08864

H. Li, and K. Goldberg, “In-context imitation learning via next-token
prediction,” arXiv preprint arXiv:2408.15980, 2024.

[31] J. Yang, C. Glossop, A. Bhorkar, D. Shah, Q. Vuong, C. Finn,
D. Sadigh, and S. Levine, “Pushing the limits of cross-
embodiment learning for manipulation and navigation,” arXiv preprint
arXiv:2402.19432, 2024.

[32] K. Van Wyk, J. Falco, and E. Messina, “Robotic grasping and
manipulation competition: Future tasks to support the development
of assembly robotics,” in Robotic Grasping and Manipulation: First
Robotic Grasping and Manipulation Challenge, RGMC 2016, Held in
Conjunction with IROS 2016, Daejeon, South Korea, October 10–12,
2016, Revised Papers 1. Springer, 2018, pp. 190–200.

[33] B. Yang, J. Zhang, D. Jayaraman, and S. Levine, “Replab: A repro-
ducible low-cost arm benchmark platform for robotic learning,” ICRA,
2019.

[34] M. Heo, Y. Lee, D. Lee, and J. J. Lim, “Furniturebench: Reproducible
real-world benchmark for long-horizon complex manipulation,” arXiv
preprint arXiv:2305.12821, 2023.

[35] J. Luo, C. Xu, F. Liu, L. Tan, Z. Lin, J. Wu, P. Abbeel, and
S. Levine, “Fmb: a functional manipulation benchmark for generaliz-
able robotic learning,” The International Journal of Robotics Research,
p. 02783649241276017, 2023.

[36] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and
A. M. Dollar, “Benchmarking in manipulation research: The ycb
object and model set and benchmarking protocols,” arXiv preprint
arXiv:1502.03143, 2015.

[37] S. Tyree, J. Tremblay, T. To, J. Cheng, T. Mosier, J. Smith,
and S. Birchfield, “6-dof pose estimation of household objects for
robotic manipulation: An accessible dataset and benchmark,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 13 081–13 088.

[38] J. Leitner, A. W. Tow, N. Sünderhauf, J. E. Dean, J. W. Durham,
M. Cooper, M. Eich, C. Lehnert, R. Mangels, C. McCool, et al.,
“The acrv picking benchmark: A robotic shelf picking benchmark to
foster reproducible research,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 4705–4712.

[39] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap,

Y. F. Chen, C. Choi, J. Dusek, Y. Fang, et al., “Duckietown: an
open, inexpensive and flexible platform for autonomy education and
research,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 1497–1504.

[40] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 1699–1706.

[41] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine,
J. Strauss, G. Pratt, and C. Orlowski, “The darpa robotics challenge
finals: Results and perspectives,” The DARPA robotics challenge finals:
Humanoid robots to the rescue, pp. 1–26, 2018.

[42] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis
and observations from the first amazon picking challenge,” IEEE
Transactions on Automation Science and Engineering, vol. 15, no. 1,
pp. 172–188, 2016.

[43] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup:
The robot world cup initiative,” in Proceedings of the first international
conference on Autonomous agents, 1997, pp. 340–347.

[44] Earth Rover Challenge Team, “The Earth Rover Challenge,” 2025,
accessed: 2025-02-01. [Online]. Available: https://sites.google.com/
view/the-earth-rover-challenge

[45] G. Zhou, V. Dean, M. K. Srirama, A. Rajeswaran, J. Pari, K. Hatch,
A. Jain, T. Yu, P. Abbeel, L. Pinto, et al., “Train offline, test
online: A real robot learning benchmark,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
9197–9203.

[46] S. Yenamandra, A. Ramachandran, K. Yadav, A. Wang, M. Khanna,
T. Gervet, T.-Y. Yang, V. Jain, A. W. Clegg, J. Turner, et al.,
“Homerobot: Open-vocabulary mobile manipulation,” arXiv preprint
arXiv:2306.11565, 2023.

[47] S. Bauer, M. Wüthrich, F. Widmaier, A. Buchholz, S. Stark, A. Goyal,
T. Steinbrenner, J. Akpo, S. Joshi, V. Berenz, et al., “Real robot
challenge: A robotics competition in the cloud,” in NeurIPS 2021
Competitions and Demonstrations Track. PMLR, 2022, pp. 190–204.

[48] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas,

https://sites.google.com/view/the-earth-rover-challenge
https://sites.google.com/view/the-earth-rover-challenge

D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind
control suite,” arXiv preprint arXiv:1801.00690, 2018.

[49] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The
robot learning benchmark & learning environment,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3019–3026, 2020.

[50] Y. Lee, E. S. Hu, and J. J. Lim, “IKEA furniture assembly
environment for long-horizon complex manipulation tasks,” in IEEE
International Conference on Robotics and Automation (ICRA), 2021.
[Online]. Available: https://clvrai.com/furniture

[51] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone, “Libero:
Benchmarking knowledge transfer for lifelong robot learning,” Ad-
vances in Neural Information Processing Systems, vol. 36, 2024.

