
Genetic Curriculum Learning for Distribution
Generalization on the Travelling Salesman Problem

Michael Li
University of Washington

ml10872@uw.edu

Christopher Haberland
University of Washington

haberc@uw.edu

Natasha Jaques
University of Washington
nj@cs.washington.edu

Abstract

The Travelling Salesman Problem (TSP) is a classic NP-hard combinatorial op-
timization task with numerous practical applications. Classic heuristic solvers –
and Large Language Models (LLMs) using such solvers as a tool – can attain near-
optimal performance for small problem instances, but become computationally
intractable for larger problems. Real-world logistics problems such as dynamically
re-routing last-mile deliveries demand a solver with fast inference time, which has
led to specialized neural network solvers being favored in practice. However, neural
networks struggle to generalize beyond the synthetic data they were trained on. In
particular, we show that there exist TSP distributions that are realistic in practice,
which also consistently lead to poor worst-case performance for existing neural
approaches. To address distributional robustness, we present Genetic Curriculum
Learning (GCL), an efficient novel approach utilizing automatic curricula. We
also present TSPLib50, a dataset of realistically distributed TSP samples, which
tests real-world distribution generalization ability without conflating this issue with
TSP instance size. We evaluate our method on various synthetic datasets as well
as TSPLib50, and compare to state-of-the-art LLM results and neural baselines.
We demonstrate that GCL improves distributional robustness, with most of its
performance gains coming from worst-case scenarios.

1 Introduction

From least-cost shipping and warehouse logistics to efficient automated circuit board drilling, the
Traveling Salesman Problem (TSP) has an outsized impact on global trade, accounting for billions
of dollars worth of saved time, energy, and harmful emissions. The TSP is NP-hard, which means
there exists no efficient algorithm for finding exact solutions. Classic heuristic methods have
prohibitive runtimes for real-world situations requiring fast and dynamic decision-making. Neural
combinatorial optimization (NCO) methods seek to effectively solve the TSP at lower computational
cost [18, 10, 22], but generalize poorly to unfamiliar distributions [11, 6]. In practice, such planning
faults can be very expensive in terms of wasted time, money, and human resources.

Given impressive recent gains in reasoning capabilities of Large Language Models (LLMs) [27,
28, 17], LLMs potentially provide a promising path for solving novel TSP instances. However,
LLMs currently perform suboptimally on the TSP [13, 26]. In this paper we directly study the
performance of state-of-the-art LLMs prompted to solve TSP problems, and find that they have
similarly prohibitive inference times as classic heuristics, in addition to inconsistent performance.

Instead, we propose a novel adversarial training technique to enhance the robustness of NCO methods.
Rather than training on limited TSP datasets or randomly generated TSP instances, which is inefficient
and wasteful due to the high-dimensional parameter space, we propose to use a curriculum learning
approach in which environments and tasks are adaptively evolved to be more challenging [3]. As
applied to TSP solvers, a “task” or a “level” would be a TSP instance that needs to be solved.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Curriculum-based methods have shown promise for combinatorial optimization [15], but past works
utilize very simple heuristic regimes, and are also focused on generalization across lengths, not
distributions [20]. Zhang et al. [29] proposed a hardness-adaptive curriculum (HAC), which uses
gradient ascent to produce increasingly harder levels. However, we show that HAC’s sampling and
gradient ascent procedure causes unreliable performance on specific types of TSP instances which
are of practical interest.

In this paper, we seek to improve model robustness to different distributions. We present an NCO
optimization approach which maintains the computational benefits of NCO methods while improving
generalization on disparate but practical distributions. We make the following contributions: 1)
We propose the TSPLib50 dataset, a testing dataset of 10,000 instances sampled from realistic
distributions, designed to test the robustness of TSP solvers; 2) We propose an automatic curriculum
which mutates high-improvement-potential training distributions; 3) We present empirical results
comparing the performance to the best prior work on curriculum learning for NCO and state-of-the-art
LLMs, and show that our method gives better worst-case performance and improved robustness to
varying distributions of practical interest. Our method is also relatively efficient to train, requiring
only a single GPU and no more than a few hours of training for each model.

2 Background

Traveling Salesman Problem. The Traveling Salesman Problem (TSP) is a NP-Complete com-
binatorial optimization problem (COP), which requires finding the shortest tour through a set of
cities. The TSP has been of intense interest to computational theorists due to its applicability in many
practical scenarios, especially in the logistics sector. Past works as well as this paper consider the
2D-Euclidean TSP, which is formally defined in the Appendix.

Deep and Reinforcement Learning for TSP. Neural combinatorial optimization (NCO), or the
use of deep learning for combinatorial optimization, can be broadly grouped into three primary
approaches: solutions utilizing 1) pointer networks [23, 14], 2) graph neural networks [8, 19, 30],
or 3) transformers [12]. Reinforcement learning (RL) has seen successful applications in learning
to solve the TSP [16, 4]. Deep RL methods often use a neural network to generate a tour, and then
treat tour length as a negative reward, or “cost”. Kool et al. [10] propose a transformer-based solver
trained with REINFORCE [25], using a simple deterministic greedy rollout baseline. However, neural
networks are known to often generalize poorly to distributions outside their training data, and existing
NCO solvers are no exception. This makes them a risky solution for real-world deployments, in
spite of their fast inference time. In this paper, we aim to improve the reliability and robustness of
RL-based NCO approaches.

