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Abstract

Urban knowledge graph has recently worked as an emerging building block to dis-
till critical knowledge from multi-sourced urban data for diverse urban application
scenarios. Despite its promising benefits, urban knowledge graph construction
(UrbanKGC) still heavily relies on manual effort, hindering its potential advance-
ment. This paper presents UrbanKGent, a unified large language model agent
framework, for urban knowledge graph construction. Specifically, we first con-
struct the knowledgeable instruction set for UrbanKGC tasks (such as relational
triplet extraction and knowledge graph completion) via heterogeneity-aware and
geospatial-infused instruction generation. Moreover, we propose a tool-augmented
iterative trajectory refinement module to enhance and refine the trajectories distilled
from GPT-4. Through hybrid instruction fine-tuning with augmented trajectories
on Llama 2 and Llama 3 family, we obtain UrbanKGC agent family2, consisting
of UrbanKGent-7/8/13B version. We perform a comprehensive evaluation on two
real-world datasets using both human and GPT-4 self-evaluation. The experimental
results demonstrate that UrbanKGent family can not only significantly outperform
31 baselines in UrbanKGC tasks, but also surpass the state-of-the-art LLM, GPT-4,
by more than 10% with approximately 20 times lower cost. Compared with the
existing benchmark, the UrbanKGent family could help construct an UrbanKG
with hundreds of times richer relationships using only one-fifth of the data. Our
data and code are available at https://github.com/usail-hkust/UrbanKGent.

1 Introduction

Urban Knowledge Graph (UrbanKG) aims to model intricate relationships and semantics within
a city by extracting and organizing urban entities (e.g., POIs, road networks, etc.) into a multi-
relational heterogeneous graph [1]. As an emerging building block, multi-sourced urban data are
widely used to construct an UrbanKG to provide critical knowledge for various knowledge-enhanced
urban downstream tasks, such as traffic management, pollution monitoring, and emergency response
[2, 3, 4, 5]. UrbanKG has gradually become an essential tool of the modern smart city.

In prior literature, many efforts have been devoted to urban knowledge graph construction (Ur-
banKGC) using massive urban data sources. In particular, one commonly used approach [6, 7, 8] is to
extract entities from structured urban data (e.g., geographic data, city sensor data, and traffic data) and
define the relationships between obtained urban entities based on manually designed rules or patterns.
However, these approaches suffer heavy reliance on a deep understanding of the application domain
and are labor-intensive. Recently, inspired by the success of the Large Language Models (LLMs)
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Columbia University (CU) is the oldest
institution of higher education in New
York, established in 1754 on the grounds
of Trinity Church in Manhattan.

Relational Triplet Extraction

Given two urban entities: 
Columbia University, lat, lng;
Empire State Building, lat, lng;
Please complete the geospatial
relationship between them.

Sorry, It’s hard to decide
based on these information.

Given the urban text, please
extract the urban relational
triplet from it. Return the
results with <head entity,
relation, tail entity> format.

(b) Lack of Geospatial Computing 
Ability

You can invoke geospatial tools
(e.g., distance calculation,
geo-hashing encoding, …) to help
determine the relationship.

The distance between the
“Empire State Building” and the
“Columbia University is 6.85km.
Therefore, they are sperate and
do not share the same boundary.
So, the geospatial relationship
between these two entities are
disconnected.

(a) Lack of Heterogeneous relationship 
understanding ability 

<CU, established-in, 1754>

<CU, Locate-in, Trinity Church>

<CU, Locate-in, New York City>

Given the urban text, please
extract urban triplet from it.
Spatial relation specifies how
some object is located in space
in relation to some reference
object. Return the results with
<head entity, relation, tail
entity> format.

<CU, established-in, 1754 >

<CU, Locate-in, Manhattan>

<CU, Locate-in, New York City >

Urban Knowledge Graph Completion

Geospatially 
disconnected

Figure 1: Illustrative example of urban relational
triplet extraction and knowledge graph completion.
(a) The heterogeneous relationship understanding
limitation of LLMs can be addressed by injecting
prior urban knowledge into instruction. (b) The
geospatial computing limitation of LLMs can be
alleviated by invoking external geospatial tools.

in knowledge graph construction [9, 10, 11],
the LLMs have been adopted to improve Ur-
banKGC. For instance, GeoLM [12] is pre-
trained on crowdsourced geographical corpus
for geospatial entity recognition and relation ex-
traction. K2 [13] retrains Llama-2-7B model on
manually processed and filtered geoscience text
corpus for geospatial relation extraction. Never-
theless, these works rely on high quality corpus
annotation and computational extensive model
retraining, which may discourage researchers
from adopting UrbanKG for their own work.

LLM agent [14, 15] has recently emerged
and shown remarkable zero-shot capability for
autonomous domain-specific task completion.
For example, Voyager [16] is a LLM-powered
agent for zero-shot game exploration without
re-training, and LLMLight [17] is a traffic sig-
nal control agent with zero-shot LLM reasoning
ability. These studies motivate us to construct
tailored LLM agents to address the aforemen-
tioned limitations in UrbanKG construction.

In fact, constructing an LLM agent compatible with various UrbanKGC tasks is a non-trivial problem
due to the following two challenges: (1) Challenges 1: How to adapt LLMs for UrbanKGC?
LLMs may not align well with the specific task due to the gap [18] between the natural language
processing corpus for training LLMs and the domain-specific corpus in urban domain [19]. For
example, the urban text data is usually heterogeneous and contains multifaceted urban knowledge
(e.g., spatial, temporal, and functional aspects) [13]. As shown in Figure 1(a), the text description of
"Columbia University" reflects its geographic spatial locations (i.e., spatial relationship), construction
timelines (i.e., temporal relationship), and how it provides educational service for the city (i.e.,
functional relationship). LLMs may require a tailored alignment to understand heterogeneous
urban relationships to extract these urban spatial, temporal, and functional relations accurately.
(2) Challenges 2: How to improve the capacity of LLMs for UrbanKGC? The effectiveness of
LLMs for urban knowledge graph construction is restricted by their feeble numerical computation
capacity [20, 21], leading to their disability in complex geospatial relationship extraction [22, 23].
However, the urban geospatial relationship plays a vital role in urban semantic modeling [12] and
has been widely incorporated in previous UrbanKGs [8, 24]. As can be seen in Figure 1, extracting
"disconnected" relation between the geo-entity "Columbia University" and "Empire State Building" is
useful for urban geo-semantic modeling. Accurately extracting such geospatial relationship demands
necessary geospatial computing (e.g., utilizing latitude and longitude for distance calculation) and
reasoning (i.e., deriving calculation results for geospatial relation reasoning) capabilities. It is
appealing to improve the geospatial computing and reasoning ability of LLMs to satisfy the
UrbanKGC task requirement.

To address the aforementioned challenges, in this study, we propose UrbanKGent, a unified LLM
agent framework for automatic UrbanKG construction. Figure 2 illustrates the overview of Ur-
banKGent. For a given city, we first generate a knowledgeable instruction set for UrbanKGC tasks
(relational triplet extraction and knowledge graph completion) from urban geographic and text data
sources. By heterogeneity-aware and geospatial-infused instruction generation, as shown in Figure
1(a), various urban spatiotemporal relationship knowledge can be encoded into the instruction, which
facilitates alignment between LLMs with the target UrbanKGC tasks. Moreover, we propose a
tool-augmented iterative trajectory refinement module to enhance and refine the trajectory derived by
distilling GPT-4 with the above constructed instructions. Based on geospatial tool augmentation and
self-refinement, the deficiency of LLMs in geospatial computing and reasoning could be alleviated,
and unfaithful trajectories could be filtered out. Finally, we perform hybrid instruction fine-tuning
based on the enhanced and refined trajectories on Llama 2-7/13B and Llama 3-8B variants [25]
by using LoRA [26]. The obtained UrbanKGent agent including 7/8/13B version, is feasible for
completing multiple UrbanKGC tasks cost-effectively without extra GPT-API cost.
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Figure 2: The framework of UrbanKGent.

We conduct comprehensive experiments on two
UrbanKGC tasks in two metropolises (New
York City and Chicago) using both human eval-
uation and GPT-4-based self-evaluation. The
empirical results validate the effectiveness of
the proposed LLM agent for completing various
UrbanKGC tasks. Moreover, the obtained Ur-
banKGent family (7/8/13B version) could help
extract the same scale of triplets and entities
of existing UrbanKG benchmark [8] using only
one-fifth of data, and even expand the types of
relations by hundreds of times.

Our contributions are summarized as follows: (1) We propose the first UrbanKGC agent framework
UrbanKGent and UrbanKGent family to provide real-world UrbanKGC service, offering new oppor-
tunities to advance UrbanKG studies. (2) We propose a knowledgeable instruction generation module
and a tool-augmented iterative trajectory refinement method, which align LLMs to UrbanKGC tasks
and compensate for their geospatial computing and reasoning inability. (3) Extensive experiments on
two real-world datasets validate the effectiveness of proposed framework and uncover its exceptional
performance across UrbanKGC tasks.

2 UrbanKGC Data Description

2.1 Data Collection

We first acquire urban knowledge for two large cities New York City and Chicago from two data
sources. Table 1 summarizes the statistics of the raw datasets.

2.1.1 Geographic Data

The geographic data provides critical urban spatial structure information and functional semantics,
which has been widely used in previous UrbanKG studies [8, 24, 27, 28].

Area-Of-Interst (AOI) Data. AOI data describes the urban spatial area structure, including urban
commercial areas (e.g., shopping centers), residential areas (e.g., communities), and so on. In this
work, we first follow UUKG [8] to acquire the AOI name and geometry value from NYC Gov 3 and
CHI Gov 4. Next, we use the AOI name to search their text description from Wikipedia and C4 5

dataset. Each AOI record contains an AOI name, a polygon geometry value, and a text description.
For example, ["Jamaica Bay", polygon (-73.86 40.58, ...), "Jamaica Bay is an estuary ..."] is the
record of the AOI "Jamaica Bay" with geometry value and text description.

