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Abstract

The strong lottery ticket hypothesis has highlighted the potential for training deep
neural networks by pruning, which has inspired interesting practical and theoretical
insights into how neural networks can represent functions. For networks with ReLU
activation functions, it has been proven that a target network with depth L can be
approximated by the subnetwork of a randomly initialized neural network that has
double the target’s depth 2L and is wider by a logarithmic factor. We show that a
depth L + 1 network is sufficient. This result indicates that we can expect to find
lottery tickets at realistic, commonly used depths while only requiring logarithmic
overparametrization. Our novel construction approach applies to a large class of
activation functions and is not limited to ReLUs. Code is available on Github
(RelationalML/LT-existence).

1 Introduction

The Lottery Ticket Hypothesis [13] and, in particular, its strong version [38] postulate that pruning
deep neural networks might provide a promising alternative to training large, overparameterized
neural networks with Stochastic Gradient Descent (SGD). Pruning has the potential to not only
identify small scale neural networks that possess a meaningful, task-specific neural network structure
and generalize better due to regularization [51]], but also to reduce the computational burden associated
with deep learning [S0, 10, [29].

Also from a theoretical perspective, it has been shown that for every small enough target network a
sufficiently large, randomly initialized neural network, the source network, contains a subnetwork,
the lottery ticket (LT), that can approximate the target up to acceptable accuracy with high probability.
[32] has been the first to provide a probabilistic lower bound on the required network width of the
larger random network. This bound has been improved by [37,136] to a width that is larger than
a target’s width only by a logarithmic factor. The limitations of these works are that they all are
restricted to ReLU activation functions and assume that the larger random network has twice the
depth of the target network L, = 2L;.

However, it is well known that deeper networks tend to have a higher expressiveness, as they
can approximate certain function classes with significantly fewer parameters than their shallow
counterparts [33,49]]. It could therefore reduce the overall sparsity of the target and the LT to allow
the target to utilize more of the source depth L for a sparser representation. A lower depth requirment
could also [11]] have therefore derived lower bounds for the width of the random network of depth
Ly = L; + 1, but these can only cover extremely sparse target networks, as the width requirement is
polynomial in the inverse approximation error 1/e.

In contrast, we derive a novel construction that only requires a logarithmic factor. While we utilize
subset sum approximation results like [37], we allow a target network to have almost the same depth
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as the source network with depth Ly > L; + 1 instead of L, = 2L;. Our derivations further apply to
a large class of activation functions that includes but is not limited to ReL.Us.

The reduced depth requirement and flexibility in the activation function of our construction can result
in significantly sparser neural network target networks and thus also LTs. For example, f(z) = x>
can be approximated up to error € by a shallow ReLU network with O(1/¢) parameters, while a deep
enough network only needs O(log(1/¢)) parameters [33]]. Also the activation function determines
the possible target sparsity, e.g., 2 can be represented with only 4 parameters for all € > 0 if
#(x) = (max{z,0})2. Therefore, the potential sparsity of the final lottery ticket depends critically
on the choice of activation functions and architecture of the source network, including its depth and
width. We provide a theoretical foundation that provides flexibility regarding these choices.

Contributions 1) We prove the existence of strong lottery tickets as subnetworks of a larger
randomly initialized source neural network for a large class of activation functions, including ReLUs.
2) We derive a novel construction that requires the source network to have almost the same depth
(L + 1) as the target network, thus, allowing it to leverage the potential representational benefits
associated with larger depth. 3) Despite the reduced depth requirement we keep the width requirement
logarithmic in the approximation error €. 4) Our proofs are constructive and define an algorithm that
approximates a given target network by pruning a source network. We verify in experiments that this
algorithm is successful under realistic conditions.

Related Literature Many pruning methods have been proposed to reduce the number of neural
network parameters during training [22, |35, 19} [13} 143} 24,150} 14} |39} 28} [277, 148, 140, |6] or thereafter
[41, 23] 120} 9} 26| 134} 152] and have been applied in different contexts, including graph neural
networks [S]] and GANs [4]]. Furthermore, pruning can have provable regularization and generalization
properties [S1]. The algorithms are most useful for structure learning at lower sparsity levels [44, [24]
but at least Iterative Magnitude Pruning (IMP) [19, [I3] can fail in identifying LTs that perform
superior to random or smaller dense networks [31]]. It can therefore be beneficial to start pruning
from a sparse random architecture rather than a dense network [[10} 29]], which saves computational
resources. Other options to achieve the latter are to identify and train on core sets [53] and focus
on pruning before training [47, 25 146, 145, 38]]. Yet, iterative pruning methods often perform better
[15,131] but all face challenges in finding highly sparse LTs [[L1].