Curriculum Learning for TSP. Curriculum methods improve robustness and sample efficiency by
proposing tasks to learn from which are optimal for learning by being neither too easy nor too hard
[3, 24, 1], and have been applied to real-world problems such as web navigation [7]. In the context
of Neural COP solvers, Zhang et al. [29] propose a hardness-adaptive curriculum (HAC) for the
TSP, which mainly consists of two components: a hardness-adaptive generator that conducts gradient
ascent on training instances, and a re-weighting procedure for batch gradients in favor of updates
for harder levels. We directly compare to HAC in this work, and include the HAC hardness metric
H(X,M) as defined by Zhang et al. [29] in the Appendix. The hardness-adaptive generator conducts
gradient ascent on input samples X(t) given a model M [29]: X(t)′ = X(t) + η∇X(t)H(X(t),M).

3 Preliminary Study

TSPLib50 and Other Evaluation Datasets. We first motivate the creation of TSPLib50, a new
testing dataset. TSPLib, a collection of real-world TSP instances, is often used as a benchmark for
combinatorial optimization solvers [21]. Because TSPLib is based on real data, its distributions are
both varied and relevant for real-world applications. However, many solvers are trained on relatively
small TSP instances. When tested on TSPLib, the gaps incurred by such models are correlated with
instance size. For instance, we find a strong Pearson correlation of 0.907 between TSPLib instance
size and optimality gap of HAC models (see the Appendix). Improving model generalization to larger
instance sizes often requires extensive computational resources, and is beyond the scope of preceding
papers as well as this paper.

2

Figure 1: Example high-gap instances of a HAC model tested on TSPLib50. We see that all of these
failure cases have large distances between node clusters, and thus deviate far from uniform levels.

Figure 2: Architecture of our proposed Genetic Curriculum system. After the forward pass, we
compute improvement and then mutate high-improvement levels while saving Fisher information
about low-improvement levels.

Following the work of Zhang et al. [29], we focus on 50-node instances. Hence, we introduce
TSPLib50, a dataset of 10,000 instances, each created by sampling 50 points uniformly at random
from a TSPLib instance. Because the distribution of points in TSPLib50 is the same in expectation
as the distribution of points in TSPLib, we can thus disentangle generalization ability on different
distributions with generalization ability on different instance sizes.

We also test performance of our method on challenging synthetic distributions. We test on a Gaussian
mixture distribution from prior work [29], and a “Diagonal” distribution of our design where all
points align with a main diagonal. We justify and visualize these distributions in the Appendix.

Hardness-Adaptive Curriculum Shortcomings. While HAC improves performance by training on
harder distributions [29], it only conducts one step of gradient ascent on data sampled from a uniform
distribution. As a result, HAC fails to cover instances that deviate far from a uniform distribution.

In HAC, changes in X(t) are determined by η∇X(t)H(X(t),M). We find that elements in
η|∇X(t)H(X(t),M)| tend to have a mean around 0.077 and median around 0.023, which are small
relative to the unit square [0, 1]2 that points are placed in. Thus, points are only mildly perturbed.

In Figure 1, we visualize high-gap TSPLib50 levels for HAC, and find that HAC performs sub-
optimally on levels with large distances between nodes. TSPLib50 bootstraps from real-world
distributions, and thus represents use cases of practical interest. We seek to address this issue.

4 Genetic Curriculum Learning

Improvement Potential Metric. In Genetic Curriculum learning (GCL), we compute the “improve-
ment potential” I(X,M) for each training instance after each epoch with the current model M and
REINFORCE baseline model M ′: I(X,M) = CM (X)− CM ′(X). Note that I(X,M) is similar to
H(X,M) as used by Zhang et al. [29].

3

Figure 3: Gaps across training epochs of our proposed Genetic Curriculum model compared to
baselines, on average cases across different distributions and worst-case scenarios in TSPLib50. The
optimality gap of GPT-4o on TSPLib50 is around 90% on a small sample, and is not plotted due to
the different scale of those values relative to existing results.

Genetic Curriculum Algorithm. GCL proposes novel usage of an evolutionary approach to maintain
a population of challenging levels, drawing inspiration from genetic programming [2]. GCL stores
a population of level “genes” that describe the probabilistic process creating the levels. After each
epoch, the 50% of highest improvement-potential levels have their genes edited and placed into
the next epoch. We find that mutating a population of genes achieves better results than mutating
a population of levels. The genome consists of 6 bases: 0) Cluster size of the distribution points
are drawn from; 1) Cluster width of the distribution points are drawn from; 2) Rotation angle; 3)
Scale factor; 4) x-axis translation factor; 5) y-axis translation factor. Through this genome, we try
to address distribution invariance, rotational invariance, scale invariance, and translation invariance.
Technical details of level sampling from genomes, genetic mutation procedure, and motivation for
related hyperparameters are in the Appendix.

GCL also uses Elastic Weight Consolidation (EWC) [9] to maintain performance on its learned knowl-
edge, because as the genetic curriculum evolves to harder instances, it is possible that catastrophic
forgetting is leading the model to perform poorly on easier instances. Figure 2 provides a diagram of
the architecture of GCL. An algorithmic specification of GCL is provided in the Appendix.

5 Experiments

Our experiments work on fine-tuning an attention-based model with a REINFORCE rollout baseline,
previously trained exclusively on uniform random distributions. We compare our model to results
from OpenAI’s GPT-4o, a state-of-the-art LLM. We also compare against 2 NCO baselines: a
“Uniform” baseline which samples from uniform distributions without curriculum, and a “HAC”
baseline which samples from uniform distributions but uses HAC. Notably, all experiments are run
on a single GPU, and no model takes longer than a few hours to train. Full experimental details and
hyperparameters are in the Appendix.1

We plot gaps of all models relative to oracles. We present results for average gaps on the Gaussian
Mixture, Diagonal, and TSPLib50 distributions. We also present results on worst-case 1%, 0.5%, and
0.1% of gaps on TSPLib50, to demonstrate robustness to challenging out-of-distribution cases.