Road Network Data. Road data describes the urban spatial network, including urban motorways,
overpasses, and so on. We first follow [8] to obtain the road name and geometry value from Open
Street Map (OSM 6. Then, following the same text acquisition operation in AOI data, we crawl
the textual description of each road record from Wikipedia. Each road record contains a road
name, a linestring geometry value, a road type and a text description. For example, ["Central Park
Avenue", linestring (-73.87 40.90, ...), primary, "Central Park Avenue is a boulevard in ..."] describes
the primary road named "Central Park Avenue" with a linestring geometry value and its textual
description.

Point-Of-Interest (POI) Data. POI data represents different urban functions (e.g., residential and
commercial), which have been widely adopted in many recent UrbanKG works [24, 6, 8]. We first
follow [8] to obtain the POI name, and geometry value from OSM. Then the textual description
of each POI record could be crawled from Wikipedia following the similar process. Each POI
record contains a POI name, a coordinate geometry, a POI type, and a text description. For example,

3https://www.nyc.gov/
4https://www.chicago.gov/
5https://huggingface.co/datasets/allenai/c4
6(https://www.openstreetmap.org/
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Table 1: The statistics of raw datasets.

Dataset Description New York City Chicago

Geographic Data
# of AOI 192 136
# of road 6,765 2,241
# of POI 5,872 5,877

Text Data # of review 16,360 13,627
# of web page 11,596 7,283

["Trump World Tower", coordinate (-73.96
40.75), residential, "Trump World Tower is a
residential condominium ..."] is the record of
the POI "Trump World Tower".

2.1.2 Text Data

The text data provides rich contextual knowl-
edge of the city space from different perspec-
tives (e.g., the spatial context) [13], and it plays an important role in geospatial understanding. In this
work, we collect two types of text corpus.

Review Data. The review of urban places provides commercial information that citizens use to
make business decisions [29], playing a critical role in urban knowledge distillation. We collect
review data from Google Map 7. Specifically, we first manually split the city into multiple rectangular
regions, then we utilize the Google Map API to query the places contained within each region and
their reviews. Each review record contains a place name, a coordinate geometry value, a rating, and
a text review. For example, ["Lifestyles Academy Inc", coordinate (-87.87 41.65), 4.9, "Very nice
organization and ..."] is the review record of place "Lifestyles Academy Inc".

Web Page Data. The web page data works as the general text corpus for the city, and it contains rich
geoscience knowledge that has been utilized in recent urban entity and relation extraction studies
[13]. We collect web page data from the Google search engine. Specifically, we first input the name
of the crawled AOI, Road, and POI record into Google. Then we concatenate the textual sentences of
the top 10 retrieved web pages. Each web page record contains a long urban text description.

2.2 Data Preprocessing

Before constructing the UrbanKGC dataset, we first preprocess the raw datasets. We filter out AOIs,
roads, POIs, reviews, and web pages whose crawled textual descriptions are null value, too short (e.g.,
less than ten word description) or meaningless (e.g., just repeating the POI name). In addition, we
remove irrelevant information from the text description, such as non-English characters, non-ASCII
gibberish, website addresses, and so on. More details can be found in Appendix A.

3 Preliminary

This section presents the UrbanKGC task definition and provides task analysis.

3.1 Task Definition and Problem Formulation

Before diving into the technical details, we first introduce the definition of UrbanKG:

Definition 1 UrbanKG. The UrbanKG is defined as a multi-relational graph G = (E , R, F), where
E , R and F is the set of urban entities, relations and facts, respectively. In particular, facts are
defined as F = {⟨h, r, t⟩ | h, t ∈ E , r ∈ R}, where each triplet ⟨h, r, t⟩ describes head entity h is
connected with tail entity t via relation r.

The UrbanKG encodes diverse urban semantic knowledge by connecting urban entities into a multi-
relational graph. This work aims to construct an UrbanKG from collected unstructured text data. We
decompose the UrbanKG construction (UrbanKGC) process into two sequential knowledge graph
construction tasks, namely relational triple extraction [10] and knowledge graph completion [11]. We
first provide the basic definition for these two subtasks, and then introduce the problem formulation
of this work.

3.1.1 Task Definition

Relational Triplet Extraction (RTE). Given the unstructured texts, this task achieves joint extraction
of entities and their relations [10] which are in the form of a triplet ⟨h, r, t⟩. For instance, given the

7https://www.google.com/maps
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Figure 3: Quantitative performance analysis of prompting
GPT-4 for UrbanKGC tasks. The result is obtained by com-
paring 50 GPT-4’s outputs with the human’s annotation.

urban text sentence "Columbia Uni-
versity is a private Ivy league re-
search university in New York City.",
this task aims to identify two entities
"Columbia University" and "New York
City" and their relation "locate-in", de-
scribed as triplet <Columbia Univer-
sity, locate-in, New York City>.

Knowledge Graph Completion
(KGC). Given a head entity h and a
tail entity t, this task is to predict the
missing relation between them [11]. For instance, given the head entity "Columbia University"
and the tail entity "Empire State Building", this task is to predict that their missing relation, e.g.,
"disconnected", described as triplet <Columbia University, disconnected, Empire State Building>.

3.1.2 Problem Formulation

Given the urban unstructured text data, the desired output is an UrbanKG G. In this paper, this
problem is decomposed into two sequential subtasks: (1) Relational Triplet Extraction: the first
task extracts relational triplet ⟨h, r, t⟩ from the urban text data. The output of RTE task is G1 =(E ,
R1, F1), where E and R1is the set of extracted entities and relations, while F1 is the set of extracted
triplets. (2) Knowledge Graph Completion: for the given head entity h and tail entity t in G1, the
second task is to predict the geospatial relationship8 between them. The output of this task is G2 =(E ,
R2, F2), where R2 and F2 is the set of completed relations and triplets. By sequentially completing
the above two tasks, we can obtain the constructed UrbanKG G = (E , R1 ∪R2, F1 ∪ F2).

3.2 Quantitative Task Analysis

As shown in Figure 1, we qualitatively find that LLMs lack urban heterogeneous relationship
understanding ability and experience in geospatial computing and reasoning difficulty when adopting
it for UrbanKGC tasks. This subsection presents a quantitative analysis of these two challenges.

Heterogenous Relationship Understanding. The ability to understand heterogeneous relationships
is ubiquitous in distilling knowledge from the massive urban corpus. For example, the text description
in Figure 1 illustrates a place from spatial location, temporal time, and functional aspects. Capturing
these heterogeneous semantics is important for urban knowledge distillation. We perform quantitative
analysis by randomly sampling 50 urban text data and then prompt GPT-4 to complete relational
triplet extraction by providing only the basic task description. As shown in Figure 3(a), we find
the LLMs experience serious misjudgment (i.e., extract wrong triplets or miss the triplet) on urban
spatial, temporal, and functional triplet extraction. This indicates the limited capacity of LLMs to
understand heterogeneous relationships.

Geospatial Computing and Reasoning. Geospatial computing and reasoning techniques are widely
used in many previous UrbanKG studies [8, 24] for urban geospatial relation extraction. In recent
works [23, 31], the geospatial skills of LLMs have also been demonstrated to lack geospatial
awareness and reasoning ability [22]. To identify potential limitations, we quantitatively investigate
how LLMs can perform on geospatial relation completion tasks. Specifically, we construct 100 head
and tail entity pairs, covering five geospatial relations in the KGC task, and then prompt GPT-4 to
predict with basic task description and geospatial relation candidates. As shown in Figure 3(b), we
find that GPT-4 performs poorly on five geospatial relation completion. This further validates the
disability of LLMs in geospatial computing and reasoning.

4 UrbanKGC Agent Construction

This section presents the proposed UrbanKGC agent construction framework.

8We follow GeoLM [12] to provide five RCC relationship [30] candidates: Disconnection (DC), external
connection (EC), equality (EQ), partial overlap (PO), and tangential and non-tangential proper parts (IN). Details
are in Appendix A.
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Figure 4: An overview of UrbanKGent Construction.

4.1 Overview

The overall pipeline of the UrbanKGent framework is illustrated in Figure 4. (1) Knowledgeable
Instruction Generation consists of the heterogeneity-aware and geospatial-infused instruction gen-
eration modules for aligning LLMs to UrbanKGC tasks. (2) Tool-augmented Iterative Trajectory
Refinement proposes geospatial tool interface invocation and iterative self-refinement mechanisms to
enhance and refine generated trajectory. (3) Hybrid Instruction Fine-tuning fine-tune LLMs based on
the refined trajectories for cost-effectively completing diverse UrbanKGC tasks.

4.2 Knowledgeable Instruction Generation

We first construct the knowledgeable instruction to adopt LLMs for two UrbanKGC tasks, including
relational triplet extraction (RTE) and knowledge graph completion (KGC). Figure 4(a) illustrates the
overview of the instruction construction process of these two tasks.

Heterogeneity-aware Instruction Generation for Relational Triplet Extraction. As discussed
in Section 3, the urban text contains diverse heterogeneous relationships, thus we consider multiple
views with both urban entity and relation definition for relational triplet extraction. In particular, we
construct a multi-view instruction template for the urban relational triplet extraction, including spatial
view, temporal view, and functional view. Each view is a multi-turn question-answer dialog [32]
consisting of entity recognition, relation extraction, and triplet extraction module.

For the spatial view, we devise a two-turn dialog to align LLMs for spatial triplet extraction. In the
first turn, we inject spatial entity and relation definition into the instruction template to guide LLMs
to understand spatial characteristics and then extract potential spatial entities (e.g., University) and
relations types (e.g., locate-in). In the second turn, the extracted types are explicitly fed into the
instruction template for spatial triplet extraction. Intuitively, the spatial view allocates dedicated urban
knowledge for LLMs to extract urban spatial relationships. Similarly, we construct the temporal view
and functional view for corresponding temporal and functional triplet extraction, independently.

