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ABSTRACT

Protein language models are a powerful tool for learning protein representations
through pre-training on vast protein sequence datasets. However, traditional
protein language models lack explicit structural supervision, despite its relevance
to protein function. To address this issue, we introduce the integration of remote
homology detection to distill structural information into protein language models
without requiring explicit protein structures as input. We evaluate the impact
of this structure-informed training on downstream protein function prediction
tasks. Experimental results reveal consistent improvements in function annotation
accuracy for EC number and GO term prediction. Performance on mutant
datasets, however, varies based on the relationship between targeted properties
and protein structures. This underscores the importance of considering this
relationship when applying structure-aware training to protein function prediction
tasks. Code and model weights are available at https://github.com/
DeepGraphLearning/esm-s.

1 INTRODUCTION

Proteins play a fundamental role in biological processes, and a deeper understanding of them can
pave the way for groundbreaking advancements in medical, pharmaceutical, and genetic research.
A cutting-edge technology that has emerged to represent proteins is the Protein Language Model
(PLM) (Rao et al., 2019a). Inspired by Natural Language Processing (NLP) methodologies, PLMs
have demonstrated remarkable performance in capturing long-range residue correlations - also
known as co-evolution - through self-supervised training on vast repositories of protein residue
sequences (Rao et al., 2021). Prominent PLMs like ESM (Rives et al., 2021b; Lin et al., 2023)
have shown the ability to implicitly capture evolutionary and structural information and demonstrate
outstanding performance across various tasks related to protein structures and functions.

However, vanilla PLMs face a significant limitation: their absence of explicit supervision based
on protein structure information, despite its critical relevance to protein function. To address this
limitation, recent studies have developed models that combine large-scale pre-training on protein
sequences with the integration of structural information as input (Zhang et al., 2023a; Su et al., 2023).
While these models have demonstrated impressive performance in function prediction, their reliance
on protein structures as input introduces an additional computational burden for structure prediction
and limits their application to proteins with indistinct structures, such as mutant data. Therefore,
a key question remains: how to distill structural knowledge into protein language models without
requiring explicit structure as input, and how will this impact downstream function prediction tasks?

In this study, we investigate the use of remote homology detection tasks as a means of incorporating
structural information into protein language models (Chen et al., 2018). This task aims to identify
proteins with similar structures but low sequence similarity, thus complementing the training of
protein language models. We train ESM-2 models (Lin et al., 2023) on this task and obtain structure-
informed protein language models. To assess the impact of structurally training, we evaluate our
models on downstream function prediction tasks taken from Gligorijević et al. (2021), Xu et al.
(2022), and Dallago et al. (2021). We find that incorporating structural information leads to consistent
improvement in function annotation tasks like Enzyme Commission (EC) number and Gene Ontology
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Figure 1: Illustration of Training Procedure and Embeddings for Structure-Informed Protein Language
Models. (A) Protein language models like ESM-2-650M are enhanced with structural information
through training on remote homology detection tasks. This process results in the structure-informed
model, ESM-2-650M-S, whose embeddings represent more structural characteristics. (B) We present
UMAP embeddings of both ESM-2-650M and ESM-2-650M-S on the SCOPe dataset. After targeted
training, ESM-2-650M-S embeddings show improved separability for different protein folds.

(GO) term prediction. However, improvement on mutant data highly depends on the targeted
property’s relationship to protein structures. This highlights the importance of considering the
relationship between protein structures and targeted properties when applying structure-informed
training to protein function prediction tasks. We hope this study encourages further exploration of
structural knowledge in protein language models, leading to better protein representation learning.

Related work. Protein language models view protein sequences as the language of life and employ
masked language modeling loss for pre-training transformer-based models (Rao et al., 2019b;
Elnaggar et al., 2021; Rives et al., 2021a; Elnaggar et al., 2023). Structure-based representation
learning has also shown promise in incorporating structural information for better representation
learning methods (Jing et al., 2021; Zhang et al., 2023b; Chen et al., 2022; Zhang et al., 2023c). To
combine the advantages of both approaches, recent studies have designed architectures that take both
sequences and structures as input (Zhang et al., 2023a; Su et al., 2023). However, these methods
require protein structures as input, limiting their application to datasets without protein structures.
In this study, we propose the use of remote homology detection to inject structural information
into protein language models. While this concept has been utilized in previous works (Bepler &
Berger, 2018; Hamamsy et al., 2022), their focus is on structural alignment rather than representation
learning. Here, we investigate the impact of incorporating structural information on learning protein
representations by evaluating our models on downstream function prediction tasks.

