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Abstract

Recently, Mixture of Experts (MoE) Transform-
ers have garnered increasing attention due to
their advantages in model capacity and com-
putational efficiency. However, studies have
indicated that MoE Transformers underper-
form vanilla Transformers in many downstream
tasks, significantly diminishing the practical
value of MoE models. To explain this issue,
we propose that the pre-training performance
and transfer capability of a model are joint de-
terminants of its downstream task performance.
MoE models, in comparison to vanilla models,
have poorer transfer capability, leading to their
subpar performance in downstream tasks. To
address this issue, we introduce the concept
of transfer capability distillation, positing that
although vanilla models have weaker perfor-
mance, they are effective teachers of transfer
capability. The MoE models guided by vanilla
models can achieve both strong pre-training
performance and transfer capability, ultimately
enhancing their performance in downstream
tasks. We design a specific distillation method
and conduct experiments on the BERT archi-
tecture. Experimental results show a significant
improvement in downstream performance of
MoE models, and many further evidences also
strongly support the concept of transfer capabil-
ity distillation. Finally, we attempt to interpret
transfer capability distillation and provide some
insights from the perspective of model feature.

1 Introduction

Recent researches have revealed that pre-trained
language models demonstrate powerful general ca-
pabilities (Devlin et al., 2019; Brown et al., 2020;
Ouyang et al., 2022; OpenAl, 2023) and an ex-
traordinary ability to enhance performance through
scaling (Kaplan et al., 2020; Hoffmann et al., 2022).
However, scaling up these models incurs signifi-
cant costs in practical applications due to the rapid
increase in computational demands. As a result,
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Figure 1: The results of pre-training and fine-tuning
show that: 1) The original MoE models have poor down-
stream performance, which is related to inferior transfer
capability; 2) The MoE models with transfer capabil-
ity distillation exhibit significant improvement; 3) The
teacher models have weaker performance, hence this
distillation only involves their strong transfer capability.

there is a growing interest in Mixture of Experts
(MoE) models (Jacobs et al., 1991; Shazeer et al.,
2017; Lepikhin et al., 2021; Du et al., 2022). These
models enable inputs to be processed by distinct
experts. The number of experts determines the
number of parameters while having a limited ef-
fect on computation cost, thereby expanding the
capacity with lower computation expense.
However, existing researches indicate that while
MOoE models excel in pre-trained language model-
ing tasks, their efficacy diminishes in downstream
tasks, especially when a large number of experts
are involved. Fedus et al. (2022) proposed the
Switch Transformers based on MoE architecture,
revealed that MoE models consistently underper-
form vanilla models in fine-tuning on SuperGLUE
benchmark (Wang et al., 2019) when pre-training
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Figure 2: The mechanism diagram of transfer capability
distillation. It enhances the transfer capability of MoE
models. Combined with their strong pre-training perfor-
mance, the downstream performance can be improved.

performances are equivalent. Artetxe et al. (2022)
conducted more experiments, and it can also be
observed from their published results that MoE
models consistently show weaker fine-tuning re-
sults in downstream tasks when pre-training perfor-
mances are equivalent. Shen et al. (2023) similarly
observed in their experiments that, on many down-
stream tasks, single-task fine-tuned MoE models
underperform their dense counterparts.

We also conduct relevant validation, pre-training
two scales of vanilla BERT models and MoE BERT
models with 64 experts (top-1 activation), followed
by fine-tuning on GLUE benchmark (Wang et al.,
2018). Some results are shown in Figure 1. We ob-
serve that for both scales, the MoE models need to
improve pre-training performance (Log likelihood)
to a much higher level to achieve similar GLUE
performance to the vanilla models. This implies
that the pre-training performance gains brought
about by introducing multiple experts in MoE mod-
els do not translate effectively to the performance
improvement of downstream tasks we are primarily
concerned with, thereby significantly diminishing
the practical value of MoE models.

We attempt to address this issue. Initially, we
need to explain the poor performance in down-
stream tasks of the MoE models. We believe the
downstream performance of a model is deter-
mined by both pre-training performance and
transfer capability. Pre-training performance is
acquired through training, whereas transfer capa-
bility is an inherent attribute of the model. The
latter determines the extent to which the former
can be converted into downstream performance.
Vanilla models, despite their smaller capacity and
weaker pre-training performance, possess strong
transfer capability. In contrast, MoE models, al-
though having larger capacity and stronger pre-
training performance, only exhibit weak transfer
capability. Therefore, we believe the poor perfor-

mance of the MoE models in downstream tasks
is primarily due to its limited transfer capability,
as summarized in Figure 2.

