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ABSTRACT

Foundation models compress a large amount of information in a single, large neural
network, which can then be queried for individual tasks. There are strong parallels
between this widespread framework and offline goal-conditioned reinforcement
learning algorithms: a universal value function is trained on a large number of
goals, and the policy is evaluated on a single goal in each test episode. Extensive
research in foundation models has shown that performance can be substantially
improved through test-time training, specializing the model to the current goal. We
find similarly that test-time offline reinforcement learning on experience related to
the test goal can lead to substantially better policies at minimal compute costs. We
propose a novel self-supervised data selection criterion, which selects transitions
from an offline dataset according to their relevance to the current state and quality
with respect to the evaluation goal. We demonstrate across a wide range of high-
dimensional loco-navigation and manipulation tasks that fine-tuning a policy on the
selected data for a few gradient steps leads to significant performance gains over
standard offline pre-training. Our goal-conditioned test-time training (GC-TTT)
algorithm applies this routine in a receding-horizon fashion during evaluation,
adapting the policy to the current trajectory as it is being rolled out. Finally, we
study compute allocation at inference, demonstrating that, at comparable costs,
GC-TTT induces performance gains that are not achievable by scaling model size.

Figure 1: We introduce test-time training in the context of offline goal-conditioned reinforcement
learning. The same data used for pre-training is filtered and leveraged to improve the policy locally
during evaluation. This results in significant performance gains in standard benchmarks (left) when
combined with common offline RL backbones, GC-BC, GC-IQL, and SAW.

1 INTRODUCTION

Machine learning models are largely static: after a computationally expensive training phase,
inference traditionally involves a single forward pass (or multiple, in the case of autoregressive
models), without any further parameter updates. This framework is widely adopted across modalities
and domains, from early works on image classification (LeCun et al., 1998; He et al., 2016) to many
modern vision/language models (Brown et al., 2020; Rombach et al., 2022). However, perfectly
imitating training data with a neural network is challenging, and predictions of neural networks are
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often noisy and imprecise. Consequently, base models are often specialized to down-stream tasks
through fine-tuning (Hu et al., 2022; Kim et al., 2022; Black et al., 2024). More recently, across
(self-)supervised vision and language tasks, several works improve performance by specializing the
model to an individual task, either through in-context learning or test-time training (e.g., Brown et al.,
2020; Sun et al., 2020; Hardt & Sun, 2024; Hübotter et al., 2025). In contrast, in offline reinforcement
learning, we face the additional challenge that directly imitating previous experience is generally
not optimal for achieving the current goal, either because previous experience was suboptimal or
because it was aiming to achieve a different goal. While the dynamic conditioning of a learned policy
at test-time has been explored in hierarchical methods (Nachum et al., 2018; Eysenbach et al., 2019;
Park et al., 2023), the weights of the policy itself remain generally frozen during evaluation.

Whereas existing offline RL methods freeze policy parameters once training ends, we study the
test-time training of goal-conditioned policies. The standard pipeline of offline goal-conditioned
reinforcement learning involves (1) a (pre-)training phase, in which a policy learns to reach arbitrary
goals, often through relabeling or self-supervision, and (2) an inference phase, in which the policy
is queried to achieve one specific goal. We show that specializing the policy to an individual goal
at test-time significantly improves its performance, without leveraging any information beyond
the pre-training dataset and the pre-trained agent.

We propose Goal-Conditioned Test-Time Training (GC-TTT), which fine-tunes the base policy
at test-time on goal-related experience from the pre-training dataset.1 GC-TTT selects experience
according to a natural notion of relevance and optimality, ensuring that it is (1) related to the agent’s
current state, and (2) optimal with respect to a bootstrapped value function estimate (i.e., a critic).
Based on this goal-related experience, GC-TTT efficiently updates the actor through few gradient
steps according to standard policy learning objectives. We repeat this process in a receding-horizon
fashion to periodically and dynamically adapt the policy to the current trajectory.

We demonstrate how GC-TTT improves performance in standard offline goal-conditioned
benchmarks, suggesting that existing methods that learn to achieve arbitrary goals are systematically
underfitting with respect to individual goals. We show that GC-TTT can learn from both expert and
play-like data, and additionally derive a variant, which does not require a learned critic and retains
good performance on expert data. Both variants are agnostic to the backbone RL algorithm. Within
these settings, we ablate the frequency of test-time training and further investigate the compute
allocation at test-time, comparing the cost of test-time training against increased model sizes.

We thus make the following contributions:

• We propose a test-time training framework for goal-conditioned policies.

• We develop GC-TTT, a practical algorithm for dynamically training on goal-related experi-
ence during evaluation.

• We demonstrate significant performance gains on standard benchmarks when applying
goal-conditioned test-time training on top of existing algorithms.

• We demonstrate that GC-TTT significantly outperforms existing algorithms even when
inference FLOPs are matched by scaling the network sizes of baselines.