Most of the discussed pruning methods try to find LTs in a ‘weak’ (but powerful) sense by identifying
a sparse neural network architecture that is well trainable starting from its initial parameters. Strong
LTs are sparse subnetworks that perform well with the initial parameters and, hence, do not need
further training [54} 38]]. Their existence has been proven for fully-connected feed forward networks
with RELU activation functions by providing lower bounds on the width of the large, randomly
initialized source network [132} 137, (36} 12} 3, [17]. In addition, it was shown that multiple candidate
tickets exist that are also robust to parameter quantization [§]. Our first objective is to extend the
known theory to other activation functions beyond RELUS. Note that the approach that we develop
here has also been partially transferred to convolutional and residual architectures [1]. However, [[1]]
does not cover activation functions with nonzero intercept (like sigmoids) and their width dependence
on the error ¢ is less advantageous.

2 Constructing Lottery Tickets

Informally, our goal is to show that any deep neural network of width n; and depth L; or smaller
can be approximated with probability 1 — § up to error € by pruning a larger randomly initialized
neural network of width O(n; log[n;L;/ min{J, ¢}]) and depth 2L; or a network of smaller depth
L; + 1 and width O(n; log[n:L:log(1/6)/ min{d, €}]), as long as the target network and the large
random network rely on the same activation functions. Note that we often omit the dependence on §
in our discussions because we usually care about cases when € < §. Next we explain the required
background to formalize and prove our claims.

Background and Notation Let a fully-connected feed forward neural network f : D C R" —
R™ be defined on a compact domain D and have architecture i = [ng, n1, ..., nz], i.e., depth L

and width n; in layer I € (0, ..., L), with continuous activation function ¢(z). On the relevant
O]

compact domain let ¢(x) have Lipschitz constant 7'. It maps an input vector (9 to neurons x,;’ as



) = ¢ (hV) with h) = WOg(=1) + b1 where h(") is the pre-activation, W) € Rm>xmi—1
is the weight matrix, and b() € R™ is the bias vector of layer [. Without loss of generality, let
us assume that each parameter (weight or bias) € is bounded as |0 < 1. Primarily, we distinguish
three networks. First, we want to approximate a target network f; with architecture 7; of depth L
consisting of IV, total nonzero parameters. Second, this approximation is performed by a lottery
ticket (LT) f. that is obtained by pruning a larger source network f,, which we indicate by writing
fe C fs. Third, this source network is a larger fully-connected feed-forward, randomly initialized
neural network with architecture i, and depth L,. While most LT existence results require exactly
Ls = 2L;, we show that any Ly > L; + 1 is sufficient.

To simplify the presentation, like most works, we assume a
convenient parameter initialization that we have to choose

with respect to the activation function if we approximate a  (a)
target layer with two source network layers. In most cases, &
we make the following assumption. x(©)

Assumption 2.1 (Convenient initialization). We assume
that the parameters of the source network f; are inde-

pendently distributed as w? ~ U ([-1,1]), b ~ (b)

)

U ([~1,1]) and b = 0 for I > 1.

Note that also other parameter distributions, e.g. normal
distributions, are covered as long as they contain a uniform
distribution [37]], since this allows us to solve subset sum
approximation problems (see appendix for a formal def-

inition). While most works assume zero biases (bgl) =0),

as they focus on target networks without biases 371,

we initialize the biases in the first layer as nonzero. This is
sufficient to approximate nonzero target biases, since we ©
can always construct constant neurons in each layer (see @
pink blocks in Fig.[T] (c)). x(0)

The convenient parameter initialization can always be
transferred to a realistic one by learning or just applying
an appropriate layer-specific scaling factor \;, as also pro-
posed in LT pruning experiments [54]]. For homogeneous
activation functions like RELUS, even a global parame-
ter scaling is sufficient [12]. For instance, let us assume
that our initial parameters in Layer [ are distributed as
U ([~01,01]). A common choice would be a He OF  Figure 1: LT construction idea. (a) Tar-
Glorot initialization with o; < 1/ /1. In this case, get network f,. (b) Lo = 2L, construc-
we would need to adapt our proofs by replacing {#'} of a tion of fe. (©) Lo = Ly + 1 construction
LT by {\0'} with \; = 1/0; to construct the same func- of f.. Subset sum blocks are framed
tion that we have derived for convenient initializations. (purple corresponding to target neurons,
pink to biases). Dashed links only exist
if source network biases in layers [ > 1
are initialized to zero.

For specific activation functions with ¢(0) # 0 (e.g. SIG-
MOIDS), instead of Assumption [2.1, we will assume an
initialization that has originally been derived to ensure
dynamical isometry for RELUS [2,[16]. Interestingly, this initialization also supports LTs.

Assumption 2.2 (Looks-linear initialization). We assume that the weight matrices of the source
MO 0

oy g | o where M and b are distributed as in

network f, are initialized as W) =
Assumptions

In general, we measure the approximation error with respect to the supremum norm, which is defined
as [|g|| ., = supyep |9/, for any function g and the L1-norm ||z[|, := >, |z;|. In the formulation
of theorems, we also make use of the universal constant C' that can attain different values.

