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Abstract

Recently, Mixture of Experts (MoE) Transform-001
ers have garnered increasing attention due to002
their advantages in model capacity and com-003
putational efficiency. However, studies have004
indicated that MoE Transformers underper-005
form vanilla Transformers in many downstream006
tasks, significantly diminishing the practical007
value of MoE models. To explain this issue,008
we propose that the pre-training performance009
and transfer capability of a model are joint de-010
terminants of its downstream task performance.011
MoE models, in comparison to vanilla models,012
have poorer transfer capability, leading to their013
subpar performance in downstream tasks. To014
address this issue, we introduce the concept015
of transfer capability distillation, positing that016
although vanilla models have weaker perfor-017
mance, they are effective teachers of transfer018
capability. The MoE models guided by vanilla019
models can achieve both strong pre-training020
performance and transfer capability, ultimately021
enhancing their performance in downstream022
tasks. We design a specific distillation method023
and conduct experiments on the BERT archi-024
tecture. Experimental results show a significant025
improvement in downstream performance of026
MoE models, and many further evidences also027
strongly support the concept of transfer capabil-028
ity distillation. Finally, we attempt to interpret029
transfer capability distillation and provide some030
insights from the perspective of model feature.031

1 Introduction032

Recent researches have revealed that pre-trained033

language models demonstrate powerful general ca-034

pabilities (Devlin et al., 2019; Brown et al., 2020;035

Ouyang et al., 2022; OpenAI, 2023) and an ex-036

traordinary ability to enhance performance through037

scaling (Kaplan et al., 2020; Hoffmann et al., 2022).038

However, scaling up these models incurs signifi-039

cant costs in practical applications due to the rapid040

increase in computational demands. As a result,041
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Figure 1: The results of pre-training and fine-tuning
show that: 1) The original MoE models have poor down-
stream performance, which is related to inferior transfer
capability; 2) The MoE models with transfer capabil-
ity distillation exhibit significant improvement; 3) The
teacher models have weaker performance, hence this
distillation only involves their strong transfer capability.

there is a growing interest in Mixture of Experts 042

(MoE) models (Jacobs et al., 1991; Shazeer et al., 043

2017; Lepikhin et al., 2021; Du et al., 2022). These 044

models enable inputs to be processed by distinct 045

experts. The number of experts determines the 046

number of parameters while having a limited ef- 047

fect on computation cost, thereby expanding the 048

capacity with lower computation expense. 049

However, existing researches indicate that while 050

MoE models excel in pre-trained language model- 051

ing tasks, their efficacy diminishes in downstream 052

tasks, especially when a large number of experts 053

are involved. Fedus et al. (2022) proposed the 054

Switch Transformers based on MoE architecture, 055

revealed that MoE models consistently underper- 056

form vanilla models in fine-tuning on SuperGLUE 057

benchmark (Wang et al., 2019) when pre-training 058
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Figure 2: The mechanism diagram of transfer capability
distillation. It enhances the transfer capability of MoE
models. Combined with their strong pre-training perfor-
mance, the downstream performance can be improved.