Geospatial-infused Instruction Generation for Knowledge Graph Completion. Despite
heterogeneity-aware instruction enabling LLMs to extract urban triplets from various perspectives,
the geospatial relationship between geospatial entities cannot be directly extracted. Therefore, we
introduce a geospatial-infused instruction generation module to guide LLMs to complete missing
geospatial relationships.

First, we incorporate the geometry information (i.e., the latitude and longitude) of geo-entities into
instruction, so that the LLMs can utilize these geospatial values for relation inference. Second, we
add the geospatial relationship definition to the instruction to guide LLMs in understanding the
geospatial relationship definition. Intuitively, LLMs can refer to geospatial knowledge and make
practical solutions for the KGC task. We provide the detailed instruction template in the Appendix B.

4.3 Tool-augmented Iterative Trajectory Refinement

4.3.1 Trajectory Generation

With the initial UrbanKGC instructions constructed, the following step is to generate reasoning
trajectories [33], which will be used to fine-tune LLMs tailored to UrbanKGC task. Specifically,
we follow FireAct [34] and use Chain-of-Thought (CoT) [35], a gradient-free technique, to prompt
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GPT-4 (i.e., add prompt trigger "Let’s think step by step" at the end of RTE and KGC instructions
template) to generate the reasoning trajectories for UrbanKGC tasks.

The generated CoT trajectories could provide a step-by-step reasoning solution for UrbanKGC tasks.
Nevertheless, the complex geospatial relationships cannot be easily extracted as discussed in Section
3 and recent geospatial reasoning works [31, 23, 22]. Therefore, we introduce a tool invocation
module to guide LLMs to invoke tailored external geospatial tools [36] to enhance their geospatial
computing and reasoning capacity for UrbanKGC tasks.

4.3.2 Tool Invocation for Trajectory Augmentation

We conduct two sequential procedures: tool invocation for geospatial computing support and trajectory
deliberation for reasoning enhancement.

Tool Invocation. First, we construct a geospatial reasoning toolkit (e.g., distance calculation, eight
interfaces in total shown in Table 6) by prompting GPT-4 for self-programming. Then, we construct
tailored prompts to guide LLMs to invoke these interfaces. Specifically, the prompt is concatenated
with an illustrative description of the function of each geospatial tool and a task instruction (i.e.,
"Which types of tool interface you need"). Intuitively, the external tool allocates calculation results
for LLMs to infer missing geospatial relation. The toolkit description can be found in Appendix C.

Trajectory Deliberation. After manipulation with external tools, we prompt LLMs to refine uncertain
reasoning steps based on these obtained manipulation results. Specifically, we construct the prompt
by concatenating with manipulation results (e.g., the distance and geohash value of geo-entity) and a
task instruction (i.e., "Please refine your reasoning process"). After feeding the prompt into GPT-4,
the enhanced trajectory is obtained. Detailed prompt information can be found in Appendix C.

4.3.3 Iterative Trajectory Self-refinement

Despite tool-augmented deliberation improving the geospatial computing and reasoning ability of
LLMs, enhanced trajectories may not all be faithful [37]. To alleviate potential error and ensure
the trajectory quality [38], we refine these trajectories via an iterative self-refinement mechanism
[39]. Specifically, we iterate two sequential blocks: (i) Trajectory verifier: given the trajectory, the
verifier aims to provide feedback for refining the reasoning process; (ii) Trajectory updater: given the
trajectory and feedback, the updater will further refine the current trajectory based on the feedback.

Trajectory Verifier. We construct a tailored prompt to ask LLMs to generate feedback. Specifically,
we use a simple but effective trigger ("Judge whether all extracted triplets are correct and provide
improvement suggestion") to prompt LLMs to provide feedback. If the trajectory no longer requires
modification, we let LLMs respond with "This is a faithful trajectory". Such a verification step lets
LLMs make reflections and improve the correctness of the trajectory.

Trajectory Updater. The updater utilizes provided feedback to refine the current trajectory via
prompt trigger "Follow suggestion to refine the reasoning process". Intuitively, the feedback may
address multiple aspects (e.g., missed triplet in the RTE task or unfaithful reasoning process in the
KGC task) of the unfaithful trajectories.

We iterate the trajectory verifier and updater until the predefined stopping condition is satisfied. The
stopping condition is determined by either meeting the maximum number of iterations (we set it at
three to avoid excessive cost) or when the verifier confirms all trajectories are faithful. Upon meeting
the stopping condition, we use the last refined trajectory for further fine-tuning. Detailed prompt
information can be found in Appendix C.

4.4 Hybrid Instruction Fine-Tuning

To construct a cost-effective UrbanKGC agent, we further utilize trajectories (generated by GPT-4) to
fine-tune a smaller open-source LLM for faster inference speed and lower cost (i.e., prompting GPT-4
for UrbanKGC is expensive). Specifically, we finetune the LLM via the mixed-task instruction-tuning
strategy [33]. The goal is to enhance the LLMs’ capabilities in diverse UrbanKGC tasks.

Mixture Training. Set the base language model as M, and PM (y | x) represents the probability
distribution of response y given instruction x. We consider the trajectory set on two UrbanKGC
tasks, i.e., DRTE and DKGC . Since both the instruction and the target output are formatted in natural
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Table 2: The statistics of constructed UrbanKGC dataset.
Dataset NYC-Instruct NYC NYC-Large CHI-Instruct CHI CHI-Large

Records RTE 232 2,089 40,480 122 1,102 28,868
KGC 232 2,080 33,534 122 1,101 28,607

language, we can unify the training into an end-to-end sequence-to-sequence way. Formally, the
optimization process aims to minimize the loss of language model M as follows:

L = E(x,y)∼DRTE [logPM(y | x)] + E(x,y)∼DKGC [logPM(y | x)] , (1)

where x and y represent the instruction input and instruction output in the trajectory, respectively.

Training Setup. We choose the chat version of open-sourced Llama 2-7/13B and Llama-3-8B as our
backbone models, and fine-tune Llama using LoRA strategy [26].

4.5 Inference on UrbanKGC Task

Via hybrid instruction fine-tuning, the obtained LLM UrbanKGent can be trained to follow the
instructions to finish the UrbanKGC task. We prompt UrbanKGent to complete UrbanKGC tasks by
following the pipeline shown in Figure 4. For the RTE task, we sequentially execute entity recognition,
relation extraction, and relational triplet instruction generation, iterative self-refinement and output
the extracted triplets. For the KGC task, we sequentially execute KGC instruction generation, external
tool augmentation, iterative self-refinement block, and finally output the completed triplets.

5 Experiments

5.1 Experimental Settings

Dataset. In this work, two sequential tasks (i.e., RTE and KGC) of UrbanKGC are within an open-
world setting (i.e., no predefined ontology) [40, 41]. We construct the RTE and KGC datasets of NYC
and CHI by sampling uniformly from five raw data in Table 1, respectively. As shown in Table 2, we
first construct two small datasets (i.e., NYC-Instruct and CHI-Instruct) for instruction fine-tuning and
two middle datasets (i.e., NYC and CHI) to validate the performance of the constructed UrbanKGC
agent. The remaining data works as the large-scale UrbanKGC dataset (i.e., NYC-Large and CHI-
Large) in real-world scenarios shown in Table 5. The three types of datasets are non-overlapping to
prevent data leakage. More dataset construction details are in Appendix A.

Baseline Methods. We provide a comprehensive comparison of our method with existing paradigms:
(1) End-to-end Models: For the zero-shot RTE task, we utilize the end-to-end generation model
RelationPrompt [42] and PRGC [10]. For the KGC task, we fine-tune KG-BERT [43] and KG-
T5 [44] with the QA pairs constructed from the self-instruct dataset. (2) LLMs-based Zero-shot
Reasoning [45]: We directly prompt the LLMs with basic task definitions to get the answer without
training. (3) LLMs-based In-context Learning [35]: We sample 3-shot QA pairs as demonstrations
from the self-instruct dataset as examples and get the answers from the LLMs without training. (4)
Vanilla Fine-tuning [11]: We directly fine-tune the LLMs using the QA pairs constructed from the
self-instruct dataset, and then prompt the LLMs with basic task definition without demonstrations. (5)
UrbanKGent Inference: We directly prompt the LLMs using the UrbanKGgent inference pipeline
in Section 4.5. The prompt templates of the above baseline methods are in Appendix B.

Implementation and Detail Settings. In our experiment, we select Vicuna [46], Alpaca [47],
Mistrial [48], Llama-2 [49], Llama-3 [50], GPT-3.5 [51] and GPT-4 [51] as the backbone LLM M.
All experiments are conducted on eight NVIDIA A800 GPUs. For the GPT-3.5 and GPT-4, we adopt
the gpt-3.5-turbo-16k-0613 API and gpt-4-0613 API.

Evaluation Protocol. Since UrbanKGC tasks in this work follow an open-world setting where labels
are not visible, the classical metric (e.g., F1 and Hits@10) is not applicable. In this work, we regard
evaluation as the binary classification, i.e., if the extracted triplet in RTE task is correct and if the
completed relation in KGC task is correct. We follow recent LLMs-based KGC works [11] to employ
accuracy as an evaluation metric. To make a comprehensive evaluation of the experimental results, we
employ both of the human evaluation and GPT evaluation, which has been widely used in many LLM
studies [52, 45]. For Human Evaluation, we employ human annotators to evaluate the results on
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Table 3: The main results of relational triplet extraction (RTE) and knowledge graph completion
(KGC). We report the accuracy (acc) and confidence for GPT evaluation on two datasets, and report
accuracy (acc) for the Human evaluation approach. The best baseline performance is underlined.