Based on the above explanation, we propose a
solution to this issue: since the transfer capabil-
ity of vanilla models is strong, is it possible to
transfer this capability to MoE models through dis-
tillation? We call this idea Transfer Capability
Distillation (TCD). The underlying logic is that
although the pre-training and downstream perfor-
mance of vanilla models are relatively weak, the
transfer capability of them is stronger. By using
them as teachers, we might enhance the transfer ca-
pability of MoE models. Combined with the strong
pre-training performance of MoE models, this ap-
proach could lead to a comprehensive improvement
of MoE models, as depicted in Figure 2.

The most counterintuitive feature of this method
is: a teacher model, inferior in pre-training and
downstream performance, anomalously distills
a student model superior in those aspects.

Based on the above ideas, we design a distillation
scheme and conduct experiments. Some results are
shown in Figure 1. The results indicate the down-
stream performance of the MoE model with TCD,
not only improved over the original MoE model but
also exceeded that of its teacher model. This sup-
ports the concept of transfer capability distillation,
successfully improving the MoE models.

Moreover, we also conduct some discussions,
providing insights into the differences in transfer
capability from model feature perspective, and ex-
plaining why our distillation can be effective.

The contributions of our work are as follows:

* We differentiate pre-training performance
from transfer capability as distinct influencers
of downstream performance, identifying the
cause of poor downstream performance in
MoE models as inferior transfer capability.

* We introduce transfer capability distillation,
identifying vanilla transformers as effective
teachers and proposing a distillation scheme.

* By transfer capability distillation, we address
the issue of weak transfer capability in MoE
models, enhancing downstream performance.

* We provide insights into the differences in
transfer capability from model feature per-
spective and offer a basic explanation of the
mechanisms of transfer capability distillation.



2 Method

2.1 Overview

In this work, we propose a transfer capability dis-
tillation scheme. The core idea is as follows:

First, a teacher model with low capacity but
strong transfer capability is pre-trained, which ex-
hibits weaker performance in both pre-training and
downstream tasks. Then, during the pre-training
of high-capacity student model, not only original
pre-training loss is optimized, but a new transfer ca-
pability distillation loss is also optimized. Finally,
the student model acquires strong transfer capa-
bility on top of strong pre-training performance,
achieving transfer capability distillation.

In following sections, we will first introduce the
vanilla BERT model as the teacher model and the
MoE BERT as the student model. Subsequently,
we will introduce the specific implementation of
transfer capability distillation, and conclude with
an overview of the training process.

2.2 Vanilla BERT and MoE BERT

Our work concerns two BERT architectures within
Transformers: Vanilla BERT and MoE BERT. The
vanilla BERT has a smaller capacity and weaker
pre-training performance but exhibits strong trans-
fer capability, making it suitable as a teacher model.
The MoE BERT has a larger capacity and stronger
pre-training performance but weaker transfer capa-
bility, serving as the student model.

The structure of the vanilla BERT, as shown
on the left side of Figure 3, consists of stacked
Multi-Head Attention (MHA) and Feed-Forward
Networks (FFN), employing a post layer normal-
ization scheme for residuals and normalization. We
follow the structure design by Devlin et al. (2019),
retaining the original structure of the BERT model.
We denote the original masked language modeling
loss in pre-training phase as Lrrar-

The structure of the MoE BERT, as shown on
the right side of Figure 3, differs from the vanilla
BERT by replacing all FFN layers with MoE layers.
The basic structure of an MoE layer, as illustrated
in Figure 4(a), is not composed of a single FFN but
includes multiple FFNs, also known as multiple
experts. When the hidden representation of a token
is fed into an MoE layer, a routing module (linear
layer with softmax) first predicts the probability
of it being processed by each expert, and then the
hidden representation of the token is only processed
by the top-k experts in terms of probability.
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Figure 3: Overview of our transfer capability distillation
scheme. It involves relation alignment in three locations.