performances are equivalent. Artetxe et al. (2022)059

conducted more experiments, and it can also be060

observed from their published results that MoE061

models consistently show weaker fine-tuning re-062

sults in downstream tasks when pre-training perfor-063

mances are equivalent. Shen et al. (2023) similarly064

observed in their experiments that, on many down-065

stream tasks, single-task fine-tuned MoE models066

underperform their dense counterparts.067

We also conduct relevant validation, pre-training068

two scales of vanilla BERT models and MoE BERT069

models with 64 experts (top-1 activation), followed070

by fine-tuning on GLUE benchmark (Wang et al.,071

2018). Some results are shown in Figure 1. We ob-072

serve that for both scales, the MoE models need to073

improve pre-training performance (Log likelihood)074

to a much higher level to achieve similar GLUE075

performance to the vanilla models. This implies076

that the pre-training performance gains brought077

about by introducing multiple experts in MoE mod-078

els do not translate effectively to the performance079

improvement of downstream tasks we are primarily080

concerned with, thereby significantly diminishing081

the practical value of MoE models.082

We attempt to address this issue. Initially, we083

need to explain the poor performance in down-084

stream tasks of the MoE models. We believe the085

downstream performance of a model is deter-086

mined by both pre-training performance and087

transfer capability. Pre-training performance is088

acquired through training, whereas transfer capa-089

bility is an inherent attribute of the model. The090

latter determines the extent to which the former091

can be converted into downstream performance.092

Vanilla models, despite their smaller capacity and093

weaker pre-training performance, possess strong094

transfer capability. In contrast, MoE models, al-095

though having larger capacity and stronger pre-096

training performance, only exhibit weak transfer097

capability. Therefore, we believe the poor perfor-098

mance of the MoE models in downstream tasks 099

is primarily due to its limited transfer capability, 100

as summarized in Figure 2. 101

Based on the above explanation, we propose a 102

solution to this issue: since the transfer capabil- 103

ity of vanilla models is strong, is it possible to 104

transfer this capability to MoE models through dis- 105

tillation? We call this idea Transfer Capability 106

Distillation (TCD). The underlying logic is that 107

although the pre-training and downstream perfor- 108

mance of vanilla models are relatively weak, the 109

transfer capability of them is stronger. By using 110

them as teachers, we might enhance the transfer ca- 111

pability of MoE models. Combined with the strong 112

pre-training performance of MoE models, this ap- 113

proach could lead to a comprehensive improvement 114

of MoE models, as depicted in Figure 2. 115

The most counterintuitive feature of this method 116

is: a teacher model, inferior in pre-training and 117

downstream performance, anomalously distills 118

a student model superior in those aspects. 119

Based on the above ideas, we design a distillation 120

scheme and conduct experiments. Some results are 121

shown in Figure 1. The results indicate the down- 122

stream performance of the MoE model with TCD, 123

not only improved over the original MoE model but 124

also exceeded that of its teacher model. This sup- 125

ports the concept of transfer capability distillation, 126

successfully improving the MoE models. 127

Moreover, we also conduct some discussions, 128

providing insights into the differences in transfer 129

capability from model feature perspective, and ex- 130

plaining why our distillation can be effective. 131

The contributions of our work are as follows: 132

• We differentiate pre-training performance 133

from transfer capability as distinct influencers 134

of downstream performance, identifying the 135

cause of poor downstream performance in 136

MoE models as inferior transfer capability. 137

• We introduce transfer capability distillation, 138

identifying vanilla transformers as effective 139

teachers and proposing a distillation scheme. 140

• By transfer capability distillation, we address 141

the issue of weak transfer capability in MoE 142

models, enhancing downstream performance. 143

• We provide insights into the differences in 144

transfer capability from model feature per- 145

spective and offer a basic explanation of the 146

mechanisms of transfer capability distillation. 147
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2 Method148

2.1 Overview149

In this work, we propose a transfer capability dis-150

tillation scheme. The core idea is as follows:151

First, a teacher model with low capacity but152

strong transfer capability is pre-trained, which ex-153

hibits weaker performance in both pre-training and154

downstream tasks. Then, during the pre-training155

of high-capacity student model, not only original156

pre-training loss is optimized, but a new transfer ca-157

pability distillation loss is also optimized. Finally,158

the student model acquires strong transfer capa-159

bility on top of strong pre-training performance,160

achieving transfer capability distillation.161

In following sections, we will first introduce the162

vanilla BERT model as the teacher model and the163

MoE BERT as the student model. Subsequently,164

we will introduce the specific implementation of165

transfer capability distillation, and conclude with166

an overview of the training process.167

2.2 Vanilla BERT and MoE BERT168

Our work concerns two BERT architectures within169

Transformers: Vanilla BERT and MoE BERT. The170

vanilla BERT has a smaller capacity and weaker171

pre-training performance but exhibits strong trans-172

fer capability, making it suitable as a teacher model.173

The MoE BERT has a larger capacity and stronger174

pre-training performance but weaker transfer capa-175

bility, serving as the student model.176

The structure of the vanilla BERT, as shown177

on the left side of Figure 3, consists of stacked178

Multi-Head Attention (MHA) and Feed-Forward179

Networks (FFN), employing a post layer normal-180

ization scheme for residuals and normalization. We181

follow the structure design by Devlin et al. (2019),182

retaining the original structure of the BERT model.183

We denote the original masked language modeling184

loss in pre-training phase as LMLM .185

The structure of the MoE BERT, as shown on186

the right side of Figure 3, differs from the vanilla187

BERT by replacing all FFN layers with MoE layers.188

The basic structure of an MoE layer, as illustrated189

in Figure 4(a), is not composed of a single FFN but190

includes multiple FFNs, also known as multiple191

experts. When the hidden representation of a token192

is fed into an MoE layer, a routing module (linear193

layer with softmax) first predicts the probability194

of it being processed by each expert, and then the195

hidden representation of the token is only processed196

by the top-k experts in terms of probability.197

MHA

LayerNorm

LayerNorm

FFN

MHA Alignment

Inner Alignment

Inner Alignment

Trunk Alignment

Trunk Alignment

Trunk Alignment

…

…

MHA

LayerNorm

LayerNorm

MoE

Vanilla BERT MoE BERT

x L x L 

Transfer Capability Distillation

Figure 3: Overview of our transfer capability distillation
scheme. It involves relation alignment in three locations.