Type Models
NYC CHI

GPT (acc/confidence) Human (acc) GPT (acc/confidence) Human (acc)
RTE KGC RTE KGC RTE KGC RTE KGC

End-to-end
Models

KG-BERT - 0.24/3.15 - 0.23 - 0.19/4.12 - 0.24
KG-T5 - 0.21/4.02 - 0.21 - 0.15/3.98 - 0.24

RelationPrompt 0.12/3.38 - 0.12 - 0.21/3.53 - 0.18 -
PRGC 0.08/4.01 - 0.06 - 0.13/4.15 - 0.15 -

Zero-shot
Reasoning

Vicuna-7B 0.12/2.84 0.19/4.06 0.14 0.16 0.22/4.12 0.14/4.03 0.21 0.18
Alpaca-7B 0.11/3.75 0.17/3.87 0.15 0.17 0.23/3.96 0.16/4.15 0.20 0.16
Mistral-7B 0.14/4.12 0.21/4.11 0.17 0.18 0.21/3.75 0.15/3.76 0.19 0.19
Llama-2-7B 0.14/1.98 0.18/3.75 0.16 0.18 0.26/1.96 0.15/2.83 0.21 0.22
Llama-3-8B 0.15/4.02 0.15/4.02 0.20 0.21 0.24/3.75 0.15/4.08 0.22 0.22
Llama-2-13B 0.21/2.07 0.28/3.91 0.19 0.22 0.22/2.19 0.16/2.47 0.22 0.24
Llama-2-70B 0.25/3.07 0.28/3.75 0.22 0.24 0.27/3.55 0.16/2.47 0.24 0.23
Llama-3-70B 0.24/4.18 0.29/4.31 0.23 0.24 0.26/3.98 0.17/4.26 0.25 0.23

GPT-3.5 0.29/4.11 0.36/3.47 0.31 0.23 0.31/3.79 0.31/3.16 0.31 0.29
GPT-4 0.38/4.03 0.39/3.82 0.41 0.29 0.39/4.08 0.32/4.03 0.43 0.35

In-context
Learning

Llama-2-7B 0.18/2.15 0.21/3.96 0.19 0.18 0.25/2.44 0.18/3.27 0.23 0.20
Llama-3-8B 0.17/4.06 0.18/3.53 0.21 0.22 0.28/4.31 0.17/4.14 0.24 0.21
Llama-2-13B 0.26/3.52 0.31/3.28 0.23 0.24 0.28/2.65 0.21/2.53 0.25 0.26

GPT-3.5 0.41/4.65 0.42/4.08 0.42 0.31 0.36/4.24 0.36/4.23 0.39 0.36

Vanilla
Fine-tuning

Llama-2-7B 0.32/4.37 0.38/3.65 0.32 0.27 0.29/3.80 0.30/3.65 0.33 0.31
Llama-3-8B 0.31/4.18 0.35/4.18 0.35 0.26 0.31/4.18 0.29/4.15 0.32 0.34
Llama-2-13B 0.35/4.26 0.41/3.92 0.39 0.29 0.31/4.14 0.29/3.87 0.37 0.35

UrbanKGent
Inference

Vicuna-7B 0.24/3.07 0.24/3.95 0.29 0.23 0.27/4.12 0.22/3.95 0.23 0.25
Alpaca-7B 0.26/3.85 0.27/3.83 0.26 0.22 0.27/3.83 0.21/4.12 0.27 0.29
Mistral-7B 0.26/4.15 0.25/4.08 0.28 0.23 0.25/3.61 0.21/4.08 0.25 0.26
Llama-2-7B 0.27/3.05 0.26/4.12 0.28 0.24 0.27/2.87 0.24/3.54 0.26 0.29
Llama-3-8B 0.29/4.15 0.31/4.08 0.33 0.26 0.26/3.28 0.24/3.97 0.30 0.31
Llama-2-13B 0.31/3.87 0.32/3.56 0.35 0.27 0.28/3.24 0.26/3.28 0.31 0.32
Llama-2-70B 0.33/4.28 0.35/4.27 0.33 0.29 0.29/3.80 0.28/4.01 0.32 0.34
Llama-3-70B 0.35/4.26 0.36/4.81 0.34 0.28 0.29/4.12 0.29/4.81 0.31 0.35

GPT-3.5 0.43/4.12 0.46/3.88 0.43 0.34 0.40/4.21 0.39/3.87 0.46 0.41
GPT-4 0.45/4.08 0.48/4.02 0.47 0.42 0.46/4.17 0.41/4.35 0.52 0.43

UrbanKGent-7B 0.46/4.12 0.49/3.97 0.48 0.44 0.49/4.28 0.43/4.58 0.54 0.45
↑ 2.22% ↑ 2.08% ↑ 2.08% ↑ 4.76% ↑ 6.52% ↑ 4.88% ↑ 3.84% ↑ 4.66%

UrbanKGent-8B 0.47/3.97 0.51/4.15 0.49 0.45 0.49/3.97 0.44/4.05 0.55 0.46
↑ 4.44% ↑ 6.25% ↑ 4.26% ↑ 7.14% ↑ 6.52% ↑ 7.32% ↑ 5.77% ↑ 6.98%

UrbanKGent-13B 0.52/4.38 0.56/4.13 0.54 0.47 0.53/4.15 0.48/4.42 0.59 0.49
↑ 15.56% ↑ 14.29% ↑ 14.89% ↑ 11.90% ↑ 15.22% ↑ 17.07% ↑ 13.46% ↑ 13.95%

Table 4: Statistics comparison of constructed Ur-
banKGs in New York and Chicago between Ur-
banKGent and existing benchmark.

Dataset # Entity # Relation # Triplet Data Volume

NYC-Large 228,928 2,138 905,442 40,480
CHI-Large 95,813 1,336 563,290 28,607

NYC-UUKG 236,287 13 930,240 236,277
CHI-UUKG 140,602 13 564,400 140,577

200 random samples. As for the GPT Evalua-
tion, we use GPT-4 to evaluate the model perfor-
mance on the full data to escape intensive labor.
In this work, the GPT-4’s evaluation has been
demonstrated to be consistent with the human
evaluation. Detail is in Appendix D.

5.2 Main Result

The performance results are reported in Table 3. As can be seen, the constructed agent outperforms all
thirty-one baseline models on two UrbanKGC datasets. Specifically, the UrbanKGent-13B achieves
(15.56%, 14.29%, 14.89%, and 11.90%) improvements compared with the state-of-the-art GPT-4
with the same inference pipeline on NYC. The improvements on CHI are (15.22%, 17.07%, 13.46%,
and 13.95%), respectively. Moreover, the UrbanKGent-7/8B also achieve comparable performance
compared with the GPT-4.

Meanwhile, we observe that the zero-shot LLMs perform poorly in the UrbanKGC tasks, even using
GPT-4. In addition, although the demonstrations provided by In-context-learning can incorporate
the UrbanKGC task information, the performance gain is limited. Besides, we find that fine-tuning
LLMs can make obvious improvements in the overall performance. Through vanilla fine-tuning, the
Llama-2-7/13B and Llama-3-8B could achieve comparable performance with GPT-3.5 under the ZSL
settings.

Moreover, although the various LLM backbones using the UrbanKGent inference pipeline perform
slightly worse than the vanilla fine-tuning method, they could obtain better performance compared
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Figure 5: The model latency and cost of con-
structed UrbanKGent-13B and GPT-4 in Ur-
banKGC. We report the total inference time and
cost of 1,000 RTE and KGC tasks.

with zero-shot reasoning and In-context learn-
ing paradigms. Such results demonstrate the
benefit of knowledgeable instruction design and
external tool innovation, but also indicate its per-
formance bottleneck. As a deeper exploration,
our work fills this gap through hybrid instruc-
tion fine-tuning, and the fine-tuned UrbanKGC
agents, whether 7B, 8B or 13B, can achieve
state-of-the-art performance in UrbanKGC tasks.
We provide an in-depth analysis of the proposed
UrbanKGent framework in Appdendix E.2.

5.3 Agent Application

We first derive UrbanKGent-13B for initial UrbanKGs acquisition in New York City and Chicago.
After proper filtering and merging of the triplets, we obtain two large-scale UrbanKGs shown in
Table 4. Compared with existing UrbanKG benchmark [8], we only use roughly one-fifth of the data
for constructing the UrbanKGs with the same scale of triplets and entities, and even expanding the
variety of relationships to a hundred times the original types. Moreover, we also provide efficiency
analysis in Figure 5. As can be seen, UrbanKGent-13B achieves lower inference speed in latency and
reduce the cost by roughly 20 times in both of RTE and KGC tasks. More details is in Appendix E.3.

6 Related work

Domain-Oriented Agent Construction. The concept of language agent [34] has become very
popular recently, and a variety of LLM agents targeting different domains have been proposed. For
example, Voyager [16] is constructed for automated game exploration, WebGPT [17] is an HTML
agent for diverse document understanding tasks, LLMLight [53] constructs a language agent for
transportation domain, K2 [13], GeoGalactica [19] and GeoLLM [12] propose to re-train language
agent for geospatial semantic understanding. In addition, many recent works like Auto-GPT [54] and
CAMEL [55] aim at proposing an autonomous agent framework for agent construction. Nevertheless,
there is still no UrbanKGC agent construction framework for the urban computing domain.

LLMs for Knowledge Graph Construction. Recently, the advent of LLMs [56] invigorated the
field of NLP. Many studies have begun to explore the potential of LLMs in the domain of KG
construction. For example, [32, 57] finds that transforming the NER and RE task into a multi-turn
question-answering dialog could improve the model performance. [9] explicitly derive syntactic
knowledge to guide LLMs to think, which could develop the performance of NER. Despite these
LLM-driven KG construction methods [58, 40] in general domains being widely investigated, KG
construction in urban domain still remains an open challenge [59].

