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ABSTRACT

Anomaly detection methods require high-quality features. One way of obtaining
strong features is to adapt pre-trained features to anomaly detection on the target
distribution. Unfortunately, simple adaptation methods often result in catastrophic
collapse (feature deterioration) and reduce performance. DeepSVDD combats
collapse by removing biases from architectures, but this limits the adaptation per-
formance gain. In this work, we propose two methods for combating collapse:
i) a variant of early stopping that dynamically learns the stopping iteration ii)
elastic regularization inspired by continual learning. In addition, we conduct a
thorough investigation of Imagenet-pretrained features for one-class anomaly de-
tection. Our method, PANDA, outperforms the state-of-the-art in the one-class
and outlier exposure settings (CIFAR10: 96.2% vs. 90.1% and 98.9% vs. 95.6%)
.

1 INTRODUCTION

Detecting anomalous patterns in data is of key importance in science and industry. In the computa-
tional anomaly detection task, the learner observes a set of training examples. The learner is then
tasked to classify novel test samples as normal or anomalous. There are multiple anomaly detection
settings investigated in the literature, corresponding to different training conditions. In this work,
we deal with two settings: i) when only normal images are used for training ii) Outlier Exposure
(OE) where an external dataset simulating the anomalies is available.

In recent years, deep learning methods have been introduced for anomaly detection, typically ex-
tending classical methods with deep neural networks. Different auxiliary tasks (e.g. autoencoders or
rotation classification) are used to learn representations of the data, while a great variety of anomaly
criteria are then used to determine if a given sample is normal or anomalous. An important issue for
current methods is the reliance on limited normal training data for representation learning, which
limits the quality of learned representations. A solution, that we will investigate in this work, is
to pre-train features on a large external dataset, and use the features for anomaly detection. As
there is likely to be some mismatch between the external dataset and the task of anomaly detection
on the target distribution, feature adaptation is an attractive option. Unfortunately, feature adapta-
tion for anomaly detection often suffers from catastrophic collapse - a form of deterioration of the
pre-trained features, where all the samples, including anomalous, are mapped to the same point.
DeepSVDD (Ruff et al., 2018) proposed to overcome collapse by removing biases from the model
architecture, but this restricts network expressively and limits the pre-trained models that can be
borrowed off-the-shelf. Perera & Patel (2019) proposed to jointly train anomaly detection with the
original task which has several limitations and achieves only limited adaptation success.

We propose two techniques to overcome catastrophic collapse: i) an adaptive early stopping method
that selects the stopping iteration per-sample, using a novel generalization criterion ii) an elastic
regularization, motivated by continual learning, that postpones the collapse. We also provide an
extensive evaluation of Imagenet-pretrained features on one-class anomaly detection. Thorough
experiments demonstrate that we outperform the state-of-the-art by a wide margin: e.g. CIFAR10
results: 96.2% vs. 90.1% without outlier exposure and 98.9% vs. 95.6% with outlier exposure.

We present several insightful critical analyses: i) We show that pre-trained features strictly dominate
current self-supervised RotNet-based feature learning methods. We discuss the relative merits of
each paradigm and conclude that for most practical purposes, using pre-trained features is preferable.
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ii) We analyse the results of the popular method, DeepSVDD. We discover that the feature adaptation
of its current architecture, which is designed to prevent collapse, does not improve over simple
data whitening. iii) We show that collapse can be avoided using early stopping, and suggest an
appropriate unsupervised criterion. We also show it can be mitigated using continual learning.

1.1 RELATED WORK

Classical anomaly detection: The main categories of classical anomaly detection methods are: i)
reconstruction-based: compress the training data using a bottleneck, and use a reconstruction loss
as an anomaly criterion (e.g. (Candès et al., 2011; Jolliffe, 2011), K nearest neighbors (Eskin et al.,
2002) and K-means (Hartigan & Wong, 1979)), ii) probabilistic: modeling the probability density
function and labeling unlikely sampled as anomalous (e.g. Ensembles of Gaussian Mixture Models
(Glodek et al., 2013), kernel density estimate (Latecki et al., 2007)) iii) one-class classification
(OCC): finding a separating manifold between normal data and the rest of input space (e.g. One-
class SVM (Scholkopf et al., 2000)).

Deep learning methods: The introduction of deep learning has affected image anomaly detection in
two ways: extension of classical methods with deep representations and novel self-supervised deep
methods. Reconstruction-based methods have been enhanced by learning deep autoencoder-based
bottlenecks (D’Oro et al., 2019) which can provide better models of image data. Deep methods ex-
tended classical methods by creating a better representations of the data for parametric assumptions
about probabilities, a combination of reconstruction and probabilistic methods (such as DAGMM
(Zong et al., 2018)), or in a combination with an OCC (Ruff et al., 2018). Novel deep methods
have also been proposed for anomaly detection including GAN-based methods (Zong et al., 2018).
Another set of novel deep methods use auxiliary self-supervised learning for anomaly detection.
The seminal work by Golan & El-Yaniv (2018) was later extended by Hendrycks et al. (2019b) and
Bergman & Hoshen (2020).