Lottery Tickets as Subnetworks were the first to give probabilistic guarantees and provide a
lower bound on the required width of the source network that is polynomial in the width of the target



network. Their O(n? L? /%) requirement, or under additional sparsity assumptions O(n?L? /€?), has
been improved to a logarithmic dependency of the form O(n? log(nL;)/¢) for weights that follow
an unusual hyperbolic distribution [36] and O(n; log(n:L;/€)) for uniformly distributed weights
[37]. While these assume target networks with zero biases, [[12]] transferred the approach by [37] to
nonzero biases. All assume that the source network has exactly twice the depth of the target network
(Ls = 2Ly). Only [L1] prove existence for extremely sparse tickets for L, = L, + 1 but the width
requirements are unrealistic for most target architectures. [3] show how to leverage additional depth
Ly > 2L, but still assume excessive depth in general. Furthermore, all of these works focus on
RELU activation functions. Both limitations, the focus on RELUS and the Ly = 2L; requirement
rely on the following construction idea that is also visualized in Fig.[T{a-b). Every layer of the target
network f; is represented by two layers in the lottery ticket f. and equipped with RELU activation
functions ¢r(x) = max{x, 0} with the possible exception of the last output layer. We can obtain
two layers by representing the identity as @ = ¢r(z) — ¢r(—x) and writing each target neuron xilz
as xtz = (Z wgll)jxtj 1)+b( ) |:Z wtl](bR (mtj ) _wtlj(b ( xt] )) +b2(59:|
The advantage of this 2-layer representatlon is that (a) we gain the flexibility to select the neurons in
the middle layer among a higher number of available neurons in the source network and (b) these
neurons are univariate so that they depend on a single nonzero parameter and are thus simple to
approximate with high probability. The question is how many nodes n( in the middle layer of the
source network are required to guarantee an accurate selection. The answer distinguishes previous
work. [37] achieve a factor v (where ns = vn;) that is logarithmic in ng, €, J, etc. by solving a
separate subset sum approximation problem for each parameter utilizing results by [30]. [12] transfers
these results to target networks with nonzero biases.

Our first contribution is to extend a similar construction to a wider class of activation functions that
is not restricted to RELUS. We need this result to approximate at least the first layer of our target
network in our second contribution, an L + 1-construction, as shown in Fig.[T{c). For the remaining
layers, we propose to construct the subset sum blocks for the next layer directly from the previous
layer by sharing nodes in the construction. This has multiple advantages. The obvious one is that we
can use the available depth of the source network to start from a potentially sparser target architecture
to solve a given problem. Also the LT itself consists usually of less neurons. Furthermore, the subset
sum approximation of parameters becomes more efficient.

Subset Sum Approximation In the discussed construction, we generally have multiple random neu-
rons and parameters available to approximate a target parameter z by Z up to error € so that [z — 2| < e.
Let us denote the independent random variables that we can use for this approximation as X, ..., X,,.
If they contain uniform distributions, Lueker [30] has shown that m > C'log(1/ min{e, §}) is suffi-
cient for the existence of a subset I C {1...,m} so that the approximation of z by z = >, _; X} is
successful with probability at least 1 — §. Standard distributions of interest like uniform and normal
distributions as well as their products have this property [37]]. For convenience, a precise corollary is
stated in the appendix as Cor. Note that C' depends on the distributions of the X} and is usually
larger in the two-layers-for-one than in the one-layer-for-one construction, because the X}, are given

by products X = wél;ll)w(()lgc ; in the former but X}, = w(()l';l) in the latter case.

2.1 Two Layers for One

Our first contribution is to transfer the two-layers-for-one construction to activation functions that
can be different from ReLUs. We will utilize this result also in our one-layer-for-one construction
to represent the first layer of the target network. This is necessary as the input neurons are fixed.
We need to increase their multiplicity in the first layer of the source network to solve subset sum
approximation problems that create target Layer 1 in the LT’s Layer 2.

2.1.1 Activation Functions

The main property of ReLUs ¢g that is utilized in LT existence proofs is that we can represent the
identity as © = ¢r(x) — ¢r(—=z). This identity is exact and holds for all inputs x € R. Yet, we can
show that, in combination with the right initialization of the source network, it is sufficient if we can
approximate the identity on an interval that contains 0. This approximation is feasible with most
continuous activation functions that are not constant zero in a neighborhood of 0, as we detail next.



Assumption 2.3 (Activation function (first layer)). For any given ¢’ > 0 exists a neighborhood
[—a(€'), a(€")] of 0 with a(e’) > 0 so that the activation function ¢ can be approximated by ¢(z) on
that neighborhood such that sup,¢[_, 4 [#(2) — ¢(x)| < €, where ¢(z) = mix + d forz > 0 and

¢(x) =m_z+dforz < 0withmy,m_,d € R,and m, + m_ # 0. We further assume that, if
a(x) is finite, g(x) = z/a(x) is invertible on an interval ]0, €”’] with € > 0 and lim,_,¢ g(z) = 0.