To further investigate our method, we run three tests to better interpret GCL. First, we run ablation
tests on the genome and EWC components of our method. Second, we plot the distribution of each
genome base over the course of training, to better understand the role the genome plays in GCL.
Third, we plot the optimality gap of our baseline model M ′ and current model M on training data
over the course of training, to better understand model convergence behavior.

6 Results

Large Language Model Performance. Despite advances in mathematical and reasoning capabilities,
Large Language Models (LLMs) often fail to find satisfactorily optimal TSP solutions, and have
prohibitively slow inference, requiring around 47 seconds on average. Even with prompt engineering,

1All code is provided at https://github.com/ML72/Genetic-Curriculum-TSP/

4

https://github.com/ML72/Genetic-Curriculum-TSP/

LLMs still produce inconsistent and suboptimal responses. Details about our TSP-related LLM
experiments are in the Appendix.

Dataset Model Gap Avg (%) Gap Std (%)

Gaussian
Mixture

Uniform 15.0049 1.1970
HAC 8.8460 0.3032
GCL (Ours) 6.2214 0.2155

Diagonal
Uniform 7.2115 0.1822
HAC 3.9447 0.1346
GCL (Ours) 3.0165 0.0318

TSPLib50
Uniform 2.3206 0.0082
HAC 1.8183 0.0167
GCL (Ours) 1.7738 0.0119

Table 1: Average Model Gap Across Distributions

Average Gaps. Average gap results can be seen in Table 1. On all distributions, HAC already
improves significantly on the uniform baseline, as HAC uses a hardness-adaptive generator. GCL,
our proposed method, achieves consistent improvement over HAC on the harder distributions. We
observe an approximately 1/4 factor gap decrease on both hard distributions: the gap decreases from
8.85% to 6.22% on Gaussian mixtures, and from 3.94% to 3.02% on the diagonal distribution. For
the TSPLib50 distribution, GCL improves only slightly on HAC in terms of average gap. This makes
sense because a large portion of TSPLib50 levels are easy, while GCL focuses on robustness to
challenging levels.

We find decreases in average gap between HAC and GCL to be statistically significant, with values of
p < 0.01 in two-sample t-tests for all distributions.

Worst-Case Gaps. We can see that the slight improvement on TSPLib50 average gap mostly comes
from gap decreases on hard levels by analyzing worst-case scenarios. On TSPLib50, GCL provides a
1.82% gap improvement on the worst 1% of cases, a 2.52% gap improvement on the worst 0.5%, and
a 3.42% gap improvement on the worst 0.1%. This is significant because in large-scale real-world
applications that route millions of TSP problems every day, 1% of routes is still an important and
costly fraction. For example, if a large shipping company routes 40,000 loads, 1% of routes would
still equate to 400 loads.

We find decreases in worst-case TSPLib50 gap between HAC and GCL to be statistically significant,
with values of p < 0.001 in two-sample t-tests for worst 1% and worst 0.5%, and p < 0.03 for worst
0.1%. GCL also improves gap from 204.40% by HAC to 98.47% on the worst 1% of Gaussian
Mixture cases, and from 31.63% by HAC to 14.03% on the worst 1% of Diagonal cases. This
demonstrates GCL’s significant impact on improving robustness in the most challenging scenarios.
Detailed tables are in the Appendix.

Method Interpretations. In our ablation tests, we find that performance gains are mainly provided by
the genetic component of our method. In our genome evolution plots, we observe that the diversity of
genome bases decreases over training, suggesting our genome is effective at encouraging exploration
of new configurations. In our optimality gap plot, we observe that the baseline gap starts higher than
model gap, but dramatically decreases at around epoch 60, which further supports the previous point
on the genome promoting exploration. Detailed results and explanations are in the Appendix.

7 Discussion

Our results demonstrate that GCL is able to significantly improve the performance of TSP solvers
on hard distributions. We also show that a portion of this improvement occurs in “worst-case”
scenarios on real-world distributions of practical interest. Such improved robustness and performance
guarantees are significant in real-world deployment.

GCL is a general methodology, and could be applied to other NCOs methods or COPs. As the Kool
et al. [10] architecture generalizes to other problems such as the Vehicle Routing Problem (VRP) and
Capacitated VRP (CVRP), it would be exciting to see GCL used for other COPs.

5

References
[1] A. S. Azad, I. Gur, J. Emhoff, N. Alexis, A. Faust, P. Abbeel, and I. Stoica. CLUTR: Cur-

riculum learning via unsupervised task representation learning. In A. Krause, E. Brunskill,
K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 1361–1395. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
azad23a.html.

[2] H. Bai, R. Cheng, and Y. Jin. Evolutionary reinforcement learning: A survey. Intelligent
Computing, 2:0025, 2023.

[3] M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine. Emergent
complexity and zero-shot transfer via unsupervised environment design. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook,
NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[4] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau. Learning heuristics
for the tsp by policy gradient. In W.-J. van Hoeve, editor, Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pages 170–181, Cham, 2018. Springer
International Publishing. ISBN 978-3-319-93031-2.

[5] M. M. Flood. The Traveling-Salesman Problem. Operations Research, Feb. 1956. doi:
10.1287/opre.4.1.61.

[6] Z.-H. Fu, K.-B. Qiu, and H. Zha. Generalize a Small Pre-trained Model to Arbitrarily Large
TSP Instances. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8):7474–7482,
2021. doi: 10.1609/aaai.v35i8.16916.