Assume the hidden representation is x, and the
parameters of the routing module are W, and b,
then the process of calculating the probability of
selecting each expert is as follows:

p(x) = softmax(W,x + b;) )

In this work, we adhere to two key practices of
the Switch Transformers (Fedus et al., 2022):

1. Only the top-1 expert in terms of probability
processes the hidden representation. The process
for determining the expert index is as follows:

i = argmax pg(x) 2)
k

2. The hidden representation of the token is first
processed by the expert, and then multiplied by the
probability of selecting that expert to obtain the
final representation. This strategy enables effective
gradient descent optimization for the routing mod-
ule. Assume the set of all experts is { Fj(x)}2_,,
and the processing is as follows:

h = p;(x)E;(x) 3)
Additionally, for expert load balancing, we cal-
culate the Kullback-Leibler divergence between the
average probability distribution of experts selected
within a batch and a uniform distribution, adding it
as an additional loss term.
Assuming there are M hidden representations
in a batch and the vector of uniform probability
distribution is p, then this process is as follows:

1 M
qa= 7 Z softmax(W,x; +b,) (4
j=1

Lp = KL(p|lq) (5)
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Figure 4: Details of our proposed distillation scheme.

2.3 Transfer Capability Distillation

Although the transfer capability distillation in this
work differs in background and final influence from
general knowledge distillation, the implementation
strategy is similar, namely, it is achieved by align-
ing the representations in the intermediate layers
between the student and teacher models.

Different from existing works (Sun et al., 2019;
Sanh et al., 2020; Jiao et al., 2020; Sun et al., 2020),
we avoid direct alignment of intermediate layer
representations, i.e., we do not use Mean Squared
Error (MSE) to make the values of individual sam-
pled representations converge; instead, we choose
to align the relationships between representations,
that is, to make the cosine similarity of a pair of
sampled representations converge.

We consider that direct alignment imposes too
strict limitations on the values of representations.
Since the teacher model is a pre-trained model
with weaker performance, in extreme cases, this
could lead to a complete degradation of the student
model’s pre-training performance to the level of
the teacher model, rendering the transfer capabil-
ity distillation meaningless. By opting to align the
relationships between representations, more flexi-
bility is provided for the values of representations,
potentially reducing conflicts between pre-training
objective and distillation objective. In our experi-
ments, we indeed found that this approach results
in transfer capability distillation that does not com-
promise pre-training performance.

Specifically, we select three locations in the
vanilla BERT models and MoE BERT models for
relation alignment, as shown in Figure 3.

Model Trunk After the layer normalization in
all MHA layers and FFN layers, we add relation
constraints to the normalized hidden representa-
tions. Specifically, multiple tokens are randomly
selected from a batch, and for any pair of tokens,
the cosine similarity of their normalized hidden rep-
resentations is calculated. The similarity computed
by the student model is aligned with that computed
by the teacher model, as shown in Figure 4(b).

Suppose the set of tokens selected from a batch
is {1}, the student model’s normalized hid-
den representations are {hy,}2_,, and the teacher
model’s normalized hidden representations are
{h} }&_,; then, the process is as follows:

h; - h;
Sji = ————— (6)
Y [y

L’ - h
o — 1 7
O [ |Ihg |

N N
ik = 3z 3 9 MSE(siy, ) )
i=1 j=1

Residual Inner Before the layer normalization
in all MHA layers and FFN layers, we add relation
constraints to the hidden representations that have
not undergone residual connections. It is similar to
that in the model trunk, as detailed in Figure 4(b).
The loss calculated is denoted as £7,,,,..,.-

Multi-Head Attention Within all MHA lay-
ers, we calculate the cosine similarity between the
query and key pairs, aligning the similarity com-
puted by the student model with that computed by
the teacher model, as shown in Figure 4(c).

For a single head within an MHA layer, the stu-
dent model’s query and key representations are de-
noted as {qy} | and {k;}} ., and the teacher
model’s as {q},}L, and {k}}} |, respectively.
This process is as follows:

qi - kj
Y il
,_ Ak
shi= ot (10)
Y gl
1 M M
‘C£4ttention = WZZMSE(S7J7S:J) (11)
=1 j=1

The loss for a single head is noted as £'y;;.,,1i0n>
and the average loss for multiple heads within a
batch is noted as L£%,;...1ion-

The total loss from three constraints is recorded
as L7, Lr, and L 4, corresponding to the total of
all pOSitiOl’lS E;runk’ £7nner’ and ﬁjlttention‘



Table 1: Experimental results of Pre-training Performance Alignment settings on the dev set of GLUE Benchmark.