Most continuous functions and thus most popular activation functions fulfill this assumption. For
instance, RELUS ¢r(z) = max(z,0) inflict zero error on R (i.e., a = oo) withmy =1, m_ =0,
and d = 0. Similarly, LRELUS can be represented without errorby my =1, m_ =a,andd =0
for an o > 0. ¢(x) = tanh(x) is approximately linear so that | tanh(z) — z| < 23/3 for |z| < 7/2,

which can be seen by Taylor expansion of tanh. This implies that the choice m = 1, m_ = 1, and
d = 0 with a = min{(3¢')'/3, 7/2} fulfills our assumption. SIGMOIDS ¢(z) = 1/(1 + exp(—=))
can be analyzed in the same way with m, = m_ = 0.25, d = 0.5, and a = min{(48¢)'/3, 7},

since ¢(x) = (tanh(xz/2) + 1) /2. We should point out that not all continuous functions fulfill this
property. Counterexamples include a shifted ReLU ¢(z) = ¢r(x — 1) or ¢(x) = |z|. However, in
our L + 1-construction, almost all activation functions can be arbitrary continuous functions. We
will only ask the activation functions in the first layer to meet our assumption above. How can we
represent the identity with such activation functions?

Lemma 2.4 (Representation of the identity). For any ¢ > 0, for a function ¢(x) that fulfills
Assumption[2.3|with a = a(€') > 0, and for every x € [—a, a] we have

re— T (ga) - p(-a))| < —2F

—_—. (D
my +m_ m4 +m_

Note that RELUS and LRELUS inflict no approximation error so that the above statement holds
also for ¢ = 0 and a = oo. Some activation functions can have other advantages over RELUS. For
instance, functions for which my = m_ = m and d = 0 like TANH can also be approximated by
|z — ¢(z)/m| < € /m and do not need separate approximations of the positive and the negative part.
Furthermore, SIGMOIDS and general activation functions with d # 0 do not need nonzero biases in
the source network, since we can approximate a bias by random variables of the form X = wy$(0).

The challenge in utilizing this lemma is to incorporate the error that is inflicted by the approximation
of the identity in addition to the pruning error into the analysis of the total approximation error. The
allowed interval size a also influences which variables can enter our subset sum blocks and could
affect our width requirement if we would not initialize our parameters in the right way.

2.1.2 Lottery Ticket Existence (Two-for-One)

Our first goal is to identify a LT f. that approximates a single hidden layer neural network f;(z) : D C
R™ — R with fi(z) = ¢; (2?21 Wy j T + bt). We could easily extend this result to approximate

each layer of a multilayer neural network but we will discuss a more promising alternative that
uses the following result for approximating the first layer only. f. can be obtained by pruning a
fully-connected source network f, of depth Ly = 2 with n ; hidden neurons that are equipped with
the activation function ¢g, which can be different from the outer ¢;. The additional layer in f, has
the purpose to create multiple copies of input nodes that can be used in subset sum approximations.

To achieve this despite the potential non-linear activation function ¢ in the hidden layer, we have
to approximate the identity with the help of ¢(. The precise approximation can pose two additional
challenges in comparison with the standard construction for RELUS. (a) If the piece-wise linear
approximation of ¢¢ in Assumption holds only on a finite neighborhood of 0 with a(€) < oo,
we can only use parameters that render the approximation valid. Thus, the success of our approach
relies on an appropriate parameter initialization in the first layer of the source network f;. (b) A
nonzero intercept (d # 0) in the approximation of ¢, demands for a different initialization scheme
to avoid the need for large bias approximations. For simplicity, let us first assume that ¢g fulfills
Assumption[2.3|with zero intercept (d = 0).

Theorem 2.5 (LT Existence (Two-for-One)). Assume that €',6' € (0,1), a target network fi(x) :
D C R™ — R™ with f;;(z) = ¢4 (2?21 Wi 355 —|—bt,i), and two-layer source network f

with architecture [ng,ns 1,n1] and activation functions ¢q in the first and ¢, in the second layer



are given. Let ¢q fulfill Assumption with a(e”) > 0 and d = 0, ¢; have Lipschitz constant

T;, and M := max{1, maXyeD,i |x;|}. Let the parameters of fs be conveniently initialized as

w b o Ul—o,0] and wz(?) ~ U[-1/(lms+ + m_|o),1/(Jm4 + m_|o)], bZ(-z) = 0, where

7,]77,

o =min{1,a(e")/M} with e’ = g~! (e’/ (CTtno |m+]\fm7‘ log (min{ e }))) Then, with

e
ne 1 Ty M

probability at least 1 — §', fs contains a subnetwork f. C fs so that each output component i is
approximated as maxqep | fri(x) — fer i(x)] < € if

)

min{e’/(T; M), 5’/nt,l}> .