Urban Knowledge Graph. Urban knowledge graph has been proven useful in various urban tasks,
such as traffic flow prediction [60, 61, 27, 62], mobility prediction [6], site selection [7], city profiling
[63], crime prediction and so on [8, 64, 65]. Their common approach involves manually extracting
urban entities and defining urban relations to construct an urban knowledge graph. For example, [6]
construct a dedicated spatiotemporal knowledge graph regarding trajectory and timestamp as entities
to improve trajectory prediction and [7] construct user check-in relations to help mobility prediction.
Nevertheless, existing UrbanKGs heavily rely on manual design, leading to high labor costs.

7 Conclusion

In this work, we proposed UrbanKGent, the first automatic UrbanKG construction agent frame-
work with LLMs. We first constructed a knowledgeable instruction set to adopt LLMs for different
UrbanKGC tasks. Then, we proposed a tool-augmented iterative trajectory refinement module to
facilitate the instruction tuning of various large language models. Extensive experimental results
demonstrate the advancement of UrbanKGent in improving UrbanKGC tasks. The obtained Ur-
banKGent agent family, consisting of 7/8/13B version, with lower latency and cost compared with
derving GPT-4 for UrbanKG construction. We hope the open-source UrbanKGent can foster future
urban knowledge graph research and broader smart city applications.
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Table 5: The detailed statistic of RTE datasets. We report the maximum length, minimum length, and
average length of urban text in the RTE dataset.

Dataset Max Length Min Length Avg Length # Records

NYC-Instruct 1,747 68 437 232
CHI-Instruct 1,120 25 408 122

NYC 2,708 51 433 2,089
CHI 1,883 32 445 1,102

NYC-Large 4,598 20 1,179 40,480
CHI-Large 4,597 36 825 28,868

NYC-Instruct CHI-Instruct

NYC CHI

Figure 7: The geometry range visualization of the head entity and tail entity of four KGC datasets.
The horizontal and vertical coordinates are longitude and latitude, respectively. The blue and red
polygons stand for entities with the polygon geometry, the purple line string stands for the entities
with linestring geometry and the green point is for the coordinate entities.

A UrbanKGC Construction
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Figure 6: Given two geo-entities X and Y, the
illustrative visualization of five types of RCC rela-
tionships. In this work, we consider entities with
coordinate geometry to a circles with very small
radii.

This section presents detailed UrbanKGC
dataset statistic information for relational triplet
extraction (RTE) and knowledge graph comple-
tion (KGC) tasks. Since two sequential tasks
(i.e., RTE and KGC) of UrbanKGC are within
an open-world setting (i.e., no predefined ontol-
ogy) [40, 41]. Therefore, for the RTE task, every
data record is an urban text without the triplet
label. For the KGC task, every data record is
a quadruple (i.e., head entity name, head entity
geometry, tail entity name, tail entity geometry)
without the geospatial relation label.

RTE Dataset. To facilitate the understanding
of the constructed RTE dataset, we summarize
the distribution of urban textual corpus in the six
RTE datasets. As shown in Table 5, the entity
distribution and textual statistics of the instruct dataset and test data are similar. In addition, the
record in dataset (i.e., NYC-Instruct and CHI-Instruct) used for instruction tuning is not overlapping
with that in test dataset (i.e., NYC and CHI) and the real-world application dataset (i.e., NYC-Large
and CHI-Large). This can avoid potential data leakage issues.

KGC Dataset. As for the KGC dataset, we provide illustrative visualization of the five RCC
relationships [30] in Figure 6 for better understanding. Specifically, the disconnected (DC), externally
connected (EC), partially overlapping (PO), equal (EQ), tangential and non-tangential proper parts
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Table 6: The detailed geospatial tool name, description, interface input, and output. Each tool
interface is implemented by python and it is self-programmed by GPT-4.

Tool name Tool description Input Output

Geohash Geohash encoding Geometry Geohash code (8-bit)
Distance Calculate the distance between two geo entities. Geometry 1, Geometry 2 Distance value (km)
Point2Polygon Identify if a point belongs to a polygon Point geometry, polygon geometry True/False
Point4Linestring Identify if a point intersects a linestring Point geometry, linestring geometry True/False
Linestring2Polygon Identify if a linestring belongs to a polygon Linestring geometry, polygon geometry True/False
Linestring4Polygon Identify if a linestring intersects a polygon Linestring geometry, polygon geometry True/False
Polygon2Polygon Identify if a polygon belongs to a polygon Polygon geometry, polygon geometry True/False
Polygon4Polygon Identify if a polygon intersects a polygon Polygon geometry, polygon geometry True/False

(IN) together depict the basic geospatial relationship between urban entities. Moreover, to facilitate
the understanding of the constructed KGC dataset, we visualize the geometry range of the head
entity and the tail entity in four small KGC datasets. Due to the large amount of data and the display
overlapping between entities and entities during visualization, we will not show the visualization
results of NYC-Large and CHI-Large dataset, but the pattern is similar. As can be seen in Figure 7,
the entity distribution in the instruct dataset (i.e., NYC-Instruct and CHI-Instruct) and test dataset
(i.e., NYC and CHI) are similar. The pattern in NYC-Large and CHI-Large is similar. Due to the
KGC task follows a zero-shot setting, we are unable to provide accurate distribution proportions of
the 5 RCC relationships in the four datasets. However, it is intuitive can be seen that all four datasets
contain the five RCC relationships shown in Figure 6, which provides a guarantee for the practical
significance of KGC task in this work.

B Instruction Template

B.1 Instruction Template in UrbanKGent

This section presents the detailed instruction template of the proposed UrbanKGent framework.
Specifically, Figure 8(a-b) provides the detailed instruction template of knowledgeable instruction
generation module and tool-based trajectory augmentation. The iterative trajectory self-refinement
module is achieved by trajectory verifier and updater in Figure 8(c).

B.2 Instruction Template in Baselines

We provide the detailed instruction template of all the baseline models in this work.

LLMs-based Zero-shot Reasoning Methods. We only provide task descriptions for the zero-shot
reasoning method. The detailed instruction template is shown in Figure 9.

LLMs-based In-context Learning Methods. We first construct several few-shot demonstrations
via the chain-of-thought prompting techniques [35], which is popular for automatic demonstration
generation. The detailed instruction template is shown in Figure 9. Then, we add these demonstrations
before the test question, and the detailed instruction template is shown in Figure 9.

Vanilla Fine-tuning Methods. We only provide task descriptions for vanilla fine-tuning methods
without demonstrations. The detailed instruction template is shown in Figure 9.

UrbanKGent Inference Methods. These baseline models follow the same inference pipeline shown
in Figure 8.

C Geospatial Toolkit

This work constructs a geospatial reasoning toolkit (eight interfaces in total in Table 6) by asking GPT-
4 for self-programming. We obtained geospatial toolkit for point, linestring, and polygon geometry
objects, supporting distance calculation and Geohash encoding for two geographical objects, and
can also determine basic spatial relationships between two geometric objects, such as containment
and intersection. For each interface, we provide its name and function description (e.g., geohash
encoding in Table 6 and Figure 8b) into the instruction template.
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Given sentence: Columbia University is a private Ivy 
League research university in New York City. Established 
in 1754 as King’s College on the grounds of Trinity 
Church in Manhattan, it is the oldest institution of 
higher education in New York and the fifth-oldest in the 
United States.
What types of spatial entities are included in this 
sentence? 
Spatial specifies how thing occupying some space, entity 
that can be contained within a region of space.
Return the results with the [‘Spatial Entity type 1, 
Spatial Entity type 2, ...'] format.

['University, City, Church, Manhattan']

What types of spatial relations are included in this 
sentence? 
Spatial relation specifies how some object is located in 
space in relation to some reference object. 
Return the results with the ['Spatial relation type 1, 
Spatial relation type 2, ...'] format.

[‘Locate In']

Suppose you are an urban spatial triplet extraction 
model and I will provide you some urban text data. 
Please recognize entities with types: ['University, City, 
Church, Manhattan’], and recognize relations with types : 
[‘Locate In’] between these entities. 
Return the result with the {'head entity': ' ', 
'relation': ' ', 'tail entity': ' '} format.
Given the urban text: Columbia University is a private 
Ivy League research university in New York City. 
Established in 1754 as King’s College on the grounds of 
Trinity Church in Manhattan, it is the oldest 
institution of higher education in New York and the 
fifth-oldest in the United States.
Let's think step by step.

Based on the given urban text, we can extract the 
following spatial triplets:
{'head entity': 'Columbia University', 'relation': 
'Locate In', 'tail entity': 'New York City'}
{'head entity': 'King’s College', 'relation': 'Locate 
In', 'tail entity': 'Trinity Church'}
{'head entity': 'Columbia University', 'relation': 
'Locate In', 'tail entity': 'Manhattan'}

Given sentence: Columbia University is a private Ivy 
League research university in New York City. Established 
in 1754 as King’s College on the grounds of Trinity 
Church in Manhattan, it is the oldest institution of 
higher education in New York and the fifth-oldest in the 
United States.
What types of temporal entities are included in this 
sentence? 
Temporal entities specifies how thing that can be 
contained within a period of time, or change in state 
(e.g. events, periods, acts).
Return the results with the [‘Temporal Entity type 1, 
Temporal Entity type 2, ...'] format.

['Year of establishment']

What types of temporal relations are included in this 
sentence? 
Temporal relation communicates the simultaneity or 
ordering in time of events or states.
Return the results with the [‘Temporal relation type 1, 
Temporal relation type 2, ...'] format.