Assume the hidden representation is x, and the 198

parameters of the routing module are Wr and br, 199

then the process of calculating the probability of 200

selecting each expert is as follows: 201

p(x) = softmax(Wrx+ br) (1) 202

In this work, we adhere to two key practices of 203

the Switch Transformers (Fedus et al., 2022): 204

1. Only the top-1 expert in terms of probability 205

processes the hidden representation. The process 206

for determining the expert index is as follows: 207

i = argmax
k

pk(x) (2) 208

2. The hidden representation of the token is first 209

processed by the expert, and then multiplied by the 210

probability of selecting that expert to obtain the 211

final representation. This strategy enables effective 212

gradient descent optimization for the routing mod- 213

ule. Assume the set of all experts is {Ek(x)}Nk=1, 214

and the processing is as follows: 215

h = pi(x)Ei(x) (3) 216

Additionally, for expert load balancing, we cal- 217

culate the Kullback-Leibler divergence between the 218

average probability distribution of experts selected 219

within a batch and a uniform distribution, adding it 220

as an additional loss term. 221

Assuming there are M hidden representations 222

in a batch and the vector of uniform probability 223

distribution is p, then this process is as follows: 224

q =
1

M

M∑
j=1

softmax(Wrxj + br) (4) 225

LB = KL(p||q) (5) 226
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Figure 4: Details of our proposed distillation scheme.

2.3 Transfer Capability Distillation227

Although the transfer capability distillation in this228

work differs in background and final influence from229

general knowledge distillation, the implementation230

strategy is similar, namely, it is achieved by align-231

ing the representations in the intermediate layers232

between the student and teacher models.233

Different from existing works (Sun et al., 2019;234

Sanh et al., 2020; Jiao et al., 2020; Sun et al., 2020),235

we avoid direct alignment of intermediate layer236

representations, i.e., we do not use Mean Squared237

Error (MSE) to make the values of individual sam-238

pled representations converge; instead, we choose239

to align the relationships between representations,240

that is, to make the cosine similarity of a pair of241

sampled representations converge.242

We consider that direct alignment imposes too243

strict limitations on the values of representations.244

Since the teacher model is a pre-trained model245

with weaker performance, in extreme cases, this246

could lead to a complete degradation of the student247

model’s pre-training performance to the level of248

the teacher model, rendering the transfer capabil-249

ity distillation meaningless. By opting to align the250

relationships between representations, more flexi-251

bility is provided for the values of representations,252

potentially reducing conflicts between pre-training253

objective and distillation objective. In our experi-254

ments, we indeed found that this approach results255

in transfer capability distillation that does not com-256

promise pre-training performance.257

Specifically, we select three locations in the258

vanilla BERT models and MoE BERT models for259

relation alignment, as shown in Figure 3.260

Model Trunk After the layer normalization in 261

all MHA layers and FFN layers, we add relation 262

constraints to the normalized hidden representa- 263

tions. Specifically, multiple tokens are randomly 264

selected from a batch, and for any pair of tokens, 265

the cosine similarity of their normalized hidden rep- 266

resentations is calculated. The similarity computed 267

by the student model is aligned with that computed 268

by the teacher model, as shown in Figure 4(b). 269

Suppose the set of tokens selected from a batch 270

is {xk}Nk=1, the student model’s normalized hid- 271

den representations are {hk}Nk=1, and the teacher 272

model’s normalized hidden representations are 273

{h′
k}Nk=1; then, the process is as follows: 274

sij =
hi · hj

∥hi∥∥hj∥
(6) 275

s′ij =
h′
i · h′

j

∥h′
i∥∥h′

j∥
(7) 276

L∗
Trunk =

1

N2

N∑
i=1

N∑
j=1

MSE(sij , s
′
ij) (8) 277

Residual Inner Before the layer normalization 278

in all MHA layers and FFN layers, we add relation 279

constraints to the hidden representations that have 280

not undergone residual connections. It is similar to 281

that in the model trunk, as detailed in Figure 4(b). 282

The loss calculated is denoted as L∗
Inner. 283

Multi-Head Attention Within all MHA lay- 284

ers, we calculate the cosine similarity between the 285

query and key pairs, aligning the similarity com- 286

puted by the student model with that computed by 287

the teacher model, as shown in Figure 4(c). 288

For a single head within an MHA layer, the stu- 289

dent model’s query and key representations are de- 290

noted as {qk}Mk=1 and {kk}Mk=1, and the teacher 291

model’s as {q′
k}Mk=1 and {k′

k}Mk=1, respectively. 292

This process is as follows: 293

sij =
qi · kj

∥qi∥∥kj∥
(9) 294

s′ij =
q′
i · k′

j

∥q′
i∥∥k′

j∥
(10) 295

L′
Attention =

1

M2

M∑
i=1

M∑
j=1

MSE(sij , s
′
ij) (11) 296

The loss for a single head is noted as L′
Attention, 297

and the average loss for multiple heads within a 298

batch is noted as L∗
Attention. 299

The total loss from three constraints is recorded 300

as LT , LI , and LA, corresponding to the total of 301

all positions L∗
Trunk, L∗

Inner, and L∗
Attention. 302
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Table 1: Experimental results of Pre-training Performance Alignment settings on the dev set of GLUE Benchmark.