Transferring pretrained representations: Learning deep features requires extensive datasets, prefer-
ably with labels. An attractive property of deep neural networks, is that representations learned on
very extensive datasets, can be transferred to data-poor tasks. Specifically deep neural representa-
tions trained on the ImageNet dataset have been shown by Huh et al. (2016) to significantly boost
performance on other datasets that are only vaguely related to some of the ImageNet classes. This
can be performed with and without finetuning. Although much recent progress has been performed
on self-supervised feature learning (Gidaris et al., 2018; Chen et al., 2020), such methods are typ-
ically outperformed by transferred pretrained features. Transferring ImageNet pre-trained features
for out-of-distribution detection has been proposed by Hendrycks et al. (2019a). Similar pre-training
has been proposed for one-class classification has been proposed by Perera & Patel (2019), however
they require joint optimization with the original task.

2 BACKGROUND: FEATURE ADAPTATION FOR ANOMALY DETECTION

2.1 A THREE-STAGE FRAMEWORK

We present our general framework in which we examine several adaptation-based anomaly detection
methods, including our method. Let us assume that we are given a set Dtrain of normal training
samples: x1, x2..xN . The framework consists of three steps:

Feature extractor pretraining: A pre-trained feature extractor ψ0 is typically learned using self-
supervised learning (auto-encoding, rotation or jigsaw prediction). We denote the loss function of
the auxiliary task Lpretrain. The auxiliary task can be learned either on the training set Dtrain or on
an external dataset Dpretrain (such as ImageNet). In the latter case, the pretrained extractor can be
obtained off-the-shelf. We will investigate and analyse the merits of each choice in Sec. 4.2.

Feature adaptation: Features trained on auxiliary tasks or datasets may require adaptation before
being used for anomaly scoring on the target data. This can be seen as a finetuning stage of the
pre-trained features on the target training data. We denote the feature extractor after adaptation ψ.

Anomaly scoring: Having adapted the features for anomaly detection, we extract the features
ψ(x1), ψ(x2)..ψ(xN ) of the training set samples, we proceed to learn a scoring function, which
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describes how anomalous a sample is. Typically, the scoring function seeks to measure the density
of normal data around the test sample ψ(x) (either by direct estimation or via some auxiliary task)
and assign a high anomaly score to low density regions.

2.2 EXISTING FEATURE-ADAPTATION METHODS

In this section, we review two seminal methods that use feature adaptation for anomaly detection:

DeepSVDD: Ruff et al. (2018) suggest to first train an autoencoder E on the normal-only train
images. The encoder is then used as the initial feature extractor ψ0(x) = E(x). As the features of
the encoder are not specifically adapted to anomaly detection, DeepSVDD adapts ψ on the training
data. The adaptation takes place by minimizing the compactness loss:

Lcompact =
∑

x∈Dtrain

‖ψ(x)− c‖2 (1)

Where c is a constant vector, typically the average of ψ0(x) on the training set. However, the
authors were concerned of the trivial solution ψ = c, and suggested architectural restrictions to
mitigate it, most importantly removing the biases from all layers. We empirically show that the
effect of adaptation of the features in DeepSVDD does not outperform simple feature whitening
(see Sec. 4.2.2).

Joint optimization (JO): Perera & Patel (2019) proposed to use a deep feature extractor trained
for object classification on the ImageNet dataset. Due to fear of ”learning a trivial solution due
to the absence of a penalty for miss-classification”, the method do not adapt by finetuning on the
compactness loss only. Instead, they relaxed the task setting, by assuming that a number (∼ 50k) of
labelled original ImageNet images, Dpretrain, are still available at adaptation time. They proposed
to train the features ψ under the compactness loss jointly with the original ImageNet classification
linear layer W and its classification loss, here the CE loss with the true label `pretrain(p, y) =
− log(py):

LJoint =
∑

(x,y)∈Dpretrain

`pretrain(softmax(Wψ(x)), y) + α
∑

x∈Dtrain

‖ψ(x)− c‖2 (2)

Where W is the final linear classification layer and α is a hyper-parameter weighting the two losses.
We note that the method has two main weaknesses: i) it requires retaining a significant number of
the original training images which can be storage intensive ii) jointly training the two tasks may
reduce the anomaly detection task accuracy, which is the only task of interest in this context. Our
proposed method, PANDA, is able to sidestep these issues.