[‘Established in']

Suppose you are an urban temporal triplet extraction 
model and I will provide you some urban text data. 
Please recognize entities with types: ['Year of 
establishment'], and recognize relations with types : 
[‘Established in'] between these entities. 
Return the result with the {'head entity': ' ', 
'relation': ' ', 'tail entity': ' '} format.
Given the urban text: Columbia University is a private 
Ivy League research university in New York City. 
Established in 1754 as King’s College on the grounds of 
Trinity Church in Manhattan, it is the oldest 
institution of higher education in New York and the 
fifth-oldest in the United States.
Let's think step by step.

Based on the given urban text, we can extract the 
following temporal triplet:
{'head entity': 'Columbia University', 'relation': 
'Established in', 'tail entity': '1754'}

Given sentence: Columbia University is a private Ivy 
League research university in New York City. Established 
in 1754 as King’s College on the grounds of Trinity 
Church in Manhattan, it is the oldest institution of 
higher education in New York and the fifth-oldest in the 
United States.
What types of functional entities are included in this 
sentence? 
Functional entities specifies any independent party 
(i.e., person, business entity, governmental entity, or 
other organization) defined in terms of its function.
Return the results with the [‘Functional Entity type 1, 
Functional Entity type 2, ...'] format.

['institution of higher education']

What types of functional relations are included in this 
sentence? 
Functional relation specifies the current term is a type 
of urban entity.
Return the results with the [‘Functional relation type 1, 
Functional relation type 2, ...'] format.

['is a type of', 'established as']

Suppose you are an urban functional triplet extraction 
model and I will provide you some urban text data. 
Please recognize entities with types: ['institution of 
higher education’], and recognize relations with types : 
['is a type of', 'established as’] between these 
entities. 
Return the result with the {'head entity': ' ', 
'relation': ' ', 'tail entity': ' '} format.
Given the urban text: Columbia University is a private 
Ivy League research university in New York City. 
Established in 1754 as King’s College on the grounds of 
Trinity Church in Manhattan, it is the oldest 
institution of higher education in New York and the 
fifth-oldest in the United States.
Let's think step by step.

Based on the given urban text, we can extract the 
following functional triplets:
{'head entity': 'Columbia University', 'relation': 'is a 
type of', 'tail entity': 'private Ivy League research 
university'}
{'head entity': 'Columbia University', 'relation': 
'established as', 'tail entity': 'King’s College'}

Given two geospatial entities, please use the region connection 
calculus (RCC) to describes the geospatial relationships between the 
two geospatial entities.
RCC8 consists of 8 basic relations that are possible between two 
geospatial entities: disconnected (DC), externally connected (EC), 
equal (EQ), partially overlapping (PO), tangential and non-
tangential proper parts (IN).
Following the above definition, output the geospatial relation 
between the two geospatial entities: 
Entity 1: Entity name: Empire State Building, Geometry: Point 
(40.7484, 73.9857).
Entity 2: Entity name: Columbia University, Geometry: Point (40.8075, 
73.9626).
Return the results with the [‘Geospatial relation’: ‘ ’] format.
Let's think step by step.

The Region Connection Calculus (RCC) is typically used for reasoning 
about regions in space rather than points, but we can still apply … 
…
So, according to RCC and given that both entities are points, the 
geospatial relation is hard to decide based on these information.

The above reasoning process is not completely right. To further 
promise the results are correct, we can call some external tool 
interface to help analysis.
I can provide 8 types of tool interface, and their function are as 
follows: (1) geohash encoding; (2) distance calculation; (3) 
identify if a point belongs to a polygon; (4) identify if a point 
intersects a linestring; (5) identify if a linestring intersects to 
a polygon; (6) identify if a linestring belongs to a polygon; (7) 
identify if a polygon intersects to a polygon; (8) identify if a 
polygon belongs to a polygon.
Tell me which types of tool interface you may need to better finish 
reasoning. Output the name and number of tool interface without 
other textual description.

distance calculation (2)

By calling some tool interface, we now have updated information as 
follows: The distance between entity 1 and entity 2 is: 6.85 km. 
Please refine your reasoning process and output the final answer.

Given that the two entities are points and the distance between them 
is 6.85 km, this means they are separate and do not share a boundary, 
overlap, or contain one another. In the context of RCC8, the 
appropriate relationship to describe two points that are separate by 
a distance would still be "disconnected" (DC).
Thus, the final answer is:
['Geospatial relation': 'DC']

Given the urban text data and the extracted triplets, please justify: 1) whether all extracted triplets are correct; 2) whether there are 
missing triplets that have not yet been extracted.
If there are no missing triplets and all triplets are correct, please answer 'Yes'. If not, please provide improvement suggestions to help 
extract missing triplet and remove the incorrect triplets.
Given the urban text: Columbia University is a private Ivy League research university in New York City. Established in 1754 as King’s College 
on the grounds of Trinity Church in Manhattan, it is the oldest institution of higher education in New York and the fifth-oldest in the 
United States.
Extracted triplet: {'head entity': 'Columbia University', 'relation': 'Locate In', 'tail entity': 'New York City’}, {'head entity': 'King’s 
College', 'relation': 'Locate In', 'tail entity': 'Trinity Church’}, {'head entity': 'Columbia University', 'relation': 'Locate In', 'tail 
entity': 'Manhattan’}, {'head entity': 'Columbia University', 'relation': 'Established in', 'tail entity': '1754’}, {'head entity': 'Columbia 
University', 'relation': 'is a type of', 'tail entity': 'private Ivy League research university’}, {'head entity': 'Columbia University', 
'relation': 'established as', 'tail entity': 'King’s College’}.

Here are the reasoning process when using region connection calculus (RCC) to describes the geospatial 
relationships between the two geospatial entities.
Based on the above reasoning process, please justify: 1) whether constructed RCC8 relationship are correct.
Entity 1: Entity name: Empire State Building, Geometry: Point (40.7484, 73.9857).
Entity 2: Entity name: Columbia University, Geometry: Point (40.8075, 73.9626).
Reasoning process: Given that the two entities are points and the distance between them is 6.85 km, this means 
they are separate and do not share a boundary, overlap, or contain one another. In the context of RCC8, the 
appropriate relationship to describe two points that are separate by a distance would still be "disconnected" 
(DC).
Thus, the final answer is: ['Geospatial relation': 'DC’]
If constructed RCC8 relation is correct, please answer ‘This is a faithful trajectory'. If not, please provide 
improvement suggestions.

Given the urban text data and the extracted triplets, please follow the suggestion to remove incorrect triplet or add missing triplet.
Given the urban text: Columbia University is a private Ivy League research university in New York City. Established in 1754 as King’s College 
on the grounds of Trinity Church in Manhattan, it is the oldest institution of higher education in New York and the fifth-oldest in the United 
States.
Extracted triplet: {'head entity': 'Columbia University', 'relation': 'Locate In', 'tail entity': 'New York City’}, {'head entity': 'King’s 
College', 'relation': 'Locate In', 'tail entity': 'Trinity Church’}, {'head entity': 'Columbia University', 'relation': 'Locate In', 'tail 
entity': 'Manhattan’}, {'head entity': 'Columbia University', 'relation': 'Established in', 'tail entity': '1754’}, {'head entity': 'Columbia 
University', 'relation': 'is a type of', 'tail entity': 'private Ivy League research university’}, {'head entity': 'Columbia University', 
'relation': 'established as', 'tail entity': 'King’s College’}.
Suggestion for improvement: …
Return the result with the {'head entity': ' ', 'relation': ' ', 'tail entity': ' '} format.

Here are the reasoning process when using region connection calculus (RCC) to describes the geospatial 
relationships between the two geospatial entities.
Please follow the suggestion to refine extracted RCC8 relations.
Entity 1: Entity name: Empire State Building, Geometry: Point (40.7484, 73.9857).
Entity 2: Entity name: Columbia University, Geometry: Point (40.8075, 73.9626).
Reasoning process: Given that the two entities are points and the distance between them is 6.85 km, this means 
they are separate and do not share a boundary, overlap, or contain one another. In the context of RCC8, the 
appropriate relationship to describe two points that are separate by a distance would still be "disconnected" 
(DC).
Suggestion for improvement: …
Return the results with the [‘Geospatial relation’: ‘ ’] format.

(a) Instruction Template and Reasoning Process of Relational Triplet Extraction

(c) Iterative Self-refinement Instruction Template of Relational Triplet Extraction and Knowledge Graph Completion

(b) Instruction Template and Tool-augmentation Process 
of Knowledge Graph Completion

Improvement suggestions:
Revise the triplet extraction algorithm to capture the correct spatial relationships, such as "located on the grounds of" instead of a generic 
"Locate In."
Ensure that the historical context is maintained by correctly linking the past and present names of the institution, which might require 
additional rules or understanding of historical changes.
Add rules to capture ordinal information and rankings, such as "oldest" and "fifth-oldest," to understand the significance within a broader 
context like the state or country.
Ensure tense consistency by converting verbs to the past tense where appropriate, reflecting the historical events accurately.
In summary, not all the extracted triplets are correct, and there are missing triplets that have not yet been extracted. The suggestions 
provided should help improve the extraction process.

Yes, the constructed RCC8 relationship is correct.

The Region Connection Calculus (RCC) is a formalism for representing qualitative spatial knowledge about regions. 
The RCC8 set of base relations includes the following: Disconnected (DC), Externally Connected (EC), Partially 
Overlapping (PO), tangential and non-tangential proper parts (IN), and Equals (EQ).

Since both the Empire State Building and Columbia University are represented as points with specific coordinates, 
and given that their distance apart is 6.85 km, they cannot be connected, overlap, or contain one another. 
Therefore, they are considered to be disconnected (DC) in terms of RCC8 relations, which correctly describes the 
geospatial relationship between the two entities.

Figure 8: The reasoning process of UrbanKGent-13B and the detailed instruction template for
UrbanKent inference pipeline. The content in the gray box is the instruction, and the content in the
green box is the agent’s response.