Model
Pre-Train Pre-Train CoLA MRPC SST-2 STS-B RTE MNLI QNLI QQP Avg.

Epoch Pref. (8.5k) (3.7k) (67k) (7.0k) (2.5k) (393k) (108k) (364k) Score

Pre-Training Performance Alignment (H=128)

Vanilla BERT (Teacher) 20.0 -2.65387 33.88 83.03 88.09 86.65 83.44 83.39 63.41 76.77 77.36 85.15 88.71 84.82 77.89

MoE BERT 6.0 -2.32278 37.56 82.11 87.15 86.22 83.68 83.31 62.86 74.94 76.13 84.97 87.87 83.90 77.56

MoE BERT w/ TCD 5.0 -2.33650 44.10 84.52 89.09 87.41 84.08 83.81 65.70 77.27 78.29 86.12 88.72 85.01 79.51

Pre-Training Performance Alignment (H=768)

Vanilla BERT (Teacher) 10.0 -1.54597 62.03 86.93 90.65 92.73 87.64 87.31 61.97 83.73 83.88 90.72 90.71 87.44 83.81

MoE BERT 12.0 -1.29679 64.24 86.11 90.29 93.12 87.25 86.89 61.73 83.61 83.61 90.26 90.29 87.26 83.72

MoE BERT w/ TCD 10.0 -1.30669 65.36 88.03 91.53 93.46 88.10 87.79 64.14 84.65 84.68 91.63 90.85 87.70 84.83

2.4 Training Process303

We introduce the main process of training a MoE304

BERT with transfer capability distillation.305

First, the vanilla BERT is pre-trained to serve as306

the transfer capability teacher model. This model307

receives original masked language modeling train-308

ing and achieves baseline performance in both pre-309

trained and downstream. The pre-training loss of310

this model is:311

L = LMLM (12)312

Next, the MoE BERT model is pre-trained. This313

model not only optimizes masked language mod-314

eling loss and load balancing loss but also uses315

the vanilla BERT as a transfer capability teacher316

model, calculating and optimizing multiple distilla-317

tion losses. Its pre-training loss is:318

L = LMLM + λBLB + λTLT + λILI + λALA (13)319

Ultimately, we obtain a MoE BERT enhanced320

through transfer capability distillation, which has321

stronger transfer capability compared to an original322

pre-trained MoE BERT.323

3 Experiments324

3.1 Experimental Design325

This work primarily involves experiments with326

three types of models: a vanilla BERT with gen-327

eral pre-training, a MoE BERT with general pre-328

training, and a MoE BERT enhanced through trans-329

fer capability distillation. Among these, the vanilla330

BERT acts as a transfer capability teacher and also331

serves as a baseline model. The general pre-trained332

MoE BERT is the subject of our improvement and333

also a baseline model. The MoE BERT enhanced334

through transfer capability distillation is the model335

representing our method. We confirm the exis- 336

tence of transfer capability distillation and its ef- 337

fectiveness in improving the downstream task per- 338

formance of MoE models by comparing the new 339

model with two baseline models. 340

We pre-trained two different sizes of BERT ar- 341

chitectures, with the smaller size having 12 layers 342

and a hidden dimension of 128, and the larger size 343

having 12 layers and a hidden dimension of 768. 344

We conducted experiments at both scales to ensure 345

a more comprehensive validation. For both sizes, 346

the number of experts in MoE was set to 64, and 347

each hidden representation is processed only by the 348

top-1 expert. For the larger model, we utilized all 349

distillation losses, but for the smaller model, we 350

did not use multi-head attention distillation loss 351

(setting λA to 0). This decision was based on our 352

experimental observations, as we found it harmed 353

transfer capability in the smaller scale. 354

Our main experiments involved fine-tuning on 355

downstream tasks using the GLUE benchmark, re- 356

porting results on the validation set. To address 357

the potential issue of severe overfitting when fine- 358

tuning MoE models directly, we performed both 359

full-parameter fine-tuning and efficient adapter fine- 360

tuning (Houlsby et al., 2019) on all models, report- 361

ing the better result of the two for each model. 362

More details on the pre-training and fine-tuning 363

procedures can be found in Appendix A and B. 364

3.2 Main Results 365

For smaller-scale models (H=128), we enabled the 366

vanilla BERT to undergo 20 epochs of pre-training 367

and then used it as a transfer capability teacher to 368

distill the MoE BERT for 5 epochs. For larger-scale 369

models (H=768), we pre-trained the vanilla BERT 370

for 10 epochs and then used it to distill the MoE 371

BERT for 10 epochs. 372
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Table 2: Experimental results of Pre-training Epoch Alignment settings on the dev set of GLUE Benchmark.