3 PANDA: FEATURE ADAPTATION FOR ANOMALY DETECTION

We present PANDA (Pre-trained Anomaly Detection Adaptation), a new method for anomaly de-
tection in images. The core of our method lies in adapting general pre-trained features to anomaly
detection on the target distribution.

Pre-trained feature extractor: Our method is agnostic to the specific pretrained feature extractor.
We investigated different choices of the initial pre-trained feature extractor ψ0 and found that Ima-
geNet pretrained features achieve better results. The assumption of the availability of the ImageNet
trained feature extractor and its merits will be discussed at length in Sec. 4.2.

Feature Adaptation: Similarly to SVDD and Joint Optimization, we also use the compactness
loss (Eq. 1) to adapt the general pre-trained features to the task of anomaly detection on the target
distribution. Instead of constraining the architecture or introducing external data into the adaptation
procedure we tackle catastrophic collapse directly. The main issue is that the optimal solution of
the compactness loss can result in ”collapse”, where all possible input values are mapped to the
same point (ψ(x) = c, ∀x). Learning such features will not be useful for anomaly detection,
as both normal and anomalous images will be mapped to the same output, preventing separability.
The issue is broader than the trivial ”collapsed” solution after full convergence, but rather the more
general issue of feature deterioration, where the original good properties of the pretrained features
are lost. Even a non-trivial solution might not require the full discriminative ability of the original
features which are none-the-less important for anomaly detection.
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Figure 1: CIFAR100 Class 17 (right to left): (1) - During training all samples approach the center
of train set features (2) - When normalized by the train average distance st, the normal samples
stay dense, while the anomalous ones initially move further away and then ”collapse”. The ROC
AUC performance behaves similarly to the anomalous samples’ normalized distance. (3),(4) - when
training with EWC the collapse is mitigated.

Figure 2: An illustration of our feature adaptation procedure, the pre-trained feature extractor ψ0 is
adapted to make the normal features more compact resulting in feature extractor ψ. After adaptation
anomalous test images lie in a less dense region of the feature space.

To avoid this collapse, we suggest two options: (i) finetuning the pretrained extractor with com-
pactness loss (Eq.1) and using sample-wise early stopping (ii) when collapse happens prematurely,
before any significant adaptation happens, we suggest mitigating it using a Continual Learning-
inspired adaptive regularization.

Sample-wise early stopping (PANDA-SES): Early stopping is one of the simplest methods used to
regularize neural network. While stopping the training process after constant number of iterations
(we use 2.3k minibatches) helps to control the collapse of the original features in most examined
datasets (Sec. 4.2), in other cases, collapse occurs earlier in the training process - the best number of
early stopping iterations may vary between datasets. We thus propose ”samplewise early stopping”
(SES). The intuition for the method can be obtained from Fig. 1. We can see that anomaly detection
accuracy is correlated to the ratio between the average compactness loss of test set anomalies and
the average compactness loss of training set normal images. We thus propose to save checkpoints of
our network at fixed intervals during the training process - corresponding to different early stopping
iterations (ψ1, ψ2..ψT ), for each network ψt we compute the average loss on the training set images
st. During inference, we score a target image x using each model ψt(x) = ft, and normalize the
score by the relevant average score st. We set the maximal normalized score, as the anomaly score
of this sample, as this roughly estimates the model that achieves the best separation between normal
and anomalous samples. Note that each sample is scored using only its features ft, and the normal
train set average score st, without seeing the labels of any other test set samples.

Continual Learning (PANDA-EWC): We propose a new solution for overcoming premature feature
collapse that draws inspiration from the field of continual learning. The task of continual learning
tackles learning new tasks without forgetting the previously learned ones. We note however that our
task is not identical to standard continual learning as: i) we deal with the one-class classification
setting whereas continual-learning typically deals with multi-class classification ii) we aim to avoid
forgetting the expressivity of the features but do not particularly care if the actual classification
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performance on the old task is degraded. A simple solution for preventing feature collapse is by
regularization of the change in value of the weights of the feature extractor ψ from those of the
pre-trained extractor ψ0. However, this solution is lacking as the features are more sensitive to some
weights than others and this can be ”exploited” by the adaptation method.