Model Pre-Train Pre-Train CoLA MRPC SST-2 STS-B RTE MNLI QNLI QQp Avg.
Epoch Pref. (8.5k) (3.7k) (67k) (7.0k) (2.5k) (393k) (108k) (364k) Score

Pre-Training Performance Alignment (H=128)
Vanilla BERT (Teacher) 20.0 -2.65387  33.88 83.03 88.09 86.65 83.44 8339 6341 7677 7136 85.15 88.71 84.82 77.89
MoE BERT 6.0 -2.32278  37.56 82.11 87.15 8622 83.68 83.31 6286 7494 76.13 8497 87.87 8390 77.56
MoE BERT w/ TCD 5.0 -2.33650  44.10 84.52 89.09 8741 84.08 8381 6570 77.27 7829 86.12 88.72 85.01 79.51

Pre-Training Performance Alignment (H=768)
Vanilla BERT (Teacher) 10.0 -1.54597  62.03 8693 90.65 92.73 87.64 8731 6197 8373 8388 90.72 90.71 87.44 8381
MoE BERT 12.0 -1.29679  64.24 86.11 90.29 93.12 8725 86.89 61.73 83.61 83.61 9026 9029 8726 83.72
MoE BERT w/ TCD 10.0 -1.30669  65.36 88.03 91.53 9346 88.10 87.79 64.14 84.65 84.68 91.63 90.85 87.70 84.83

2.4 Training Process

We introduce the main process of training a MoE
BERT with transfer capability distillation.

First, the vanilla BERT is pre-trained to serve as
the transfer capability teacher model. This model
receives original masked language modeling train-
ing and achieves baseline performance in both pre-
trained and downstream. The pre-training loss of
this model is:

L=Lyrm (12)

Next, the MoE BERT model is pre-trained. This
model not only optimizes masked language mod-
eling loss and load balancing loss but also uses
the vanilla BERT as a transfer capability teacher
model, calculating and optimizing multiple distilla-
tion losses. Its pre-training loss is:

L=Lyrym +ALe + ALy +A1Lr +AaLly  (13)

Ultimately, we obtain a MoE BERT enhanced
through transfer capability distillation, which has
stronger transfer capability compared to an original
pre-trained MoE BERT.

3 Experiments

3.1 Experimental Design

This work primarily involves experiments with
three types of models: a vanilla BERT with gen-
eral pre-training, a MoE BERT with general pre-
training, and a MoE BERT enhanced through trans-
fer capability distillation. Among these, the vanilla
BERT acts as a transfer capability teacher and also
serves as a baseline model. The general pre-trained
MoE BERT is the subject of our improvement and
also a baseline model. The MoE BERT enhanced
through transfer capability distillation is the model

representing our method. We confirm the exis-
tence of transfer capability distillation and its ef-
fectiveness in improving the downstream task per-
formance of MoE models by comparing the new
model with two baseline models.

We pre-trained two different sizes of BERT ar-
chitectures, with the smaller size having 12 layers
and a hidden dimension of 128, and the larger size
having 12 layers and a hidden dimension of 768.
We conducted experiments at both scales to ensure
a more comprehensive validation. For both sizes,
the number of experts in MoE was set to 64, and
each hidden representation is processed only by the
top-1 expert. For the larger model, we utilized all
distillation losses, but for the smaller model, we
did not use multi-head attention distillation loss
(setting A4 to 0). This decision was based on our
experimental observations, as we found it harmed
transfer capability in the smaller scale.

Our main experiments involved fine-tuning on
downstream tasks using the GLUE benchmark, re-
porting results on the validation set. To address
the potential issue of severe overfitting when fine-
tuning MoE models directly, we performed both
full-parameter fine-tuning and efficient adapter fine-
tuning (Houlsby et al., 2019) on all models, report-
ing the better result of the two for each model.

More details on the pre-training and fine-tuning
procedures can be found in Appendix A and B.

3.2 Main Results

For smaller-scale models (H=128), we enabled the
vanilla BERT to undergo 20 epochs of pre-training
and then used it as a transfer capability teacher to
distill the MoE BERT for 5 epochs. For larger-scale
models (H=768), we pre-trained the vanilla BERT
for 10 epochs and then used it to distill the MoE
BERT for 10 epochs.



Table 2: Experimental results of Pre-training Epoch Alignment settings on the dev set of GLUE Benchmark.