Model
Teacher Pre-Train Pre-Train CoLA MRPC SST-2 STS-B RTE MNLI QNLI QQP Avg.
Epoch Epoch Pref. (8.5k) (3.7k) (67k) (7.0k) (2.5k) (393k) (108k) (364k) Score

Pre-Training Epoch Alignment (H=128)

MoE BERT - 25.0 -2.08134 42.72 82.75 87.57 87.64 84.10 84.02 62.98 76.46 77.47 86.07 88.17 84.26 78.68

MoE BERT w/ TCD 20.0 5.0 -2.33650 44.10 84.52 89.09 87.41 84.08 83.81 65.70 77.27 78.29 86.12 88.72 85.01 79.51

Pre-Training Epoch Alignment (H=768)

MoE BERT - 20.0 -1.20991 64.81 86.51 90.52 93.77 87.46 87.07 62.09 84.17 84.13 90.43 90.57 87.45 84.08

MoE BERT w/ TCD 10.0 10.0 -1.30669 65.36 88.03 91.53 93.46 88.10 87.79 64.14 84.65 84.68 91.63 90.85 87.70 84.83

Regarding the MoE BERT with general pre-373

training, we pre-trained two models with different374

pre-training epochs for each scale, corresponding375

to two different settings: Pre-training Performance376

Alignment and Pre-training Epoch Alignment.377

3.2.1 Pre-training Performance Alignment378

The first setting involves aligning the pre-training379

performance between a general pre-trained MoE380

BERT and a MoE BERT that has undergone trans-381

fer capability distillation. This is achieved by en-382

suring both models exhibit equivalent performance383

on the validation set of masked language model-384

ing task, followed by comparing their downstream385

task performance. This setting allows for a more386

intuitive assessment of the improvement in the new387

model’s transfer capability since their pre-training388

performances are identical.389

For smaller-scale models (H=128), the original390

MoE BERT was pre-trained for 6 epochs. For391

larger-scale models (H=768), the original MoE392

BERT was pre-trained for 12 epochs. The specific393

results are shown in Table 1.394

From these results, it’s clear that for both sizes of395

models, the new models demonstrated significant396

improvements across all downstream tasks, con-397

firming that our method indeed enhanced the trans-398

fer capability of MoE BERT. Notably, the MoE399

BERT with transfer capability distillation outper-400

formed its teacher model in both pre-training and401

downstream task performance, indicating the ex-402

istence of transfer capability distillation and vali-403

dating our proposition that vanilla transformers are404

effective transfer capability teachers.405

3.2.2 Pre-training Epoch Alignment406

The second setting involves aligning the actual pre-407

training epochs between a general pre-trained MoE408

BERT and a MoE BERT that has undergone trans-409

fer capability distillation. Since our new model410

requires pre-training a vanilla BERT teacher model411

Table 3: The results of ablation analysis. T: Model
Trunk, I: Residual Inner, A: Multi-Head Attention.

Model MRPC STS-B MNLI QNLI

(H=128, Pre-Training Performance≈ –2.56)

MoE BERT 79.75 85.75 81.83 81.56 71.33 72.82 83.53

MoE BERT + T 80.33 86.05 82.53 82.21 74.77 75.72 84.61

MoE BERT + T, I 83.70 88.42 83.07 82.80 76.37 77.14 85.49

MoE BERT + T, I, A 82.87 88.02 82.96 82.74 75.45 76.25 85.40

(H=768, Pre-Training Performance≈ –1.42)

MoE BERT + T, I 86.60 90.53 86.78 86.57 83.16 83.46 90.33

MoE BERT + T, I, A 87.58 91.28 87.38 87.10 83.48 83.70 90.80

before distillation, it effectively undergoes a greater 412

amount of pre-training. Therefore, to validate the 413

practical value of our method, we increased the 414

pre-training epochs of the baseline MoE BERT 415

to match the total of both the teacher and student 416

model’s pre-training epochs. 417

For smaller-scale models (H=128), we increased 418

the pre-training epoch of the original MoE BERT 419

from 6 to 25. For larger-scale models (H=768), we 420

increased it from 12 to 20. The specific results are 421

shown in Table 2. 422

For both sizes, the baseline MoE BERT, after 423

more pre-training epochs, outperformed our new 424

model in terms of pre-training performance. How- 425

ever, our model still significantly surpassed it in 426

most downstream tasks. This not only further 427

demonstrates that our method indeed enhances the 428

transfer capability of MoE BERT, as it achieves 429

stronger performance in downstream tasks despite 430

weaker pre-training performance, but also confirms 431

the practical value of our method under a more 432

equitable setting of pre-training steps. 433

3.3 Ablation Analysis 434

In our method, we select three locations for rela- 435

tion alignment: model trunk (T), residual inner (I) 436

and multi-head attention (A). Here, we explore the 437

necessity of constraints at these locations. 438
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Figure 5: Analysis of downstream performance trend.