[52] S. Nasiriany, A. Maddukuri, L. Zhang, A. Parikh, A. Lo, A. Joshi,
A. Mandlekar, and Y. Zhu, “Robocasa: Large-scale simulation of ev-
eryday tasks for generalist robots,” arXiv preprint arXiv:2406.02523,
2024.

[53] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard, “Calvin: A
benchmark for language-conditioned policy learning for long-horizon
robot manipulation tasks,” IEEE Robotics and Automation Letters (RA-
L), vol. 7, no. 3, pp. 7327–7334, 2022.

[54] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[55] S. Tao, F. Xiang, A. Shukla, Y. Qin, X. Hinrichsen, X. Yuan, C. Bao,
X. Lin, Y. Liu, T.-k. Chan, et al., “Maniskill3: Gpu parallelized
robotics simulation and rendering for generalizable embodied ai,”
arXiv preprint arXiv:2410.00425, 2024.

[56] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
M. Deitke, K. Ehsani, D. Gordon, Y. Zhu, et al., “Ai2-thor: An inter-
active 3d environment for visual ai,” arXiv preprint arXiv:1712.05474,
2017.

[57] X. Puig, E. Undersander, A. Szot, M. D. Cote, T.-Y. Yang, R. Partsey,
R. Desai, A. W. Clegg, M. Hlavac, S. Y. Min, et al., “Habitat
3.0: A co-habitat for humans, avatars and robots,” arXiv preprint
arXiv:2310.13724, 2023.

[58] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and

S. Levine, “Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning,” in Conference on robot learning.
PMLR, 2020, pp. 1094–1100.

[59] O. Ahmed, F. Träuble, A. Goyal, A. Neitz, Y. Bengio, B. Schölkopf,
M. Wüthrich, and S. Bauer, “Causalworld: A robotic manipulation
benchmark for causal structure and transfer learning,” arXiv preprint
arXiv:2010.04296, 2020.

[60] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martı́n-
Martı́n, C. Wang, G. Levine, W. Ai, B. Martinez, et al., “Behavior-
1k: A human-centered, embodied ai benchmark with 1,000 everyday
activities and realistic simulation,” arXiv preprint arXiv:2403.09227,
2024.

[61] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach, S. Srivastava, B. Shen,
K. Vainio, C. Gokmen, G. Dharan, T. Jain, et al., “igibson 2.0: Object-
centric simulation for robot learning of everyday household tasks,”
arXiv preprint arXiv:2108.03272, 2021.

[62] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan,
Y. Zhu, and D. Fox, “Mimicgen: A data generation system for
scalable robot learning using human demonstrations,” arXiv preprint
arXiv:2310.17596, 2023.

[63] O. Mees, L. Hermann, and W. Burgard, “What matters in language
conditioned robotic imitation learning over unstructured data,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11 205–11 212,
2022.

[64] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

[65] A. Juliani, “Unity: A general platform for intelligent agents,” arXiv
preprint arXiv:1809.02627, 2018.

[66] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH 2015
Courses, 2015, p. 1.

[67] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. Karen Liu, “Dart: Dynamic animation and robotics
toolkit,” The Journal of Open Source Software, vol. 3, no. 22, p. 500,
2018.

[68] NVIDIA, “Physx,” 2020. [Online]. Available: https://developer.nvidia.
com/physx-sdk

https://clvrai.com/furniture
https://developer.nvidia.com/physx-sdk
https://developer.nvidia.com/physx-sdk

[69] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang, et al., “Sapien: A simulated part-based interactive
environment,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2020, pp. 11 097–11 107.

[70] G. Authors, “Genesis: A universal and generative physics engine
for robotics and beyond,” December 2024. [Online]. Available:
https://github.com/Genesis-Embodied-AI/Genesis

[71] P. Huang, X. Zhang, Z. Cao, S. Liu, M. Xu, W. Ding, J. Francis,
B. Chen, and D. Zhao, “What went wrong? closing the sim-to-real gap
via differentiable causal discovery,” in Conference on Robot Learning.
PMLR, 2023, pp. 734–760.

[72] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[73] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi,
J. Salvador, D. Schwenk, E. VanderBilt, M. Wallingford, et al.,
“Robothor: An open simulation-to-real embodied ai platform,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 3164–3174.

[74] J. Zhang, L. Tai, P. Yun, Y. Xiong, M. Liu, J. Boedecker, and
W. Burgard, “Vr-goggles for robots: Real-to-sim domain adaptation
for visual control,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1148–1155, 2019.