Given sentence: Columbia University is a private Ivy 
League research university in New York City. 
Established in 1754 as King’s College on the grounds 
of Trinity Church in Manhattan, it is the oldest 
institution of higher education in New York and the 
fifth-oldest in the United States.
Suppose you are an urban triplet extraction model and 
I will provide you with some urban text data. What 
urban triplets are included in this sentence?  
Return the result with the {'head entity': ' ', 
'relation': ' ', 'tail entity': ' '} format.

Given two geospatial entities, please use the region 
connection calculus (RCC) to describes the geospatial 
relationships between the two geospatial entities.
Entity 1: Entity name: Empire State Building, 
Geometry: Point (40.7484, 73.9857).
Entity 2: Entity name: Columbia University, Geometry: 
Point (40.8075, 73.9626).
Return the results with the [‘Geospatial relation’: 
‘ ’] format.

(a) Instruction Template of Zero-shot Reasoning and Vanilla Fine-tuning Methods on RTE and KGC tasks

Question: Given sentence: … Suppose you are an urban triplet 
extraction model and I will provide you with some urban text 
data. What urban triplets are included in this sentence?  
Return the result with the {'head entity': ' ', 'relation': ' 
', 'tail entity': ' '} format. Let’s think step by step.
Answer: Chain… Results …
Question: …
Answer: …
…
Test Question: … Let’s think step by step

Question: Given two geospatial entities, please use the region 
connection calculus (RCC) to describe the geospatial relationships 
between the two geospatial entities. Entity 1: Entity name: Empire State 
Building, Geometry: Point (40.7484, 73.9857).
Entity 2: Entity name: Columbia University, Geometry: Point (40.8075, 
73.9626). Return the results with the [‘Geospatial relation’: ‘ ’] 
format.
Answer: …
Question: …
Answer: …
…
Test Question: … Let’s think step by step

(b) Instruction Template of In-context Learning Methods on RTE and KGC tasks

Figure 9: The instruction template of zero-shot reasoning, In-context learning and vanilla fine-tuning
baselines.
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Table 7: Illustrative RTE evaluation example when we utilize human evaluation and GPT evaluation
method. We calculate the accuracy by counting the proportion of true triplets. The label for GPT
evaluation method is invisible.

Type Urban text Results Label Number of the
true triplet

Number of the
false triplet

Human
Evaluation Columbia University is a

private Ivy league research
university in New York City.

<Columbia University,
locate-in, New York City >

<Columbia University,
locate-in, New York City > 1 0

GPT
Evaluation - 1 0

D Evaluation

This section presents the detailed evaluation process and examples to help the reader have a better
understanding: (1) Human Evaluation. We employ human annotators to evaluate the results on
200 random samples. For the relational triplet extraction task, we first manually annotate the triplet
label for each sample. Then, we manually evaluate the correctness of each triplet [40] based on
annotation and calculate the accuracy value. For the knowledge graph completion task, we follow [11]
to manually label the response as correct or wrong, and calculate the accuracy. (2) GPT Evaluation.
Recently, many studies [52, 45] adopt LLM-based evaluation for open-domain tasks and empirically
demonstrate that GPT-4’s evaluation and human evaluation can be consistent [66]. In this work,
we also use GPT-4 to evaluate the model performance on the full data to escape intensive labor.
Specifically, given an UrbanKGC instruction and results, we prompt GPT-4 to return the confidence
score and the justification (i.e., True/False), which will be further used to calculate the accuracy.

Moreover, we provide a comprehensive analysis to demonstrate why GPT and Human evaluations
are highly aligned.

D.1 Human Evaluation Process

For the relational triplet extraction (RTE) task, we provide an evaluation example in Table 7. Given
the urban text sentence "Columbia University is a private Ivy league research university in New
York City.", the human annotators are required to first label the triplet contained in this urban text,
described as triplet <Columbia University, locate-in, New York City>. Based on the label, then, they
are instructed to evaluate how many true triplets and false triplets in the results from the models.
Finally, they will fill out the evaluation form (i.e., the number of the true triplets and the number of
the false triplets). We will calculate the accuracy of results based on these annotated forms.

For the knowledge graph completion (KGC) task, given the head entity <Columbia University, Point
(40.8075, 73.9626)> and the tail entity <Empire State Building, Point (40.7484, 73.9857)>, the
human annotators are first required to complete their missing geospatial relationship from the five
relation candidate (i.e., DC, EC, PO, EQ and IN). Specifically, the annotation could be achieved by
manually visualizing the location of two entities given on the map and following the RCC relation
rule in Figure 6 to determine their geographical relationships. Finally, they will fill out the evaluation
results (i.e., True/False). We will calculate the accuracy based on these evaluation results.

D.2 GPT Evaluation Process

For the relational triplet extraction (RTE) task, we provide an evaluation example in Table 7. Given
the urban text sentence "Columbia University is a private Ivy league research university in New York
City.", and the model extraction results (i.e., <Columbia University, locate-in, New York City>), we
directly prompt GPT-4 to fill out the evaluation form (i.e., the number of the true triplets and the
number of the false triplets). Then, the accuracy could be obtained based on these self-evaluated
results.

For the knowledge graph completion (KGC) task, given the head entity <Columbia University, Point
(40.8075, 73.9626)> and the tail entity <Empire State Building, Point (40.7484, 73.9857)> and
completed geospatial relationship, we directly prompt GPT-4 the justify if the results are correct.
Specifically, we will first explicitly call eight external geospatial tools in Table 6, and combine all
these eight calculation results into the prompt. Then we feed these prompts into GPT-4 to help it
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Figure 10: The Spearman correlation between the GPT evaluation and human’s evaluation under five
different LLM backbones (i.e., Llama-2-7B, Llama-2-13B, Llama-2-70B, GPT-3.5 and GPT-4).
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Figure 11: The Spearman correlation between the GPT evaluation and human’s evaluation under four
LLM paradigms (i.e., Zero-shot learning (ZSL), In-context learning (ICL), Vanilla fine-tuning (VFL)
and UrbanKGent inference).

make a comparable accurate evaluation. Finally, we obtain the evaluation results (i.e., True/False) for
every record. We will calculate the accuracy based on these evaluation results.

However, such an evaluation process carries risks as we cannot guarantee the infallibility of GPT-4.
To ensure the validity of the evaluation, we have conducted extensive experiments to demonstrate
that the GPT evaluation method aligns well with human evaluation.

D.3 Evaluation Consistency

We conduct experiments to assess the consistency between GPT-4’s evaluation results and human
evaluation results. In this work, we follow GPTScore [67] to use Spearman coefficient [68] to
investigate the correlation between GPT evaluation and human evaluation. Based on the evaluation
results in Tabel 3, we can conduct correlation analysis separately by the types of model and paradigm.

Comparison of LLM Backbones. As shown in Figure 10, we observe that the Spearman correlation
coefficients on all LLM backbones are greater than 0.8, which means the human evaluation and GPT
evaluation on these five LLM backbones is highly correlated.

Comparison of LLM Paradigm. Moreover, we also conduct correlation under different LLM
paradigms for UrbanKGC tasks. As can be seen in Figure 11, all four types of paradigm have a higher
Spearman value above 0.85. Therefore, deriving the GPT evaluation method is also applicable to
different LLM paradigms when finishing UrbanKGC tasks as its evaluation aligns well with that of
the human being.

Analysis of Evaluation Repeat. Nevertheless, the above correlation analysis is based on results
in Table 3, which are obtained after only single evaluation. To deeply understand the evaluation
mechanism, We repeatedly instruct GPT-4 to generate 1, 3, 5, and 10 evaluation results to understand
the variance of the evaluation method. To save the cost, we perform the above analysis using
UrbanKGent-7B only on the NYC dataset. The results are shown in Table 8, although the coefficient
value will decrease as the number of repeated experiments increases. However its value has always
remained within a high correlation range (roughly 0.85).

E In-Depth Analysis

In this section, we aim to perform more comprehensive analysis of our proposed UrbanKGent
agent and hope to answer the following research questions. (1) RQ1: How does the constructed
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Table 8: The average Spearman correlation value between human evaluations and GPT-4 evaluations.
"Repeat X times" refers to instructing GPT-4 to generate judgments X times, and adopting the answer
that appears most frequently (e.g., True/False for the KGC task and Number of the true triplet for the
RTE task) as the final decision.

Task Repeat Once Repeat 3 times Repeat 5 times Repeat 10 times

RTE 98.56% 87.31% 86.42% 85.27%
KGC 94.86% 91.23% 90.09% 91.24%

Table 9: The experimental results of relational triplet extraction (RTE) and knowledge graph comple-
tion (KGC) on the NYC-Large dataset and CHI-Large dataset. To save the cost, We choose the best
approaches in zero-shot-learning (ZSL), In-context-learning (ICL), Vanilla Fine-tuning (VFT), and
UrbanKGent Inference setting.

Models
NYC-Large CHI-Large

GPT(acc/confidence) Human(acc) GPT(acc/confidence) Human(acc)
RTE KGC RTE KGC RTE KGC RTE KGC

ZSL 0.36/4.01 0.45/3.95 0.42 0.31 0.38/4.27 0.33/3.67 0.44 0.36
ICL 0.39/4.36 0.48/4.15 0.48 0.39 0.38/4.22 0.35/3.53 0.40 0.35
VFT 0.37/4.05 0.46/3.98 0.45 0.35 0.33/4.25 0.28/3.67 0.38 0.34

UrbanKGent Inference 0.43/4.13 0.51/3.87 0.51 0.43 0.47/4.33 0.43/3.63 0.49 0.42

UrbanKGent-7B 0.44/4.27 0.50/4.07 0.53 0.44 0.48/4.25 0.42/3.85 0.55 0. 46
UrbanKGent-8B 0.43/4.07 0.51/4.16 0.52 0.44 0.49/4.21 0.43/3.77 0.53 0. 44

UrbanKGent-13B 0.46/4.56 0.52/3.67 0.55 0.46 0.55/4.29 0.49/3.24 0.58 0.49

UrbanKGent perform compared with existing paradigms on larger real-world dataset? (2) RQ2: How
do different components (e.g., the knowledgeable instruction generation) affect the performance?
(3) RQ3: How the complexity and efficiency of proposed UrbanKGent framework? (4) RQ4: How
about the UrbanKGent inference trajectories when completing UrbanKGC tasks? (5) RQ5: How can
the constructed UrbanKGent provide application service to real-world scenarios?