Proof Outline. The construction of a LT consists of three steps. First, we prune the hidden neurons
of f, to become univariate. Second, we identify neurons in the hidden layer for which we can
approximate ¢q for small inputs according to Assumption Third, if n,; is large enough, we
can select subsets I; and I, of the hidden neurons with small inputs so that we can use Cor. on
subset sum approximation to approximate the parameters of the target. The resulting subnetwork

of f, is of the following form f. ;(z) = ¢t(2kel wg?qﬁo (w,g)xj) + D rer, wfi)qﬁo (b,(cl)) ),

where I = U;I; and Zkelj wfk)w,g ) can be used to approximate wy ;;. fe; qualifies as LT if

ng1 > Cnglog (

|ft.i(x) — fei(x)] < €. A straight-forward series of bounds shows that we can achieve this
it A = |wiz; — > kel wzk)qﬁo (wkj :cj) | < €/(Ti(no + 1)) for each j. This also ap-

plies to the approximation of b; ;, respectively. We would like to approximate ¢q (wlg)xj) ~

ui(w,(w)x])w,g)xj + €', where py(z) = myx if ¢ > 0 and py(xr) = m_x otherwise. Note

that py () + py(—2x) = my + m_ for all z # 0. By construction, the activation function
approximation is valid, as \w,g.)xﬂ < Ma(€")/M = a(e’). Hence, we can split the error
into two subset sum approximation problems and the activation function approximation error:

14 (2 2 T
A < M|7‘rl7,i J |wt ij |m+ + m_ ‘Zk61+ wfk)wk] ’ + M( — 7\%iim¥\>‘wt,ij — ‘er +
(1) (1)

(2)
|Zk€1 Wi wk] | + |Zkezj ik (¢0(wk] T;) — Hi(wm xJ)wk:j 5“1)

indices Ij‘ for which w(l) >0and I; j all the ones for which w,(c )

bounded according to Cor. W1th probability 1 — §” if C'log (mm @ /(2(n01+1) AT, 6,,}> random

variables X, are available to choose from I+ ;» since the random variables X = |[m +m_ \wl % w,g)

are distributed as X}, ~ U[—1,1]U[0,1] or X}, ~ U[—1,1]U[—1,0] and thus contain a uniform
distribution U[—1, 1] as shown by [37]. We can solve 2(ng + 1)n, ; independent subset sum approx-
imation problems with probability 1 — ¢’ if each problem is solved with ¢ = ¢'/(2(ng + 1)n¢ 1)

< 0. The first two terms can be

and if we have in total Cng log (min 70 ang,) 5T 1}) random variables available. O

The full proof is given in the appendix. A key result of our construction is that the activation function
approximation error does not affect the width requirement. As long as we choose the scaling factor
o small enough, we can achieve a small enough error. Note that for RELUS, the above theorem
reduces to known results [12]], since 0 = 1, my + m_ = 1, a = oo, and d = 0. LRELUS
have the same advantageous property and are now covered in addition. The only difference is that
m4 +m_ = 1+ «. Another new insight is that also activation functions with finite approximation
support a(e”) < oo support the existence of lottery tickets with the right parameter initialization with
0 < o < 1. Interestingly, they can still achieve the same realistic width requirement.

Even though the theorem does not provide details on the universal constant, the minimum width

requirement in this construction would be achieved by a linear activation function ¢o(z) = x, which

does not require a distinction between positive and negative wl(c ), has a(€e) = oo, does not inflict

any approximation error, and is homogeneous, which makes it easy to transfer the above results to
realistic parameter initialization schemes.

Remember that only ¢ in the first layer needs to fulfill Ass. [2.3] ¢, is an arbitrary continuous
function. However, it is relatively uncommon in practice to combine different activation functions in



the same neural network so that ¢g # ¢;. Regardless, RELU neural networks have been observed to
learn the identity in the first layers (close to the input) [42]. For these reasons it could be beneficial in
general to equip at least the first layer with linear activation functions.

Also a ’looks-linear* parameter initialization can be of great benefit, in particular, if the intermediary
activation function ¢ has a nonzero intercept d # 0, as shown next.

Theorem 2.6 (LT Existence (Two-for-One) with Nonzero Intercept). Thm. [2.5] applies also to
activation functions ¢q that fulfill Assumption with d # 0 if the parameters are initialized

according to Assumptionlﬁwith Mél) distributed as the weights in Thm. lZ_5J

Proof Outline. We can closely follow the steps of the previous proof. The major difference is that
we approximate ¢g () ~ p+(z)x + d so that the activation function approximation produces an

additional error term, i.e., ‘d > kel wz(i) ‘ In principle, we could have modified the bias subset sum

approximation by approximating by; +d 3 ;> e, wgi) instead of by ;. Yet, 32, > ycp, wg? could

be a large number, with which we would need to multiply our width requirement, if each wﬁ) is

initialized as in Thm. E In contrast, with the looks-linear initialization we can choose w Z(Iz,) = fwi)
(2) _ (2) (2) _ (2) (2) _
so that Zkelj Wy, = Zkel;r wy, + Zk/e[; Wigr = Zke[j Wy — Zke[j w;; = 0. O

As for RELUS [12], we could use these results to approximate every layer of a target multi-layer
feed-forward neural network for general activation functions by pruning two layers of a source
network with double the depth as the target network, as visualized in Fig.|1|(b). As alternative, next
we propose to prune a source network that has almost the same depth as the target network.