For smaller-scale models (H=128), we incremen-439

tally added constraints to these three locations on440

the baseline MoE BERT. For larger-scale models441

(H=768), we compared the differences between442

adding and not adding multi-head attention loca-443

tion constraints. The performance comparison for444

all downstream tasks of the models is based on445

the aligned pre-training performance, which is also446

for intuitively reflecting the differences in transfer447

capability. The results are shown in Table 3.448

From the results in Table 3, we can see that449

constraints at the model trunk and residual inner450

are extremely important, leading to significant im-451

provements in transfer capability. For smaller-scale452

models, the constraint at the multi-head attention453

location had a negative impact, so we ultimately454

did not use it in smaller-scale models. However, for455

larger-scale models, the constraint at the multi-head456

attention location showed a clear positive gain, so457

we implemented it in larger-scale models. But the458

general principles governing the effectiveness of459

multi-head attention location constraints are not yet460

fully clear, and we consider exploring this further461

in subsequent work.462

3.4 Trend Analysis463

To more intuitively demonstrate the issue we are464

concerned with and the effectiveness of our method,465

we present the performance trend of various mod-466

els on the MRPC task over increasing pre-training467

epochs, as specifically shown in Figure 5.468

Firstly, we can clearly see that, whether in469

smaller or larger models, the baseline MoE BERT470

consistently underperforms the vanilla BERT on471

the MRPC task. This indicates a significant degra-472

dation in the transfer capability of MoE BERT, an473

issue that is the primary focus of this work.474

Then, MoE BERT, after undergoing transfer ca-475

pability distillation, consistently outperforms the476

baseline MoE BERT on the MRPC task. This477

suggests that our method effectively enhances the 478

transfer capability of MoE BERT and improves its 479

downstream task performance. 480

Finally, the performance of MoE BERT with 481

transfer capability distillation, even surpasses that 482

of the teacher model on the MRPC task. This vali- 483

dates our proposed idea of transfer capability dis- 484

tillation and proves that vanilla transformers are 485

suitable transfer capability teachers. 486

4 Transfer Capability Distillation vs. 487

General Knowledge Distillation 488

Transfer capability distillation is evidently distinct 489

from general knowledge distillation. 490

General knowledge distillation is a compres- 491

sion method. It usually involves distilling from a 492

larger model with either superior pre-training per- 493

formance or stronger downstream performance, to 494

create a smaller model that is relatively weaker in 495

most aspects but more efficient. 496

In this work, both the pre-training performance 497

and downstream performance of vanilla models 498

are weaker, and even the scales of vanilla models 499

are smaller; they merely possess stronger inherent 500

transfer capability. We believe that small vanilla 501

models can serve as transfer capability teach- 502

ers, guiding distillation for larger MoE models 503

with poorer transfer capability. A distinctive 504

characteristic of this approach is the counterintu- 505

itive outcome where a teacher model, inferior in 506

pre-training performance and downstream perfor- 507

mance, anomalously distills a student model su- 508

perior in those aspects. Therefore, fundamentally, 509

transfer capability distillation is not a compres- 510

sion method, but an enhancement method. 511

5 Why Does Transfer Capability 512

Distillation Work? 513

Although we propose transfer capability distillation 514

and designed a distillation scheme that enhanced 515

the transfer capability of MoE BERT, our under- 516

standing of the fundamental differences in transfer 517

capability is quite limited. It is even difficult to ex- 518

plain why transfer capability can be distilled, which 519

is clearly not conducive to further research. 520

Here, we propose an explanation: the difference 521

in transfer capability may be related to the quality 522

of features learned during the pre-training phase 523

of models, and transfer capability distillation to 524

some extent aligns student models’ features with 525

those high-quality features of teacher models. 526
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Our viewpoint stems from the observation that527