Following ideas from continual learning, we use elastic weight consolidation (EWC) (Kirkpatrick
et al., 2017). Using a number of mini-batches (we use 100) of pretraining on the auxiliary task, we
compute the diagonal of the Fisher information matrix F for all weight parameters of the network.
Note that this only needs to happen once at the end of the pretraining stage and does not need to be
repeated. The value of the Fisher matrix for diagonal element θ′ is given by:

Fθ′ = E(x,y)∈Dpretrain

[(
∂

∂θ
Lpretrain(x, y); θ

′
)2

|θ

]
(3)

We follow (Kirkpatrick et al., 2017) in using the diagonal of the Fisher information matrix Fθi , to
weight the Euclidean distance of the change of each network parameter θi ∈ ψ0 and its correspond-
ing parameter θ∗i ∈ ψ. This weighted distance can be interpreted as a measure of the curvature of the
loss landscape as function of the parameters - larger values imply high curvature, inelastic weights.
We use this regularization in combination with the compactness loss, the losses are weighted by the
factor λ, which is a hyperparameter of the method (we always use λ = 104):

Lθ = Lcompact(θ) +
λ

2
·
∑
i

Fθi(θi − θ∗i )2 (4)

Network ψ is initialized with the parameters of the pretrained extractor ψ0 and trained with SGD.

Anomaly scoring: Given strong features and appropriate adaptation, our transformed data typically
follows the standard anomaly detection assumption i.e. high-density in regions of normal data. As in
classical anomaly detection, scoring can be done by density estimation. Our method performs better
with strong non-parametric anomaly scoring methods. We evaluate several anomaly scoring meth-
ods: i) Euclidean Distance to the mean of the training features ii) the K nearest-neighbor distance
between the target (test set) features and the features of the training set images iii) Computing the
K-means of the training set features, and computing the distance between the target sample features
to the nearest mean. See Sec. 4.2.3 for comparison results.

Outlier Exposure: An extension of the typical image anomaly detection task (Hendrycks et al.,
2018), assumes the existence of an auxiliary dataset of images DOE , which are more similar to
the anomalies than normal data. In case such information is available, we simply train a linear
classification w layer together with the features ψ under a logistic regression loss (Eq. 5). As
before, ψ is initialized with the weights from ψ0. After training ψ and w, we use w · ψ(x) as the
anomaly score. Results and critical analysis of this setting are presented in Sec. 4.2.

LOE =
∑

x∈Dtrain

log(σ(1− w · ψ(x))) +
∑

x∈DOE

log(σ(w · ψ(x))) (5)

4 IMAGE ANOMALY DETECTION

4.1 HIGH-LEVEL RESULTS

In this section, we present high-level results of our method PANDA-EWC, (PANDA-SES can
be found in Sec.4.2) compared to the state-of-the-art: One-class SVM (Scholkopf et al., 2000),
DeepSVDD (Ruff et al., 2018), Multi-Head RotNet (Hendrycks et al., 2019b). We also compare
our method to raw (unadapted) pretrained features. As Joint Optimization requires extra data, we
did not add it to this table, but compare and outperform it in Tab. 4. We compare our PANDA-
OE to the OE baseline in Hendrycks et al. (2019b) on CIFAR10, as the code or results for other
classes were unavailable. To investigate performance in domains significantly different from the
dataset used to pretrain the features, we evaluated our method across a large range of datasets:
standard datasets (CIFAR10/100, CatsVsDogs), Black-and-white dataset (Fashion MNIST), Small
fine-grained datasets (Birds200/Oxford Flowers), Medical dataset (WBC), Very finegrained anoma-
lies (MVTec), and aerieal images (DIOR). A detailed description of the datasets is found in the
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Table 1: Anomaly detection performance (Average ROC AUC %)

Dataset Self-Supervised Pretrained OE

OC-SVM DeepSVDD MHRot Unadapted PANDA MHRot PANDA-OE

CIFAR10 64.7 64.8 90.1 92.5 96.2 95.6 98.9
CIFAR100 62.6 67.0 80.1 94.1 94.1 - 97.3
FMNIST 92.8 84.8 93.2 94.5 95.6 - 91.8
CatsVsDogs 51.7 50.5 86.0 96.0 97.3 - 94.5
DIOR 70.7 70.0 73.3 93.0 94.3 - 95.9

Table 2: Pretrained feature performance on various small datasets (Average ROC AUC %)

Dataset Self-Supervised Pretrained

OC-SVM DeepSVDD MHRot Unadapted

Birds 200 62.0 60.8 64.4 95.3
Flowers 74.5 78.1 65.9 94.1
MvTec 70.8 77.9 65.5 86.5
WBC 75.4 71.2 57.7 87.4

appendix Sec. C, and represenative frames are shown in Fig. 3. For outlier exposure (OE), we fol-
lowed Hendrycks et al. (2018) and used 50k randomly sampled images from 80M Tiny Images.
Implementation details are reported in Appendix D.

The main results are i) pre-trained features achieve significantly better results than self-supervised
features on all datasets. ii) Feature adaptation significantly improves the performance on larger
datasets iii) Outlier exposure can further improve performance in the case where the given outliers
are more similar to the anomalies than the normal data. OE achieves near perfect performance on
CIFAR10/100 but hurts performance for Fashion MNIST/CatsVsDogs which are less similar to the
80M Tiny images dataset. A detailed analysis of the reason for better performance for each of these
methods and an examination of its appropriateness will be presented in Sec. 4.2.