2.2 One Layer for One

Our second major contribution is to show how we can approximate intermediate target layers by
pruning a single layer of the source network. This is achieved by connecting subset sum approximation
blocks directly as visualized in Fig.[1|(c). The main idea is to create, instead of a single target neuron,
p copies to support subset sum approximations in the next layer.

In comparison with the two-layer-for-one construction, we have to solve a higher number of subset
sum approximation problems but this number is only higher by a logarithmic factor and can be
integrated in the universal constant C'. It is usually negligible. In total, the lottery ticket might also
consist of a higher number of parameters, i.e., link weights, but a smaller number of neurons, which
is the more critical case to reduce computational costs [34]. The benefits usually outweigh the costs,
as we need less random variables to guaranty a successful subset sum approximation and, most
importantly, can use almost the full depth of the source network to find a sparser representation of the
target network. Furthermore, source networks of lower depth are easier to train and thus also more
amenable to pruning algorithms that utilize gradient based algorithms.

Interestingly, we can further relax our requirements on the activation functions, as they only influence
the error propagation through the network but are not involved anymore in creating random variables
for the subset sum approximation problems. Let us start with the approximation of a single layer.

Theorem 2.7. Assume that € ,§' € (0,1), a target network layer fi(x) : D C R™t — R™i1+1
with fii(z) = ¢ (Z;lt:ll We,ijT5 + bm-), and one source network layer f, with architecture
[Ms,1+1, Ms,1+2] and the same activation function ¢, are given. Let ¢, have Lipschitz constant
T, and define M := max{1l, maxxep; |zi|}. Let the parameters of fs be initialized according to
Assumption[2.1] Then, with probability at least 1 — &', f, contains a subnetwork f. C fs so that p
copies of each output component i are approximated as maxgep |f1.:(x) — fo o (2)| < € if

Ng 41 > Cny g log ot .
it 2 Onulog \ e T, 6 o)}

Proof. For each target input neuron j, we assume that we can create multiple copies (with index

set I;) that we can use then as basis for subset sum approximations of target weights wt(li?l)

Similarly, for biases we reserve neurons I, in the first layer that are pruned so that we have ¢;(c) =



1 or another constant. Particularly parameter efficient would be ¢,(0) = d. Thus, our lottery

. . Ny, 1+2 42
ticket is of the form f./ ;/(x ):q&t(Z liZkeI/cI w(+)+zk61/bclb (+)¢)() The
subsets [;/; and I;/;, are chosen so that |wtl+1) Zkel, 1, (Hz | < €/(MT(n,;+1)) and

|bgj_1) = Ykel,cl, wi,;2)¢t(bg+1)| < € /T(ny; + 1), which can be achieved by subset sum

approximation based on the random variables X}, = w(/l ;2) U[—1,1]. In total, we have to solve

maximally pny ;41(ng,; + 1) of these problems and can thus spend 0’ /(pns 1+1(ney + 1)) on each of
them. Note that we only need a separate subset sum block for each input target neuron and not for its
p copies, as we can reuse each block in the construction of each output. O

The advantage the construction above is that we can skip the approximation of the identity func-
tion. The real challenge, however, lies in the derivation of the required multiplicative factor p for
approximating a multi-layer target network.

2.3 Multi-layer Lottery Ticket Existence

Our main result is to derive realistically achievable lower bounds on the width of a source network
that has depth Ly, = L; + 1. To prove the existence of LTs that approximate general multi-layer target
networks using the last theorems, we have to overcome two challenges. First, when we consider
multiple network layers, we need to understand how much error we can afford to make in each target
parameter approximation for general activation functions beyond RELUS to stay below the global
error bound, as error can get amplified when signal is sent through multiple layers. Second, we need
to identify the required layer-wise width scaling factor p in Thm.

Lemma 2.8 (Error propagation). Let two networks f1 and fs of depth L have the same architecture
and activation functions with Lipschitz constant T'. Define M; := sup,cp Hac(l) H1 Then, for any

€ > 0 we have || fi — f2| . < € if every parameter 61 of fi and corresponding 6> of f in layer
Sulfils |0, — 03] < €, for

L—1
€ € e\ 11
L (L+ M) (1+ 7 H1 Ul T

For suitable target networks, this requirement essentially becomes ¢; = C'e/(n;L). This is an advanta-

geous estimate in comparison with [[I]], which derives a smaller allowed error ¢; x €/ (N, Hf:l Nt(s))
that is anti-proportional to the total number of nonzero parameters Ny and a product over nonzero
parameters in the upper layers. Our estimate can be used in two-layers-for-one as well as one-layer-
for-one LT constructions. The latter follows as our main result.