2 RELATED WORK

Goal-conditioned reinforcement learning Reinforcement learning (RL) research primarily builds
upon the framework of Markov decision processes (MPDs), which define their objective based on
a scalar function of states and action, referred to as a reward function (Sutton & Barto, 2018). While
reward functions may be very expressive (Silver et al., 2021), a conditional reward is more flexible
and can model a family of behaviors. One such approach is goal-conditioned reinforcement learn-
ing (GCRL). Here, the agent’s objective is to achieve some specified goal which is modeled by a sparse
reward, indicating whether the goal is achieved (Andrychowicz et al., 2017; Eysenbach et al., 2022;
Ma et al., 2022; Agarwal et al., 2023). The GCRL framework has been remarkably successful when
coupled with neural function approximation (Schaul et al., 2015), which is capable of amortizing the
enlarged input space of the policy, compared to individual-task RL. A prominent example of GCRL is

1While we propose using the pre-training dataset, leveraging privileged or auxiliary data is also possible.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the RL-training of large language models (e.g., DeepSeek-AI, 2025) where the language model learns
to achieve a broad family of goals such as solving math problems. As the reward function is often
known, several methods for relabeling (Andrychowicz et al., 2017) and self-supervision (Tian et al.,
2021) have been proposed to allow off-policy learning for all possible goals from arbitrary experience.
Due to the particular structure of the reward function, goal-conditioned RL allows for specific algo-
rithms beyond TD-learning, including contrastive (Eysenbach et al., 2022; Zheng et al., 2024) and
quasimetric (Wang et al., 2023) formulations. Furthermore, goal-conditioned algorithms can be easily
adapted to the offline setting considered in our work (Ma et al., 2022; Park et al., 2023; 2025). In both
offline and online settings, the goal-conditioned policy is evaluated by commanding a target goal or a
subgoal selected by a high-level component (Nachum et al., 2018; Park et al., 2023). The policy param-
eters then remain unchanged throughout evaluation. Our work investigates efficient training of the pol-
icy weights at test-time, and can be combined with any of the abovementioned value-based algorithms.

Test-time training In machine learning, models are traditionally trained on a fixed training set
and then kept frozen during evaluation. While this has been the standard practice in machine learning
for decades, early work has also discussed specializing the model at test-time to each prediction task.
First examples of this so-called transductive approach are local learning (Cleveland, 1979; Cleveland
& Devlin, 1988; Atkeson et al., 1997) and local fine-tuning (Bottou & Vapnik, 1992). More recently,
the idea of test-time training (TTT) (Sun et al., 2020) has regained attention in the context of
fine-tuning large foundation models during evaluation (e.g., Krause et al., 2018; 2019; Hardt & Sun,
2024; Sun et al., 2024). TTT on (self-)supervised signals for few gradient steps has since shown
success in domains such as control (Hansen et al., 2021), language modeling (Hardt & Sun, 2024;
Hübotter et al., 2025; Sun et al., 2024; Bertolissi et al., 2025), abstract reasoning (Akyürek et al.,
2025), and video generation (Dalal et al., 2025). Many standard TTT methods train on carefully
selected data from the pre-training dataset (i.e., do not add any new priviledged information; Hardt
& Sun, 2024; Hübotter et al., 2025), and several works studied how to optimally select data for
imitation (e.g., MacKay, 1992; Hübotter et al., 2024; Bagatella et al., 2025).

Test-time reinforcement learning In this work, we study test-time offline RL (TTORL), where the
offline dataset contains trajectories from different policies conditioned on different goals. Therefore,
unlike in previous work on TTT, this data should not be imitated directly. Despite this challenge, we
show that GC-TTT can substantially improve performance the performance of standard offline RL
algorithms. Our work is closely related to concurrent work, which studies a form of test-time online
RL (abbreviated TTRL) with language models (Zuo et al., 2025). Unlike their work, we propose to
dynamically train during evaluation of a single goal, which we identify as crucial for achieving max-
imum performance. Intuitively, our work on TTRL combines the pre-training paradigm commonly
pursued in GCRL and the standard RL paradigm of continuously training on experience collected for a
single task. In GC-TTT, the pre-trained model is specialized to each individual task during evaluation.

3 BACKGROUND

We model the dynamical system as a reward-free Markov decision processM = (S,A, P, γ, µ0)
(Eysenbach et al., 2022), where S and A are potentially continuous state and action spaces,
P : S ×A → ∆(S) is a stochastic transition function, γ is a discount factor and µ0 ∈ ∆(S) is
an initial state distribution. We introduce a goal space G and identify it with the state space G = S
for simplicity, although goal abstraction remains possible. As standard in goal-conditioned settings,
we assume the existence of a distance function d : S × G → R to determine goal achievement, and
define a conditional reward function as

R(s, g) =

{
−1 if d(s, g) ≥ ϵ
0 otherwise,

(1)

for some small fixed threshold ϵ. In turn, the reward function induces a conditional value function for
each policy π : S × G → ∆(A):

V π(s0 | g) = E
P,π

[∑∞
t=0 γ

tR(st, g)
]

where st+1 ∼ P (st, at), at ∼ π(st | g). (2)

Intuitively, the value function computes the negative, expected, discounted number of steps required
to reach the goal under a given policy. The optimal policy for some goal distribution µG can then
be defined as π⋆ = argmaxπ Eg∼µG ,s0∼µ0V

π(s0; g), and induces a quasi-metric structure in its

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

value function (Wang et al., 2023). Most practical algorithms optimize over a broad and dense goal
distribution µG (see, e.g., Andrychowicz et al., 2017), but are only deployed to achieve one specific
goal during each episode at inference.