4.2 ANALYSIS AND FURTHER EVALUATION

In this section we analyze the factors of variation in performance between different methods:

4.2.1 AN ANALYSIS OF THE CHOICE OF FEATURE REPRESENTATION

A comparison of self-supervised and pre-trained features: In Tab. 1 and Tab. 2, we present a
comparison between methods that use self-supervised and pre-trained feature representations. We
see that the autoencoder used by DeepSVDD is particularly poor. The results of the MHRotNet
as a feature extractor are better, but still underperform PANDA methods (see App. A for more
details). The performance of the raw deep ResNet features without adaptation significantly outper-
forms all methods, including Fashion MNIST and DIOR which have significant differences from
the ImageNet dataset. We can therefore conclude that ImageNet-pretrained features typically have
significant advantages over self-supervised features. Tab. 2 shows that self-supervised methods do
not perform well on small datasets as such methods require large numbers of normal samples in
order to learn strong features. On the other hand ImageNet-pretrained features obtain very strong
results.

Do pretrained features generalize to anomaly detection on domains far from the pretraining
dataset? The results in Tab. 2 on FMNIST, DIOR, WBC, MVTec suggest that it does. We evaluated
the ImageNet-pretrained features on datasets of various sizes, domains, resolutions and symmetries.
On all those datasets pretrained features outperformed the SOTA. These datasets include signifi-
cantly different objects from those of ImageNet, but also fine-grained intra-object anomalies, and
represent a spectrum of data types: aerial images, microscopy, industrial images. This shows that
one of the main concerns of using pre-trained features, namely, generalizing to distant domains is
not an issue in practice.
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Table 3: Comparison of average transformation prediction accuracy (%)

Method Normal Anomalous

Horizontal Vertical Rotation Horizontal Vertical Rotation

Self-supervised 94.0 91.4 94.0 67.9 67.5 51.6
Pretrained 94.4 94.4 92.3 71.4 69.9 61.3

On the different supervision settings for one-class anomaly detection: Anomaly detection meth-
ods employ different levels of supervision. Within the one-class classification task, one may use
outlier exposure (OE) - an external dataset (e.g. ImageNet), pretrained features, or no external su-
pervision at all. The most extensive supervision is used by OE, which requires a large external
dataset at training time, and performs well only when such a dataset is from a similar domain to the
anomalies (see Tab. 1). In cases where the dataset used for OE has significantly different properties,
the network may not learn to distinguish between normal and anomalous data, as the normal and
anomalous data may have more in common than the OE dataset. E.g. both normal and anomalous
classes of Fashion MNIST are greyscale, OE using 80M Tiny Images will not be helpful. Pretrained
features further improve OE, in cases where is suitable e.g. CIFAR10.

Pretraining, like Outlier Exposure, is also achieved through an external labelled dataset, but differ-
ently from OE, the external dataset is only required once - at the pretraining stage and is not used
again. Additionally, the same features are applicable for very different image domains from that
of the pretraining dataset (e.g. Fashion MNIST - greyscale images, DIOR - aerial images, WBC-
medical images, MVTec - industrial images). Self supervised feature learning requires no external
dataset at all, which can potentially be an advantage. While there might be image anomaly detection
tasks where ImageNet-pretrained weights are not applicable, we saw no evidence for such cases
after examining a broad spectrum of domains and datasets (Tab. 8). This indicates that the extra
supervision of the ImageNet-pretrained weights comes at virtually no cost.

Can pretrained features boost the performance of RotNet-based methods? We did not find
evidence that pretrained features improve the performance of RotNet-based AD methods such as
Hendrycks et al. (2019b) (CIFAR10: 90.1% vs. 86.6% without and with pretraining). As can be
seen in Tab. 3, pretrained features improve the auxiliary task performance on the normal data, but
also on the anomalous samples. As such methods rely on a generalization gap between normal
and anomalous samples, deep features actually reduce this gap, as a solution to the auxiliary task
becomes feasible for both types of images. For a more detailed analysis see Appendix A.

4.2.2 FEATURE ADAPTATION METHODS

Benefits of feature adaptation: Feature adaptation aims to make the distribution of the normal sam-
ples more compact, w.r.t. the anomalous samples. Our approach of finetuning pretrained features
for compactness under EWC regularization, significantly improves the performance over ”raw” pre-
trained features (see Tab.1). While the distance from the normal train samples center, of both normal
and anomalous test samples is reduced (see Fig.1), the average distance from the center of anoma-
lous test samples is typically further than that of normal samples, in relative terms. This makes
anomalies easier to detect by standard classifiers such as kNN.