[7] I. Gur, N. Jaques, Y. Miao, J. Choi, M. Tiwari, H. Lee, and A. Faust. Environment generation
for zero-shot compositional reinforcement learning, 2022. URL https://arxiv.org/abs/
2201.08896.

[8] C. K. Joshi, T. Laurent, and X. Bresson. An efficient graph convolutional network technique for
the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[9] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
R. Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526, Mar. 2017. ISSN 1091-6490. doi: 10.1073/pnas.
1611835114. URL http://dx.doi.org/10.1073/pnas.1611835114.

[10] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

[11] M. Lisicki, A. Afkanpour, and G. W. Taylor. Evaluating curriculum learning strategies in neural
combinatorial optimization. In Learning Meets Combinatorial Algorithms at NeurIPS2020,
2020. URL https://openreview.net/forum?id=dZrtnd0nkc.

[12] S. Liu, Y. Zhang, K. Tang, and X. Yao. How good is neural combinatorial optimization? a
systematic evaluation on the traveling salesman problem. IEEE Computational Intelligence
Magazine, 18(3):14–28, 2023.

[13] S. Liu, C. Chen, X. Qu, K. Tang, and Y.-S. Ong. Large language models as evolutionary
optimizers, 2024. URL https://arxiv.org/abs/2310.19046.

[14] Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori. Combinatorial optimization by graph pointer
networks and hierarchical reinforcement learning. AAAI Workshop on Deep Learning AAAI
Workshop on Deep Learning on Graphs: Methodologies and Applications, 2019.

[15] S. Manchanda, S. Michel, D. Drakulic, and J.-M. Andreoli. On the generalization of neural
combinatorial optimization heuristics, 2022. URL https://arxiv.org/abs/2206.00787.

[16] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Reinforcement learning for combinato-
rial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

[17] S. Meng, Y. Wang, C.-F. Yang, N. Peng, and K.-W. Chang. Llm-a*: Large language model
enhanced incremental heuristic search on path planning. arXiv preprint arXiv:2407.02511,
2024.

6

https://proceedings.mlr.press/v202/azad23a.html
https://proceedings.mlr.press/v202/azad23a.html
https://arxiv.org/abs/2201.08896
https://arxiv.org/abs/2201.08896
http://dx.doi.org/10.1073/pnas.1611835114
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=dZrtnd0nkc
https://arxiv.org/abs/2310.19046
https://arxiv.org/abs/2206.00787

[18] S. Miki, D. Yamamoto, and H. Ebara. Applying deep learning and reinforcement learning to
traveling salesman problem. In 2018 international conference on computing, electronics &
communications engineering (ICCECE), pages 65–70. IEEE, 2018.

[19] Y. Min, Y. Bai, and C. P. Gomes. Unsupervised learning for solving the travelling salesman
problem. Advances in Neural Information Processing Systems, 36, 2024.

[20] W. Ouyang, Y. Wang, P. Weng, and S. Han. Generalization in deep rl for tsp problems via
equivariance and local search, 2021. URL https://arxiv.org/abs/2110.03595.

[21] G. Reinhelt. {TSPLIB}: a library of sample instances for the tsp (and related problems) from var-
ious sources and of various types. URL: http://comopt. ifi. uniheidelberg. de/software/TSPLIB95,
2014.

[22] Y. Shi and Y. Zhang. The neural network methods for solving traveling salesman problem.
Procedia Computer Science, 199:681–686, 2022. ISSN 1877-0509. doi: https://doi.org/10.
1016/j.procs.2022.01.084. URL https://www.sciencedirect.com/science/article/
pii/S1877050922000850. The 8th International Conference on Information Technology and
Quantitative Management (ITQM 2020 2021): Developing Global Digital Economy after
COVID-19.

[23] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks, 2017. URL https://arxiv.org/
abs/1506.03134.

[24] R. E. Wang, J. Mu, D. Arumugam, N. Jaques, and N. Goodman. In the zone: Measuring
difficulty and progression in curriculum generation. In Deep Reinforcement Learning Workshop
NeurIPS 2022, 2022.

[25] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

[26] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen. Large language models as
optimizers, 2024. URL https://arxiv.org/abs/2309.03409.

[27] K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. J. Prenger, and
A. Anandkumar. Leandojo: Theorem proving with retrieval-augmented language models.
Advances in Neural Information Processing Systems, 36, 2024.

[28] E. Zelikman, Q. Huang, G. Poesia, N. Goodman, and N. Haber. Parsel: Algorithmic reason-
ing with language models by composing decompositions. Advances in Neural Information
Processing Systems, 36:31466–31523, 2023.

[29] Z. Zhang, Z. Zhang, X. Wang, and W. Zhu. Learning to solve travelling salesman problem with
hardness-adaptive curriculum. In Proceedings of the AAAI Conference on Artificial Intelligence,
2022.

[30] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural
networks: A review of methods and applications. 2021.

A Formal Definitions

A.1 Traveling Salesman Problem

Formally, given a set of cities V = {1, 2, . . . , n} and a n× n distance matrix D where Di,j is a real
number denoting the distance between city i and city j, the Traveling Salesman Problem (TSP) seeks
to find the optimal permutation of cities σ∗ that minimizes total tour length [5]:

σ∗ = argmin
σ

[
Dσ(n),σ(1) +

n−1∑
i=1

Dσ(i),σ(i+1)

]
(1)

The 2D-Euclidean TSP is a special case of the TSP where all cities are given a position on the 2D
Euclidean plane, and all Di,j represent the Euclidean distance between cities i and j. Because σ∗ is
theoretically translation-invariant and scale-invariant, 2D-Euclidean TSP problems often provide city
locations that are translated and scaled to fit in the [0, 1]2 unit square.