Theorem 2.9 (LT existence (L + 1 construction)). Assume that €,0 € (0,1), a target network
fi(x) : D C R™ — R™ with architecture Ti; of depth L, N; nonzero parameters, and a source
network fq with architecture ng of depth Ly = Ly + 1 are given. Let ¢y be the activation function of
ft in the layers | > 2 of fs with Lipschitz constant T, ¢ be the activation function of the first layer

of fo fulfilling Assumption and M := max{l, maxxep HXEI) H }. Let the parameters of fs be
1

initialized according to Ass.[2.1)for | > 2 and Thm.[2.5]or[2.6|for | < 2. Then, with probability at
least 1 — 6, fs contains a subnetwork f. C fs so that each output component i is approximated as

maxgep |fri(®) — foi(x)| < eif

1
Nsi+1 = Cny i log min{er,0/p)

forl > 1, where €41 is defined by Lemmaand p = C’Ntl'w log(1/ min{miny ¢;,8}) for any

v > 0. Furthermore, we require ng 1 > Cny 1 log (m .

The full proof is presented in the appendix. While the layer-wise constructions are explained by
the proofs of Thms. [2.6] [2.5] and yet with updated ¢;, the main challenge is to determine the
increased number of subset sum problems that have to be solved to derive the scaling factor p. Note
that p only enters the logarithm and is negligible. By updating C, we in fact have the same asymptotic
dependence ng ;11 > Cnylog (ny L/ min{e, §}) as in the two-layers-for-one construction.



3 Experiments

To demonstrate that our theoretical results make realistic claims, we present three sets of experiments
that highlight different advantages of the L + 1-construction and the 2L-construction. In all cases,
we emulate our constructive existence proofs by pruning source networks to approximate a given
target network. All experiments were conducted on a machine with Intel(R) Core(TM) i9-10850K
CPU @ 3.60GHz processor and GPU NVIDIA GeForce RTX 3080 Ti.

Table 1: LT pruning results on MNIST. Averages and 0.95 standard confidence intervals are reported
for 5 independent source network initializations. Parameters are counted in packs of 1000.

CONSTR. | TARGET | L+1 | 2L

| % Acc. #PARAM. | % Acc. #PARAM. | % Acc. # PARAM.
RELU 97.99 18.6 97.78 £20.05 1106.54+0.9 | 97.96 £0.02 119.2 £0.04
LRELU 97.88 18.6 97.63+:0.08 1102.44+0.9 | 97.84+£0.06 119.2£0.1
TANH 98.2 18.6 98.07+£0.07 660.3£0.4 | 98.14+£0.03 67.0+0.06
SiGMoID | 98.08 18.6 98.08 £20.02  669.7+0.4 | 98.074+0.02 67.440.05

LeNet on MNIST As our proofs suggest, pruning involves solving multiple subset sum approxi-
mation problems. Each is an NP-hard problem in general, as the size of the power set and thus the
number of potential solutions scales exponentially in the base set size m, i.e., as 2. However, as
a set size of m = 15 and even smaller is sufficient for our purpose, we could solve each problem
optimally by exhaustively evaluating all 2" solutions. To reduce the size of the associated LTs, we
instead identify the smallest subset consisting of up to 10 variables out of m = 20 to achieve an
approximation error that does not exceed 0.01.

What should be our target network? As the influential work [13], we use Iterative Magnitude
Pruning (IMP) on LeNet networks with architecture [784, 300, 100, 10] to find LTs that achieve a
good performance on the MNIST classification task [[7]. Using the Pytorch implementation of the
Gihub repository open_lt with MIT license, we arrive at a target network for each of four considered
activation functions after 12 pruning steps: RELU, LRELU, SIGMOID, and TANH. Their performance
and number of nonzero parameters are reported in Table[I]in the target column alongside our results
for the (L + 1)-construction and our 2L construction, which achieve a similar performance. Note that,
while the L + 1 construction relies in this case on a higher number of parameters, it uses less neurons
and a smaller depth, which are the relevant criteria for fast computations and network training.

ResNet18 on Tiny-ImageNet We have obtained more large-scale target networks by fine-tuning a
ResNet18 model that was originally trained on ImageNet data and available for download on Pytorch
for transfer learning. We replaced the last fully-connected classification layer by a fully-connected
network with widths [512, 512, 200] and activation function of interest in the first layer and trained the
full ResNet model on the tiny-ImageNet training data. Similarly to experiments of [1]], we estimated
the pruning error of LTs for the fully-connected classification network based on a statistic of solving
10° different subset sum approximation problems. The subset sum base set size in the one-layer-
for-one construction is m = 10, while we used m = 15 in the two-layer-for-one construction. Note
that this difference is possible because the subset sum base set consisting of uniformly distributed
random variables in the one-layer-for-one construction can be smaller than variables that are products
of uniform random variables as in the two-layers-for-one construction.

Both constructions approximate target parameters up to maximum error ¢; = 0.001. The reported
performance is evaluated on the tiny-ImageNet test data for a model that concatenates the residual
target layers and a fully-connected LTs (see Table[2). In this case, because of the different base set
sizes, we sometimes find the L + 1-construction to be more parameter efficient.