E.1 RQ1: Evaluation on Larger Dataset

As shown in Table 9, we derive UrbanKGent-13B for urban knowledge graph construction using
constructed large-scale dataset in NYC and CHI. Specifically, we directly use the text record in
NYC-Large and CHI-Large for the relational triplet extraction task. Then, we randomly sample the
head-tail entity pairs (both of head and tail entities contain geometry information) from these triplets
for knowledge graph completion. Nevertheless, iterating all head-tail entity pairs is a time-consuming
task, so we just construct a KGC dataset consistent with the sacle of the RTE dataset. By performing
RTE and KGC tasks, we obtain two large-scale UrbanKGs shown in Table 4. Compared with existing
dataset and benchmark UUKG [8], we can clearly observe that our agent can only use one-fifth data
to construct the UrbanKG with the same scale entities and triplets, but extend the relationship types
to a thousand times. It is worth noting that all construction process is completed by a LLM agent
without any mannul effort. We think it is the core of this work.

Moreover, we also report the performance of the RTE and KGC in NYC-Large dataset. To save the
cost of GPT self-evaluation, we only choose the best approaches in ZSL, ICL, VFT and UrbanKGent
Inference. The experimental results are shown in Table 9. As can be seen, the fine-tuned UrbanKGC
agent, whether 7B or 13B version, could achieve state-of-art performance on UrbanKGC tasks.

E.2 RQ2: Ablation Studies

We conduct an in-depth analysis of the proposed instruction generation and tool-augmented iterative
trajectory refinement module on the NYC dataset. Specifically, for the RTE and KGC task, we
validate the effectiveness of each block by comparing the following variants: (1) UrbanKGent-7B♠

removes knowledgeable instruction template in RTE and KGC task; (2) UKGent⋆ removes multi-view
design in RTE task; (3) UrbanKGent-7B‡ removes external geospatial tool invocation block; (4)
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Table 10: Effect of different blocks.

Models GPT (acc/confidence) Human (acc)
RTE KGC RTE KGC

UrbanKGent-7B♠ 0.38/4.17 0.42/3.98 0.37 0.34
UrbanKGent-7B⋆ 0.34/4.06 0.45/4.02 0.34 0.39
UrbanKGent-7B‡ 0.45/4.32 0.40/3.97 0.45 0.23
UrbanKGent-7B† 0.44/4.10 0.47/3.85 0.46 0.43

Table 11: Comparison among LLM-based UrbanKGC methods in four ways.

Method Extra
Knowledge

Require
Fine-tuning

Tool
Invokation

Self
Refinement

ZSL × × × ×
ICL

√
× × ×

VFT
√ √

× ×
UrbanKGent Inference

√
×

√ √

UrbanKGent
√ √ √ √

UrbanKGent-7B† removes iterative trajectory self-refinement. We summarize the results in Table 10,
and obtain the following observations.

First, knowledgeable instruction generation contributes to the overall performance of both RTE and
KGC tasks. We observe a performance degradation by removing the knowledgeable instruction
template. Second, the multi-view instruction design provides the most performance gain, which
matches our intuition that the UrbanKG text contains heterogeneous relationships that can be effec-
tively extracted by multi-view prompting design. Third, the tool invocation is very important for the
KGC task, as we can observe significant performance degradation after removing the tool invocation.
In addition, the iterative trajectory self-refinement brings consistent performance gain for both the
RTE and KGC tasks.

E.3 RQ3: Complexity and Effiency Analysis

We make a comparison with the four paradigms to demonstrate the advantages of the constructed
agent, which is shown in Table 11. Compared with Zero-shot reasoning (ZSL), In-context Learning
(ICL), Vanilla Fine-tuning (VFT), and UrbanKGent Inference, UrbanKGent can incorporate extra
urban knowledge, invoke external tools and iteratively self-refine to help better complete UrbanKGC
tasks.

Moreover, we also provide comprehensive efficiency analysis to show the latency and cost of different
models when completing UrbanKGC tasks. Specifically, we report the total inference time and cost9
of each method completing with 1,000 RTE and KGC tasks. For the cost of GPT-4 service, we first
count the number of prompt token and completion token spent on 1,000 RTE and KGC tasks, and
then calculate the cost based on billing standards. As for the cost of UrbanKGent-13B, we first count
the GPU running time spent on 1,000 RTE and KGC tasks, and then calculate the cost based on the
A800 charging standard.

In addition, as reported in table 12, we also provide detailed inference latency of UrbanKGent family
when deriving them for constructing different-scale of UrbanKGs.

E.4 RQ4: Case Study

As shown in Figure 8, we present the detailed reasoning process of constructed UrbanKGent-13B
when finishing urban relational triplet extraction and knowledge graph completion task. Since the

9We subscribe to the NVIDIA A800 computing resources and GPT service from HKUST(GZ). Following
the standard price instruction, we could calculate cost of GPT-based baselines or Llama-based baselines.
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Table 12: The inference latency comparison of UrbanKGC using UrbanKGent family. We use two
middle-size dataset (i.e., NYC and CHI) and two large-scale dataset (i.e., NYC-Large and CHI-Large)
for UrbanKG construction.

Dataset Latency (minutes) Data VolumeUrbanKGent-7B UrbanKGent-8B UrbanKGent-13B

NYC 1.19 1.58 3.19 2,089
CHI 0.62 1.13 1.68 1,102

NYC-Large 23.07 30.76 61.93 40,480
CHI-Large 16.55 21.93 44.47 28,868

- 0.57 0.76 1.53 Per 1,000 records

Table 13: The statistic of entity and relation ontology of constructed UrbanKGs on NYC-Large and
CHI-Large datset.

UrbanKG Dataset # Coarse-grained
Entity Ontology

# Fine-grained
Entity Ontology

# Coarse-grained
Relation Ontology

# Fine-grained
Relation Ontology # Entity # Triplet

NYC-Large 4 6,281 4 2,138 228,928 905,442
CHI-Large 4 2,559 4 1,336 95,813 563,290

iterative self-refinement process contains excessive text, we display the reasoning process of only one
iteration.

E.5 RQ5: Agent Application

We have released the UrbanKGent family consisting of 7B, 8B and 13B version in the Huggingface.
The opensourced UrbanKGent family offer urban knowledge graph construction service for the
researcher in this field. We provide application example in New York and Chicago. Specifically,
following the UrbanKGent Inference framework, we sequentially derive UrbanKGent-13B for
relational triplet extraction and knowledge graph completion. The obtained initial UrbanKGs encodes
diverse urban spatial, temporal and functional knowledge. Then, we propose to use a two-stage triplet
filtering and relation merging operation to further improve the quality of constructed UrbanKGs.

In the first stage, low-frequency relations (occur 5 times or less) are merged into high-frequency
relations based on relation similarity threshold. The remaining low-frequency triples, whose similarity
with any high-frequency relation is below the threshold will be filtered out. In the stage two, we
first perform relation clustering based on the embedding of relations. Then, Within each cluster,
we prompt LLM to identify semantically similar relations that can be merged into a single relation
category, resulting the final set of merged relations.

As shown in Table 13, both urban entity and relation can be pre-categorized into 4 coarse-grained
ontologies: spatial, temporal, functional, and others. The entity percentage of spatial, temporal,
functional and others in NYC-Large is (68.34%, 17.66%, 10.39%, 3.61%), and in CHI-Large is
(63.29%, 16.68%, 12.09%, 7.94%). The relation percentage of spatial, temporal, functional and
others in NYC-Large and CHI-Large are (57.36%, 16.38%, 20.89%, 5.37%) and (60.57%, 15.11%,
21.67% and 2.65%), respectively. After multi-view entity recognition and relation extraction (shown
in Figure 4(a) in our paper), the fine-grained entity ontologies (6,281 and 2,559 entity types of
NYC-Large and CHI-Large UrbanKGs, respectively) and fine-grained relation ontologies (2,138 and
1,366 relation types of NYC-Large and CHI-Large UrbanKGs, respectively) are obtained.

F Limitation and Future Work

This work has limitation on the further application demonstration of construction UrbanKGs, although
proposed UrbanKGent family could construct a UrbanKG with a hundreds relationship using only
one-fifth of data. In addition, the evaluation method in this work is cost-intensive although GPT
evaluation and Human evaluation has been experimentally demonstrated to be consistent. Despite the
above limitations, we hope the opensource UrbanKGC agent can foster more extensive UrbanKG
research and broad smart city application. In the future, we will derive extra image-modality data to
further enrich UrbanKGC.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the end of abstract and introduction, the main claims are made.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in Appendix F

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper focus on domain application, no theory assumptions or proofs
provided in this paper.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Researcher could follow the provided code to reproduce experimental results.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[Yes]
Justification: The code and data are in the supplementary material.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All training details could be found in the code of the supplementary material.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Necessary statistical indicator of the results are provided in Section 8.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the experimental setting section 5.1, detailed computing resources explana-
tion is provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper follows the NeurIPS Code Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the end of introduction and agent application section 5.3, we discuss how
can our proposed LLM agent to be deployed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The data and models used in this paper are opensourced, there is no critical
issue in model and data.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The researcher can follow CC-BY 4.0 license to use the data and code in this
paper.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license of
a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide illustrative details for the new dataset construction in Section 2.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The human evaluation details could be found in Appendix D
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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