7

https://arxiv.org/abs/2110.03595
https://www.sciencedirect.com/science/article/pii/S1877050922000850
https://www.sciencedirect.com/science/article/pii/S1877050922000850
https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/2309.03409

Figure 4: There is a Pearson correlation of 0.907 between HAC gap and TSPLib instance size. All
2D-Euclidean TSPLib instances with 1400 or fewer nodes are included.

A.2 Elastic Weight Consolidation

For an old task A and a new task B, Elastic Weight Consolidation (EWC) computes a mean given by
the model parameters θ∗A and the diagonal of the Fisher information matrix F . For some importance
hyperparameter λ and loss LB(θ) on task B, EWC loss is formally defined as follows [9]:

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2 (2)

A.3 Optimality Gap

The optimality gap G for a dataset X used by the hardness-adaptive generator is the gap in cost C
between the current model M and an oracle model M∗:

G(X,M) =
CM (X)− CM∗(X)

CM∗(X)
(3)

A.4 HAC Hardness Metric

The hardness metricH for a dataset X used by the hardness-adaptive generator is the gap in cost C
between the current model M and a surrogate model M ′ which is greedily updated by a few steps of
gradient descent [29]:

H(X,M) =
CM (X)− CM ′(X)

CM ′(X)
(4)

Note that the formulation for H(X,M) is similar to the formulation for G(X,M). In fact, Zhang
et al. [29] observe thatH(X,M) is always a lower bound for G(X,M).

B Preliminary Study

B.1 Evaluation Datasets

Figure 4 demonstrates the high correlation between TSPLib instance size and resulting performance,
justifying the necessity of our creation of TSPLib50.

8

Figure 5: Visualizations of example instances from the distributions we evaluate on. For TSPLib50,
we also plot the original TSPLib instance that we sampled from.

Algorithm 1 Generate TSPLib50 Dataset
Parameter: Dataset size S
Output: Dataset D

1: Initialize empty dataset D
2: Initialize list of 2D-Euclidean TSPLib levels L
3: L← [l in L if size(l) ≥ 150]
4: for i = 0, 1, . . . , S − 1 do
5: l← L[i % length(L)]
6: l′ ← 50 points ∼ l
7: D ← D + l′

8: end for
9: return D

We also test on the Gaussian mixture distribution because it tends to pose a challenge to existing TSP
solvers, as noted by previous works [29].

We also test on a “Diagonal” distribution of our design because it is intended to be difficult in another
manner. Previously, we identified a common feature of HAC failure cases being that they have
much empty space, and we justified this interpretation mathematically. However, another common
feature of those cases is that they have points in distinct clusters. The diagonal distribution aims to
experimentally demonstrate that empty space is a primary factor for difficulty, by having all points
aligned along a main diagonal. As such, there is only one cluster, but there is still much empty space
on the level.

Figure 5 visualizes the TSPLib50, Gaussian Mixture, and Diagonal distributions.

B.2 Distribution Generation

Our algorithm for generating TSPLib50 is specified in Algorithm 1. Note that when generating
TSPLib50, we only sample from TSPLib instances with 150 or more nodes to ensure that there is
sufficient diversity in the generated TSPLib50 instances.

Our algorithm for generating Gaussian mixture datasets is specified in Algorithm 2. Note that while
we generate Gaussian mixture distributions in the same fashion as Zhang et al. [29], our dataset
composition is different. Zhang et al. [29] add instances of the uniform distribution and Gaussian
mixtures with cdist = 1 to the testing dataset. Note that Gaussian mixtures with cdist = 1 are “close
to uniform” by our definition, as there is not much empty space on the level. We do not do this,
and keep the Gaussian mixture distribution as purely Gaussian mixtures. Thus, our reported gaps

9

Algorithm 2 Generate Gaussian Mixture Dataset
Parameter: Dataset size S
Output: Dataset D

1: Initialize empty dataset D
2: for cdist ∈ [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] do
3: for i = 0, 1, . . . , S/10− 1 do
4: Number of centers ∼ Unif(3, 6)
5: Number of points per center ∼ Multinomial
6: Place centers within [0, cdist]

2

7: l← 50 points ∼ N (centers, 2I2)
8: Rescale l to fit in [0, 1]2

9: D ← D + l
10: end for
11: end for
12: return D

Algorithm 3 Generate Diagonal Dataset
Parameter: Dataset size S
Output: Dataset D

1: Initialize empty dataset D
2: for d ∈ [1, 2, 3, 4, 5] do
3: for i = 0, 1, . . . , S/5− 1 do
4: l← 50/d points distributed uniformly at each location from (1, 1), (2, 2), . . . (d, d)
5: Negate y-coordinates in l with p = 0.5
6: Rescale l to fit in [0, 1]2

7: D ← D + l
8: end for
9: end for

10: return D

with HAC are higher than those reported by Zhang et al. [29], as uniform distributions and Gaussian
mixtures with cdist = 1 incur very low gap.

Our algorithm for generating Diagonal datasets is specified in Algorithm 3.

C Genetic Curriculum Learning

C.1 Algorithmic Specification and Architecture

Algorithm 4 provides an algorithmic specification of GCL.

C.2 Genetic Algorithm

Recall that the GCL genome consists of 6 bases: 0) Cluster size of the distribution points are drawn
from; 1) Cluster width of the distribution points are drawn from; 2) Rotation angle; 3) Scale factor; 4)
x-axis translation factor; 5) y-axis translation factor.