Offline policy (pre-)training The standard offline goal-conditioned reinforcement learning pipeline
pre-trains a policy π on an offline dataset D of trajectories (s0, a0, s1, a1, . . . ). Most practical
methods parameterize the policy as a neural network πθ, and use stochastic optimization to find

θ⋆pre = argmax
θ

Jpre(θ), (3)

for a given pre-training objective Jpre (e.g., stochastic value gradients (Heess et al., 2015) or behavior
cloning (Ross et al., 2011)). This objective is normally specified as an expectation over the state-goal
distribution from the pre-training dataset:

Jpre(θ) = −Es∼ps(·|D), g∼pg(·|s,D) L(s, g, θ), (4)

where ps and pg are state and goal distributions, respectively. Normally, the loss function L will also
depend on actions sampled from D; however, these actions are naturally those paired with selected
states (e.g., when L is a behavior cloning loss). Except for prioritized sampling schemes (Horgan
et al., 2018), ps is generally uniform; pg is instead conditioned on s, and may sample future goals
from the same trajectories, or random ones (Ghosh et al., 2023). L represents an arbitrary loss
function, and commonly lies on a spectrum between supervised learning (behavior cloning) and
fully off-policy reinforcement learning. At its core, the objective in Equation 4 aims to find a policy
that is optimal on average (w.r.t. the goal distribution pg), which may lead to a locally suboptimal
solution for specific goals, especially in noisy settings or with limited model capacity.

After this training phase, the policy is evaluated on a single goal per episode. We study the problem
of fine-tuning the pre-trained model during test-time using offline RL to specialize the policy
locally. We call this setting test-time offline reinforcement learning (TTORL). Our method, GC-TTT,
specializes the policy to the agent’s current state and goal at test-time.

4 GC-TTT: GOAL-CONDITIONED TEST-TIME TRAINING

We propose to fine-tune the policy dynamically during evaluation, leveraging data from the
pre-training dataset D, which is “close” to the agent’s current state s ∈ S and “optimal” for reaching
the agent’s current goal g⋆ ∈ G. We denote this carefully selected set of relevant and optimal
sub-trajectories as D(s, g⋆). During evaluation, we then dynamically adapt the policy to the current
state-goal pair (s, g⋆) by fine-tuning it on uniform samples from D(s, g⋆) for a few gradient steps,
using the following objective:

JTTT(θ) = −Es′∼D(s,g⋆) L(s′, g⋆; θ), (5)

where we overload D to represent a uniform distribution over states in the dataset. Here, L is any
standard policy learning loss, such as behavior cloning or off-policy reinforcement learning.2 While
test-time training might use a different loss than pre-training, for simplicity, we use the same loss
for TTT as for pre-training throughout. We set the goal for policy fine-tuning deterministically to
the evaluation goal g⋆, as the policy will only be queried with this goal.

Figure 2 illustrates how GC-TTT fine-tunes the pre-trained policy at test-time. In the following, we
discuss the two key components of GC-TTT: (1) selecting relevant and optimal experience from
the dataset, and (2) fine-tuning the policy dynamically during evaluation.

4.1 What to train on? SELECTING RELEVANT AND OPTIMAL EXPERIENCE

The first step of GC-TTT is to select trajectories which are relevant to the current state of the agent
and optimal for achieving the target goal. To determine the relevance of sub-trajectories in D to
the agent’s current state s ∈ S, we leverage a notion of temporal distance. In practice, this can be
estimated by the learned quasimetric −V (s, g) of a value function estimate (Wang et al., 2023) or
by the locally correct distance function d conventionally exposed by the goal-conditioned reward

2For completeness, we include an overview in Appendix B.
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Figure 2: GC-TTT specializes the agent to the next steps for achieving its target goal.

function (Andrychowicz et al., 2017). We consider a sub-trajectory (s1, . . . ) ∈ D as related to the
current state s if d(s, s1) < ϵ for some ϵ > 0, normally also provided by the environment. This
results in a filtered set of sub-trajectories of diverse lengths:

Relevance: Drel(s) = {(s1, . . . sH) ∈ D | d(s, s1) < ϵ}. (6)

The threshold ϵ may be selected adaptively such that Drel(s) is of a desired size; however, in our
evaluated environments, fixing ϵ to a constant was sufficient. We note that the distance function
does not need to be globally accurate, but only locally.

Figure 3: Visualization of
data selection by GC-TTT
in antmaze play during
one evaluation episode (in
orange). A random subset of
trajectories from the dataset
is shown in gray.

While this operation selects sub-trajectories that are relevant to the
agent’s current state, not all of them might be useful for reaching
the agent’s target goal g⋆ ∈ G. We thus further filter the data
to include only those sub-trajectories which are most likely to
eventually reach g⋆. To measure this, we estimate the returns of the
sub-trajectories if they were to be extended using the agent’s current
policy. We adopt an H-step return estimate (Sutton & Barto, 2018)
which considers both the rewards along the sub-trajectory and the
estimated value of its final state:

V̂ ((s1, . . . , sH) | g⋆) =
H−1∑
i=1

γi−1R(si, g
⋆) + γH−1V (sH | g⋆).

(7)

In practice, the resulting estimate combines an evaluation of the
behavioral policy inducing (s1, . . . , sH) with a value estimate of the
current policy πθ. We find that H-step return estimates effectively
trade off bias and variance, providing a reliable signal for data
selection. These return estimates rely on a value estimate (i.e., a
critic), which is a core component across most offline GCRL algorithms. When a critic is not available,
we can use simple trajectory returns according to the behavioral policy and the reward function R,
as we demonstrate in Section 5. Given the return estimates V̂ (τ | g⋆), we set the scalar C to their
q-th percentile among all relevant sub-trajectories in Drel(s), and select the most optimal ones:

Optimality: D(s, g⋆) = {τ ∈ Drel(s) | V̂ (τ | g⋆) ≥ C}. (8)

4.2 When to train? RECEDING HORIZON TRAINING

It remains to decide when to fine-tune the policy based on the TTT objective from Equation (5).
In principle, we can update the policy whenever either the agent’s state or goal change. Since we
expect neighboring states to lead to similar fine-tuned policies, we opt for a natural receding horizon
approach (Morari & Lee, 1999). We describe the full GC-TTT algorithm in Algorithm 1.