2 METHOD

Proteins. Proteins are made up of amino acids, also known as residues, that form chains via peptide
bonds. There are 20 standard types of residues, and their varied combinations lead to the vast
variety of proteins in nature. The specific arrangement of these residues is crucial in determining the
three-dimensional coordinates of every atom in the protein, thus shaping what is known as protein
structure. Protein structures are known to be a direct determinant of protein functions. In this study,
we focus on learning representations based on protein sequences. These sequences are denoted as
R = [r1, r2, · · · , rn], where each ri ∈ {1, ..., 20} corresponds to the type of the i-th residue.

Protein Language Models. To effectively encode protein sequences, recent research has treated them
as the "language of life", employing methods from large pre-trained language models. This approach
aims to capture evolutionary patterns across billions of protein sequences using self-supervised
learning. A notable instance of this is the transformer-based protein language model ESM (Rives
et al., 2021a; Lin et al., 2023). This model takes residue type sequences as input, integrating several
self-attention layers and feed-forward networks to model dependencies among residues. These
models are pre-trained with a masked language modeling (MLM) loss, which involves predicting
the type of a masked residue based on its surrounding context. An additional linear head uses the
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final-layer representations for this prediction. The loss function for each sequence is defined as:

LMLM = −EM [
∑

i∈M log p(ri|r/M )]. (1)

Here, a randomly chosen set of indices M is used for masking, replacing the true token at each index
i with a mask token. The model’s objective is to minimize the negative log likelihood of the correct
residue ri, using the masked sequence r/M as context. By leveraging vast amounts of unlabeled data,
these models have set new benchmarks in a variety of protein-related tasks (Lin et al., 2023).

Injecting Structural Information via Protein Remote Homology Detection. Protein language
models are known to reflect sequence similarity, thereby facilitating the identification of protein
homology – the shared ancestry in the evolutionary history of life (Rives et al., 2021a). The challenge
in this field, however, goes beyond simple homology detection. Over the course of natural evolution,
protein structures and functions tend to be more conserved than their sequences (Pál et al., 2006; Liu
et al., 2014). This means proteins with similar structures and functions might exhibit low sequence
identities. Therefore, in the realm of protein homology detection, it is relatively straightforward
to identify homologs with high sequence identity, but far more challenging to detect those with
low sequence identity. This specific task of identifying homologous proteins that share structural
and functional similarities but differ significantly in sequence is termed protein remote homology
detection. The ability to detect remote homologous proteins is crucial in various fields, including
proteomics (Kim et al., 2014) and biomedical sciences (Standley et al., 2008).

While Rives et al. (2021a) has shown that masked language modeling pre-training enables ESM
representations to capture remote homology information, these protein language models do not
inherently process protein structures as input, nor are they trained with any specific structural loss.
To explicitly incorporate structural information into these models, we now take the step to fine-tune
the ESM model specifically for the task of protein remote homology detection.

We employ the remote homology detection dataset from Hou et al. (2018), which is derived from
SCOPe 1.75 (Murzin et al., 1995). This dataset is composed of genetically distinct domain sequence
subsets that share less than 95% identity. It includes a total of 12,312 proteins, categorized into
1,195 distinct folds, where proteins within the same fold exhibit similar structure patterns. To adapt
our protein language model for this task, we fine-tune it to take protein sequences as input and
attach an MLP head for predicting the fold class label of each protein. Formally, our objective is to
train a protein language model with parameters ϕ through training on a protein database RD with
corresponding fold labels cD. The optimization involves maximizing the log likelihood:

maxϕ log pϕ(cD|RD) =
∑

n∈D

∑
c[cn = c] log pϕ(cn = c|Rn). (2)

Through this training process, we aim to enhance the model’s ability to generate similar
representations for proteins that belong to the same fold, thereby injecting structural information. The
high-level idea and effect of structural information injection is shown in Fig. 1. In practice, limited by
the computation resources, we only consider ESM-2-{8,35,150,650}M for illustration and exclude
ESM-2-3B and ESM-2-15B. The models are trained on the dataset for 50 epochs using the Adam
optimizer with a batch size of 8. To preserve the pre-trained representations, we set the learning rate
for ESM to 1e-5, while the learning rate for the prediction head is set to 1e-4. Models after training
on remote homology detection are denoted with a suffix "-S".