Model Teacher Pre-Train Pre-Train CoLA MRPC SST-2 STS-B RTE MNLI QNLI QQr Avg.
odel

Epoch Epoch Pref. (8.5k) (3.7k) (67k) (7.0k) (2.5k) (393k) (108k) (364k) Score
Pre-Training Epoch Alignment (H=128)
MoE BERT 25.0 -2.08134 4272 8275 87.57 87.64 84.10 84.02 6298 7646 7747 86.07 88.17 8426 78.68
MoE BERT w/ TCD 20.0 5.0 -2.33650  44.10 84.52 89.09 87.41 84.08 83.81 65.70 77.27 7829 8612 88.72 85.01 79.51
Pre-Training Epoch Alignment (H=768)
MoE BERT 20.0 -1.20991 6481 86.51 90.52 93.77 8746 87.07 62.09 84.17 84.13 9043 90.57 8745 84.08
MoE BERT w/ TCD 10.0 10.0 -1.30669  65.36 88.03 91.53 9346 88.10 87.79 64.14 84.65 84.68 91.63 90.85 87.70 84.83

Regarding the MoE BERT with general pre-
training, we pre-trained two models with different
pre-training epochs for each scale, corresponding
to two different settings: Pre-training Performance
Alignment and Pre-training Epoch Alignment.

3.2.1 Pre-training Performance Alignment

The first setting involves aligning the pre-training
performance between a general pre-trained MoE
BERT and a MoE BERT that has undergone trans-
fer capability distillation. This is achieved by en-
suring both models exhibit equivalent performance
on the validation set of masked language model-
ing task, followed by comparing their downstream
task performance. This setting allows for a more
intuitive assessment of the improvement in the new
model’s transfer capability since their pre-training
performances are identical.

For smaller-scale models (H=128), the original
MoE BERT was pre-trained for 6 epochs. For
larger-scale models (H=768), the original MoE
BERT was pre-trained for 12 epochs. The specific
results are shown in Table 1.

From these results, it’s clear that for both sizes of
models, the new models demonstrated significant
improvements across all downstream tasks, con-
firming that our method indeed enhanced the trans-
fer capability of MoE BERT. Notably, the MoE
BERT with transfer capability distillation outper-
formed its teacher model in both pre-training and
downstream task performance, indicating the ex-
istence of transfer capability distillation and vali-
dating our proposition that vanilla transformers are
effective transfer capability teachers.

3.2.2 Pre-training Epoch Alignment

The second setting involves aligning the actual pre-
training epochs between a general pre-trained MoE
BERT and a MoE BERT that has undergone trans-
fer capability distillation. Since our new model
requires pre-training a vanilla BERT teacher model

Table 3: The results of ablation analysis. T: Model
Trunk, I: Residual Inner, A: Multi-Head Attention.

Model MRPC STS-B MNLI QNLI
(H=128, Pre-Training Performance~ —2.56)

MoE BERT 79.75 8575 81.83 81.56 7133 72.82 8353

MoE BERT + T 80.33 86.05 82.53 8221 7477 7572 84.61

MOE BERT + T, I 83.70 8842 83.07 8280 7637 77.14 8549

MoEBERT +T,I, A 82.87 88.02 8296 82.74 7545 7625 8540
(H=768, Pre-Training Performance~ —1.42)

MoE BERT + T, I 86.60 90.53 86.78 86.57 83.16 83.46 90.33

MOE BERT +T,I, A 87.58 91.28 87.38 87.10 8348 83.70 90.80

before distillation, it effectively undergoes a greater
amount of pre-training. Therefore, to validate the
practical value of our method, we increased the
pre-training epochs of the baseline MoE BERT
to match the total of both the teacher and student
model’s pre-training epochs.

For smaller-scale models (H=128), we increased
the pre-training epoch of the original MoE BERT
from 6 to 25. For larger-scale models (H=768), we
increased it from 12 to 20. The specific results are
shown in Table 2.

For both sizes, the baseline MoE BERT, after
more pre-training epochs, outperformed our new
model in terms of pre-training performance. How-
ever, our model still significantly surpassed it in
most downstream tasks. This not only further
demonstrates that our method indeed enhances the
transfer capability of MoE BERT, as it achieves
stronger performance in downstream tasks despite
weaker pre-training performance, but also confirms
the practical value of our method under a more
equitable setting of pre-training steps.