the original MoE BERT, even without fine-tuning528

for downstream tasks and merely freezing parame-529

ters for masked language modeling task, exhibits530

significant differences from vanilla BERT.531

Specifically, we tested the models’ masked lan-532

guage modeling capability on additional out-of-533

distribution (OOD) corpus, using the validation set534

of Pile dataset (Gao et al., 2020), which includes a535

wide range of corpus with significant distribution536

differences from the pre-training corpus, such as537

mathematics, GitHub, etc. The experiments were538

conducted on both scale models, ensuring align-539

ment of pre-training performance before compari-540

son, as shown in Table 4.541

It is not difficult to notice the out-of-distribution542

masked language modeling capability of original543

MoE BERT is significantly lower compared to544

vanilla BERT, whereas MoE BERT, after undergo-545

ing transfer capability distillation, shows a marked546

improvement in this regard. These results suggest547

that even though models perform the same pre-548

training tasks, the quality of the learned features549

varies, which is likely the cause of differences in550

transfer capability.551

Therefore, it is not difficult to understand why552

the distillation method is effective: it likely works553

by imposing additional constraints on the features,554

prompting MoE BERT to utilize higher-quality fea-555

tures for completing the pre-training tasks, which556

indirectly enhances its transfer capability.557

6 Related Work558

Our work is related to Mixture of Experts (MoE)559

models and general knowledge distillation.560

The MoE model is a type of dynamic neural net-561

work that excels in expanding model capacity with562

low computation cost. Shazeer et al. (2017) added563

an MoE layer to LSTM, showing for the first time564

that MoE architecture can be adapted to deep neural565

networks. Lepikhin et al. (2021) enhanced machine566

translation performance using a Transformer model567

with the MoE architecture. Fedus et al. (2022)568

introduced the well-known Switch Transformers,569

demonstrating the application of MoE Transform-570

ers in pre-trained language models. Artetxe et al.571

(2022) conducted extensive experiments on MoE572

Transformer, establishing its significant efficiency573

advantages over dense language model. Our work574

builds upon the existing MoE layer design, enhanc-575

ing transfer capability in a non-invasive manner.576

Table 4: Masked language modeling results on out-of-
distribution corpus. AX: ArXiv, DM: DM Mathematics,
GH: Github, SE: Stack Exchange, UI: Ubuntu IRC.

Model AX DM GH SE UI

(H=128, Pre-Training Performance≈ –2.76)

Vanilla BERT -3.545 -2.955 -3.462 -3.530 -4.120

MoE BERT -3.613 -3.026 -3.564 -3.585 -4.164

MoE BERT w/ TCD -3.563 -2.959 -3.499 -3.536 -4.118

(H=768, Pre-Training Performance≈ –1.57)

Vanilla BERT -2.338 -2.179 -2.420 -2.443 -3.052

MoE BERT -2.393 -2.296 -2.481 -2.481 -3.121

MoE BERT w/ TCD -2.334 -2.219 -2.426 -2.444 -3.051

General knowledge distillation primarily aims at 577

reducing model size and computation costs. Hinton 578

et al. (2015) initially proposed knowledge distil- 579

lation, transferring knowledge learned on a large 580

model to a smaller model. This concept was later 581

adapted to pre-trained language models. Sun et al. 582

(2019) compressed BERT into a shallower model 583

through output distillation and hidden representa- 584

tion distillation. Sanh et al. (2020) successfully 585

halved the number of BERT layers through distilla- 586

tion during both pre-training and fine-tuning stages. 587

Jiao et al. (2020) designed a distillation for BERT 588

with multi-position constraints, also covering both 589

stages. Sun et al. (2020) proposed a method that 590

retains transfer capability, offering greater versatil- 591

ity. Our work is different from general knowledge 592

distillation, and the explanation is in Section 4. 593

7 Conclusion 594

This work focuses on the issue of MoE transform- 595

ers underperforming in downstream tasks com- 596

pared to vanilla transformers. We propose that the 597

model’s pre-training performance and transfer ca- 598

pability are different factors affecting downstream 599

task performance, and the root cause of the MoE 600

model’s poor performance in downstream tasks is 601

its inferior transfer capability. To address it, we 602

introduce transfer capability distillation, utilizing 603

vanilla models as teachers to enhance the transfer 604

capability of MoE models. We design a distillation 605

scheme that solves the issue of weak transfer capa- 606

bility in MoE models, improving performance in 607

downstream tasks and confirming the concept of 608

transfer capability distillation. Finally, we provide 609

insights from model feature perspective to explain 610

our method, offering ideas for future research. 611
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8 Limitations612

Although this work introduces the concept of trans-613

fer capability distillation and addresses the issue614

of weak transfer capability in MoE Transformers,615

there are still some limitations.616

1. We pre-trained the teacher model to a level617

we consider appropriate and demonstrated the fea-618

sibility of transfer capability distillation through619

experiments. However, the level of pre-training of620

the teacher model may affect the effect of transfer621

capability distillation, and uncovering this pattern622

could be very helpful for practical applications. We623

plan to explore this in our future work.624

2. While we have conducted experiments on625

models of two different sizes and carried out rigor-626

ous validation, due to limited resource, we have not627

pre-trained or tested the models with more param-628

eters. We consider addressing this issue through629

future collaborations.630

3. Although we have hypothesized about the631

reasons why transfer capability distillation works,632

more evidence is needed. We plan to delve into this633

issue in our subsequent research.634
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A Pre-training Procedure817