5
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Algorithm 1 Goal-conditioned Test-time Training
Require: Pre-trained policy parameters θ, dataset D, hori-

zon K, number of gradient steps N , learning rate α,
distance d, goal-conditioned value estimate V̂ , locality
threshold ϵ, percentile q.

1: for each evaluation episode do
2: s ∼ µ0, g

⋆ ∼ µg
3: ▷ sample initial state and evaluation goal
4: θ̄ ← θ ▷ store policy parameters
5: while not done do
6: Drel(s)← {(s1, . . . ) ∈ D | d(s, s1) < ϵ}
7: ▷ select relevant sub-trajectories (Eq. 6)
8: C ← q-th percentile of {V̂ (τ |g⋆) | τ ∈ Drel(s)}
9: D(s, g⋆)← {τ ∈ Drel(s) | V̂ (τ |g⋆) ≥ C}

10: ▷ filter to optimal sub-trajectories (Eq. 8)
11: for i ∈ [1, . . . , N ] do
12: θ ← θ − α∇θEs′∼D(s,g⋆)L(s′, g⋆; θ)
13: ▷ fine-tune policy locally (Eq. 5)
14: end for
15: for i ∈ [1, . . . ,K] do
16: a ∼ πθ(s | g) ▷ sample action
17: s ∼ P (· | s, a) ▷ execute action
18: end for
19: θ ← θ̄ ▷ reset policy
20: end while
21: end for

Every K steps, we re-initialize the
policy to its pre-training weights.
Considering the current state s and
goal g⋆, we then fine-tune the pre-
trained policy on relevant and optimal
data. We then roll out the fine-tuned
policy for K steps, before its weights
are once again reset, and the entire
process is repeated. Intuitively,
each fine-tuning allows the agent to
focus on actions to be taken in its
immediate future. Crucially, this
allows the policy to only focus on
parts of its task, instead of trying to
solve it all-at-once. Furthermore, this
framework allows dynamic trajectory
corrections during each rollout: if the
agent strays away from the optimal
trajectory, GC-TTT can select helpful
data to correct the direction towards
the final goal. From this perspective,
there are clear parallels between
this high-level routine, and model
predictive control (MPC, Rawlings
et al., 2017), though importantly, our
approach does not require a model.
We remark that the update rule of
GC-TTT may also be applied in
different ways than we present here. For instance, it is possible to just fine-tune the policy once,
e.g., at the start of the episode or when an error is detected.

4.3 COMPUTATIONAL EFFICIENCY

While GC-TTT leads to substantial performance gains, it incurs additional computational costs at
test-time. This cost scales with several design choices; in particular, it scales linearly with the TTT
frequency 1/K and with the number of gradient steps N for each iteration. Each gradient update can
be as efficient as two forward passes, of which one is required at each time step for standard evaluation.
Moreover, there is an overhead at each fine-tuning iteration due to data selection: if parallelization is
possible (e.g., on graphics accelerators), this can be near-constant in practice, otherwise the overhead
increases linearly with the number of samples |D|. Finally, this cost is not distributed evenly through
the evaluation, but rather at regular intervals, which can result in a non-constant control frequency.

In practice, we find that GC-TTT completes a single evaluation episode (1000 steps) in ∼ 85 seconds,
for an average control frequency > 10 Hz. While performance can be further improved by efficient
implementations and more performant hardware, this number is comparable to the inference speed of
methods relying on efficient model-based planning (Pinneri et al. (2020), ∼12-20Hz), or VLAs with
diffusion heads (Black et al. (2024), ∼5-15Hz). For context, a critic-free version of the algorithm and
the pre-trained policy reach a control frequency of > 75 and∼ 190 Hz, respectively. For an empirical
study of the trade-off between performance and compute requirements, we refer to Section 5.

5 EXPERIMENTS

We provide an empirical validation of our contributions spanning four environments and three
algorithmic backbones. We identify five main insights, which we present in the following. Our code
is available at the anonymous website. We refer to Appendix D for implementation details.

Environments We rely on a suite of goal-conditioned tasks from OGBench (Park et al., 2025).
Namely, we evaluate three loco-navigation tasks of increasing complexity (pointmaze, antmaze
and humanoidmaze), spanning from 2 to 21 degrees of freedom.