3.3 Ablation Analysis

In our method, we select three locations for rela-
tion alignment: model trunk (T), residual inner (I)
and multi-head attention (A). Here, we explore the
necessity of constraints at these locations.
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Figure 5: Analysis of downstream performance trend.

For smaller-scale models (H=128), we incremen-
tally added constraints to these three locations on
the baseline MoE BERT. For larger-scale models
(H=768), we compared the differences between
adding and not adding multi-head attention loca-
tion constraints. The performance comparison for
all downstream tasks of the models is based on
the aligned pre-training performance, which is also
for intuitively reflecting the differences in transfer
capability. The results are shown in Table 3.

From the results in Table 3, we can see that
constraints at the model trunk and residual inner
are extremely important, leading to significant im-
provements in transfer capability. For smaller-scale
models, the constraint at the multi-head attention
location had a negative impact, so we ultimately
did not use it in smaller-scale models. However, for
larger-scale models, the constraint at the multi-head
attention location showed a clear positive gain, so
we implemented it in larger-scale models. But the
general principles governing the effectiveness of
multi-head attention location constraints are not yet
fully clear, and we consider exploring this further
in subsequent work.

3.4 Trend Analysis

To more intuitively demonstrate the issue we are
concerned with and the effectiveness of our method,
we present the performance trend of various mod-
els on the MRPC task over increasing pre-training
epochs, as specifically shown in Figure 5.

Firstly, we can clearly see that, whether in
smaller or larger models, the baseline MoE BERT
consistently underperforms the vanilla BERT on
the MRPC task. This indicates a significant degra-
dation in the transfer capability of MoE BERT, an
issue that is the primary focus of this work.

Then, MoE BERT, after undergoing transfer ca-
pability distillation, consistently outperforms the
baseline MoE BERT on the MRPC task. This

suggests that our method effectively enhances the
transfer capability of MoE BERT and improves its
downstream task performance.

Finally, the performance of MoE BERT with
transfer capability distillation, even surpasses that
of the teacher model on the MRPC task. This vali-
dates our proposed idea of transfer capability dis-
tillation and proves that vanilla transformers are
suitable transfer capability teachers.

4 Transfer Capability Distillation vs.
General Knowledge Distillation

Transfer capability distillation is evidently distinct
from general knowledge distillation.

General knowledge distillation is a compres-
sion method. It usually involves distilling from a
larger model with either superior pre-training per-
formance or stronger downstream performance, to
create a smaller model that is relatively weaker in
most aspects but more efficient.

In this work, both the pre-training performance
and downstream performance of vanilla models
are weaker, and even the scales of vanilla models
are smaller; they merely possess stronger inherent
transfer capability. We believe that small vanilla
models can serve as transfer capability teach-
ers, guiding distillation for larger MoE models
with poorer transfer capability. A distinctive
characteristic of this approach is the counterintu-
itive outcome where a teacher model, inferior in
pre-training performance and downstream perfor-
mance, anomalously distills a student model su-
perior in those aspects. Therefore, fundamentally,
transfer capability distillation is not a compres-
sion method, but an enhancement method.

S Why Does Transfer Capability
Distillation Work?

Although we propose transfer capability distillation
and designed a distillation scheme that enhanced
the transfer capability of MoE BERT, our under-
standing of the fundamental differences in transfer
capability is quite limited. It is even difficult to ex-
plain why transfer capability can be distilled, which
is clearly not conducive to further research.

Here, we propose an explanation: the difference
in transfer capability may be related to the quality
of features learned during the pre-training phase
of models, and transfer capability distillation to
some extent aligns student models’ features with
those high-quality features of teacher models.



Our viewpoint stems from the observation that
the original MoE BERT, even without fine-tuning
for downstream tasks and merely freezing parame-
ters for masked language modeling task, exhibits
significant differences from vanilla BERT.

Specifically, we tested the models’ masked lan-
guage modeling capability on additional out-of-
distribution (OOD) corpus, using the validation set
of Pile dataset (Gao et al., 2020), which includes a
wide range of corpus with significant distribution
differences from the pre-training corpus, such as
mathematics, GitHub, etc. The experiments were
conducted on both scale models, ensuring align-
ment of pre-training performance before compari-
son, as shown in Table 4.