Levels are drawn from a “clustered uniform distribution”, and then rotated, scaled, and translated
in that order. Combined, these parameters address distributional invariance, rotational invariance,
scale invariance, and translation invariance. Intuitively, the clustered uniform distribution generates
points in various clusters, which serves as a better starting point for the gradient ascent step in
the hardness-adaptive generator to reach a variety of distributions. A sampling algorithm for this
distribution is specified in Algorithm 5.

Beginning each epoch, training data is sampled from the genomes in a probabilistic process. Our
algorithm for sampling a level l from a gene g is specified in Algorithm 6.

10

Algorithm 4 Genetic Curriculum Learning
Input: Current model M , baseline model M ′, hardness-adaptive generator ϕ, genetic mutation
procedure ψ, genome distribution Ψ
Parameter: Batch size B, training epochs L, EWC sample size N , EWC importance λ
Output: Fine-tuned model M ′

1: Initialize and warm up M and M ′

2: Initialize genome G ∼ Ψ
3: for i = 1, 2, . . . , L do
4: Sample dataset D ∼ G
5: D′ ← ϕ(D)
6: for b = 1, 2, . . . , |D|/B do
7: Get batch data {X}Bi=1 from D
8: Pass batch data through baseline model M ′

9: Pass batch data through model M
10: Update model parameters with weighted gradients
11: end for
12: Compute improvement I = CM (X)− CM ′(X)
13: Sort D and G using I
14: Compute EWC Fisher matrix F with D[0 : N]
15: G[|G|/2 : |G|]← ψ(G[|G|/2 : |G|])
16: G[0 : |G|/2] ∼ Ψ
17: if C(M) < C(M ′) then
18: M ′ ←M
19: end if
20: end for
21: return M

Algorithm 5 Generate Clustered Uniform Dataset
Parameter: Dataset size S, cluster size c, noise ϵ
Output: Dataset D

1: Initialize empty dataset D
2: for i = 0, 1, . . . , S − 1 do
3: Number of centers← 50/c
4: Place centers within [0, 1]2

5: l← 50 points ∼ Unif(centers− ϵ, centers + ϵ)
6: Rescale l to fit in [0, 1]2

7: D ← D + l
8: end for
9: return D

Genetic mutation procedure ψ: After each epoch, we select the 50% of highest-improvement genes
and mutate their bases with ψ. Each base is incremented with probability 1/12 and decremented
with probability 1/12. Note that in aggregate, this means each base is mutated with probability 1/6.
Following are the min/max bounds and increment/decrement magnitudes for the bases:

• 0: Min = 1, Max = 25, Inc/Dec = ±1
• 1: Min = 0.03, Max = 0.08, Inc/Dec = ±0.01
• 2: Min ≈ −2π, Max ≈ 2π, Inc/Dec = ±0.1
• 3: Min = 0.7, Max = 1, Inc/Dec = ±0.1
• 4: Min = 0, Max = 1, Inc/Dec = ±0.1
• 5: Min = 0, Max = 1, Inc/Dec = ±0.1

Genome distribution Ψ: After each epoch, we select the 50% of lowest-improvement genes and
resample them from Ψ, as specified below per base. These initial values are often “middle” values
that allow exploration in both directions, which mitigates the possibility of getting stuck in a gene
pool “local minima”, as detailed in our hyperparameter interpretations below.

11

Algorithm 6 Sample Level from Genes
Input: Gene g
Output: Level l

1: l ∼ ClusteredUniform(c = g[0], ϵ = g[1])
2: l← Rotate(l, θ = g[2])
3: Rescale l to fit in [0, 1]2

4: l← l × g[3]
5: l← l + (∆x = g[4](1− g[3]),∆y = g[5](1− g[3]))
6: return l

• 0: Uniform split between {1, 5, 10, 15}
• 1: 0.05
• 2: 0
• 3: 1
• 4: 0.5
• 5: 0.5

Following are interpretations for the two important end-of-epoch mutation hyperparameters:

• Mutate 50% of high-improvement levels: We mutate the 50% of most improved levels
and re-sample 50% as it strikes a balance between fresh training distributions and hard
distributions that the model needs to improve at. This also minimizes the risk of getting
stuck in possible gene pool “local minima”, where the majority of genes are focused on
distributions that used to be hard, but are no longer challenging.

• Mutate each genome base with 1/6 probability: During mutation, each base is mutated
with 1/6 probability; because there are 6 bases in each level’s genome, in expectation only
one base is modified per mutation. This allows genetic diversity of levels while preventing
levels from mutating so much that the mutated genes’ difficulty is vastly different from the
original genes’ difficulty.

C.3 Elastic Weight Consolidation

After each epoch, a number N of least-improved levels are saved and used to compute Fisher
information diagonals and means for the network parameters θ. This is then used in the EWC penalty
for constraining gradient updates in the next epoch. The intuition is that low improvement-potential
levels are likely representative of the model’s strengths, and thus important related parameters should
not be changed.

D Experiments

D.1 Setup

Following the work of Kool et al. [10], we use an attention-based architecture trained with a REIN-
FORCE rollout baseline. We also use the gradient re-weighting curriculum from Zhang et al. [29].
All our experiments work on fine-tuning a model previously trained exclusively on uniform random
distributions. We work off the Kool et al. [10] codebase, which is released under an MIT license.

We compare our model against two baseline methods: a uniform baseline trained on uniform
distributions without any form of curriculum, and a HAC baseline which samples from uniform
distributions but uses HAC to make training instances more challenging. Note that the uniform
baseline is equivalent to the model used by Kool et al. [10], while the HAC baseline is equivalent to
the model used by Zhang et al. [29].