3 EXPERIMENT

In this section, we aim to evaluate the impact of incorporating structural information by comparing
protein language models with structure-informed models across various protein function prediction
tasks. Our experiments are run upon ESM-2-{8,35,150,650}M, which serves as our protein sequence
feature extractor. We explore two approaches to leverage these features: (1) feeding them into a
2-layer Multilayer Perceptron (MLP) predictor (see Sec. 3.1) and (2) utilizing them as a similarity
metric to retrieve proteins with similar characteristics (see Sec. 3.2). Predictor-based methods aim
to determine whether the representations are easily distinguishable for different functions, while
retriever-based methods explore whether structural similarity aids in determining protein functions.
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Figure 2: Results on function prediction tasks with various sizes of ESM-2 models as feature
extractors. Structure-informed models are denoted with suffixes "-S" and highlighted with dots.

3.1 EVALUATION WITH PREDICTOR-BASED METHODS

Setup. We evaluate the methods using three different categories of function prediction tasks. The
first category is function annotation tasks in Gligorijević et al. (2021), i.e., Enzyme Commission (EC)
prediction and Gene Ontology (GO) prediction. EC prediction aims to determine whether a protein
can catalyze a biochemical reaction, while GO prediction aims to identify a protein’s involvement in
specific molecular functions (MF), biological processes (BP), and cellular components (CC). We split
them based on sequence identity cutoff, with the test sets containing sequences that have no more
than 95% similarity to the training set. The evaluation of performance is based on the protein-centric
maximum F-score, denoted as Fmax (Radivojac et al., 2013).

In addition to function annotation tasks, we also include protein localization prediction tasks, which
are related to the in vivo functionality of proteins. For this evaluation, we utilized two datasets
from Almagro Armenteros et al. (2017): Subcellular localization and Binary localization prediction.
These tasks aim to predict the cellular location of natural proteins and are measured by accuracy.

Next, we select a subset of mutation-based tasks from Xu et al. (2022) and Dallago et al. (2021).
These include Beta-lactamase activity (Gray et al., 2018), Fluorescence (Sarkisyan et al., 2016),
Stability (Rocklin et al., 2017), AAV fitness (Bryant et al., 2021), GB1 fitness (Wu et al., 2016) and
Thermostability (Jarzab et al., 2020). The datasets are split based on the number of mutations and
measured by Spearman’s correlation. Please refer to the original papers for more details.

Results. We freeze the protein language model encoders and feed their outputs into a two-layer MLP
head for prediction. The MLP head are trained for 100 epochs on each task. The results are reported
in Fig. 2. From the figure, it can be observed that the improvement or decline brought by structurally
training are consistent across different sizes of protein language models. We can gain insights from
the results based on different types of tasks. Firstly, structure-informed ESMs consistently outperform
vanilla ESMs in function annotation tasks such as EC, GO-BP, and GO-CC. This can be attributed
to the fact that protein structures directly determine their functions, such as catalysis. However, for
tasks related to cellular location like GO-CC, Subloc, and Binloc, it can be observed that the models
perform worse after incorporating structure information. This is likely because protein structures have
little influence on where proteins perform their functions. As for the remaining tasks based on protein
mutants, whether structure-informed models provide benefits depends on whether sequence-based
evolutionary information plays a more crucial role than structural information in determining the
functions. In summary, it is important to consider the relationship between protein structures and
targeted properties when applying structure-informed training for function prediction.
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Figure 3: Fmax on function annotation with various sizes of ESM-2 models as retrievers with suffixes
"-R". Structure-informed retrievers are denoted with suffixes "-RS" and highlighted with dots.

3.2 EVALUATION WITH RETRIEVER-BASED METHODS

Besides predictor-based methods, another approach for protein function annotation is to annotate
function labels based on labels from similar proteins. In this subsection, we evaluate the capability of
ESM and structure-informed ESM for measure protein similarity for function annotation.