6
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pointmaze antmaze humanoidmaze cubesingle avg.
expert play expert play expert play

GC-BC 0.05 (0.01) 0.33 (0.10) 0.30 (0.03) 0.50 (0.05) 0.06 (0.01) 0.33 (0.01) 0.07 (0.03) 0.23
+ TTT (no critic) 0.78 (0.02) – 0.54 (0.07) – 0.18 (0.00) – – –
+ TTT 0.81 (0.01) 0.96 (0.01) 0.48 (0.04) 0.79 (0.05) 0.21 (0.01) 0.73 (0.03) 0.09 (0.01) 0.58

GC-IQL-DDPG 0.52 (0.04) 0.24 (0.07) 0.65 (0.09) 0.26 (0.05) 0.27 (0.02) 0.08 (0.03) 0.72 (0.05) 0.39
+ TTT (no critic) 0.61 (0.03) – 0.80 (0.04) – 0.39 (0.03) – – –
+ TTT 0.60 (0.00) 0.41 (0.03) 0.87 (0.03) 0.73 (0.06) 0.57 (0.01) 0.53 (0.04) 0.75 (0.03) 0.63

SAW 0.97 (0.01) 0.81 (0.04) 0.96 (0.01) 0.98 (0.01) 0.86 (0.05) 0.76 (0.04) 0.71 (0.05) 0.86
+ TTT (no critic) 1.00 (0.00) – 0.99 (0.01) – 0.90 (0.03) – – –
+ TTT 1.00 (0.00) 0.98 (0.00) 0.99 (0.01) 0.99 (0.01) 0.96 (0.01) 0.83 (0.01) 0.73 (0.04) 0.92

Table 1: Success rates of GC-TTT and its critic-free variant across loco-navigation and manipulation,
on top of GC-BC, GC-IQL-DDPG, and SAW. Numbers in parentheses are standard errors across
3 seeds. Bold numbers denote results that are within the standard error of the best for a given
backbone. Underlined numbers denote whether significantly TTT outperforms pre-training. The
hyperparameters of GC-TTT are tuned per environment (cf. Appendix D.1). We report results for
fixed hyperparameters in Table 4.

Figure 4: The four environments
from OGBench (Park et al., 2025):
from top left in clockwise order,
humanoidmaze, cubesingle,
antmaze, pointmaze.

We evaluate all environments in their medium instance,
across two datasets of different qualities, namely
navigate and stitch. The former includes full
demonstrations for any evaluation state-goal pair, while
the latter may only be solved by “stitching” different
trajectories together. For ease of interpretation, we refer to
them as expert and play, respectively. We additionally
consider one manipulation task, in which a robotic arm
is tasked with relocating a cube (cubesingle).

Backbones In principle, GC-TTT is applicable across
the broad class of value-based offline goal-conditioned
algorithms. We thus select a representative subset of
algorithms, and focus our evaluation on GC-BC (Yang
et al., 2022), GC-IQL (Kostrikov et al., 2022) and SAW
(Zhou & Kao, 2025). GC-BC (behavior cloning) is
a supervised algorithm for goal-conditional imitation,
which directly matches the policy’s output to the actions
present in the offline dataset. GC-IQL is an implicit
method for offline RL, which bypasses evaluation on
out-of-distribution actions through expectile regression.
We evaluate it in combination with two policy extraction
objectives: DDPG+BC (Fujimoto & Gu, 2021) and AWR (Peng et al., 2019), the latter of which
is reported in Appendix C.5. SAW (Zhou & Kao, 2025) can be seen as a hierarchical offline
reinforcement learning algorithm, which directly amortizes high-level planning in the low-level
policy. We select BC and IQL due to their widespread adoption, and their representativeness of
on-policy and off-policy learning in offline settings, respectively. With SAW as a backbone, GC-TTT
achieves state-of-the-art performance on the considered benchmarks.

Insight 1: GC-TTT substantially improves the policy across diverse environments and learning
algorithms. To begin with, we evaluate the performance of GC-TTT across the described array
of environments and algorithms. We train the backbone algorithm until convergence and report the
average performance at 300k, 350k and 400k gradient steps, as in the protocol described by Park
et al. (2025). Performances are computed as the average success rate across four fixed goals in
each environment; we report mean and standard error across 3 seeds. We report our results in
Table 1 and Figure 5. We observe that GC-TTT improves the performance of the backbone for the
majority of backbone-environment combinations, and does not impact it negatively in the remaining
ones. Interestingly, test-time training is capable of reliably solving pointmaze with simple
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Figure 6: Left: Ablation of the data selection criteria. Both relevance and optimality have to be
considered to filter the dataset for test-time training. Middle: Allocating more compute by increasing
the frequency of TTT improves performance, and saturates slightly earlier in simpler environments.
Right: We compare scaling test-time compute of GC-TTT (by increasing TTT frequency) to scaling
the policy networks such that inference FLOPs are matched, within the antmaze play environ-
ment. We find that GC-TTT scales well with increased test-time compute, while scaling model size
does not yield significant improvements.

techniques (i.e., GC-BC). This suggests that standard approaches for offline goal-conditioned RL
might systematically underfit with respect to each specific goal, as a few gradient steps are sufficient
to significantly improve their policies. This sheds some light on one of the open problems discussed
in Park et al. (2025). Furthermore, as the environment complexity increases (e.g., antmaze or
humanoidmaze), the improvements induced by GC-TTT remain significant; and cubesingle
confirms that this trend holds in settings with fundamentally different dynamics.

Insight 2: GC-TTT can be applied without value estimates if expert data is available. We
now turn our attention to a critic-free variant of GC-TTT. This algorithm replaces the H-step return
estimate (cf. Equation (7)) with the trajectory returns (i.e., a discounted sum of rewards along the
trajectory). As such, this variant does not require additionally training a critic network (and thus
combines seamlessly with, e.g., BC). However, this critic-free variant cannot infer optimality from
trajectories that do not reach the target goal, and is therefore limited to expert data. As shown in
Table 1 and Figure 5, on such tasks with expert data, the critic-free variant retains much of the
effectiveness of GC-TTT. In contrast, in play tasks, all relevant sub-trajectories are likely to achieve
the same trajectory return of 0.