We plot gaps of all models relative to Concorde solutions, as Concorde is an optimal solver. For all
distributions, 10,000 instances are sampled for evaluation. We also train 5 models for each setting,
and report averaged results between the 5 models for each setting. We assume a normal distribution
of error across these averages, and plot error bars equal to 1-σ of these averages.

12

D.2 Hyperparameters

The base hyperparameters used for training all models are listed below. For fair comparison, we use
the same model architecture used by Kool et al. [10] and Zhang et al. [29].

• Architecture: embedding dim = 128, hidden dim = 128, num encode layers = 3

• Training: graph size = 50, baseline = rollout, baseline warmup epochs = 0, epoch size =
65536, batch size = 1024, epochs = 151, LR decay = 0.98

• HAC: η = 5, adaptive percent = 100

• EWC: λ = 1, warmup epochs = 20, num samples = 2048

The exact training and evaluation commands which we use to obtain our results are included in our
code. Those commands give additional information about default/implicit hyperparameters not listed.

Our criteria for selecting final parameter settings was best average gap on testing distributions. Note
that we did not tune all parameters concurrently; in particular, our EWC parameters were selected at
a stage of our tuning when EWC had a more significant effect on results. Hyperparameter ranges
used for tuning are as follows:

• Architecture: Not tuned, consistent with Kool et al. [10] and Zhang et al. [29]

• Training: baseline warmup epochs ∈ [0,1], epochs ∈ [101, 251], LR decay ∈ [0.95, 1]

• HAC: Not tuned, consistent with Zhang et al. [29]

• EWC: λ ∈ [0.01, 1000], warmup epochs ∈ [0,50], num samples ∈ [128, 2048]

D.3 Details

We train 5 models for each setting, and report aggregate results over the 5 models for each setting.
All test datasets were generated with the random seed “1234”. Our models are not explicitly seeded,
but we find variance between runs to be consistent and reproducible.

All experiments were run on a singular NVIDIA L40 GPU on a Linux operating system with 20GB
requested memory. However, our hyperparameter settings do not fully utilize GPU capabilities, and
results should be reproducible on lower-memory GPUs such as the GeForce RTX 4060. No model
takes longer than a few hours to train.

D.4 Source Code

Our source code is publicly available at https://github.com/ML72/Genetic-Curriculum-TSP.
Relevant software libraries and frameworks are listed in the dependencies file included in our code.
We also include special documentation on installing pyconcorde, which we use as our oracle solver.
All exact code used for plotting and conducting statistical tests is included in our code.

E Results

E.1 Large Language Model Results

Instance Inference Time (s) Optimal Distance GPT-4o Distance Gap (%)

Instance 1 52 4.8462 6.7730 39.7591
Instance 2 50 5.5103 24.4655 343.9992
Instance 3 41 4.0004 4.4332 10.8190
Instance 4 47 3.8288 4.4590 16.4596
Instance 5 47 3.0122 4.3116 43.1364

Average 47.4 4.2396 8.8885 90.8347
Table 2: GPT-4o Performance on Solving the TSP

13

https://github.com/ML72/Genetic-Curriculum-TSP

We run brief experiments to demonstrate that large language models have inconsistent performance
and lengthy inference times when asked to solve TSP problems. We prompted OpenAI’s GPT-4o,
which boasts state-of-the-art performance on mathematical and logical reasoning tasks, to solve the
first 5 TSP instances in TSPLib50. Performance on these instances is printed in Table 2.

As opposed to prior work which uses meta-prompts [26], we prompt the LLM to directly solve a given
TSP instance, for simplicity and faster inference. We use prompt engineering to improve response
performance and consistency to the best of our ability. In our prompt, we ask for a permutation of the
indices 1 to 50 and nothing else, to encourage the LLM to consistently return a valid permutation.
We also ask the LLM to solve the problem to the best of its ability, to avoid errors where the LLM
tries to use tools or libraries not in its environment and thus encounters an error. If we directly ask
for a solution to the TSP instance without such further instructions, the majority of responses do not
provide a tour, falling into one of the following failure cases:

• GPT-4o correctly identifies the problem as being the TSP and describes methods for approx-
imating a solution, but makes no attempt to solve the instance provided.

• GPT-4o provides code which runs classic heuristic-based algorithms to solve the TSP, but
does not provide an actual permutation.

• GPT-4o writes code and attempts to run it, but encounters into an error because some library
that it needs is not in its current environment.

A sample prompt is printed below:

There are 50 cities, respectively at the following locations on a 2D plane:
(0.42731, 0.17487), (0.91628, 0.1503), (0.29484, 0.32477), (0.79805, 0.83944),
(0.19764, 0.06484), (0.16905, 0.59943), (0.2539, 0.38879), (0.63631, 0.06185),
(0.29277, 0.18652), (0.15599, 0.57022), (0.12723, 0.37378), (0.64433, 0.03523),
(0.05164, 0.40614), (0.71752, 0.3749), (0.34851, 0.0), (0.53609, 0.61541),
(0.41741, 0.57393), (0.47766, 0.1533), (0.25821, 0.15485), (0.31986, 0.75521),
(0.44394, 0.63197), (0.84433, 0.39004), (0.33283, 0.56372), (0.325, 0.59029),
(0.02606, 0.49288), (0.573, 0.78519), (0.4752, 0.01513), (0.40449, 0.54465),
(0.23839, 0.11115), (0.23977, 0.06993), (0.4329, 0.01002), (0.92899, 0.40017),
(0.21591, 0.14988), (0.07178, 0.56037), (0.88931, 0.31247), (0.25623, 0.01655),
(0.24801, 0.0432), (0.16818, 0.30984), (0.45731, 0.88187), (0.80764, 0.22011),
(0.44103, 0.49385), (0.62063, 0.62541), (0.72454, 0.86523), (0.36167, 0.76018),
(0.55969, 0.02518), (0.42486, 0.14698), (0.01606, 0.74696), (0.20613, 0.54872),
(0.06619, 0.72514), (0.80553, 0.81297)
What is the optimal tour permutation of the cities to minimize the total distance trav-
eled? Solve the problem to the best of your ability. Reply with only a permutation
of the indices 1 to 50, and nothing else.