We first focus on the EC and GO prediction tasks previously discussed. To annotate an unseen protein
within the test set, we calculate the cosine similarity between the language model representations of
proteins and select the top-5 proteins with the highest similarity scores. Subsequently, we determine
the probability of each label by averaging the retrieved proteins’ labels, weighted by their similarity
scores. The results are presented in Fig. 3. Notably, when utilizing structure-informed training as
retrievers, we observe consistent improvement across all tasks and model sizes. This finding further
emphasizes the impact of protein structures in determining their functions.

F1 Recall Precision

0.2

0.4

0.6

0.8

1.0

0.
61

7 0.
69

2

0.
60

8

0.
53

7 0.
60

2

0.
59

4

0.
49

8

0.
48

1

0.
59

6

0.
30

8

0.
28

4

0.
40

8

0.
22

9

0.
21

6 0.
29

7

0.
10

0

0.
09

6 0.
17

7

(a) Benchmark score on NEW-392

ESM-2-650M-RS
ESM-2-650M-R
CLEAN

ProteInfer
DeepEC
ECPred

F1 Recall Precision
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
53

0

0.
54

6

0.
58

4

0.
47

8

0.
47

4 0.
53

3

0.
49

5

0.
46

7

0.
58

4

0.
16

6

0.
13

8

0.
24

3

0.
08

5

0.
07

2 0.
11

8

0.
02

0

0.
02

0

0.
02

0

(b) Benchmark score on Price-149

ESM-2-650M-RS
ESM-2-650M-R
CLEAN

ProteInfer
DeepEC
ECPred

Figure 4: Results of EC annotation on NEW-392 and
Price-149 test sets. Two proposed retrievers are in warm
colors, whereas other baselines are in cold colors.

In addition, we also explore studies that
test EC number annotation under more
realistic and challenging settings (Yu
et al., 2023; Sanderson et al., 2021). We
utilize the Swiss-Prot dataset collected
in Yu et al. (2023) with 227,363 protein
sequences, as the retrieval dataset. We
then test various retriever-based methods
on two independent test sets. The first,
an enzyme sequence dataset, includes
392 sequences that span 177 different EC
numbers. These sequences were released
after April 2022, which reflects a real-
world scenario where the functions of the
query sequences are still unknown. The
second test set, known as Price-149, is
a benchmark dataset curated by Sanderson et al. (2021). It consists of experimentally validated
findings from the study by Price et al. (2018). This dataset includes sequences that were previously
mislabeled or inconsistently annotated in automated systems, making it a challenging benchmark
for evaluation. To establish baselines, we consider four EC number prediction tools: CLEAN (Yu
et al., 2023), ProteInfer (Sanderson et al., 2021), ECPred (Dalkiran et al., 2018) and DeepEC (Ryu
et al., 2019). The results of these tools are directly taken from the CLEAN paper by (Yu et al.,
2023). For comparison, we test the performance of two neural retrievers introduced in our paper :
ESM-2-650M-R and ESM-2-650M-RS.

The results are plotted in Fig. 4. Both our retrievers surpass the performance of CLEAN on the NEW-
392 test set in F1 score, despite not undergoing any supervised training on the training set, a process
that CLEAN underwent. This underscores the potency of protein language models. Furthermore, the
strategy of integrating structural insights into ESM proves to be effective for EC number prediction,
with observable enhancements on both test sets. Specifically, on the more challenging Price-149 set,
while CLEAN slightly outperforms ESM-2-650M, it falls short against ESM-2-650M when structural
information is incorporated. This reaffirms the significance of structural similarity in function
similarity assessments. To conclude, structure-informed training continues to demonstrate potential
in practical function annotation scenarios, emphasizing the critical role of modeling structural
similarities between proteins.
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4 CONCLUSION

In this study, we investigate the integration of remote homology detection tasks for infusing structural
information into protein language models. Our experimental findings indicate that incorporating
structural information leads to consistent enhancement in function annotation accuracy. Nonetheless,
it remains crucial to consider the connection between protein structures and targeted properties
when applying structure-informed training. We envision that this study paves the way for further
exploration of structural distillation techniques to enhance protein language models.
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