Insight 3: Selecting both relevant and optimal data is necessary. A core component of GC-TTT
is the selection of relevant and optimal data from the offline dataset (cf. Section 4.1). We ablate this
design choice in Figure 6 (left), where we report the average success rates with GC-IQL as backbone
in the pointmaze/antmaze play environments. We observe that selecting random data from
the dataset is not effective, as the global objective of the backbone algorithm has already converged.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Selecting relevant but suboptimal data marginally improves performance, possibly encouraging a
form of test-time behavior regularization. Selecting optimal data that may be irrelevant to the agent’s
current state yields a slight increase in success rate. We attribute this to the relatively small size
of the environments, which means that by chance some selected trajectories might also be relevant.
Remarkably, GC-TTT leads to a substantial performance gain by combining both relevance to
the agent’s current state and optimality for the agent’s goal. We additionally plot data selected by
GC-TTT over the course of an evaluation episode in Figure 3.

Insight 4: The frequency of test-time training should adapt depending on the difficulty of the
environment. The compute cost of GC-TTT scales linearly in the frequency of test-time training.
Hence, from this perspective, updating the policy less frequently seems desirable. At the same
time, frequent updates allow the agent to focus on local information and to quickly correct when
diverging from the optimal path to the goal. We demonstrate this in Figure 6 (middle), where we
evaluate GC-TTT with GC-IQL in antmaze play. We find that the value estimates used for data
selection are not accurate over long horizons (> 200 steps in antmaze play), leading to poor
performance if the policy is updated too infrequently.3 However, as the frequency of TTT increases,
we observe that GC-TTT leads to significant performance gains. We repeat the same experiment
on pointmaze play, which is an arguably simpler environment. We observe that performance
already saturates at a lower frequency (i.e., 1/200), suggesting that test-time training should be
applied at shorter intervals in more complex environments.

Insight 5: GC-TTT scales better than model size. Having shown that GC-TTT predictably
improves when allocating more compute, we analyze another option to scale test-time compute,
namely by training larger policies, which are more expensive to evaluate. For this, we compare
the performance of GC-TTT with a given frequency 1/K to the performance of larger policies that
are not trained at test-time, but which have matched inference FLOPs to GC-TTT. To match the
inference FLOPs of GC-TTT scaling and model scaling, we assume that compute requirements
scale linearly with TTT frequency, but quadratically in the width of the policy. Details on how
compute costs are calculated can be found in Appendix D. In Figure 6 (right), we find that GC-TTT
consistently outperforms model scaling across a broad range of inference FLOPs.

6 CONCLUSION AND FUTURE WORK

This work introduces a framework of test-time training for offline goal-conditioned RL. We propose a
self-supervised data selection scheme which chooses relevant and optimal data for the agent’s current
state and goal from an offline dataset of trajectories. Our proposed method, GC-TTT, periodically
fine-tunes the pre-trained policy on this data during evaluation. We find that GC-TTT consistently
leads to significant improvements across several environments and underlying RL algorithms.

The main practical limitation of this work arguably lies in its compute requirements, which we
discuss in Section 4.3. While our measured average control frequency of GC-TTT is compatible
with some robotic applications, high-frequency control would require development of a lazy variant
of GC-TTT. Further, GC-TTT relies on reasonable value estimates and on available data related
to the agent’s current state and goal.

By showing that test-time training can effectively improve policies from off-policy experiential
data, our work opens up several exciting directions for further research. On a practical level, our
findings suggest that current offline GCRL algorithms are unable to accurately fit each of the tasks
they are trained on. The reason for this should be investigated, and might suggest directions for
improving offline RL pre-training. Moreover, GC-TTT does not leverage the data that is freshly
collected at test-time, beyond the current state. We believe that leveraging this new experience with
a test-time online RL algorithm is an exciting direction. Finally, the framework proposed in this
work can be readily extended beyond goal-reaching tasks to more general decision-making settings,
including other domains such as reasoning in natural language. We expect that progressively shifting
computational resources to test-time training can substantially improve performance in areas ranging
from robotic control to reasoning agents.

3An alternative to dynamically retraining during evaluation, which leads to a constant control frequency, but
we do not evaluate here, is to reset the policy after K steps to the pre-trained policy.
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A TAXONOMY OF TEST-TIME TRAINING

Test-time training (TTT) describes a family of methods that update model parameters at test-time
for each task. We categorize various approaches to TTT below.

Category Methods

Imitating expert data Often referred to as “Test-Time Training” (TTT),
e.g., Hardt & Sun (2024); Hübotter et al. (2025); Akyürek et al. (2025)

Learning from any experience Test-Time Offline Reinforcement Learning (TTORL)

Learning from self-generated experience Test-Time (Online) Reinforcement Learning (TTRL),
e.g., Zuo et al. (2025); Diaz-Bone et al. (2025)

Table 2: Taxonomy of test-time training.

B DISCUSSION OF OFFLINE RL ALGORITHMS

The empirical validation of this work builds upon three widespread algorithms for extracting policies
from offline data. In this section, we provide a concise introduction to them.

B.1 BEHAVIOR CLONING

Behavior Cloning (Ross et al., 2011) is a standard approach for policy learning, which reduces a
control problem to supervised reconstruction. Given a distribution µ over state-action pairs, a policy
πθ is trained by minimizing

LBC(θ) = −E(s,a)∼µ log πθ(a | s). (9)

The resulting policy will maximize the likelihood of actions in the dataset, and thus converge to the
behavioral policy, if it belongs to the policy class.