While PANDA-EWC may train more than 7.8k minibatches without catastrophic collapse on CI-
FAR10, performance of training without regularization usually peaks higher but collapse earlier.
We therefore set our constant early stopping epoch such that the net trains with to 2.3k minibatches
on all datasets for comparison. Our PANDA-SES method usually achieves an anomaly score not
far from the unregularized early stopping peak performance, but is most important in cases where
unregularized training fails completely.

A comparison of PANDA against other adaptation methods: In Tab. 4 we compare PANDA
against (i) JO (Perera & Patel, 2019) - co-training compactness with ImageNet classification which
requires ImageNet data at training time. We can see that PANDA - EWC always outperforms JO fea-
ture adaptation. (ii) PANDA early stopping (ImageNet pretraining + adaptation, with early stopping
after constant iterations number), generally has higher performance than PANDA-EWC, but has
severe collapse issues on some classes. (iii) PANDA-SES is similar to early stopping, but PANDA-

7



Under review as a conference paper at ICLR 2021

Table 4: A comparison of different feature adaptation methods (Avg. ROC AUC %)

Dataset Baseline PANDA

JO Early stopping SES EWC

CIFAR10 93.2 96.2 95.9 96.2
CIFAR100 91.1 94.8 94.6 94.2
FMNIST 94.9 95.4 95.5 95.6
CatsVsDogs 96.1 91.9 95.7 96.4
DIOR 93.1 95.4 95.6 95.5

Table 5: Performance of finetuning different ResNet blocks (CIFAR10 w. EWC, ROC AUC %)

Trained Blocks 1,2,3,4 2,3,4 3,4 4

Avg 94.9 95.9 96.2 94.8

SES does not collapse as badly on CatsVsDogs dataset. We note that weighting equally the changes
in all parameters (

∑
i(θi − θ∗i )2 ) achieves similar results to early stopping.

Which are the best layers to finetune? Fine-tuning all the layers, is prone to feature collapse,
even with continual learning (see Tab.5). Finetuning Blocks 3 & 4, or 2, 3 & 4, results in similar
performance. Finetuning only block 4 results in a very similar performance to linear whitening of
the features according to the train samples (94.6 with whitening vs. 94.8 with finetuning only the
last block). Similar effect as can be seen in the original DeepSVDD architecture (see also Tab.7,
Appendix B). We therefore recommend finetuning Blocks 3 & 4.

DeepSVDD architectural changes: DeepSVDD (Ruff et al., 2018) proposes various architectural
changes, such as removing the bias parameters from the network, to prevent collapse to trivial fea-
tures. We found empirically that the results obtained by the constrained architecture were about
the same as those achieved with simple whitening of the data (64.8% vs. 64.6%, see Tab.7). We
also ablated DeepSVDD by (re-)adding the biases into its LeNet architecture did not deteriorate its
anomaly detection performance. Architectural modifications are not the focus of this work, further
investigation into architectures less prone to feature collapse is left for future work.

4.2.3 ANOMALY SCORING FUNCTIONS

Does kNN improve over distance to the center? kNN achieves an improvement of around 2% on
average w.r.t. to distance to the center (CIFAR10: 94.2% vs 96.2%).

Can we improve over the linear complexity of kNN? A naive implementation of kNN has linear
runtime complexity in the number of training samples. K-means with a small number of clusters
gives ∼1% decrease (CIFAR10: 94.9% vs 96.2%, with 10 means). We note that even for very large
datasets, or many thousands of means, both kNN and K-means can run faster than real-time.

5 CONCLUSION AND OUTLOOK

We proposed an anomaly detection method that adapts pretrained features and mitigates or avoids
catastrophic collapse. We showed that our results significantly outperform current methods while
addressing their limitations. We analysed the reasons for the strong performance of our method and
related popular methods to the different stages of our framework.

The main limitation of this work is the requirement for strong pretrained feature extractors. Much
work was done on transferable image and text features and it is likely that current extractors can
be effective to obtain features for time series and audio as well. Generic feature extractors are not
currently available for tabular data, their development is an exciting direction for future work.
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Figure 3: Representative images of the different datasets, from the left clockwise: CIFAR10, CI-
FAR100, Fashion MNIST, DogsVsCats, MVTec, Oxford Flowers, DIOR and WBC.