It is not difficult to notice the out-of-distribution
masked language modeling capability of original
MOoE BERT is significantly lower compared to
vanilla BERT, whereas MoE BERT, after undergo-
ing transfer capability distillation, shows a marked
improvement in this regard. These results suggest
that even though models perform the same pre-
training tasks, the quality of the learned features
varies, which is likely the cause of differences in
transfer capability.

Therefore, it is not difficult to understand why
the distillation method is effective: it likely works
by imposing additional constraints on the features,
prompting MoE BERT to utilize higher-quality fea-
tures for completing the pre-training tasks, which
indirectly enhances its transfer capability.

6 Related Work

Our work is related to Mixture of Experts (MoE)
models and general knowledge distillation.

The MoE model is a type of dynamic neural net-
work that excels in expanding model capacity with
low computation cost. Shazeer et al. (2017) added
an MoE layer to LSTM, showing for the first time
that MoE architecture can be adapted to deep neural
networks. Lepikhin et al. (2021) enhanced machine
translation performance using a Transformer model
with the MoE architecture. Fedus et al. (2022)
introduced the well-known Switch Transformers,
demonstrating the application of MoE Transform-
ers in pre-trained language models. Artetxe et al.
(2022) conducted extensive experiments on MoE
Transformer, establishing its significant efficiency
advantages over dense language model. Our work
builds upon the existing MoE layer design, enhanc-
ing transfer capability in a non-invasive manner.

Table 4: Masked language modeling results on out-of-
distribution corpus. AX: ArXiv, DM: DM Mathematics,
GH: Github, SE: Stack Exchange, UI: Ubuntu IRC.

Model AX DM GH SE UI

(H=128, Pre-Training Performance~ -2.76)

Vanilla BERT -3.545 2955 -3462 -3.530  -4.120

MoE BERT -3.613  -3.026 -3.564 -3.585 -4.164

MoE BERT w/ TCD -3.563  -2.959 -3499 3536 -4.118

(H=768, Pre-Training Performance~ -1.57)

Vanilla BERT -2.338 2179 2420 -2.443  -3.052

MoE BERT -2.393  -2296 -2.481 -2481  -3.121

MoE BERT w/ TCD -2.334 2219 -2.426  -2444  -3.051

General knowledge distillation primarily aims at
reducing model size and computation costs. Hinton
et al. (2015) initially proposed knowledge distil-
lation, transferring knowledge learned on a large
model to a smaller model. This concept was later
adapted to pre-trained language models. Sun et al.
(2019) compressed BERT into a shallower model
through output distillation and hidden representa-
tion distillation. Sanh et al. (2020) successfully
halved the number of BERT layers through distilla-
tion during both pre-training and fine-tuning stages.
Jiao et al. (2020) designed a distillation for BERT
with multi-position constraints, also covering both
stages. Sun et al. (2020) proposed a method that
retains transfer capability, offering greater versatil-
ity. Our work is different from general knowledge
distillation, and the explanation is in Section 4.

7 Conclusion

This work focuses on the issue of MoE transform-
ers underperforming in downstream tasks com-
pared to vanilla transformers. We propose that the
model’s pre-training performance and transfer ca-
pability are different factors affecting downstream
task performance, and the root cause of the MoE
model’s poor performance in downstream tasks is
its inferior transfer capability. To address it, we
introduce transfer capability distillation, utilizing
vanilla models as teachers to enhance the transfer
capability of MoE models. We design a distillation
scheme that solves the issue of weak transfer capa-
bility in MoE models, improving performance in
downstream tasks and confirming the concept of
transfer capability distillation. Finally, we provide
insights from model feature perspective to explain
our method, offering ideas for future research.



8 Limitations

Although this work introduces the concept of trans-
fer capability distillation and addresses the issue
of weak transfer capability in MoE Transformers,
there are still some limitations.

1. We pre-trained the teacher model to a level
we consider appropriate and demonstrated the fea-
sibility of transfer capability distillation through
experiments. However, the level of pre-training of
the teacher model may affect the effect of transfer
capability distillation, and uncovering this pattern
could be very helpful for practical applications. We
plan to explore this in our future work.

2. While we have conducted experiments on
models of two different sizes and carried out rigor-
ous validation, due to limited resource, we have not
pre-trained or tested the models with more param-
eters. We consider addressing this issue through
future collaborations.