All experiments were conducted in English only.818

This work utilized the same pre-training corpus819

as that of (Devlin et al., 2019), namely Wikipedia820

and BooksCorpus (Zhu et al., 2015). A subset of821

this pre-training corpus was randomly selected as822

a validation set to represent the performance of823

models during pre-training.824

For the masked language modeling task, we825

adopted the same approach as (Devlin et al., 2019).826

Specifically, 15% of the tokens in a sequence were827

selected for masking, with 80% of these replaced828

by the [MASK] token, 10% substituted with ran-829

dom tokens, and the remaining 10% left unchanged.830

Differing from the method proposed by (Devlin831

et al., 2019), we omitted the next sentence predic-832

tion task, and instead used longer continuous text833

segments as our pre-training input sequences. Ad-834

ditionally, different masking schemes were applied835

to the same input sequence in different epochs.836

Our smaller-scale models have a hidden dimen-837

sion of 128, 12 layers, 2 attention heads and 6.3M838

Parameters. Our larger-scale models have a hidden839

dimension of 768, 12 layers, 12 attention heads840

and 110M Parameters. The maximum sequence841

length for all models is 128 tokens. All models use842

the same vocabulary as the BERT model published843

by (Devlin et al., 2019), containing 30,522 tokens.844

Each of our MoE models has 64 experts. The845

smaller-scale (H=128) MoE models have 105M846

Parameters, and the larger-scale (H=768) MoE847

models have 3.6B Parameters. We employed the848

FastMoE framework proposed by (He et al., 2021,849

2022) for the implementation of MoE BERT mod-850

els. In addition, we also used the PyTorch1 and851

transformers2 libraries.852

For all MoE BERT models, λB was set to 1000.853

For MoE BERT models undergoing transfer capa-854

bility distillation, λT and λI were both set to 1;855

for larger-scale models, λA was set to 1, while for856

smaller-scale models, λA was set to 0. The relation857

constraints at the model trunk and residual inner858

required sampling tokens from a batch. We sam-859

pled 4096 tokens, divided into 32 groups, with each860

group comprising 128 representations for pairwise861

cosine similarity calculations.862

All models were pre-trained for a maximum of863

40 epochs, although this maximum was not reached864

in practice. Some checkpoints from specific epochs865

1https://pytorch.org/
2https://github.com/huggingface/transformers

were selected for alignment and experimentation. 866

Pre-training for all models was conducted using 867

the Adam optimizer (Kingma and Ba, 2015), with 868

a learning rate of 1× 10−4, β1 = 0.9, β2 = 0.999, 869

an L2 weight of 0.01. The learning rate warmed up 870

in the first 10,000 steps, followed by linear decay. 871

The smaller-scale models were pre-trained with a 872

batch size of 512 on 4 x Nvidia Tesla V100 GPUs, 873

and total GPU days are approximately 42 days. The 874

larger-scale models were pre-trained with a batch 875

size of 1024 on 4 x Nvidia Tesla A100 GPUs, and 876

total GPU days are approximately 98 days. 877

To ensure a fair comparison, all models were pre- 878

trained from scratch. However, due to limited com- 879

putational resources, our pre-training tokens were 880

generally fewer than those in the original BERT pa- 881

per (Devlin et al., 2019), which may lead to some 882

discrepancies in the downstream task results com- 883

pared to the original BERT paper. 884

B Fine-tuning Procedure 885

We conducted fine-tuning experiments on the 886

GLUE benchmark (Wang et al., 2018). The maxi- 887

mum number of training epochs for all models was 888

set to 10, with a batch size of 32. The optimizer 889

was Adam (Kingma and Ba, 2015), with a warmup 890

ratio of 0.06, a linearly decaying learning rate, and 891

a weight decay of 0.01. We reported the average 892

performance of multiple runs. 893

For full parameter fine-tuning, the learning rates 894

were {1e-5, 2e-5, 5e-5}. For adapter fine-tuning, 895

the learning rates were {1e-4, 2e-4, 3e-4}. The 896

adapter sizes for the small models (H=128) were 897

{16, 64, 128}, and for the large models (H=768) 898

were {16, 64, 128, 256}. 899

Additionally, there were some exceptions. For 900

the MNLI, QNLI, and QQP datasets, a small num- 901

ber of fine-tuning epochs in small models during 902

adapter fine-tuning limited performance, so we in- 903

creased the maximum training epochs to 20. For 904

the MNLI dataset, using a small adapter size in 905

small models during adapter fine-tuning limited 906

performance on MNLI, so we included an experi- 907

ment with an adapter size of 512. 908
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