A PRETRAINED FEATURES, ROTNET AUXILIARY TASKS AND
GENERALIZATION

Let us take a closer look at the application of RotNet-based methods for image anomaly detection.
We will venture to understand why initializing RotNets with pretrained features may actually impair
their anomaly detection performance. In such cases, a network for rotation classification is trained
on normal samples, and used to classify the rotation (and translations) applied to a test rotated image.
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Table 6: Pretrained vs. Raw Initialization Anomaly Detection Performance (ROC AUC %)

CIFAR10 class 0 1 2 3 4 5 6 7 8 9 Avg

Pretrained MHRot 70.1 93.7 84.4 76.1 89.7 87.3 91.1 94.4 86.8 90.8 86.4
MHRot 77.5 96.9 87.3 80.9 92.7 90.2 90.9 96.5 95.2 93.3 90.1

To score an anomaly, the image is deemed anomalous if its rotation prediction accuracy is worse than
that of a typical normal image.

To correctly classify a rotation of a new image, the network may use traits within the image that
are associated with its correct alignment. Such features may be associated with the normal class, or
with the entire dataset (common to both the anomalous classes together). For illustrative purposes,
let us consider a normal class with images containing a deer, and the anomalous class with images
containing a horse. The horns of the deer may indicate the ”upward” direction, but so does the
position of the sky in the image, which is often sufficient to classify the rotation correctly. As shown
in Tab.3, when initialized with pretrained features, the RotNet achieves very good performance on
the auxiliary tasks, both within and outside the normal class, indicating the use the more general
traits that are common to more classes.

Although at first sight it may appear that the improved auxiliary task performance should improve
the performance on anomaly detection, this is in fact not the case! The reason is that features
that generalize better, achieve better performance on the auxiliary task for anomalous data. The
gap between the performance on the auxiliary tasks will therefore be smaller than with randomly-
initialized networks - leading to degraded anomaly detection performance. For example, consider
the illustrative example described above. A RotNet that ”overfits” to work only on the normal class
deer, relying on the horns of the deer would classify rotations more accurately on deer images than
horse images (as its main feature is horns). On the other hand, a RotNet that also uses more general
traits can use the sky position for rotation angle prediction. In this case, it will achieve higher
accuracy for both deer and horse images. The gap in performance is likely to be reduced, leading to
lower anomaly detection success.

The above argument can be formulated using mutual information: In cases where the additional
traits unique to the class do not add much information regarding the correct rotation over the general
features common to many classes, the class will have limited mutual information with the predicted
rotation as well (conditional on the information already given traits common to the entire datasets).
When the conditional mutual information between the predicted rotation and the class traits is de-
creases, we expect the predicted rotation to be less discriminative for anomaly detection, as we
indeed see in Tab.6.

It is interesting to note that using RotNet features for our transfer learning approach achieves infe-
rior results to both MHRot and our method. Only through an ensemble of all rotations, as MHRot
does, it achieves strong performance comparable to the MHRot performance. MHRot achieved
89.7% in our re-implementation. Using the MHRot features as ψ0, we compute the kNN distance
of the unadapted features between test set images and train set image transformed by the same
transformation. By ensembling the 36 transformations - using the average kNN distance, yields
88.7%. Another metric is computing the average kNN distance between test data transformed under
a specfic transformation and the training set transformed by another transformation. By using the av-
erage same-transformation kNN distance minus the average different transformation kNN distance,
achieves 89.8% - a little better than the RotNet performance.

B FEATURE ADAPTATION, DEEPSVDD AND FEATURE COLLAPSE

To understand whether DeepSVDD gains its significant performance from its pretrained features
or from its feature adaptation, we tried to replace its feature adaptation by closed-form linear data
whitening. For both pretrained features and anomaly scoring, we used the DeepSVDD original code
(Ruff et al., 2018). We can see that a linear method such as data whitening achieves comparable
results (Tab.7). We believe that large architectures are required for meaningful feature adaptation.
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Table 7: Deep SVDD vs. PCA Whitening Anomaly Detection Performance (ROC AUC %)

CIFAR10 class 0 1 2 3 4 5 6 7 8 9 Avg

PCA whitening 62.0 63.6 49.7 59.9 59.8 65.8 68.3 68.0 75.5 71.2 64.8
Deep SVDD 59.7 64.3 48.4 61.5 61.3 65.5 70.1 68.9 75.3 72.5 64.6

Table 8: Details of Datasets Used for Evaluation

Dataset No. of classes No. of train images (Avg.) No. of test images

CIFAR10 10 5,000 10,000
Fashion MNIST 10 6,000 10,000
CIFAR100 20 2,500 10,000
102 Category Flowers 102 10 7,169
Caltech-UCSD Birds 200 200 30 5,794
CatsVsDogs 2 10,000 5,000
MVTec 15 242 1,725
WBC 4 59 62
DIOR 19 649 9,243

C DETAILED DESCRIPTION OF DATASETS

Standard datasets: We evaluate our method on a set of commonly used datasets: CIFAR10
(Krizhevsky et al., 2009): Consists of RGB images of 10 object classes. Fashion MNIST (Xiao
et al., 2017): Consists of grayscale images of 10 fashion item classes. CIFAR100 (Krizhevsky et al.,
2009): We use the coarse-grained version that consists of 20 classes. DogsVsCats: High resolution
color images of two classes: cats and dogs. The data were extracted from the ASIRRA datasetElson
et al. (2007), we split each class to the first 10,000 images as train and the last 2,500 as test.