3. Although we have hypothesized about the
reasons why transfer capability distillation works,
more evidence is needed. We plan to delve into this
issue in our subsequent research.
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A Pre-training Procedure

All experiments were conducted in English only.
This work utilized the same pre-training corpus
as that of (Devlin et al., 2019), namely Wikipedia
and BooksCorpus (Zhu et al., 2015). A subset of
this pre-training corpus was randomly selected as
a validation set to represent the performance of
models during pre-training.

For the masked language modeling task, we
adopted the same approach as (Devlin et al., 2019).
Specifically, 15% of the tokens in a sequence were
selected for masking, with 80% of these replaced
by the [MASK] token, 10% substituted with ran-
dom tokens, and the remaining 10% left unchanged.
Differing from the method proposed by (Devlin
et al., 2019), we omitted the next sentence predic-
tion task, and instead used longer continuous text
segments as our pre-training input sequences. Ad-
ditionally, different masking schemes were applied
to the same input sequence in different epochs.

Our smaller-scale models have a hidden dimen-
sion of 128, 12 layers, 2 attention heads and 6.3M
Parameters. Our larger-scale models have a hidden
dimension of 768, 12 layers, 12 attention heads
and 110M Parameters. The maximum sequence
length for all models is 128 tokens. All models use
the same vocabulary as the BERT model published
by (Devlin et al., 2019), containing 30,522 tokens.
Each of our MoE models has 64 experts. The
smaller-scale (H=128) MoE models have 105M
Parameters, and the larger-scale (H=768) MoE
models have 3.6B Parameters. We employed the
FastMoE framework proposed by (He et al., 2021,
2022) for the implementation of MoE BERT mod-
els. In addition, we also used the PyTorch' and
transformers? libraries.

For all MoE BERT models, A was set to 1000.
For MoE BERT models undergoing transfer capa-
bility distillation, A7 and A; were both set to 1;
for larger-scale models, A 4 was set to 1, while for
smaller-scale models, A 4 was set to 0. The relation
constraints at the model trunk and residual inner
required sampling tokens from a batch. We sam-
pled 4096 tokens, divided into 32 groups, with each
group comprising 128 representations for pairwise
cosine similarity calculations.

All models were pre-trained for a maximum of
40 epochs, although this maximum was not reached
in practice. Some checkpoints from specific epochs

'https://pytorch.org/
Zhttps://github.com/huggingface/transformers
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were selected for alignment and experimentation.
Pre-training for all models was conducted using
the Adam optimizer (Kingma and Ba, 2015), with
alearning rate of 1 x 1074, 51 = 0.9, B2 = 0.999,
an L2 weight of 0.01. The learning rate warmed up
in the first 10,000 steps, followed by linear decay.
The smaller-scale models were pre-trained with a
batch size of 512 on 4 x Nvidia Tesla V100 GPUs,
and total GPU days are approximately 42 days. The
larger-scale models were pre-trained with a batch
size of 1024 on 4 x Nvidia Tesla A100 GPUs, and
total GPU days are approximately 98 days.

To ensure a fair comparison, all models were pre-
trained from scratch. However, due to limited com-
putational resources, our pre-training tokens were
generally fewer than those in the original BERT pa-
per (Devlin et al., 2019), which may lead to some
discrepancies in the downstream task results com-
pared to the original BERT paper.

B Fine-tuning Procedure

We conducted fine-tuning experiments on the
GLUE benchmark (Wang et al., 2018). The maxi-
mum number of training epochs for all models was
set to 10, with a batch size of 32. The optimizer
was Adam (Kingma and Ba, 2015), with a warmup
ratio of 0.06, a linearly decaying learning rate, and
a weight decay of 0.01. We reported the average
performance of multiple runs.

For full parameter fine-tuning, the learning rates
were {le-5, 2e-5, S5e-5}. For adapter fine-tuning,
the learning rates were {le-4, 2e-4, 3e-4}. The
adapter sizes for the small models (H=128) were
{16, 64, 128}, and for the large models (H=768)
were {16, 64, 128, 256}.

Additionally, there were some exceptions. For
the MNLI, QNLI, and QQP datasets, a small num-
ber of fine-tuning epochs in small models during
adapter fine-tuning limited performance, so we in-
creased the maximum training epochs to 20. For
the MNLI dataset, using a small adapter size in
small models during adapter fine-tuning limited
performance on MNLI, so we included an experi-
ment with an adapter size of 512.
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