Representational Benefits of the L. + 1-construction In the previous experiments, we have
constructed one target network and used different source networks to demonstrate the validity of
our proofs and constructions. The more realistic set-up is, however, that the source network is given

"https://github.com/facebookresearch/open_lth



Table 2: LT pruning results on tiny-ImageNet. Averages and 0.95 standard confidence intervals are
reported for 3 independent source network initializations. Parameters are counted in packs of 10°.

CONSTR. | TARGET | L+1 | 2L

| % Acc. #PARAM. | % AcCC. # PARAM. | % AcCC. # PARAM.
RELU 73.08 2.06 73.09 = 0.04 19.14 £0.005 | 73.06 = 0.05 21.8 +£0.004
LRELU 73.0 2.06 72.96 + 0.04 19.14 £ 0.01 72.92 +£0.03 21.8 £0.006
TANH 73.73 2.06 73.75 &+ 0.04 11.36 = 0.01 73.72 £ 0.08 10.98 £+ 0.01
SIGMOID 72.69 2.1 72.69 + 0.01 19.14 £ 0.002 | 72.67 £0.06 21.86 +0.01

and thus the depth of the LT is predetermined as L, — 1 or L, /2, respectively. As a consequence,
the 2L- and the L + 1-construction would approximate different target network representations. If
the target of depth Ly = L — 1 is much sparser than the target network of depth L; = L/2, our
L + 1-construction might be more effective than our 2 L-construction. The general challenge with
this argument is that we cannot exclude the case that there might exist a much sparser target network
of depth L; = L, /2 than we thought or could identify.

Keeping this caveat in mind, we have still constructed two types of target networks for a problem
for which [[11] has derived a relatively sparse solution. The circle target of depth L; = 25 (for the
L + 1-construction) consists of 190 nonzero parameters and has a maximum width of 16, while the
L, = 13 target network (for the 2L-construction) consists of 2133 parameters and has a maximum
width of 1024. Both target networks are equipped with ReLLU activation functions and achieve
a similar test accuracy: 99.86% is achieved by the L; = 13 = L,/2 target and 99.76% by the
Ly =25= Ly — 1 target.

In the following we report the properties of the lottery ticket that we identify by pruning the source
network with a subset sum base set size of m = 15 in the two layer construction and base set
size m = 10 in the one layer construction as averages over 3 independent runs with 0.95 standard
significance intervals.

2L-construction: Acc: 99.5 + 0.6, number of parameters: 98393 + 288, maximum width: 15375.
L + 1-construction: Acc: 99.8 & 0.01, number of parameters: 18891 + 133, maximum width: 170.

In this example, the L+ 1-construction results in a sparser lottery ticket consisting of fewer parameters
and considerably smaller maximum width. The reason is that we could leverage almost the full depth
of source network to obtain a much sparser target network representation for the L + 1-construction.

4 Discussion

We have shown that randomly initialized fully-connected feed forward neural networks contain lottery
tickets with high probability for a wide class of activation functions by deriving two types of construc-
tions: (a) The (2L;)-construction assumes that the larger random source network has at least double
the depth of the target network and is wider only by a logarithmic factor O(n; log(n:L:/ min{4, €})
in the approximation error and the LT existence probability. (b) The (L; 4 1)-construction allows
for potentially sparser target network representations, as these can utilize almost the full available
depth Ly, = L; + 1 of the source network. Remarkable about this result is that asymptotically, we
can maintain the logarithmic overparametrization. While this suggests a slightly less advantageous
scaling in ¢ for the (L; + 1)-construction, the constant is smaller for the (L; + 1)-construction and
most of the time we can choose a similar or smaller source width than in the (2L;)-construction. We
have also demonstrated in experiments that the LT for the (L; = L — 1)-construction will often
consist of fewer parameters than the LT corresponding to the (L /2)-construction, but this does not
always have to be the case.

We have mainly discussed the scenario, in which the source network has exactly depth L, = L; + 1,
but not all target network representations become sparser with increasing depth. What if the sparsest
target representation has depth L, + 1 < L,? With the help of Lemma[2.4] we could simply add
layers that approximate the identity and thus construct a target with depth L, = L — 1. In future, it
could be interesting to leverage excessive depth to distribute subset sum blocks on multiple layers
instead, as it has been proposed for RELUS [3].
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(b) Did you describe the limitations of your work? [Yes] We discuss in detail for which
activation functions our theory holds and discuss advantages and disadvantages of the
derived LT constructions.
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see any immediate negative societal impact that is specific to our contributions.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2.
(b) Did you include complete proofs of all theoretical results? [Yes] See proof outlines in
the main paper and full proofs in the appendix.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplement.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See section on experiments.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We repeated each experiment with 5 independent random
seeds and report standard confidence intervals as error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 3 on experiments.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We used the open_Ith
package.
(b) Did you mention the license of the assets? [Yes] .
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