Small datasets: To further extend our results, we compared the methods on a number of small
datasets from different domains: 102 Category Flowers & Caltech-UCSD Birds 200 (Nilsback &
Zisserman, 2008) Wah et al. (2011): For each of those datasets we evaluated the methods using only
each of the first 20 classes as normal, and using the entire test set for evaluation. MVTec (Bergmann
et al., 2019): This datasets contain 15 different industrial products, with normal images of proper
products for train and 2 − 9 types of manufacturing errors as anomalies. The anomalies in MVTec
are in-class i.e. the anomalous images come from the same class of normal images with subtle
variations. As can be seen in the results in Tab.2, self-supervised methods performed quite poorly
on these datasets as they require many images to learn strong features. Simply using pretrained
features was sufficient to obtain high accuracy (Tab.2).

Symmetric datasets: We evaluated our method on datasets that contain symmetries, such as images
that have no preferred angle (microscopy, aerial images. See Fig.3): WBC (Zheng et al., 2018): We
used the 4 big classes in ”Dataset 1” of microscopy images of white blood cells, and a 80%/20%
train-test split. DIOR (Li et al., 2020): We preprocessed the DIOR aerial image dataset by taking the
segmented object in classes that have more than 50 images with size larger than 120 × 120 pixels.
We see in Tab. 12 that for both symmetric datasets our method outperformed MHRot even more
significantly. This experiment illustrates a weakness in self-supervised methods that need to exploit
specific properties of the data e.g. rotational symmetry. When such properties do not exist in the
data, the performance of self-supervised methods is reduced. In this case, rotation prediction con-
veys no information on rotationally invariant images, and presumably all the prediction performance
of MHRot comes from the translation prediction task, which can be less accurate.

D IMPLEMENTATION DETAILS

PANDA

Optimization: We finetune the two last blocks of an ImageNet pretrained ResNet152 using SGD
optimizer with weight decay of w = 5 · 10−5, and momentum of m = 0.9. We use G = 10−3
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gradient clipping. To have a comparable amount of training in the different dataset, we use define
the duration of each of our train using a constant number of minibatches, 32 samples each.

EWC: We use the fisher information matrix as obtained by (Kirkpatrick et al., 2017), as explained
in Sec.3. We weight the EWC loss with λ = 104. After obtaining EWC regularization, we train our
net training on 7.8k minibatches.

Early stopping/Sample-wise early stopping: We save a copy of the net every 5 epochs. For early
stopping we used the copy trained on 2.3k minibatches. For sample-wise early stopping we try all
copies trained on up to 150k image samples.

Anomaly scoring: Unless specified otherwise, we score the anomalies according to the kNN method
with k = 2 nearest neighbours. When comparing different networks as in PANDA-SES method, we
normalize each set of features by the typical kNN distance of its normal train features. To obtain
the typical normal distance we would like to compute the average on the normal samples. However,
computing the distance between normal training data has that issue that each point is its own nearest
neighbour. Instead, we split the train set features (90% vs. 10%), and compute the kNN between the
10% validation images and the gallery 90% images.

PANDA Outlier Exposure: The method was described in Sec.3. For synthetic outlier images, we
used the first 48k images of 80 Million Tiny Images (Torralba et al., 2008) with CIFAR10 & CI-
FAR100 images removed. We finetune the last block of an ImageNet pretrained ResNet152 with
SGD optimizer using 75 epochs and the following parameters: learning rate is 0.1 with gradient
clipping, momentum is 0.9, and no weight decay.

Baselines We compare to the following methods:

OC-SVM: One-class SVM with the RBF kernel. The hyper-parameters (ν ∈ {0.1, ..., 0.9}, γ ∈
{2−7, ..., 22}) were optimized to maximize AUROC.

DeepSVDD: We resize all the images to 32× 32 pixels and use the official pyTorch implementation
with the CIFAR10 configuration.

MHRot (Hendrycks et al., 2019b): An improved version of the original RotNet approach. For
high-resolution images we used the current GitHub implementation. For low resolution images, we
modified the code to the architecture described in the paper, replicating the numbers in the paper on
CIFAR10.

Outlier Exposure (MHRot): We use the outlier exposure performance as reported in Hendrycks et al.
(2019b).
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