B.2 IMPLICIT Q-LEARNING

Implicit Q-Learning (Kostrikov et al., 2022) is an offline RL algorithm, which avoids querying
the critic on out-of-distribution actions, and directly estimates a value function through expectile
regression. Given a distribution µ of state-action-next state transitions labeled with a reward, IQL
defines the following losses:

LQ(ϕ) = E(s,a,r,s′)∼µ (r + γVψ(s
′)−Qϕ(s, a))2, (10)

and
LV (ψ) = E(s,a,r)∼µ L

α(Qϕ(s, a)− Vψ(s)) with Lα(x) = |α− 1x<0|x2. (11)

As the expectile α approaches one, V approximates the maximum of Q. Thus, IQL is capable of
off-policy learning, and can estimate the value function of the optimal policy (Kostrikov et al., 2022).
An optimal policy may then be extracted through advantage weighted regression (AWR, Peng et al.,
2019):

Lπ(θ) = −E(s,a,r)∼µ exp
(
β
(
Qϕ(s, a)− Vψ(s)

))
log πθ(a | s), (12)

where β interpolates between extracting the behavior policy or the greedy one. Alternatively, a policy
can also be estimated through a BC-regularized, DDPG-style loss (Fujimoto & Gu, 2021):

Lπ(θ) = −E(s,a,r)∼µ βQϕ(s, â) + log πθ(a | s) with â ∼ πθ(s). (13)
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Reward-based Value-based (C=-14) Value-based (C=-18) Value-based (C=-22)

antmaze play 0.73 (0.01) 0.68 (0.04) 0.73 (0.01) 0.67 (0.03)

Table 3: Success rates of GC-TTT with the original relevance criterion and a value-based version, on
top of GC-IQL. Numbers in parentheses are standard errors across 3 seeds.

B.3 SAW

SAW (Zhou & Kao, 2025) is an offline reinforcement learning algorithm designed to flatten hierarchi-
cal approaches (Park et al., 2023).

At its core, it relies on implicit Q-learning for estimating a value function, and on AWR for policy
extraction, with an additional term encouraging alignment of the low-level policies across close and
distant goals:

LSAW(θ) = −E(s,a,r)∼µ exp (α(V (w, g)− V (s, g)))DKL(πθ(· | s, g)∥πψ(· | s, w)), (14)

where we made the dependencies of the value functions and policies on goals explicit, w is a candidate
subgoal, and πψ is simply trained with AWR.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION ON THE TTT LEARNING RATE AND NUMBER OF GRADIENT STEPS
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1Figure 7: GC-TTT results for different gradient steps.

Figure 7 presents the success rate of GC-
TTT with GC-IQL on antmaze play as
the number of test-time training gradient
steps N changes. We observe that increas-
ing the number of gradient steps helps ini-
tially, as the policy can better fit the local
data. However, an excessive number of gra-
dient steps may decrease performance, as
the policy is trained on a small dataset, and
offline issues such as value overestimation
may arise. Regarding the learning rates,
the higher learning rate facilitates quicker
adaptation and shows a slight advantage in
peak performance. While there are differ-
ences, both learning rates yield comparable
results as gradient steps increases.

C.2 VALUE-BASED RELEVANCE
CRITERION

The relevance criterion defined in Equation 6 relies on the reward criterion normally exposed in
goal-conditioned settings. When this is not available, however, the criterion may be replaced by a
proxy based on a value estimate:

Value-based relevance: Drel(s) = {(s1, . . . sH) ∈ D | V (s, s1) > C}. (15)

This time, C is a constant hyperparameter, which, similarly to ϵ, can control the maximum temporal
distance between the current state s and selected trajectories.

We find that, empirically, this modification does not affect performance significantly: we report perfor-
mance of GC-TTT with the original and the value-based relvance criterion in antmaze in Table 3.
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pointmaze antmaze humanoidmaze cubesingle avg.
expert play expert play expert play

GC-BC 0.05 (0.01) 0.33 (0.10) 0.30 (0.03) 0.50 (0.05) 0.06 (0.01) 0.33 (0.01) 0.07 (0.03) 0.23
+ TTT (no critic) 0.78 (0.02) – 0.49 (0.02) – 0.09 (0.00) – – –
+ TTT 0.79 (0.04) 0.96 (0.01) 0.48 (0.04) 0.75 (0.02) 0.19 (0.01) 0.64 (0.02) 0.09 (0.01) 0.55

GC-IQL-AWR 0.16 (0.05) 0.31 (0.07) 0.58 (0.06) 0.26 (0.05) 0.11 (0.04) 0.03 (0.02) 0.57 (0.02) 0.28
+ TTT (no critic) 0.67 (0.03) – 0.71 (0.04) – 0.19 (0.03) – – –
+ TTT 0.79 (0.02) 0.81 (0.03) 0.65 (0.09) 0.64 (0.04) 0.22 (0.04) 0.19 (0.02) 0.61 (0.05) 0.55

GC-IQL-DDPG 0.52 (0.04) 0.24 (0.07) 0.65 (0.09) 0.26 (0.05) 0.27 (0.02) 0.08 (0.03) 0.72 (0.05) 0.39
+ TTT (no critic) 0.53 (0.07) – 0.76 (0.02) – 0.39 (0.03) – – –
+ TTT 0.58 (0.02) 0.38 (0.04) 0.81 (0.02) 0.73 (0.03) 0.49 (0.04) 0.46 (0.02) 0.65 (0.06) 0.58