[75] Z. Li, T.-W. Yu, S. Sang, S. Wang, M. Song, Y. Liu, Y.-Y. Yeh, R. Zhu,
N. Gundavarapu, J. Shi, et al., “Openrooms: An open framework for
photorealistic indoor scene datasets,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp.
7190–7199.

[76] M. Ahn, D. Dwibedi, C. Finn, M. G. Arenas, K. Gopalakrishnan,
K. Hausman, B. Ichter, A. Irpan, N. Joshi, R. Julian, S. Kirmani,
I. Leal, E. Lee, S. Levine, Y. Lu, S. Maddineni, K. Rao, D. Sadigh,
P. Sanketi, P. Sermanet, Q. Vuong, S. Welker, F. Xia, T. Xiao, P. Xu,
S. Xu, and Z. Xu, “Autort: Embodied foundation models for large
scale orchestration of robotic agents,” 2024.

[77] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to

grasp from 50k tries and 700 robot hours,” in 2016 IEEE international
conference on robotics and automation (ICRA). IEEE, 2016, pp.
3406–3413.

[78] A. S. Chen, H. Nam, S. Nair, and C. Finn, “Batch exploration with
examples for scalable robotic reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 4401–4408, 2021.

[79] T. Lampe, A. Abdolmaleki, S. Bechtle, S. H. Huang, J. T. Springen-
berg, M. Bloesch, O. Groth, R. Hafner, T. Hertweck, M. Neunert, et al.,
“Mastering stacking of diverse shapes with large-scale iterative rein-
forcement learning on real robots,” arXiv preprint arXiv:2312.11374,
2023.

[80] J. M. Beer, A. D. Fisk, and W. A. Rogers, “Toward a framework
for levels of robot autonomy in human-robot interaction,” Journal of
human-robot interaction, vol. 3, no. 2, p. 74, 2014.

[81] D. B. D’Ambrosio, S. Abeyruwan, L. Graesser, A. Iscen, H. B. Amor,
A. Bewley, B. J. Reed, K. Reymann, L. Takayama, Y. Tassa, et al.,
“Achieving human level competitive robot table tennis,” arXiv preprint
arXiv:2408.03906, 2024.

[82] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, T. Kreiman, C. Xu, et al., “Octo: An open-source
generalist robot policy,” arXiv preprint arXiv:2405.12213, 2024.

[83] A. Z. Ren, “Open-pi-zero: An open-source hardware project,” https:
//github.com/allenzren/open-pi-zero, 2024, accessed: 2025-01-31.

[84] S. Belkhale and D. Sadigh, “Minivla: A better vla with a
smaller footprint,” 2024. [Online]. Available: https://github.com/
Stanford-ILIAD/openvla-mini

[85] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar,
and S. Levine, “Zero-shot robotic manipulation with pretrained image-
editing diffusion models,” arXiv preprint arXiv:2310.10639, 2023.

[86] M. Nakamoto, Y. Zhai, A. Singh, M. S. Mark, Y. Ma, C. Finn,
A. Kumar, and S. Levine, “Cal-ql: Calibrated offline rl pre-training for
efficient online fine-tuning,” arXiv preprint arXiv:2303.05479, 2023.

[87] Z. Zhou, A. Peng, Q. Li, S. Levine, and A. Kumar, “Efficient online
reinforcement learning fine-tuning need not retain offline data,” arXiv
preprint arXiv:2412.07762, 2024.

https://github.com/Genesis-Embodied-AI/Genesis
https://github.com/allenzren/open-pi-zero
https://github.com/allenzren/open-pi-zero
https://github.com/Stanford-ILIAD/openvla-mini
https://github.com/Stanford-ILIAD/openvla-mini

	Introduction
	AUTONOMOUS EVALUATION OF ROBOT POLICIES IN THE REAL WORLD
	BRIDGE-AutoEval: OPEN-SOURCE AUTOMATED EVAL PLATFORM
	EXPERIMENTAL RESULTS
	Experimental Setup
	AutoEval Closely Matches Human Evaluation Results
	AutoEval Robustly Runs Over Long Time Spans

	Appendix
	AutoEval Web UI Interface
	RELATED WORK
	SIMPLER environments
	Experimental Details
	Generalist Robot Policies Evaluated in Experiments Section.
	MMRV Score Details
	Are AutoEval results consistent across time?
	Safety During Extended Autonomous Robot Operations
	Visualizations of AutoEval Rollouts
	Evaluation on Bridge-SIMPLER li24simpler
	Detailed Evaluation Results on Bridge-AutoEval
	Success Classifier in Bridge-AutoEval cells
	Reset Policy in Bridge-AutoEval cells
	Step-by-step AutoEval Construction Guide
	Analyzing AutoEval Failure Modes
	Bridge-AutoEval Deployment Details
	Evaluation Results Reproducible Across Months
	Initial States in Bridge-AutoEval Cells
	Improving AutoEval with Additional Human Involvement
	Limitations

	References