From Table 2, we can immediately see that the inference time required by GPT-4o is prohibitively
expensive in situations requiring fast and dynamic decision-making. Furthermore, the performance
is inconsistent: we can see that the gap incurred by GPT-4o has high variance, which is especially
evident in the gap incurred on instance 2. Even in the best-case scenarios, the gap provided is still
suboptimal compared to NCO methods. It is also worth mentioning that the formatting of the outputs
produced by GPT-4o have slight inconsistencies as well. A permutation was provided for all 5
instances, but sometimes there were artifacts such as extra square brackets around the permutation.
These small formatting variations pose a possible risk of feeding unexpected input into downstream
applications that utilize these outputs.

E.2 Worst-Case Gaps

Worst-case gap results on TSPLib50 can be seen in Table 3. We can observe that there is significant
improvement by GCL on the hardest TSP instances.

E.3 Ablations

In Table 4, we report ablation results for the two aspects of our curriculum. It can be seen that
without the genome component, the gap increases significantly, while without the EWC component,

14

% Worst Model Gap Avg (%) Gap Std (%)

1%
Uniform 20.4826 0.3445
HAC 11.0197 0.2942
GCL (Ours) 9.2047 0.4223

0.5%
Uniform 24.9234 0.7753
HAC 13.3394 0.3584
GCL (Ours) 10.8200 0.6798

0.1%
Uniform 42.7885 4.6717
HAC 19.4061 0.5314
GCL (Ours) 15.9905 2.0829

Table 3: Worst Case Gap on TSPLib50

Dataset Model Gap Avg (%) Gap Std (%)

Gaussian
Mixture

GCL (Ours) 6.2214 0.2155
No EWC 5.9941 0.1912
No Genome 8.8520 0.7046

Diagonal
GCL (Ours) 3.0165 0.0318
No EWC 3.0217 0.0344
No Genome 3.8851 0.1026

TSPLib50
GCL (Ours) 1.7738 0.0119
No EWC 1.7792 0.0115
No Genome 1.8232 0.0127

Table 4: Average Model Gap Ablations

performance is similar. We conclude that the genome component is most impactful for improving
performance. We find a similar trend for ablation tests on TSPLib50 worst-case scenarios.

E.4 Genome Evolution

To better understand how the genome evolves over training, we plot the distribution for each genome
base over the course of training in Figure 6. We plot this for a single GCL run. Note that the
high-frequency bright bands are the default values that new genome instances are sampled from.
Recall that half of the genomes are resampled after each epoch, and only 1 base mutates in expectation
per genome each epoch; this explains why the default values are considerably higher frequency than
neighboring values.

However, outside of the default values, we can see that the genome diversity slowly decreases over
training. This is most visible in the plots of bases 2, 4, and 5. We interpret this as indicating that the
genome is effective: there is rapid evolution at first as the genome population explores new genome
configurations, but this incentive for diversity decreases as the model eventually learns to solve these
novel configurations.

E.5 Gap Over Training

In Figure 7, we plot the optimality gap for our current model and our baseline model on training
levels, over training. We plot this for a single GCL run. As it is too computationally intensive to
compute the oracle for all levels in an epoch, we uniformly sample 1000 training levels from every
15th epoch, and calculate optimality gap on those levels.

We can see that notably, the baseline gap starts higher than the model gap, but then decreases
significantly at around epoch 60. We also interpret this as a further indicator that the genome is
effective: at first the baseline model struggles to keep up with the levels that the current model is
training on due to rapid genome evolution, but over time the baseline learns to generalize to those
new levels. This finding is consistent with our interpretation of Figure 6.

15

Figure 6: We plot the evolution of genome base distributions over the course of training for a single
GCL run. The diversity of each genome base decreases over training.

F Discussion

F.1 Limitations

We acknowledge that there are realistic distributions out there that GCL still fails to consistently
generate and train on, as noted by worst-case gaps that are still significantly above average.

This paper also focused on instances with 50 nodes. With more compute, GCL could be tested at
scale to see if trends hold with larger instance sizes.

Additionally, while we conducted basic hyperparameter searches for curriculum-based parameters,
by no means is our search exhaustive due to the large parameter space. Thus, we believe that our
performance could be optimized upon further tuning.

16

Figure 7: We plot baseline model and current model optimality gap on training data over the course
of training for a single GCL run. The baseline gap starts considerably higher than the current model
gap, but decreases significantly at around epoch 60.

17

	Introduction
	Background
	Preliminary Study
	Genetic Curriculum Learning
	Experiments
	Results
	Discussion
	Formal Definitions
	Traveling Salesman Problem
	Elastic Weight Consolidation
	Optimality Gap
	HAC Hardness Metric

	Preliminary Study
	Evaluation Datasets
	Distribution Generation

	Genetic Curriculum Learning
	Algorithmic Specification and Architecture
	Genetic Algorithm
	Elastic Weight Consolidation

	Experiments
	Setup
	Hyperparameters
	Details
	Source Code

	Results
	Large Language Model Results
	Worst-Case Gaps
	Ablations
	Genome Evolution
	Gap Over Training

	Discussion
	Limitations