SAW 0.97 (0.01) 0.81 (0.04) 0.96 (0.01) 0.98 (0.01) 0.86 (0.05) 0.76 (0.04) 0.71 (0.05) 0.86
+ TTT (no critic) 1.00 (0.00) – 0.95 (0.03) – 0.86 (0.04) – – –
+ TTT 0.99 (0.01) 0.92 (0.03) 0.99 (0.01) 0.93 (0.03) 0.93 (0.02) 0.79 (0.06) 0.73 (0.04) 0.89

Table 4: Success rates of GC-TTT and its critic-free variant across loco-navigation and manipulation,
on top of GC-BC, GC-IQL-DDPG, and SAW. Numbers in parentheses are standard errors across 3
seeds. Bold numbers denote results that are within the standard error of the best for a given backbone.
Underlined numbers denote whether TTT outperforms pre-training. The hyperparameters of GC-TTT
are fixed across environments.

C.3 PARAMETER SCALING ABLATION
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1Figure 8: Model scaling results for dif-
ferent learning rates.

Figure 6 (right) studies the extent to which performance
may be improved by scaling the parameter count of the
policy. In order to ensure that the absence of improvement
does not stem from hyperparameter choices, we addition-
ally report results for different learning rates in Figure 8.

C.4 RESULTS FOR FIXED HYPERPARAMETERS

This section reports results for the same evaluation as in Ta-
ble 1, but fixes the same test-time hyperparameters across
all environments. Table 4 suggests that the drop in perfor-
mance due to environment-agnostic tuning is moderate.

C.5 RESULTS FOR GC-IQL-AWR

We additionally report results for GC-TTT on GC-IQL,
when replacing the policy extraction objective with AWR.
For convenience, this evaluation is reported in Table 4.

D IMPLEMENTATION DETAILS

For environments and backbone algorithms, we adopt the default hyperparameters presented in
OGBench (Park et al., 2025).

D.1 HYPERPARAMETERS

GC-TTT introduces some additional hyperparameters. We keep the percentile fixed at q = 0.2 and
tune the remaining ones, including the horizonK, the number of gradient stepsN , and the fine-tuning
learning rate α (see Table 5).
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pointmaze antmaze humanoidmaze cube Fixed
expert play expert play expert play

GC-BC + TTT (no critic)

α 3e−4 3e−5 3e−4 3e−4 3e−4 3e−4 3e−5 3e−4

N 50 100 100 50 100 100 50 50
H 100 200 200 100 100 100 100 100

GC-BC + TTT
α 3e−5 3e−4 3e−4 3e−4 3e−4 3e−4 3e−4 3e−4

N 200 100 100 200 200 50 100 100
H 100 100 100 100 200 100 100 100

GC-IQL + TTT (no critic)

α 3e−4 3e−4 3e−4 3e−4 3e−5 3e−4 3e−5 3e−5

N 50 200 100 200 200 100 50 200
K 100 100 100 100 100 200 100 100

GC-IQL + TTT
α 3e−4 3e−4 3e−4 3e−5 3e−4 3e−5 3e−5 3e−4

N 100 200 100 200 50 100 50 100
K 200 100 200 100 200 100 100 100

SAW + TTT (no critic)

α 3e−5 3e−4 3e−5 3e−5 3e−5 3e−5 3e−4 3e−5

N 100 50 100 100 100 100 200 100
K 100 200 200 100 200 100 100 100

SAW + TTT
α 3e−4 3e−5 3e−5 3e−4 3e−4 3e−5 3e−5 3e−5

N 200 200 50 100 50 100 50 50
K 100 200 200 100 100 100 200 200

Table 5: Hyperparameters used in Table 1, with the last column containing fixed hyperparameters
across environments used in Table 4.

D.2 ESTIMATING FLOPS

Figure 6 (right) presents estimates of test-time compute (FLOPs) in its x-axis. In order to compute
these estimates, we make the following simplifying assumptions:

• The input and output size of the policy is negligible with respect to its witdh w; hence, the
number of sum/multiply operations for one forward pass is C ≈ 2nw2 = 4w2, as the policy
is an MLP with n = 2 hidden layers.

• The cost of a forward pass does not depend on the batch size.
• A backward pass requires twice the compute as a forward pass.

Following from these assumptions, the cost for a single evaluation episode with 1000 steps is
Cno-TTT ≈ 1000C = 4000w2. Considering the test-time training frequency f and the number of gradi-
ent stepsm = 100, the cost of the same operation with GC-TTT isCTTT = 1000f(1+6Cm)+1000C.
The first term includes the cost of data selection (1 for the single forward pass required for computing
values used in 8) and fine-tuning (6Cm, where we assume that the critic is the same size of the policy,
and we need to compute gradients of the policy with respect to the critic’s output). The cost of other
operations not involving the neural network are not considered. Given the default width w = 512 we
may then compute the compute cost without GC-TTT (≈ 109 FLOPs), and for test-time training fre-
quencies [1/1000, 1/500, 1/200] (≈ 1.6 ·109, 2.2 ·109 and 4 ·109 FLOPs, respectively). Given these
increased compute budgets, we can finally solve for the values ofw necessary for meeting this compute
cost without GC-TTT (≈ 624, 732, 992), which were used to obtain the grey curve in Figure 6 (right).
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